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Abstract. The main purpose of this paper is to introduce a new frame-
work for a global, geometric study of hybrid systems, and demonstrate
its usefulness through its application to the analysis of the Zeno phe-
nomenon and stability of hybrid equilibria.

1 Introduction

In this paper we present a unifying approach for treatment of hybrid systems. We
define the notions of the hybrid manifold (or hybrifold) and hybrid flow, which
enable us to study the hybrid system “in one piece”, that is, as a single, generally
non-smooth dynamical system.

Having established a reasonable framework for the geometric study of hybrid
systems as dynamical systems, we focus particularly on the Zeno phenomenon,
which does not occur in smooth dynamical systems. We study its causes, ways
of removing it from the system, and classify it topologically in dimension two.

The last part of the paper deals with stability of isolated hybrid equilibria. We
prove a theorem which explains, among others, examples in which a stable hybrid
equilibrium is composed of unstable classical equilibria. Proofs of all statements
in the paper can be found in [SISL].

2 Preliminaries

2.1 Definitions and examples

Definition 1. An n-dimensional hybrid system is a 6-tuple H = (Q, E,D, X ,G,R),
where:

— Q={l,... k} is the collection of (discrete) states of H, where k > 1 is an
integer;
— F C @ x Q s the collection of edges;
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Fig. 1. The water tank example.

— D =1{D; :i € Q} is the collection of domains® of H, where D; C {i} x R"
foralli e @Q;

— X = {X; :i € Q} is the collection of vector fields such that X; is Lipschitz
on D; for all i € Q; we denote the local flow of X; by {#:}.

— G ={G(e) : e € E} is the collection of guards, where for each e = (i,j) € E,
G(e) C D;;

— R ={R. : ¢ € E} is the collection of resets, where for each e = (i,j) € E,
R. is a relation between elements of G(e) and elements of D;, i.e. R. C

G(e) X Dj‘

Remark. If a reset relation R, is actually a map G(e) — D;, withe = (4, j) € E,
instead of (z,y) € R, we write y = R.(z). Observe that domains D; lie in distinct
copies of R™. However, we will sometimes abuse the notation and consider the
domains as subsets of a single copy of R™. We also set D = |J,., D;, and

1€

call this set the total domain of H, and G = |J, 5 G(e), R = .cp Re(G(e)),
G={G(e):e€ E}, R={R.(G(e)):e € E}.

Given H, the basic idea is that starting from a point in some domain D; we flow
according to X; until (and if) we reach some guard G(i, j), then switch via the
reset R(; j), continue flowing in D; according to X; and so on.

Ezample 1 (Water Tank WT). Here n =2,k =2, F = {(1,2),(2,1)}, D1 =
{1}xC, Dy ={2}xC,where C = [l;,00) x[lg,00), X1 = (w—vy,—v2)T, Xy =
(—Ul, w — UQ)T, G(l,?) = {(1,1‘1, IQ) €Dy :xy = 12}, G(2, 1) = {(2, Ty, IQ) S
Dg X = 11}, and R(l,Z)(la l‘l,lg) = (2, X1, ,12), R(Q,l)(2alla 332) = (1,11, CL‘Q).

The interpretation is as follows (cf. Fig. 1). For i € @, z; denotes the volume
of water in tank 7, v; is the constant rate of flow of water out of tank 7, and /;
is the desired volume of water in tank 7. The constant rate of water flow into
the system, dedicated exclusively to one tank at a time, is denoted by w. The
control task is to keep the water volume above {1 and I3 (assuming the initial
volumes are above [; and 5 respectively) by a strategy that switches the inflow
to the first tank whenever z; = [; and to the second tank whenever z5 = {5.

Ezample 2 (Bouncing Ball BB).

This is a simplified model of an elastic ball that is bouncing and losing a
fraction of its energy with each bounce. We denote by z; its altitude and by
zg its vertical speed. Here n = 2, k = 1, E = {(1,1)}, D1 = {(z1,22) : 21 >
0}, Xl(l‘l,ZEQ) = (l‘g,—g)T, G(l,l) = {(0,332) L T2 S 0}, R(M)(O,:L‘z) =
(0, —ca2), where g is the acceleration due to gravity and 0 < ¢ < 1 (cf. Fig. 2).

Ezample 3 (Bouncing m-Ball BB(m)).
The only difference between this and the previous example is that we have
m different domains in which the ball can bounce and after each bounce the

! In the literature also known as “invariants”.
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Fig. 2. Bouncing ball.

ball switches to the next domain in a cyclic order. That is, n =2, k = m > 1,
E={(1,2),(2,3),...,(m—=1,m),(m,1)},and for alli € Q, D; = {i} x{(z1,z2) :
X1 Z 0}, G(Z,Z—Fl) = {Z}X{(O, 1‘2) L X9 S 0}, R(i,i-}-l)(ia 0, CC‘Q) = (2—1—1,0, —C.CL‘Q),
where we conveniently identify m + 1 := 1. Note that here the domains are just
different copies of the closed right half-plane in R2.

Ezample { (Ball Bouncing on an N-step Staircase BBS(N)).

Here a ball is bouncing on an N-step staircase. Assume that stepz =1,... | N
has width w; > 0 and height h; > 0, and define w,, = Zznzl w; and iLm =
>, hi. Assume also that the ball loses a proportional amount of its vertical
velocity (z2) with each bounce and that the ball has constant horizontal speed
(z3). Denote by z; its vertical position. Then we have: @ = {1,... , N + 1},
E={(:i:1<i< N+13U{(1,2),...,(N,N+ 1)}, and for 1 < ¢
N+ 1: D; = {i} x [ilZ,OO) X (—00,0] x (—oo,w;], G(i,7) = {(z1,%2,3)
D; AZ} R (i, x1, 22, 23) = (4,21, —cxz, x3) and X; (331,132,13)
(22, g,v) . Fur thermore for 1 <i< N:G(i,i+ 1) = {(z1,22,23) € D;
Wi}, R ig1)(i,x) = (14 1,x). For more details see [JLSM].

Ezample 5 (Two Saddles S2())).

Here n =2, k=2, A >0, E = {(1,2),(2,1)}, the domains are two copies
of the square S = [—1,1] x [-1,1],i.e. for i € Q, D; = {i} x S, Xi(z1,22) =
Az, —29)T,  Xa(z1,22) = (—21, Az2)T, G(1,2) = union of the vertical sides
of Dy, G(2,1) = union of the horizontal sides of Dy, R; j)(2, ) = (j, x), for all
(1,7) € E.

Example 6 (Flow on the 2-torus T?(a)).

Wehavea>0n—2k_2E_{( 2)
K = [0,1] x [0,1] is the unit square, X; = Xy = (1 a)T are constant vec-
tor fields, G(i,i) = {i} x Supper G(i,j) = {i} x rlght’ R(i,i)(i’xﬁl) =
(¢,2,0) and R ;y(i,1,y) = (4,0,y), where i,j = 1,2, # j, Supper = [0, 1] x {1}
and Spepg = {1} x [0, 1) denote the (closed) upper and (half-closed) right side
of K. Note that R;;)({i} x Supper) = {i} X Sjower and R jy({i} x 1ght)
{7} X Sjeft, with the obvious meaning of Sjgywer and Sief; -

If we proceed as is usually done in geometry and identify {i} x Supper with
{i} X Siower via Ry;,iy and {i} x Syjgp,g with {j} x Sje via Ry, 5y (where i, = 1,2,
i # j), we obtain the standard 2-torus with a smooth flow with slope @ on it. This
is a baby-version of a construction we will later apply to more general hybrid
systems.

I mIA

1(21 1)}, Dz = {Z} X I\r, Where

Keeping in mind the examples above, we formally define the notion of an exe-
cution of a hybrid system.

Definition 2. A (forward) hybrid time trajectory is a sequence (finite or infi-
nite) T = {Ij}j'v:o of intervals such that Iy = [r;, 7]] for all j > 0 if the sequence
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is infinite; if N is finite, then I; = [r;,7j] for all 0 < j < N —1 and Iy is either
of the form [Ty, 7y or [T, Ty ). The sequences 7; and 7] satisfy: 7j < 7/ = Tj41,
for all j.

One thinks of 7;’s as time instants when discrete transitions (or switches) from
one domain to another take place. If 7 is a hybrid time trajectory, we will call N
its size and denote it by N (7). Also, we use () to denote the set {0,..., N(7)}
if N(r) is finite, and {0,1,2,...} if N(7) is infinite.

We will say that 7 is a prefir of an execution 7' = {I} é\f:lo if N < N’ (where
the inequality is taken in the extened real number system), and for 0 < j < N, we
have I; = I]’»; furthermore, if 7 has finite size, then we must also have In C Ily.

Definition 3. An execution (or forward execution) of a hybrid system H is a
triple x = (1,q, %), where T is a hybrid time trajectory, q : () = @ is a map,
and * = {z; : j € (r)} 1s a collection of C' maps such that z; : I; — Dy
and for all t € I;, &;(t) = Xq¢(x;(t)). Furthermore, for all j € (1), we have
(4(5).qG+1) € B, zi(r) € Gle(),q(7 + 1)), and (z;(7), 2j11(7i41)) €
Rq(i),ati+1)-

For an execution x = (7, ¢,z), denote by 7o (x) its ezecution time: 1o (x) =
Nt — r) = Tims 1

Y=o (7j = 7)) = limj N (r) T} — To.

Definition 4. An execution y is called:

— infinite, if N(T) = 00 or Too(X) = 00;
— a Zeno execution if N(7) = oo and 7o (X) < 00;
— maximal if it is not a strict prefix of any other erecution of H.

The last statement means that there exists no other execution x' = (7, ¢, 2’)
such that 7 is a strict prefix of 7" and z = 2’ on 7 (in the sense that z; = z’ on
I; for all j € (1)).

Note that in Examples 1 (WT), 2 (BB) and 3 (BB(m)) every execution is
Zeno. The same can be shown for Examples 4 (BBS(N)) if 0 < ¢ < 1 and 5
(S2(X)) if 0 < XA < 1. On the other hand, every execution in Example 6 (T2 (a))
is infinite with infinite execution time.

We say that an execution x = (7, ¢, z) starts at a point p € D if p = z¢(70)
and 7 = 0. It passes through p if p = z;(t) for some j € (1), t € I;, t > .

Given p € D, it 1s not difficult to see that there are many ways in which a
hybrid system can accept several executions starting from or passing through p.
For instance, this happens if at least one of the resets is a relation which is not
a function.

Definition 5. A hybrid system is called deterministic if for every p € D there
exists at most one mazximal execution starting from p. It is called non-blocking
of for every p € D there s at least one infinite execution starting from p.



Necessary and sufficient conditions for a hybrid system to be deterministic and
non-blocking can be found in [LISE]. Roughly speaking, resets have to be func-
tions, guards have to be mutually disjoint and whenever a continuous trajectory
of one of the vector fields in X is about to exit the domain in which it lies, it
has to hit a guard.

2.2 Standing assumptions

From now on we will assume that every hybrid system H = (Q, E,D,X,G,R)
in this paper satisfies the following assumptions.

(A1) H is deterministic and non-blocking.?

This means that every point in D is the starting point of a unique infinite
(and therefore maximal) execution of H.

(A2) Each domain D; is a contractible n-dimensional smooth submanifold of
R™, with piecewise smooth boundary. No two smooth components of the boundary
meet at a zero angle.

The non-zero angle requirement eliminates, for instance, cusps in dimension
two, but does not eliminate “corners”. Thus for domains of a hybrid system we
allow disks, half-spaces, rectangles, etc.

(A3) FEach guard is a piecewise smooth (n — 1)-dimensional submanifold
of the boundary of the corresponding domain. The boundary of each guard is
piecewise smooth (or possibly empty).

(A4) Each reset is a piecewise smooth homeomorphism onto its image. The
tmage of every reset lies in the boundary of the corresponding domain.

(A5) Any sets in GUR (i.e. closures of guards and images of resets) can
intersect only along their boundaries. Furthemore, if p € G U R, then p can be
of only one of the following four types (cf. Fig. 4):

Typel :pecintGUint R;

Type II :p € 9GUOR and there exists exactly one set S € GUR which contains
p;

Type III : p € OG U R and there erist sets Sy,..., S, € GUR (I > 2) such
that p € 90S1 N ...NAS; and some neighborhood of p in Sy U ... US| is
homeomorphic to R"1;

Type IV : p € 0G UJR and there exist sets Si,...,S, € GUR (I > 2) such
that p € 0S1 N ...NAS; and some neighborhood of p in Sy U ... US| s
homeomorphic to Ri_l‘

Assumption (A5) ensures that intersections of guards and images of resets (that
is, their closures) are sufficiantly nice. This in particular means that the config-
uration around ps in Fig. 4 is not allowed.

(A6) Forall e = (i,j) € E, X; points outside D; along G(e), and X; is
points inside D; along im R,.

This means that if p € G(4,7), ¢ = R j)(p), then there exists ¢ > 0 such
that ¢’ ,(p) € intD; and gbi(q) € intD;, for all 0 < ¢ < ¢, where int denotes the
interior of a set. In particular, we have that X; is transverse to the smooth part

2 These assumptions can be relaxed. However, to simplify the exposition and avoid
some nonessential technical difficulties in the subsequent construction, we keep them
in the present form.



Fig.4. p; is of Type (Roman) : (1 <1 < 4).

of G(e) and X is transverse to the smooth part of im R., the image of the map
R..
(A7) FEach reset map R, extends to a map R. defined on a neighborhood of
G(e) (the closure of G(e)) in D; such that R. is a piecewise smooth homeomor-
phism onto its image, which, in turn, s a neighborhood of im R, in D;. Each
vector field X; can be smoothly extended to a neighborhood of D; in {i} x R"™.
The last one is a fairly technical assumption the need for which will be-
come apparent later. Note that all the examples provided above satisfy this (as
well as all other) assumptions. For instance, in Example 2 (BB), we can take

R (21, 22) = (21, —cx).

Definition 6. A hybrid system which satisfies assumptions (A1) - (A7) will be
called regular.

Given H, define a map &% : 2, — D, (where 2o C R x D will be specified later)
as follows. Let p € D be arbitrary. Because of (A1), there exists a unique infinite
execution x(p) = (7,q,z) starting at p. For any 0 < ¢ < 7o (x(p)) there exist
a unique j € @ such that ¢t € [r;, T]’) Then define @8 (¢, p) = z;(t). To define
®H (¢, p) for negative t, set ®H(t,p) = @HI(—t,p), where H' is the reverse hybrid
system (@', E', D', X',G', R’} defined by: Q' = Q, D' = D, X = —X;, for all
i€Q; (4,5) € E'if and only if (j,4) € E; and for every e = (7, j) € E’, we have
Gl(e) = R(]yl)(G(j, Z)) and Ré = Rgl.

Tt can easily be checked that H' satisfies (A1) - (AT) if H does. Now let {2
be the largest subset of R x D on which & is defined.

For instance, in Example 2, for any p # 0, ®8B(¢,p) = 0, as t — 7.0 (x(p)),
where x(p) is the unique infinite execution starting at p. Note, however, that
x(0) makes no time progress, i.e. 7; = 0 for all j > 0, but it involves infinitely
many switches at the same, i.e. initial point, which happens to be fixed by the
reset map.

Theorem 1. (a) {2y contains a neighborhood of {0} x int D in R x D.
(b) For all p € D, ®8(0,p) = p. Furthermore, 2 (t,®H(s,p)) = ®H(t + s, p),
whenever both sides are defined.

3 The hybrid manifold and hybrid flow

The basic idea in construction of the hybrid manifold from a hybrid system
is simple: “glue” the closure of each guard to the image of the corresponding
extended reset via the extended reset map. Some relatively similar ideas appear

in [GJ].
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Fig. 5. Hybrifold and an orbit of the hybrid flow for WT.
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Fig. 6. Hybrifold and an orbit of the hybrid flow for BB.

3.1 The hybrifold
Let H be a regular hybrid system. On D let ~ be the equivalence relation

generated by p ~ R.(p), for all e € F and p € G(e). Collapse each equivalence
class to a point to obtain the quotient space Mg = D/~ .

Definition 7. We call My the hybrid manifold or hybrifold of H.3

Denote by m the natural projection D — My which assigns to each p its equiv-
alence class p/ ~. Put the quotient topology on Mpyg. Recall that this is the
smallest topology that makes 7 continuous, i.e. a set V C My is open if and
only if #=(V) is open in D.

Define the hybrid flow of H, ¥H : 2 — My, by WB(¢,7(p)) = ndH(¢,p).
Here 2 = {(t,7(p)) : (t,p) € £25}. In other words, orbits of ¥ are obtained by
projecting orbits of @2 by 7. By the &H-orbit of p we mean the collection of
points ®H (¢, p) for all possible ¢ (i.e. all ¢ such that (¢,p) € §2).

Let us run this construction on some of the examples listed above.

Ezample 7 (WT continued).

Without loss we assume that [; =[5 = 0. To obtain My we have to identify
the zi-axis from D; with the same axis from D, via R1,9) and similarly with
the zo-axis.

It is not difficult to see that My is homeomorphic to R? (see Fig. 5).
However, My has a singularity (or “corner”) at 0 = =(1,0,0), i.e. 7 does not
define a smooth structure on Myy7. Note that every execution starting at 2 £ 0
converges to 0.

Ezample 8 (BB continued).
Here we have to identify the negative part with the positive part of the zs-
axis. The resulting space Mpp is again homeomorphic to R? (see Fig. 6), but

m again does not define a smooth structure on it. As in the previous example,
wBB(t x) = 0, as t — 7o (x(z)), for all z # 0.

Ezample 9 (BB(m) continued).

For simplicity assume m = 2. It is not difficult to see that Mpp2) is smooth
(in the sense explained above) and diffeomorphic to R? However, the hybrid
flow is not smooth.

% The authors thank Renaud Dreyer for suggesting the term hybrifold. The term
“manifold” will be justified by Theorem 2.



Ezample 10 (S2(X) continued).
M3y is homeomorphic to the 2-sphere; it is not equipped with a smooth
structure by .

Example 11 (T%*(a) continued).

We already observed that Mrz(,) is the standard 2-torus and PpT*(@) is a
smooth linear flow on it. If « is rational, then every orbit is closed; if « is
irrational, then every orbit is dense in T2.

Theorem 2. (a) My defined above is a topological n-manifold with boundary.
(b) Both Mu and its boundary are piecewise smooth.
(¢) The restriction m|int p :int D — w(int D) is a diffeomorphism.

Recall that M is called a topological n-manifold with boundary if it is Hausdorff
and every point in M has a neighborhood homeomorphic to either R™ or the
closed upper half-space R} = {(z1,...,%,) : 2, > 0}. Points having the latter
property are said to be on the boundary dM, which is a topological (n — 1)-
manifold.

3.2 The hybrid flow

Let & := ¥® be the hybrid flow of H, as defined above. For each ¢ € R and
r € Mu, let M(t) = {y € Mg : ¥(t,y) is defined}, and J(z) = {s € R :
W (s, z) is defined}. Observe that if 2 = 7(p), then J(z) N[0, 00) = [0, 7o (X (P)))-
Also, for ¢ > 0, M (t) contains all points z = m(p) such that 7o, (x(p))) > t. As
usual, x(p) denotes the unique execution of H starting at p.

If M(t) is not empty, denote by % : M(t) — Mg the time t map of ¥,
defined by ¥;(z) = ¥ (¢, z). Recall that a function (in particular, vector field) is
said to be smooth on a closed set F' if it is the restriction of a smooth function
defined on a neighborhood of F'. Then we have the following theorem.

Theorem 3. Suppose each vector field X in X is smooth (in addition to being
globally Lipschitz). Then:

(a) For each * € Mu the map t — W (x) is continuous and, if J(z) is not a
single point, piecewise smooth on J(z). More precisely, it is smooth except
at (at most) countably many points in J(x). Furthermore, each map W, is
injective.

(b) Whenever both sides are defined: WEWH (z) = WH (z).

(¢) There is an open and dense subset of §2 on which W is smooth.

4 w-limit sets and the Zeno phenomenon

It has to be pointed out that Zeno executions do not arise in physical systems
and are a consequence of modeling over-abstraction. Therefore, one wishes to
avoid them. However, from a mathematical viewpoint, the Zeno phenomenon
poses numerous interesting questions. In this section we show that, in short, the
topological cause of Zenoness is a lack of smoothness in the hybrid flow and that
the Zeno phenomenon can be removed by smoothing out the hybrifold and the
hybrid flow on 1it.



Definition 8. A point y € My is called an w-limit point of * € Myg if y =
limy, 00 thi (z), for some increasing sequence (tp,) in J(x) such that t,, —
Too(2), as m — co. The set of all w-limit points of x is called the w-limit set of
z and is denoted by w(z).

By 7o (z) we denote the execution time of the unique execution of H starting
from p, where & = 7(p); that is, 7o (2) = Teo (x(p)). Tt is easy to check that this
is a well defined element of the extended real number system. In other words,
w-limit points for z are accumulation points of the orbit of z.

Suppose z € My and denote by F () the set of discrete transitions which
occur infinitely many times in the execution starting from z. If F (z) is empty,
then the orbit of z eventually ends up in a single domain D; (that is, its image
under 7 in the hybrifold) in which case w(z) C 7(D;). This means that every
point y € w(z) is an accumulation point of the orbit of a single vector field,
namely X;. We will call such a point y, a pure w-limit point.

If Fos(z) is nonempty, then every w-limit point for z is a result of both
the continuous and discrete (i.e. hybrid) dynamics of H and will accordingly be
called a hybrid w-limit point of x.

Theorem 4. For every @ € Mu, w(z) is invariant with respect to the hybrid
flow. That is, if y € w(z), then YR (y) € w(z), for allt € J(y).

4.1 Properties of Zeno executions

Definition 9. A point z € My is called a Zeno state for z if z € w(z) and
Too (2) < 00.

We will also refer to points in #=!(z) as Zeno states in H. For example, the
“origin” of Mwr (as well as Mpp and MBB(2)) i1s a Zeno state for every point.
Moreover, for each z, w(z) contains only one Zeno state. We now show this is
always the case.

Theorem 5. If the execution starting from x € My is Zeno, then w(z) consists
of exactly one Zeno state for x and w(z) C ﬂeEEw(ar) 7(G(e)).

Note than in all the Zeno examples above none of the flows involved in
creating the Zeno state has an equilibrium at the Zeno state. The following
lemma shows that this is not a coincidence.

Lemma 1. A Zeno state is not a standard equilibrium (cf. Def. 12). More specif-
ically, if z € My is a Zeno state, then for every p € n=1(2), if p € D;, then
Xi(p) # 0.

Ezample 12 (equilibrium + cusp = Zeno).

Consider the following one-domain hybrid system: D = {(z,y) € R?: y >
0, —fly) <z < fyt G={(-fy),y) 1y >0}, R(—f(y),y) = (f(cy), cy),
X(z,y) = (—z —y,z —y)T . Here 0 < ¢ < 1, f : [0,00) = [0,00) is a smooth
function such that f(0) = 0 and for ally > 0, f(y) < y?. In particular, f'(0) = 0,
which means that D has a cusp at 0. It 1s not difficult to check that 0 is a Zeno
state despite the fact that it 1s an equlibrium for X. This shows the importance
of geometry of domains and assumption (A2).

Theorem 6. Suppose H is a hybrid system such that its hybrid flow U2 is
smooth. (This in particular means that its hybrifold My is smooth.}) Then H
admits no Zeno executions or equivalently, there are no Zeno states in My.
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Fig.7. Smoothed water tank Mg7oth,

In general it may not be easy to check whether, given H, the hybrifold Mg
is smooth. Even if it were, non-smoothness of the hybrid flow may cause Zeno
(cf. BB(2)). However, the following result provides an easily verifiable criterion
for smoothness of wH.

Theorem 7. Suppose that Mwu is smooth and for every e = (4, J
and X; are Re-related on G(e). That is, for every p € G(e): TR
Xj([?ie(p))‘ Then the hybrid flow is smooth.

) € E,
(X ())

Example 13. Consider BB(2). Here we have: Xi(x1,z2) = (z2,—g)T = Xy,
R( g (i, x1,22) = (j, 21, —cxa), where (i, j) = (1,2) or (2, 1). Therefore, TRy 2)(X1) =
(z2,c9)T # X5, so the hybrid flow for BB(2) is not smooth, as we already knew.

Ezample 14. Tt is not difficult to check that in case of T2 (), the condition from
Theorem 7 is satisfied for every a > 0. Thus T?(a) does not admit Zeno, as was
already shown above.

Corollary 1. If H s a hybrid system satifying condition from Theorem 7, then
H accepts no Zeno executions.

4.2 Removal of Zeno

Suppose that H is a regular hybrid system and that z € My is a Zeno state.
We have seen that My in a certain sense has a singularity at z. Consider the
following ways of removing such singularities.

Smoothing. Suppose that Mg can be equipped with a smooth structure which
induces the same topology as the original one and denote the smoothed hybri-
fold by Mgmeoth (cf. Fig. 7). Note that My and M"°°" are homeomorphic.
It is not guaranteed that the hybrid flow #H will be smooth on Mmoot
If, however, ¥ is smooth with respect to the differentiable structure on
Mgmeoth then Theorem 6 implies that there are no Zeno states in Mgt
We say that we have removed Zeno by smoothing.

Hybrid suspension. * The basic idea is to “interpolate” executions between
guards and images of corresponding resets, i.e. to make “instantaneous”
discrete transitions given by reset maps “last” some time €. The constructions
goes as follows. Let € > 0 be arbitrary and assume e = (i,j) € E. Instead
of gluing G(e) to im R, via Re, first enlarge the domain D; by Df = D; U
(m x [0,¢€]), and then identify (p,€) ~ Re(p), for every p € m. Denote
the space obtained by this identification for all e € E by S*Myg and by
7¢ the quotient (i.e. identification) map. On each m x [0, €], consider the

* We thank Morris W. Hirsch for suggesting this idea in a recent conversation.



suspension of R, ;

"til,rSIIlspension of R )

Fig. 8. c-suspended water tank S M.

trivial “vertical” flow: (p,s,t) — (p,s+1) (p € Gle), 0 < s < ¢, t € R).
Denote by SWH the flow on S¢ My obtained by projecting via 7¢ this flow
(for each e € E) as well as ®2. We will call S¢ My the e-suspended hybrid
manifold and S*WH the associated e-suspended hybrid flow (see Fig. 8). (This
construction resembles the standard suspension of a map; cf. e.g. [PAM].) Tt
is immediate by construction that for ever ¢ > 0, SSWUH accepts no Zeno-type
executions.

5 Conjugacy of hybrid systems and classification of Zeno
states in dimension two

In this section we discuss the following question: when are two hybrid systems
qualitatively the same? For that purpose we borrow the notion of conjugacy from
the theory of dynamical systems. Roughly speaking, two dynamical systems are
conjugate if their phase portraits look qualitatively (or topologically) the same.
Similarly, two hybrid systems are conjugate if their hybrid flows are conjugate.
We now make this more precise.

Definition 10. Two hybrid systems Hy and Hy are said to be topologically
conjugate (denoted by Hy ~ Hy) if there exists a homeomorphism h : My, —
Mmy, which sends orbits of WH1 to orbits of WH2. If My, and Mg, happen to
be smooth manifolds of class C™ (r > 1) and h is a C" diffeomorphism, then Hy
and Ha are said to be C"-conjugate.

As usual, by the orbit of a point z under a (local) flow {¢:} we mean the set
of points ¢;(z) for all ¢ for which ¢;(z) is defined. We usually think of h as a
change of coordinates so that two hybrid systems are topologically conjugate if
their hybrid flows are the same up to a continuous coordinate change. Note that
conjugacy does not necessarily preserve the time parameter ¢. If it does, it is
called equivalence.

Ezxample 15. WT is topologically conjugate to BB. This can be seen by suitably
projecting My and Mpp onto R? so that both UWT and BB look like a spiral
sink at the origin. For more details, see [SJSL]. We will see later that in dimension
two this picture is typical.

Ezample 16. T?(1) is not conjugate to T?(v/2). Even though the hybrifold for
both hybrid systems is the same (the 2-torus), every orbit of T2(1) is closed,
while every orbit of 7?%(/2) is dense in T2.

Even though it is not possible to classify all hybrid systems up to conjugacy
(this attempt fails even for smooth dynamical systems), the next theorem shows
that near a Zeno state, every 2-dimensional hybrid flow looks like #"7 near 0.



Theorem 8. Let H be a 2-dimensional hybrid system and suppose that z € My
1s a Zeno state. Then there is a neighborhood U of z in My and a neighborhood
V of 0 in My such that WB i is topologically conjugate to WWV7T |y, .

6 Stability of Hybrid Equilibria

Recall that if ¢; is a local flow generated by a smooth vector field X on some
set U (in R™ or any manifold), then p € U is an equilibrium for X (equivalently:
for ¢;) if X(p) = 0 (equivalently: if ¢:(p) = p for all t € R). In case of a hybrid
system there is usually more than one vector field at play, and even in the case
when there is only one, resets are involved in generating the hybrid dynamics.
Taking this into account we define a hybrid equilibrium as follows.

Definition 11. Let H be a hybrid system. A point x € My is called an (hybrid)
equilibrium for the hybrid flow W8 if UH(t z) = = for all t € J(2).

Equivalently, x € My is a hybrid equilibrium if the hybrid dynamics of H, con-
sisting of reset maps and local flows of H, map m~!(z) to itself. For example, any
Zeno state 1s a hybrid equilibrium despite Lemma 1; however, hybrid dynam-
ics make no time progress at this kind of equilibrium. The following definition
distinguishes those hybrid equilibria which are created from equilibria of vector
fields in H in the standard sense.

Definition 12. A point x € My is called a standard equilibrium for T8 if it is
a hybrid equilibrium and for each p € m=*(z), if p € D;, then p is an equilibrium
for X; (i.e. X;(p) = 0). It is called a pure equilibrium if it is standard and
belongs to w(int D).

Note that the only dynamics involved in creating a pure equilibrium are those
of a single vector field. We now define the notions of (Lyapunov) stability and
asymptotic stability of hybrid equilibria in analogy with those from dynamical
systems.

Definition 13. An equilibrium z, of W¥ is called (Lyapunov) stable if for every
netghborhood U of x, in My there exists a neighborhood V of x, in U such that
for every x € V, WB(z) € U forallt € [0,7(x)). If V can be chosen so that
in addition to the properties described above, lim;_, . (x) VH(z) = z., then z, is
asymptotically stable.

Ezample 17. There are well known 2-dimensional hybrid systems (and they are
also not difficult to construct from scratch; cf. [SJSL]) with a standard hybrid
equilibrium which can described as follows: stable 4+ stable = unstable, or un-
stable 4+ stable = stable, or unstable + unstable = stable. This means that (in
the case of the first example) the unstable hybrid equilibrium in question is cre-
ated by stable equilibria for the vector fields at play in the hybrid system. These
examples show us that extra caution is needed in analyzing stability of hybrid
equilibria.

In the subsequent text, we use the following notation: if X is a vector field
on a manifold M with local flow ¢; and f : M — R a function, X f will denote
the derivative of f in the direction of X: (X f)(z) = Tf(X(z)). For a map h :
(A’.d’f‘) - (B,’ dp) 4between metric spaces, let Lip, (f) = supge a_(p) M(%%%ﬁll.
This is the Lipschitz constant of f at p.



The following theorem is an analog of the linearization theorem for stability
of equilibria of a single dynamical system. In the hybrid case, the linearized
data include, besides the derivatives of the vector fields at the equilibrium, the
tangent spaces at the equilibrium of guards and images of resets involved in the
hybrid dynamics near the equilibrium. Here, for a manifold A with boundary
and p € A, we denote by Tp+A the set of all vectors v € T, A which point inside
A (i.e. there exists € > 0 and a smooth curve ¢ : [0,¢] = A such that ¢(0) = p,
¢(0) =vand ¢(t) € A—0A for 0 < t <e).

Theorem 9 (Stability via Linearization).

Let z. € My be an isolated standard equilibrium for vH and ﬁ_l(m*) =
{p1,...,m}, where p; € D;; and 1 < j < 1. Suppose that there exists a bounded
neighborhood W of z. and for each 1 < j <l a smooth function f; : U; —{p;} —
R, where U; is a neighborhood of D, N7~ (W) in {i;} x R, such that:

(a) pj € A; N B;, where Aj =imR;,_, ;) NU;, Bj = G(ij,i541) NUj, for all

1 < j <1 Assume further that A; and B; are differentiable at p;.

(b) a; < fj < a}" on Aj, and B; = fj_l(bj), for all 7, for some numbers

a;y < aj < b;.

(¢) 0<my <Xi, fy <mf onU;—{p;} (1<j<1)
(d) For each j there erists 7j > 0 such that e™ili (T A;j) C T By, where Ly =

Tp,; Xi;-

For1 < j <l letS; be an nx (n—1)-matriz whose columns form an orthonormal
basis for Ty, A; and belong to Tp-l;A]" Let

15 = Amaxl(e7555)Tens L 53],

and v; = |Tp, R, ;4| Define nu(x.) = H;Il wivi. If nu(zy) < 1, then z, is
an asymptotically stable hybrid equilibrium. If dimH = 2 and nu(z.) > 1, then
. 1s unstable.

Remarks.

(i) Condition (b) says that Bj; is the closure of a level set of f; while A; is
“almost” a level set of f;. The function f; measures the progress trajectories
of X;; make towards B;, starting from A;.

(ii) Condition (c) says that the time-7; map of the linearization of the flow of
Xi, at p; (ie. T¢;’) maps T+A to T"’B This means that at least on the
level of linearizations, B; is reachable from Aj in a bounded amount of time.

(iii) Note that (unlike in [ ] and [MH]) it is not necessary to integrate any
vector fields and that all the input data of the theorem are computable
(even though finding f;’s and 7;’s may be difficult).

Ezrample 18. Define a 3-dimensional hybrid system H by: Dy = {1} x S, Dy =
{2} x R3— S, where S = {(z,y,2) : 2 >0, y > 22, z e R}U{(z,y,2) : 2 <
0, y> —z(x—c), z€ R},and G(1,2) = {(2,y,2 € Dy : y = 2%}, G(2,1) =
{(z,y,2) € Dy : y = —z(x — ¢)}, for some constant c¢. Let X;(z,y,2) = (—z —
v,z —y,—Az) and Xo(z,y,2) = (2 —y, 2 + y, Aaz), where 0 < Ay < 1 < Ap.
Then it is not difficult to check that ng(0) = =27, where v = arctane, so if
¢ > 0, then 0 is asymptotically stable.



Ezample 19. Let H be a 3-dimensional hybrid system with D; = {1} x K x
R and Ds = {2} x R2— K x R, where K = [0,00) x [0,00). Let G(1,2) =
{(z,y,2) € D1 : 2 =0}, G(2,1)={(z,y,2) € Dy :y =0}, and Xy (z,y,2) =
(z—y,z+y,—Mz), Xa(z,y,2)=(—z—y,z—y,Aaz), where Ay, Ay > 0. The
resets are identity maps.

Then the full trajectories of X; are spirals around the z-axis which increase
in radius and converge to the zy-plane. The full trajectories of X are also spirals
around the z-axis, but they decrease in radius and diverge from the zy-plane.
It is not difficult to check that, with notation from Theorem 9, pu; = e™/2,
o = €3™2/2 g0 nu(0) > 1 and the theorem is inconclusive.

However, the flows can be decoupled into their zy- and z-parts the analysis
of which shows that if Ay > 3\s, then 0 is an asymptotically stable hybrid
equilibrium of H. The reason Theorem 9 does not provide the same answer,
intuitively speaking, is because it is not able to measure the small amount of
contraction around 0 in the flows of both X; and X5, which turns out to be
sufficient for asymptotic stability. Namely, on G(2,1) the flow of X; contracts
in only one direction (and expands in the other) and similarly for the flow of X5

on G(1,2).
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