
Automatica 47 (2011) 2757–2764
Contents lists available at SciVerse ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Distributed fault detection for interconnected second-order systems✩

Iman Shames 1, André M.H. Teixeira, Henrik Sandberg, Karl H. Johansson
ACCESS Linnaeus Centre, Electrical Engineering, Royal Institute of Technology, Stockholm, Sweden

a r t i c l e i n f o

Article history:
Received 9 June 2010
Received in revised form
28 April 2011
Accepted 1 June 2011
Available online 6 October 2011

Keywords:
Fault detection and isolation
Distributed algorithm
Distributed detection

a b s t r a c t

In this paper, the existence of unknown input observers for networks of interconnected second-order
linear time invariant systems is studied. Two classes of distributed control systems of large practical
relevance are considered. It is proved that for these systems, one can construct a bank of unknown input
observers, and use them to detect and isolate faults in the network. The result presents a distributed
implementation. In particular, by exploiting the system structure, this work provides further insight into
the design of UIO for networked systems. Moreover, the importance of certain network measurements
is shown. Infeasibility results with respect to available measurements and faults are also provided,
as well as methods to remove faulty agents from the network. Applications to power networks and
robotic formations are presented. It is shown how the developed methodology apply to a power network
described by the swing equation with a faulty bus. For a multi-robot system, it is illustrated how a faulty
robot can be detected and removed.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Automatic detection of system faults is of growing importance
as the size and complexity of systems rapidly increase. Most of the
literature available on model-based fault detection and isolation
(FDI) focuses on centralized systems where the FDI scheme has
access to all the measurements available and the objective is to
detect and isolate faults occurring in any part of the system (Chen
& Patton, 1999; Ding, 2008; Isermann, 2004). We further note
that while most works dealing with model-based fault detection
consider a first-order state space system, it is possible to deal
with second-order vector space systems in a fashion akin to that
of Demetriou (2005). Distributed control and monitoring is more
suitable than centralized for large-scale interconnected dynamical
systems such as power networks and multi-agent systems due
to its lower complexity and less use of network resources (Siljak,
1991). Traditional FDI schemes may not be applied to distributed
systems, since not all measurements are available in every node.
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Some recent work has been done on the design of distributed
FDI scheme. In Ding et al. (2008), a bank of decentralized observers
is built where each observer contains the model of the entire sys-
tem and receives both measurements from the local subsystem
and information transmitted from other observers. A similar ap-
proach is taken in Chung, Speyer, and Chen (2001) where the ob-
servers communicate with each other, but they only possess mod-
els of their respective local subsystems. Amixing procedure is used
to reconstruct the state of the overall system from the local esti-
mates. Recently a distributed FDI scheme for a network of inter-
connected first-order systemswas proposed. The authors analyzed
limitations on fault detectability and isolability in a system theo-
retic perspective (Pasqualetti, Bicchi, & Bullo, in press).

Power networks are large-scale spatially distributed systems.
Being a critical infrastructure, they possess strict safety and
reliability constraints (Shahidehpour, Tinney, & Fu, 2005). Moni-
toring the state of the system is essential to guarantee safety. Cur-
rently this is typically done in a centralized control center through
a single state estimator. The core methodology for state estima-
tion of power systems dates from 1970, (Abur & Exposito, 2004;
Schweppe & Wildes, 1970). Due to the low sampling frequency
of the sensors in these systems a steady state approach is taken,
which only allows for an over-constrained operation of the sys-
tem to ensure reliability. Furthermore faults are handled mainly
by hardware devices deployed in the field, so local events leading
to cascade failures may pass undetected, since the global state of
the system is not taken into account. In recent years, measurement
units with higher sampling rate have been developed, e.g. Phasor
Measurement Units (PMU), opening the way to dynamic state es-
timators and observer-based fault detection schemes taking in ac-
count the dynamics of the system. Such centralized FDI schemes
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have been proposed in the recent literature, see Scholtz and Lesieu-
tre (2008) and Aldeen and Crusca (2006). However, to the best of
the knowledge of the authors, no distributedmethod has been pro-
posed to carry out FDI in power networks, despite their inherent
decentralized nature.
Contributions. In this paper, we address the problem of distributed
FDI in a network of nodes with double integrator dynamics, whose
interactions are described by a distributed control law. We show
how FDI for some power networks and distributed robotic systems
fit the problem description. We design continuous-time unknown
input observers to achieve the goal. The existence of such observers
is established for various conditions on the node interactions
under sensing structures. The results are illustrated on examples
in power networks and autonomous mobile node formations.
Outline. The outline of the paper is the following. In Section 2, the
problems that are being addressed are formulated. In Section 3,
we recall the FDI tools that we use to obtain the main result of
this paper. In Section 4, we propose a solution to the problems
posed in Section 2. In Section 5, the application of the results to two
practical problems is studied via illustrative examples. Conclusions
and suggestions for future work are given in Section 6.

2. Problem formulation

Consider a network of N interconnected nodes and let G(V, E)
be the underlying graph, where V , {i}N1 is the vertex set, with
i ∈ V corresponding to node i, and E ⊆ V × V is the edge set of
the graph. The undirected edge {i, j} is incident on vertices i and j
if nodes i and j share a communication link, and a positive weight
is associated with this link. Moreover, Ni = {j ∈ V : {i, j} ∈ E} is
the neighborhood set of i. Each node i is assumed to have double
integrator dynamics

ξ̇i(t) = ζi(t) (1a)

ζ̇i(t) = ui(t) + vi(t), (1b)

where vi(t) is a scalar known external input, ξi, ζi are the scalar
states, and ui is the control given by the linear control law

ui(t) = −κiζi(t) +

−
j∈Ni

wij[(ξj(t) − ξi(t)) + γ (ζj(t) − ζi(t))], (2)

where wij ∈ R>0, and κi, γ ∈ R≥0 for i, j = 1, . . . ,N . We say that
node k ∈ V is faulty if for some functions fξk(t) and fζk(t) not iden-
tical to zero either ξ̇k(t) = ζk(t)+ fξk(t), or ζ̇k(t) = uk(t)+vk(t)+
fζk(t). The functions fξk(t) and fζk(t) are denoted fault signals. It is
assumed that the faulty node injects fault in only one of the states.

Remark 1. The variables ξi and ζi can be interpreted as position
and velocity of node i, respectively, for a mobile system, or as
phase and frequency in the context of power networks, as further
discussed in Section 5.

The closed-loop dynamics of the networked system in the presence
of faults can be written as

ẋ(t) = Ax(t) + Bv(t) + Bf f (t)
y(t) = Cx(t),

(3)

where x(t) = [ξ1(t), . . . , ξN(t), ζ1(t), . . . , ζN(t)]⊤. The signal
f (t) ∈ Rm is a vector of unknown fault signals, y(t) ∈ Rp is
the output vector, and A, B, Bf , and C are matrices of appropriate
dimensions. More specifically, we have

A =

[
0N IN
−L −γL − κ IN

]
, B =

[
0N
IN

]
, (4)
where L is the Laplacian matrix and κ = diag(κ1, . . . , κN). The
ij-th entry of L, Lij, is equal to −1 if i and j share a link and zero
otherwise, moreover, Lii = −

∑
j=1,j≠i Lij. We call the faults f (t)

additive faults, see Ding (2008).
Before stating the problems, we define what is meant by fault

detectability and isolability for systems (3) in the following (Ding,
2008).

Definition 1 (Detectable and Isolable Fault). Given the system (3),
m scalar faults f (t) = [f1(t), . . . , fm(t)]⊤ are detectable and
isolable if rank


sI − A Bf

C 0


= n + m for almost all s ∈ C.

A fault is thus detectable if the transfer function from fk(t) to y(t)
is not identical to zero. Isolable faults relate to input observability
and means that any simultaneous occurrence of faults should lead
to a change in the output. We further note that the FDI scheme
proposed in this paper can detect almost all faults. That is, there
may be values of s ∈ C for which such matrix has no full rank.
Hence there may be some faults generating zero dynamics, which,
by definition, do not appear in the system output. These faults
cannot be detected using the scheme proposed in this paper.

Note that Bf is a matrix such that each of its columns bfk has its
entries corresponding to the states of node k as the only non-zero
entries. Each node k has a scalar fault signal fk(t) with distribution
vector bfk . We say node k is faulty if fk(t) is not identical to zero.

The measurement matrix C may be viewed as a design
parameter to be chosen in order to ensure the feasibility of the
distributed FDI scheme with respect to a predetermined set of
faults to be detected. We assume that each node i only measures
states within its neighborhood, thus ensuring the distributed
nature of the FDI scheme. As it will be shown later on, the specific
structure of a feasible local measurement matrix will depend on
the faults to be detected.

In this paper, we solve the following problems.

Problem 1. How can each node of the network detect and isolate
a faulty agent?

Problem 2. How can the faulty agent be automatically removed?

We propose a solution to these two problems for two different
classes of distributed control laws in the coming sections. In the
next section, we introduce the mathematical tool that we use.
Then, in Section 4, we solve Problems 1 and 2, and give conditions
for when the solutions exist.

3. Model-based fault detection preliminaries

This paper focuses on observer-based FDI methods. In par-
ticular, we deal with unknown input observers (UIOs), which
have been thoroughly analyzed and developed during the past
decade (Chen & Patton, 1999; Ding, 2008). We now present UIOs
and their application to FDI for centralized linear control systems.
A common techniqueused inmodel-based fault diagnosis is to gen-
erate a set of residuals which indicate the presence of a fault. The
residual is a fault indicator computed from the difference between
the measurements and their estimates. It should be close to zero if
and only if the fault is not present.

Consider the linear fault-free system under the influence of an
unknown input d(t) ∈ Rm−1 described by

ẋ(t) = Ax(t) + Bv(t) + Ed(t)
y(t) = Cx(t).

(5)

The system in presence of faults is given by

ẋ(t) = Ax(t) + Bv(t) + Ed(t) + Bf f (t)
y(t) = Cx(t).

(6)

We assume that the matrices E and Bf have full column rank.
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Remark 2. Note that the condition on Bf being full column rank
is not restrictive, since any singular matrix D ∈ Rn×l can be
decomposed in D = D1D2, with D1 having full column rank. This
implies, however, that not all faults are isolable, as follows from
the analysis in Section 4.

The matrix E is called a disturbance distribution matrix, since
it contains information on how a vector of unknown input
disturbances affect the states of the system.

A full-order observer for the fault-free system (5) is described
by:

ż(t) = Fz(t) + TBv(t) + Ky(t)

x̂(t) = z(t) + Hy(t),
(7)

where x̂(t) ∈ Rn is the estimated state and z(t) ∈ Rn is the
observer’s state. Note that if we choose F = A−KC , T = I , andH =

0 we have a full-order Luenberger observer. The observer matrices
must be designed to achieve the decoupling from the unknown
input and meet requirements on the stability of the observer.
Choosing thematrices F , T , K ,H to satisfy the following conditions

F = (A − HCA − K1C), T = (I − HC)

K = K1 + K2, K2 = FH, (HC − I)E = 0,
(8)

we have the estimation error dynamics

ė(t) = Fe(t). (9)

where e(t) = x(t) − x̂(t). Now we have the following definition
for a UIO.

Definition 2 (UIO). A state observer is a UIO if the state estimation
error e(t) approaches zero asymptotically, regardless of the
presence of the unknown input d(t).

We conclude that if (8) is satisfied and F is stable, then the observer
(7) is a UIO. The following proposition fromChen and Patton (1999)
formalizes this.

Proposition 1. There exists a UIO for (5) if and only if

(1) rank(CE) = rank(E).
(2) (C, A − HCA) is a detectable pair, where H is given by (8).

For a proof and more details the reader is referred to Chen and
Patton (1999) and Ding (2008). As suggested in Chen and Patton
(1999), a possible method of detecting and isolating the faults is
to use the so called generalized observer scheme (GOS), where
we construct a bank of observers generating a structured set of
residuals such that each residual is decoupled from one and only
one fault, but being sensitive to all other faults. Suppose there is a
single fault, fi(t) ≠ 0. In order to render the observer insensitive to
fi(t), this fault is regarded as an unknown input. The system (6) for
d ≡ 0 is equal to

ẋ(t) = Ax(t) + Bv(t) + Bf−i f−i(t) + bfi fi(t)

y(t) = Cx(t),
(10)

where bfi is the i-th column of Bf , fi(t) the i-th component of
f (t), Bf−i is Bf with the i-th column deleted and f−i(t) the fault
vector f (t) with its i-th component removed. Note that fi(t) can
be considered as a disturbance that we want to decouple (bfi is
analogous to E in (6)). TheUIOdecoupled from bfi has thus the same
structure as (7) and is described by

żi(t) = Fizi(t) + TiBv(t) + Kiy(t)

x̂i(t) = zi(t) + Hiy(t).
(11)

We introduce residuals to indicated faults.
Definition 3. A residual ri(t) is a fault indicator function that
satisfies

‖ri(t)‖ = 0 ⇔ ‖f−i(t)‖ = 0.

It is easy to show that we have the following observer error and
residual dynamics

ėi(t) = Fiei(t) − TiBf−i f−i(t)

ri(t) = Cei(t)
(12)

where ei(t) = x(t) − x̂i(t) is the observer error and ri(t) is the
corresponding residual. Note that the residual dynamics are driven
by the k-th fault if Tibfk ≠ 0, k ≠ i.

We introduce the following detection and isolation condition
for fault fi(t),

‖ri(t)‖ < Θfi

‖rj(t)‖ ≥ Θfj , ∀j ≠ i,
(13)

where Θfi , Θfj > 0 are isolation thresholds, which can be constant
or time varying. If (13) is satisfied, we conclude that there is a
fault affecting the i-th component of the system. Note that the
selection ofΘfi is particularly important. The interested readermay
refer to Frank and Ding (1997) and references there-in for more
information.

The approach presented above is feasible only if a single
additive fault is present. To isolate multiple faults, one can repeat
the abovementioned procedure for each of the potential fault
combinations. We can derive similar observers for all faults and
then use (13) to isolate each of them. Next we show that one can
construct UIOs also for classes of networked systems.

4. FDI for networked systems

In Sections 4.1 and 4.2, we solve Problem 1 of Section 2 by
considering two different distributed control laws that are special
cases of (2) and show that UIOs can, under certain conditions,
be applied in both cases. Section 4.3 presents the solution to
Problem 2.

4.1. UIO for position distributed control

Consider the networked system introduced in Section 2 with
the following control law

miui(t) = −diζi(t) +

−
j∈Ni

wij(ξj(t) − ξi(t)) (14)

where mi, wij, di > 0. If we make the physical interpretation that
ξi(t) and ζi(t) are the position and the velocity of node i, andmi can
be interpreted as the agent’smass. The nodes under the control law
(14) move toward the position of their neighbors while damping
their current velocity.

As in Section 2, assume that

ξ̇k(t) = ζk(t) + fk(t) (15)

where fk(t) corresponds to a fault in node k. In the presence of this
fault, we have

ẋ(t) = Ax(t) + bkf fk(t) (16)

where A =


0N IN

−M̄L −M̄D̄


, B = [0N M̄]

⊤, M̄ = diag( 1
m1

, . . . , 1
mN

),

D̄ = diag(d1, . . . , dN), and bkf = [b̄kf
⊤ 01×N ]

⊤ where b̄kf is
an N dimensional vector with all zero entries except one that
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corresponds to the faulty node k. Furthermore, we assume that the
nodes have access to
yi(t) = Cix(t), Ci = [C̄i0|Ñi|×N ], i = 1, . . . ,N, (17)

with C̄i being an |Ñi| by N matrix with full row rank, where each
of the rows have all zero entries except for one entry at the j-th
position that corresponds to those nodes that are neighbors of i,
where Ñi = Ni ∪ {i} and j ∈ Ñi.

To solve Problem1,we show that one can construct a UIO at any
given node i under the control law (14) using measurements (17).

Theorem 1. Consider the distributed control system with a fault in
node k given by (16) and local measurements (17). If G is connected
and k ∈ Ni, then there exists a UIO for node i.

Proof. First, we show that

rank(Cibkf ) = rank(bkf ) = 1.

Denote the rowof Ci that reads the output of node k, cki . It is obvious
that cki b

k
f = 1 and c jib

k
f = 0, j ≠ k. Hence, Cibkf is a vector with zero

entries except one which is equal to 1, thus the rank is equal to 1.
This condition is equivalent to condition (1) of Proposition 1.

Then we show that rank(D) = 2N + 1 for all Re(s) ≥ 0 where

D =

[
sI2N − A bkf

Ci 0
|Ñi|×1

]
, which is equivalent to Proposition 1(2) and

also shows that the fault is detectable according to Definition 1.We
have

rank(D) = rank

 sIN −IN b̄kf
M̄L sIN + D̄M̄ 0N×1

C̄i 0
|Ñi|×N 0

|Ñi|×1

 .

Applying some row and column operations, we obtain

rank(D) = rank

 0N −IN b̄kf
a(s) 0N b(s)
C̄i 0

|Ñi|×N 0
|Ñi|×1

 ,

with a(s) = s2IN + sD̄M̄ + M̄L, and b(s) = (sIN + D̄M̄)b̄kf .
We apply a state transformation

x̄ = Px = [ξĩ1 , . . . , ξĩ|Ñi |
, ξī1 , . . . , ξī|N̄i |

,

ζĩ1 , . . . , ζĩ|Ñi |
, ζī1 , . . . , ζī|N̄i |

]
⊤,

where ĩj ∈ Ñi, īj ∈ N̄i, and C̄∗

i = C̄iP = [I
|Ñi|

0
|Ñi|×N̄i

], where
Ñi = i ∪ Ni and N̄i = V \ Ñi. After this operation, we can write

the Laplacian as L̄ = P−1LP =

[
L

|Ñi|
l
|Ñi|×|N̄i|

l
|N̄i|×|Ñi|

L
|N̄i

|

]
.

Furthermore P−1M̄P =

[
M̄1|Ñi|

0
|Ñi|×|N̄i|

0
|N̄i|×|Ñi|

M̄2|N̄i
|

]
, P−1D̄P =[

D̄1|Ñi|
0
|Ñi|×|N̄i|

0
|N̄i|×|Ñi|

D̄2|N̄i
|

]
, b̃kf = P−1b̄kf , and b̃k∗f = P−1(sIN + D̄M̄)b̄kf .

After applying the transformation, we have

rank(D) = rank


0

|N̄|×|Ñi|
0|N̄i|×|N̄i|

−IN b̃kf
c(s) M̄1l|Ñi|×|N̄i|

0
|Ñi|×N b̃k∗f

M̄2l|N̄i|×|Ñi|
d(s) 0|N̄i|×N 0|N̄i|×1

I
|Ñi|

0
|Ñi|×|N̄i|

0
|Ñi|×N 0

|Ñi|×1

 ,

with c(s) = M̄1L|Ñi|
+ s2I

|Ñi|
+ sM̄1D̄1, and d(s) = M̄2L|N̄i|

+

s2I|N̄i|
+ sM̄2D̄2. It is evident that the first and the third columns

are independent of the rest, thus

rank(D) = |Ñi| + N

+ rank
[

M̄1l|Ñi|×|N̄i|
b̃k∗f

M̄2L|N̄i|
+ s2I|N̄i|

+ sM̄2D̄2 0|N̄i|×1

]
.

We know from Barooah and Hespanha (2007) that any principal
submatrix of the Laplacian matrix is invertible so the last column
is independent of the rest as well, hence rank(D) = |Ñi| + N +

|N̄i|+1 = 2N+1. This rank equality is equivalent to condition (2) of
Proposition 1 (Chen & Patton, 1999). Satisfying the two conditions
of Proposition 1, the existence of a UIO for the system (16) with
measurements (17) and a fault in node k is established. �

Remark 3. Note that if the graph is not connected, the networked
system (16) can be decomposed into several decoupled subsys-
tems, each corresponding to a connected subset of the network.
The conclusion of Theorem 1 then applies to each subsystem.

The existence of a UIO according to Theorem 1 leads to the
possibility to detect a fault at node k fromnode i using themethods
described in Section 3.

In Theorem1,we stated that a fault in ξk can be isolatedwith the
measurements of the form (17). In the next theorem we identify
faults that cannot be isolated.

Theorem 2. Consider the system (16). For any of the following pairs
of Ci and bkf , no UIO of the form (7) exists:

(i) bkf = [b̄kf
⊤ 01×N ]

⊤, Ci = [0
|Ñi|×N C̄i]

(ii) bkf = [01×N b̄kf
⊤
]
⊤, Ci = [0

|Ñi|×N C̄i]

(iii) bkf = [01×N b̄kf
⊤
]
⊤, Ci = [C̄i 0|Ñi|×N ].

Proof. To see that no UIO exists for (i) and (iii), we simply verify
that

rank(Cibkf ) = rank(bkf ) = 0,

so the first condition of Proposition 1 is not satisfied. For (ii), similar
to the calculations in proof of Theorem 1, for the case where s = 0,
we have

rank(D) = rank

 0N −IN b̄kf
M̄L 0N D̄M̄b̄kf

0
|Ñi|×N C̄i 0

|Ñi|×1

 . (18)

Recall thatL is rank deficient. Then, it follows that the first column
block above is not a full column rank. Hence the second condition
of Proposition 1 is not satisfied. �

Cases (i) and (iii) of Theorem 2 suggest that if there is an unknown
input affecting one of the states of one of the nodes in a network,
it is not possible to have a UIO without measuring the same state
throughout the network as the one affected by the unknown input.
For example, if a fault is affecting the velocity of one of thenodes, by
measuring the positions alone,we cannot have aUIO to observe the
states of the network. On the other hand, in Case (ii),we see that the
first condition of Proposition 1 is satisfied, but a UIO still does not
exist.What happens in this case is that the system is not detectable,
as seen by observing the first two columns of (18). However, by
having access to more measurements one can construct a UIO to
detect and isolate faults as seen next.

We now introduce conditions for the existence of a UIO to
detect the fault

ζ̇k(t) = ui(t) + vi(t) + fk(t), (19)

where again fk(t) corresponds to a fault in node k.

Theorem 3. Consider the distributed control system with a fault
in node k given by (16) and local measurements (17) with Ci =[

C̄i 0
|Ñi|×N

0
|Ñi|×N C̄i

]
, where C̄i is a |Ñi| by N matrix, and bk⊤f =

[01×N b̄k⊤f ] with bkf being an N by 1 vector with k-th entry as its
only nonzero entry. If G is connected and k ∈ Ni, then there exists a
UIO for node i.
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4.2. UIO for position–velocity distributed control

Now we consider the existence of UIOs for the distributed
control law:

ui(t) =

−
j∈Ni

wij[(ξj(t) − ξi(t)) + γ (ζj(t) − ζi(t))]. (20)

Again, interpreting ξi(t) and ζi(t) to be position and velocity of
node i, the nodes under the control law described by (20) move
toward the position of their neighbors while penalizing not only
the position differences (as previously) but also penalizing the
velocity difference. The dynamics of the networked system with
a faulty node k is

ẋ(t) = Ax(t) + bkf fk(t) (21)

where

A =

[
0N IN
−L −γL

]
, (22)

and L is the weighted Laplacian matrix with the weight wij > 0,
γ > 0, bk⊤f = [b̄k⊤f 01×N ]with b̄kf being an N by 1 vector with
k-th entry as its only nonzero entry. We further assume that node
i measures

yi(t) = Cix(t), (23)

Ci =

[
C̄i 0

|Ñi|×N
0
|Ñi|×N C̄i

]
, where C̄i is a |Ñi| by N matrix of the

same structure as considered before. Now we have the following
theorem.

Theorem 4. Consider the distributed control system with a fault in
node k given by (21) and local measurements (23), and the cases
where

(1) bk⊤f = [b̄k⊤f 01×N ], or
(2) bk⊤f = [01×N b̄k⊤f ]

with b̄kf being an N by 1 vector with k-th entry as its only nonzero
entry. If G is connected and k ∈ Ni, then there exists a UIO for node i.

Remark 4. Proofs of Theorems 3 and 4 are similar to the proof of
Theorem 1 and are therefore omitted.

So far we have established what type of measurements should be
available at node i to be able to detect a fault in k ∈ Ni using a
UIO fault detection scheme. More specifically we have shown that
if a node aims to detect a fault in a state of one of its neighbors
using a UIO based scheme, it has to measure the same state of all
of its neighbors. In the next section, we address the problem of
reconfiguring the distributed control law after detecting a fault in
the network.

4.3. Faulty node removal

In this section, we make the following assumptions for the
graph considered. We assume that the graph G is 2-vertex-
connected, i.e., after losing any single vertex it remains connected.
This results in the graph G also to be 2-edge-connected, i.e., after
losing any single edge it remains connected.Moreover,we consider
the case where there is at most one faulty node, k, in the formation
and the fault is either in ξk(t) or in ζk(t). We propose the algorithm
described in Fig. 1 to solve the problem of automatically reconfig-
uring the distributed control law to cope with a faulty node.

Now, consider the network described in Section 2with constant
external inputs v, where v ≠ 0 ∈ R2N , and the assumptions
previouslymade. Consider the stability of this systemwhere ẋ(t) =

Ax(t) + v. A condition on v for the system to converge to an
Fig. 1. Faulty node removal and distributed control law in the presence of fault.

equilibrium point can be identified (entries of v adds to zero). Note
that the algorithm depicted in Fig. 1 cannot be applied to remove
the faulty node for such a systemwith a non-zero input. The reason
is that if one applies the algorithm depicted in Fig. 1 after locating
the faulty node, v loses one element and the entries of v do not add
up to zero anymore, which will drive the system to instability. To
remedy this issue,wemodify the aforementioned algorithm todeal
with the removal of the faulty node in such systems, and replace
vℓ (ℓ ∈ Nk) by vℓ +

vk
|Nk|

after removing the faulty node k to ensure
convergence to an equilibrium.

5. Application to practical examples

In this section, we consider the problem of fault detection and
isolation in two practical problems. First, we consider detection
and isolation of fault in power networks and then we consider
the same problem in a formation of mobile nodes with double
integrator dynamics.

5.1. FDI in power networks

In what follows, we propose a fault detection and isolation
scheme for a power system akin to the one presented earlier.
We assume that all the buses in the network are connected to
synchronous machines (motors or generators). The behavior of a
synchronous electrical motor located in bus i can be described by
the so-called swing equation:

miδ̈i(t) + diδ̇i(t) − Pmi(t) = −

−
j∈Ni

Pij(t), (24)

where δi is the phase angle of bus i, mi and di are the inertia
and damping coefficients, respectively, Pmi is the mechanical input
power and Pij is the active power flow from bus i to j. For more
information on the origins of (24) and the reason it is used
to describe both load (transmission) buses and generator buses,
see Guedes, Silva, Alberto, and Bretas (2005). Considering that
there are no power losses nor ground admittances and letting
Vi = |Vi| ejδi be the complex voltage of bus i, the active power flow
between bus i and bus j, Pij, is given by:

Pij(t) = kij sin(δi(t) − δj(t)) (25)
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Fig. 2. Power network with 9 buses (Anderson & Farmer, 1996).

where kij = |Vi||Vj|bij and bij is the susceptance of the power line
connecting buses i and j.

Since the phase angles are close, we can linearize (25), rewriting
the dynamics of bus i as:

miδ̈i(t) + diδ̇i(t) = −

−
j∈Ni

kij(δi(t) − δj(t)) + Pmi. (26)

Consider a power network with G(V, E) as its underlying graph
with N = |V| nodes, where each node corresponds to a bus
in the power network. Rewriting (26) in state–state form and
considering x = [δ1(t), . . . , δN(t), δ̇1(t), . . . , δ̇N(t)]⊤ and v(t) =

[Pm1 · · · PmN ]
⊤, we have

ẋ(t) = Ax(t) + Bv(t), (27)

where A =


0N IN

−M̄L −M̄D̄


, B = [0N M̄]

⊤, M̄ = diag( 1
m1

, . . . , 1
mN

),

D̄ = diag(d1, . . . , dN).
Consider that the network is being affected by faults corre-

sponding to unexpected changes in the power generation or con-
sumption. Assume that a fault has occurred at node k. The power
network under such conditions can be modeled as

ẋ(t) = Ax(t) + Bv(t) + bkf fk, (28)

where bkf is the k-th column of B and therefore it can be written as
bkf = [01×N b̄k⊤f ]

⊤ with b̄k⊤f being a column vector with 1
mk

in the
k-th entry and zero in all other entries. Thus, from Theorem 3 there
exists a UIO for such system at a given node i if k ∈ Ni and yi = Cix
with

Ci =

[
C̄i 0

|Ñi|×N
0

|Ñi|×N C̄i

]
. (29)

Thuswe need tomeasure the phase and frequency of the neighbors
to be able to detect the faulty node. These measurements are
readily available through phasemeasurement units (PMU). Having
suchmeasurements, this type of faults can be detected and isolated
in a distributed way using UIOs.

Remark 5. Because of Theorem 2, we know that we cannot solve
the fault detection problem using UIO with having access to less
information than the information available through yi = Cix, with
the above-mentioned Ci.

Remark 6. In the case where there are buses that are not
connected to synchronousmachines and are described by algebraic
equations; one has two alternatives. First, one can use Eq. (24) to
model only the buses that are connected to synchronousmachines
and use the techniques in Machowski, Bialek, and Bumby (2008),
Chapter 14, to remove the algebraic relations from the power
network model and assume that the faults only affect the buses
connected to synchronousmachines. Second, onemay assume that
the buses that are not connected to the machines are governed
by dynamic equations of type (24), albeit with small damping and
inertia coefficients (Guedes et al., 2005).
a

b

Fig. 3. FDI in a power network: (a) phase angles of the power network. (b) Residuals
of buses neighboring bus 7.

Consider the power network presented in Fig. 2. The power grid’s
topological parameters and the generators’ dynamic coefficients
(mi and di) were taken from Anderson and Farmer (1996), while
the dynamic coefficients of the rest of the buses were arbitrarily
taken from reasonable values.

The power network is evolving toward the steady-state when,
at time instant t = 2 s, a fault occurs at node 6, as presented in
Fig. 3(a). By implementing a bank of observers at bus 7, the fault
is successfully detected and isolated in the presence of process
and measurement noise, since the residual corresponding to bus
6 became larger than the other residuals, as illustrated in Fig. 3(b).

5.2. FDI in formations of mobile agents

In this section, adopt the system and the notations introduced
in Section 4.2. Furthermore, assume that at time tf a fault occurs
at node k, one can detect and isolate this fault using the methods
introduced earlier. Consider a formation consisting of 10 nodes
with double integrator dynamics with the aforementioned control
law as depicted in Fig. 4(a). Further assume that at time tf = 2node
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(c) First coordinate of the velocities of the nodes when
the faulty node is not removed.

(d) First coordinate of the velocities of the nodes when
he faulty node is removed.

Fig. 4. Multi-agent formation in the presence of a fault occurring at t = 2 s in node 3.
3 starts to malfunction. Using UIOs and the logic presented in (13),
this fault is detected at time td = 3.56. A sample of residuals as
calculated in node 1 (neighboring node 3) is presented in Fig. 4(b).
In the case where no isolation is carried out, the first coordinate
of the velocities of the nodes are presented in Fig. 4(c). However,
if after the detection of the fault, the aforementioned algorithm
is used to remove the faulty node, the first coordinate velocities
of the nodes would be as the ones depicted in Fig. 4(d). Which
shows that they have reached consensus. Due to the absence of
any external input it is not needed to adjust the external input after
disconnection.

5.3. Complexity of the FDI method

For implementation of the method introduced in this paper, at
each node it is required to have one observer corresponding to
each of the neighbors. Each of these observers have 2N states. So
at each node i, 2N|Ni| states are estimated, which puts a heavy
computational burden on each of the nodes as N increases. In
particular, the example in Section 5.1 with 9 nodes required node
7 to have 3 observers with 18 states each, corresponding to 54
states for the observer bank. As for the example in Section 5.2 with
10 nodes the observer bank in node 1, having 5 neighbors, would
require a total of 100 states.

However, we note that it is not required to (i) estimate all the
states in the system at each observer, and (ii) it is not necessary
to have observers at all of the nodes. These cases are discussed
in Teixeira, Sandberg, and Johansson (2010).

6. Concluding remarks and future directions

In this paper, we considered the problem of fault detection and
isolation in the networks of interconnected nodes with double
integrator dynamics. We proposed a distributed FDI scheme based
on UIOs requiring only local measurements. Furthermore we
analyzed the feasibility of such scheme with respect to local
measurements and we also provided some infeasibility results.
As part of a mitigation procedure, we proposed an algorithm to
remove the faulty node from the network that can also be applied
when there are nonzero external inputs. Then we presented some
simulation examples related to the motivating applications, thus
demonstrating the application of the proposed method to fault
detection in power and multinode systems. Some considerations
on the complexity and scalability of the proposed method were
also given.

Possible future directions include considering a way to reduce
the dimension of the unknown input observers at each node in
the current scheme, and explore the applicability of other fault
detection methods to the problems considered here that are more
robust to the noise.
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