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1. Introduction

Extremum seeking control is used to steer the states of a dy-
namical system to an extremum of a function which depends on
the system states. A characteristic feature of extremum seeking
control is that neither a model of the plant nor the function which
has to be optimized need not to be known. Only the values of
the function must be available (measurable) at the actual system
state. The idea of extremum seeking control is to inject periodic
signals into the control loop in order to estimate an optimizing
direction for the unknown function (Krsti¢ & Ariyur, 2003; Tan,
Moase, Manzie, Nesic, & Mareels, 2010). These properties ren-
der extremum seeking attractive for many application areas. For
example, it has been applied in brake system control (Drakunov,
Ozguner, Dix, & Ashrafi, 1995), in real-time optimization of bio-
processes (Guay, Dochain, & Perrier, 2004), in flow control (Becker,
King, Petz, & Nitsche, 2007; King et al., 2006) and in multi-agent
systems (Binetti, Ariyur, Krsti¢, & Bernelli, 2003; Stankovi¢, Jo-
hansson, & Stipanovi¢, 2012) to mention only a few. Classical ex-
tremum seeking can be interpreted as a method for unconstrained
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optimization problems. In recent years, several extensions have
been established for constrained optimization problems. One can
distinguish between three main approaches, the Lagrangian ap-
proach, the barrier function approach and the approach for opti-
mization on manifolds. The former two were addressed in Coito,
Lemos, and Alves (2005) and DeHaan and Guay (2005) in the
context of extremum seeking. Furthermore, in e.g. Poveda and
Quijano (2012), a special class of manifolds, defined using linear
constraints, were considered and an extremum seeking system
was constructed that leaves this subspace invariant. In this paper,
we construct an extremum seeking system that solves optimiza-
tion problems on submanifolds in the Euclidian space R" equipped
with the standard scalar product. These are optimization problems
with constraints that describe a smooth submanifold. They have
many interesting applications in areas such as eigenvalue com-
putation, principle component analysis or consensus problems,
see Absil, Mahony, and Sepulchre (2008) and Helmke and Moore
(1994) for more details.

The contribution of this paper is threefold. First, we introduce
an extremum seeking feedback that steers a dynamical system to
the solution of an optimization problem with constraints given by
a submanifold in the Euclidian space. Hereby, we do not require
the knowledge of the gradient of the objective function. The class
of submanifolds considered in this paper contains many important
manifolds such as spheres, tori, matrix Lie groups and the isospec-
tral manifold (see e.g. Absil et al., 2008 and Helmke & Moore, 1994)
which appear in many applications. We formulate the dynamics of
the extremum seeking feedback using the coordinates of the ambi-
ent space, which has the advantage that no local coordinate charts
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of the manifold are required and therefore singularities of these
charts are avoided.

Second, we prove non-local stability properties of the ex-
tremum seeking feedback and calculate a system whose trajec-
tories approximate those of the extremum seeking system. In
particular, we generalize the Lie bracket approximation method for
extremum seeking systems introduced in Diirr, Stankovi¢, Eben-
bauer, and Johansson (2013). We show in this paper, that the re-
sults in Diirr et al. (2013) also hold for extremum seeking systems
on manifolds.

Third, we show a novel example for extremum seeking on man-
ifolds. The example is motivated by synchronization problems of
oscillators based only on distance measurements. This leads to ex-
tremum seeking on the torus. In particular, we derive an extremum
seeking feedback for two oscillators that yield synchronization us-
ing only distance measurements. We show that there is a close
relationship between the extremum seeking system and the well-
known Kuramoto model.

The remainder of this paper is structured as follows. In Sec-
tion 2, we introduce the necessary mathematical preliminaries. In
Section 3, we present the main idea and the stability results for ex-
tremum seeking systems on submanifolds in the Euclidian space. In
Section 4, we present the numerical example. In Section 5, we sum-
marize the results and give an outlook on future research topics.

2. Preliminaries

We use the following notation. N denotes the set of natural
numbers and Q (Q) are the (positive) rational numbers. We use
s € C for the complex variable of the Laplace transformation. The
Euclidian space, considered in this paper, is R" equipped with the
standard scalar product (standard metric) (xq, X3) := xlsz, we de-
note it by (R", (-, -)).e; =[1,0,...,0]",...,e,=10,...,0,1]7
are the standard basis vectors in R". We identify the tangent space
T,R" of R" at x with R" and, with a slight abuse of notation, we also
denote the constant vector field [1, 0, ..., 0] by e; etc. The Eu-
clidian norm of a vector v € R" is denoted by ||v|| = +/{v, v). Let
M C R" be a smooth submanifold. The tangent space of M at x is
denoted by TyM. The a-neighborhood of asetS € M witha > 0
is denoted by US := {x € M : infs |x — y|| < a}. We denote
by C" with n € Ny the set of n times continuously differentiable
functions. The Lie bracket [., .] : TuM x TyM — T,M between two
vector fields g1, g, € C' : M — T,M is defined as: [g; (x), £2(X)] =
%gl x) — %gz (x). The vector field [g1(X), g2(x)] is again a
vector field on M (see Corollary 8.28 in Lee, 2003). Let U C R be
open,M C Uandf : U — R.We denote with f|y : M — R the
restriction of a function f : U — R to M. The gradient vector field
of f on the Riemannian manifold (R", (., .)) is denoted by Vf =
[%, e %]T and the gradient vector field of f on the manifold
M is denoted by gradf|y.

An optimization problem on a manifold is an optimization prob-
lem of the form

min f (x)
st.xeM

where M is a manifold and f : M — R a continuously differen-
tiable function. A necessary condition for a local minimum of (1)
is that the gradient must necessarily vanish at that point, i.e., if x*
is a local minimum of (1) then gradf|y (x*) = 0 (see e.g., p. 284
in Bertsekas, 1995). Typically extremum seeking tries to solve (1)
with M = R" by seeking points where the gradient vanishes. In
this work, we consider the case where M is a submanifold in R".
In order to characterize the gradient on M in terms of Vf, we
need the following lemma (see e.g. p. 48 in Absil et al., 2008):

(1)

Lemma 1. Let U C R" be open, M C U and Vf be the gradient vec-
tor field of f : U — R", defined by the standard scalar product (., .)

in R". Then the induced gradient vector field gradf |y : M — T,M is
given by

gradf|m(x) = P(Vf(x)), (2)
where P(y) denotes the orthogonal projection of y € R" onto TyM.

Next, we review some results from Diirr et al. (2013). As it is
shown in Diirr et al. (2013), certain extremum seeking systems can
be written as input-affine systems

k= bo(0) + ) bix)vou(wt) (3)
i=1

with x(tg) = %o € R", w > 0and m € NU{0} the number of vector
fields.
We impose the following assumptions on b; and u;:

Al bjeC?:R" = R%,i=0,...,m;
AueC:R—-Ri=1,...,mandforeveryi =1,...,m
there exist constants M; > 0 such that supycp |ui(0)| < M;;

A3 u;(-) is T-periodic, i.e., u;(0 + T) = u;(#) and has zero average,
ie., [J u(tr)dt =0, withT > Oforalld e R,i=1,...,m.

One main result in Diirr et al. (2013) is to approximate the
trajectories of (3) by the trajectories of a so-called Lie bracket system

£ =bo@) + Y_ [bi(2), b@)]vj (4)
j;TJ:]

where v; = 1 fOT u;(0) foe u;(t)drd6. Furthermore, we introduce
a set B of initial conditions for (4) which have bounded solutions,
i.e., there exists an A > 0 such that

z(0) e B=z(t) e Us, t>0. (5)

Bis used in the proof of the main theorems to assure the existence
of trajectories.

Finally, we cite two results from Diirr et al. (2013). The following
lemma states that trajectories of (3) are approximated by trajecto-
ries of (4).

Lemma 2. Let Assumptions A1-A3 be satisfied. Then for every
bounded set K C BwithBasin(5), forevery D > 0and forevery tf >
0, there exists an wo > 0 such that for every w > wy, for every ty € R
and every Xy € K there exist solutions x, z : R — R" of (3) and (4)
through x(tg) = z(tg) = xo which satisfy ||x(t) — z(t)|| < D, tg <
t <to+t.

For systems like (3) we need a notion of stability which is closely
related to Lyapunov stability and applies to systems depending on
a parameter.

Definition 1. A compact set E C M is said to be practically uni-
formly stable for (3) if for every € > 0 there exista § > 0 and an
wo > Osuch that forall t; € R and for all @ > wp x(tp) € U} =
x(t) € UE,t > to.

Definition 2. A compact set E C M is said to be practically uni-
formly attractive for (3) if there exists a § > 0 such that for every
€ > Othereexistat; > 0and anwy > Osuchthatforallty € R

and all @ > wpx(ty) € UE = x(t) € UE,t > to + ¢

Definition 3. A compact set E C M is said to be practically uni-
formly asymptotically stable for (3) if it is practically uniformly sta-
ble and it is practically uniformly attractive.

Using Lemma 2 it is shown in Diirr et al. (2013) that the stability
properties of systems (3) and (4) are linked. This is captured in the
next lemma, where practical stability is shown for (3).
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Lemma 3. Let Assumptions A1-A3 be satisfied and suppose that a
compact set E C M is asymptotically stable for (4). Then E € M
is practically uniformly asymptotically stable for (3).

For systems like (4) which are independent of “w” and “t” we
drop the terms “practically” and “uniformly” in the definitions
above.

3. Main results

This section consists of two parts. First, we recall extremum
seeking in R". Second, we propose extremum seeking systems on
submanifolds in the Euclidian space.

3.1. Extremum seeking in R"

Consider an extremum seeking system as e.g. in Diirr et al.
(2013) and Krsti¢ and Ariyur (2003), given by the differential equa-
tions

X1 = ¢f (x) /w1 cos(w1t) + a/w1 sin(wit)
: (6)
Xn = ¢f (X)/wn cOS(wnt) + a/wy sin(wnt),

wheref € C? 1 R" > R,x =[x, ..., %] € R"and o, ¢ > 0and
w; = 4w, 6 # 45,1 #j, 0 € Qpy,w > 0,i,j = 1,..., p.Iden-
tifying u! (wit) = Jw; cos(wit), u? (wit) = /w; sin(wit) as inputs
and calculating the Lie bracket system associated to (6), we obtain

= —%CVf(z). 7

We see that the Lie bracket system (7) reveals the optimizing
behavior of the extremum seeking system (6). With Lemma 2 the
trajectories of the Lie bracket system (7) can be uniformly approxi-
mated by trajectories of the extremum seeking system (8) for suffi-
ciently large w and for pairwise distinct w;, w; € Q. Moreover, due
to Lemma 3, stability properties of (7) turn into practical stability
properties of (8), see Diirr et al. (2013) for details.

3.2. Extremum seeking on submanifolds in R"

The main idea is based on the following observations. First, note
that (6) can be more compactly written as follows:

n
X = Z of (X)ei/wi cos(wit) + aei/w; sin(wit). (8)
i=1
Using the identity
[f(@)ei, ei] = —(Vf(2), ei)ei, 9
we see that the Lie bracket system associated to (8) can be written
as

= %S VW @en el = —Vf @ (10)
Z=— z)e;, ei] = ——Vf(z).
2 & v 2

Second, we recall that the gradient vector field gradf |y, of a sub-
manifold M in R", which is induced by the standard scalar product
in R", is the orthogonal projection of Vf onto the tangent space of
M (see Lemma 1). Note that (9) also holds if we replace e; by (tan-
gent) vector fields g; = g;(x) on the submanifold M, i.e.,

[f (2)gi(2), 8i(2)] = —(Vf(2), &i(2))&i(2). (11)

The idea of this paper is now as follows. Note that (11) can be
interpreted as a projection of Vf onto the vector field g;. If the vec-
tor fields g; form an orthonormal basis of the tangent space T,M of
M, we can see that

n

gradf|u(2) = ) (Vf(2), £(2)gi(2). (12)

i=1

Consequently using (9) and by replacing the e;’s in (8) and (10)
by g’s, the Lie bracket system (10) turns into a gradient flow on
the manifold M. Based on this idea we propose an approach for
extremum seeking on submanifolds in the Euclidian space.
Consider the following assumption:

Assumption 1. (1) M C R" is a smooth, m-dimensional Rieman-
nian submanifold without boundary. The metric (., .)p : TyM X
M — R on M is the metric (., .) induced by the inner prod-
uct of the ambient space R", i.e., (X1, X2)y = (X1, X2), with
X1, Xy € TM;

(2) therearep > mvectorfieldsgie C>: M — T,M,i=1,...,p,
on M such that
span{gi(x),...,g&Xx)} =TxM forallx e M, (13)
i.e., for each point x on M, the tangent vectors g;(x),i=1, ...,

m, span the tangent space TyM and for p = m the tangent vec-
tors g;(x) form a basis of T,M;

(3) let U € R"beopen,M C Uandf € C?> : U — R. The set of
local minima E of f|; is nonempty and we denote with E. C E
a compact connected component of E.

We introduce the extremum seeking system on the manifold M as
follows (which differs from (8) by replacing the unit vectors e; by
the tangent vector fields g;):

p
k=" cf (0g(x) /o cos(it) + oigi(x) /i sin(wit) (14)
i=1

where o, ¢; > Oand w; = aqiw, a; # a;,1 # j,a; € Quy, @ > 0,
i,j=1,...,p.Since gj(x) € T,M for all x € M, the right hand side
of the extremum seeking system (14) defines a vector field on M,
i.e., solutions initialized on M are uniformly invariant on M. More
explicitly, x(to) € M impliesthatx(t) € M forallty <t < to+tmax
where t.x is the maximal interval of existence. As indicated above,
we may exploit the identity in (11), which yields the Lie bracket
system on M:

1 )4
t= =2 3wV @), 5 ()s). (15)
i=1

Clearly, the right hand side of (15) is a vector field on M. Observe
also that when all «; and c¢; have the same value « and c and if the
tangent vectors g;j(x),i = 1, ..., p with p = m form an orthonor-
mal basis of T,M for all x € M, then the right hand side of (15) is
exactly —%-grad f |u (x).

Remark 1. Compared to the extremum seeking setup in Krsti¢ and
Ariyur (2003) and Tan et al. (2010), where the dynamics of the
extremum seeking feedback and the dynamic plant are separated,
we consider a slightly different setup. In this paper, the dynamics in
(14) can be interpreted in two ways. First, the dynamics of the plant
are assumed to be in quasi-steady state and thus appears static to
the dynamics of the extremum seeking feedback, i.e., the dynamics
in (14) contain only the extremum seeking dynamics. Second, the
dynamics in (14) may include the dynamics of a plant in terms of a
drift term fo, i.e.,

p
X =fo0) + ) of (0gi(X) /i cos(wit)

i=1
+ i (%) /i sin(wit), (16)
where the extremum seeking feedback is static and consists only of

the sinusoidal perturbations. Note that, the results herein can also
be extended to extremum seeking systems of the form (16).

Using Lemmas 2 and 3, i.e., the methodology developed in Diirr
et al. (2013), we can establish the main results.
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Theorem 1. Consider the Lie bracket system (15) and let Assump-
tion 1 be satisfied. Let W C M be an open set and let E. be a compact
connected set of minima of f |y which is contained in W. Assume that
the gradient of f |y vanishes in W only at points in E., i.e., gradf |y (z)
= 0ifand only if z € E. for allz € W. Then the set E. of equilibria
is asymptotically stable. Moreover, E. is practically uniformly asymp-
totically stable with respect to the extremum seeking system (14).

In other words, the extremum seeking system locally converges
arbitrary close to the set of local minima of f|y for sufficiently
large w;, i = 1, ..., p. The existence of a set W around a compact
connected component of local minima usually exists except in
certain pathological cases, see for example Whitney (1935).

Proof. First, define the Lyapunov function candidate V (x) = f(x).
Since gradf |y (z) = Oifand onlyifz € E. forallz € W and since E,
is a compact connected component of (local) minima of f on M, we
know that V(x) > V(x) for all pairs (x, x) € (W \ E;) x E,. Since E,
is compact, we also know that there exists a constant ¢ such that
{x e W :V(x) <e€}isacompact subset of W. Thus V is a suitable
Lyapunov function. The Lie derivative along the Lie bracket system
(15) is negative semidefinite: V= —% :-‘:1 aici{Vf(2), gi(2))? <
0. From Assumption 1 span{g;(z2), ..., & ()} = T,Mforallz e M
so we see that V vanishes either when Vf(z) = 0orwhen Vf(z) is
orthogonal to T,M. By Lemma 1, this is equivalent to gradf |y (z) =
0 and by assumption this is the case if and only if z € E.. Thus, we
conclude that the set E. is asymptotically stable and E. is a set of
equilibria.

Second, the extremum seeking system (14) fulfills Assumptions
A1-A3. Thus, all assumptions of Lemma 3 are satisfied and we
conclude that the set E. of minima of f |y is practically uniformly
asymptotically stable for the extremum seeking system (14). O

Theorem 1 provides a local stability result of the extremum
seeking system based on the Lie bracket system. The next theo-
rem provides a nonlocal result. This requires the introduction of a
modified version of practical stability, that also captures the region
of attraction.

Definition 4. Let S C M. A compact set E C M is said to be S-
practically uniformly asymptotically stable for (3) if it is practically
uniformly asymptotically stable and for every 8, € > 0 there exist
atr >0,ac > 0and wy > Osuchthatforallty € Randallw >
wox(to) € SN UL = x(t) € UL, t > to + ty and x(t) € UL, t > to.

As before, we drop the term “practically” and “uniformly” in
the definition above for systems like (4). If (4) is S-asymptotically
stable then E is asymptotically stable and S belongs to the region
of attraction.

Theorem 2. Consider the Lie bracket system (15) and let Assump-
tion 1 be satisfied. Let S € M and assume a compact connected
set E. of local minima of f|y is S-asymptotically stable. Then, E. is
S-practically uniformly asymptotically stable with respect to the ex-
tremum seeking system (14).

In other words, this theorem states if S is a subset of the region of
attraction of E, for the Lie bracket system, then S is also a subset of
the ‘practical’ region of attraction of E. for the extremum seeking
system. This notion is similar as to the notion of semi-global
practical stability (e.g. Diirr et al., 2013 and Moreau & Aeyels, 2000).

Proof. By assumption the set E. is asymptotically stable for the Lie
bracket system (15). Since the extremum seeking system (14) sat-
isfies all assumptions of Lemma 3 we conclude that E, is practically
uniformly asymptotically stable.

Now we prove the second claim of the theorem, i.e., for every
8,e > Othereexistat; > 0,ac > 0and an wy > 0 such that for
allw > wg and alltyp € R

x(ty) € SNUF = x(t) € Uk,

t > to+tr and x(t) € UL, t > to. (17)

The following proof consists of two steps. First, we exploit the
result above, i.e., trajectories initialized in the vicinity of E. are
practically asymptotically stable. Second, we establish practical
convergence of the extremum seeking system for all initial condi-
tionsin S to E.. Combining these facts, we obtain that trajectories of
the extremum seeking system initialized in S converge to a vicin-
ity of E. and by practical asymptotic stability they do not leave the
vicinity of E. and practically converge to E..

First step: given any §, € > 0. Note that by practical uniform
asymptotic stability, there exist a §; > 0 and an w; > 0 such that
for all w > w; and all t; € R we have that

x(to) € Us* = x(t) € UF, t>1to. (18)

Note that, this also implies that §; < e.

Second step: let 0 < €; < §;. Since the set E, is S-asymptotically
stable for the Lie bracket system (15), there existat; > 0 and a
¢ > Osuch that

2(0) €SNUS = z(t) e U, t>1tf

(19)
and z(t) € UEE“, t>0.

Now, we apply Lemma 2. Let B := K := SN Ufc, D=6 —¢
and t; as above and note that due to (19) B satisfies (5). Thus, there
exists an w; > 0 such that for every w > w,, tp € Rand xyp € K we
have for x(tg) = z(tp) that ||x(t) —z(t)|| < D,ty <t <ty +tr.Ob-
serve that this together with (19) leads for all > wq := max{w;,
wr}and all tp € Rto

x(to) € SNUs = x(tg + tr) € Uy and 20
x(t) € U,

With this result and since (18) holds uniformly in t; we choose
fo = to + tr and obtain x(ty) € S N U;* = x(t) € Uk, t > to + ;.
Finally, with (20) and ¢ = max{c¢ + D, €} we obtain the desired re-
sult in (17). We conclude that the set E. is S-practically uniformly

asymptotically stable for the extremum seeking system (14). O

toftfto-i—tf.

Remark 2. For the sake of simplicity we removed the washout
filter (see, e.g., Diirr et al., 2013 and Krsti¢ & Ariyur, 2003) which
is usually present in extremum seeking. The role of the filter is to
improve the transient behavior and to remove constant offsets in
the nonlinear function. Note that, the stability definitions explicitly
include the existence of a lower bound wq for the parameter w in
(14). The washout filter does not influence the existence of such a
lower bound, but it may change its value.

The proofs of Theorems 1 and 2 goes along similar lines as in
Diirr et al. (2013). Therein, local practical uniform asymptotic sta-
bility and semi-global practical uniform asymptotic stability were
shown using the methodology developed in Moreau and Aeyels
(2000). This methodology also allows to approximate the trajec-
tories of the extremum seeking system by the trajectories of the
Lie bracket system. This property directly translates to the case of
extremum seeking on submanifolds in R".

Note that instead of using sinusoids for the perturbations of the
extremum seeking feedbacks, the results herein also cover a larger
class of periodic perturbation signals (see Diirr et al., 2013).

4. Example

In this section, we illustrate the results on a numerical example
of extremum seeking on submanifolds of R". It is motivated by
synchronization problems in the spirit of Kuramoto’s gradient flow
model, e.g.Sarlette, Tuna, Blondel, and Sepulchre (2008). Consider
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two controlled harmonic oscillators given by

).(,' Xj
[,-(;] = (1+u) [_xz“] , e2)

where we denote the state of the oscillators by x; = [xi1, x2]",
i = 1,2, and the overall state by x = [x],x] ]". The goal is to
find inputs uq, u, such that the oscillators synchronize by using
only relative distance measurements f(x) = [|x; — x2||> = (X; —
X2, X1 — X3). Each of the oscillators evolves on the circle S'. The
problem of synchronizing the oscillators can be formulated as the
minimization problem

1 )
min —[|x; — x|
2 (22)

s.t.xiTx,- =1, i=1,2.

The state space of the overall system is a torus because the
system evolves on the product of two unit circles T> = S! x S! =
{x1,X2 € R? : x{x; = 1,x) X, = 1}. The tangent space of T? is
givenby T,T? = {[u",v']" € R* : x]u = 0, x; v = 0}. We choose
gi1(x1) = [X12, =x11, 0, O]T and g;(x;) = [0,0, X, —X21]T- One
can again easily verify that these vector fields span the tangent
space T,T? for all x € T2. The extremum seeking system is given
by (21) with u; = ¢;f (x) \/w; cos(wit) 4 ai/w; sin(w;t). The overall
extremum seeking system can be written as

2
X =) &%) + cf (0gi(x) /@; cos(wit)
i=1

+ igi(X;) /w; sin(wit). (23)

Notice that, the system has a drift term g1 (x;) +g2(x») and thus it is
not of the form (14). However, the results in Section 3 can be easily
extended to extremum seeking systems with drifts, which directly
follow from the results established in Diirr et al. (2013). In contrast
to the first example and in view of Remark 1, the drift vector field
can be interpreted as the dynamics of the plants, which are, in this
case, the oscillators.

One can show that the Lie bracket system associated to (23) is
a gradient flow for (22), therefore it coincides with a classical Ku-
ramoto model, e.g., Sarlette et al. (2008). This allows us to interpret
the proposed extremum seeking system as a coupled Kuramoto
model that requires only distance measurements and which leads
to practical synchronization with similar properties as the classi-
cal Kuramoto model. This observation is in the following, discussed
in more detail. Since x; € S, ie, x3 + x5 = 1, we may intro-
duce the coordinate transformation x;; = cos(n;), X, = sin(n;),
ni = arctan(%) and with n = [11, 2] we obtain for f (x;, x3) =

3% = %2017 in (22) f () = 31l cos() — cos) > + 3|l sin(m1) —
sin(#,)||%. Furthermore, ; = % = Xi1Xip — X1Xi2, and with
i1 772

(21), this yields

i = 1+ f(n)/wi cos(wit) + /w; sin(wit), (24)
i = 1, 2. Note that this system is in the form (8) and we can now
calculate the corresponding Lie bracket system, which yields

01 =1—Vyf(6) =1—sin; —6,), (25a)
6y =1—Vpf(®) =1—sin, —6,). (25b)

Note, that (25) is the well-known Kuramoto model for two os-
cillators, e.g., Kuramoto (1975) and Sarlette et al. (2008). The syn-
chrony seeking system can be generalized to multiple oscillators,
for further details we refer to Diirr, Stankovi¢, Johansson, and Eben-
bauer (2013). In that paper, we also present an example for syn-
chronization of oscillators on the special orthogonal group SO(3).
In Montenbruck, Diirr, Ebenbauer and Allgéwer (2014), we show

Fig. 1. Simulation result for extremum seeking on T2.

how extremum seeking on manifolds can be used for obstacle
avoidance problems on SO(3).

Next, we show a numerical simulation with parameters ¢; =
;=050 =a; =0.1,w; = wand w, = 1.1w with v = 20.

The phase system associated to the coupled oscillators can be
visualized as a system evolving on a torus depicted in Fig. 1. The
phase of the first oscillator evolves in poloidal direction (small
radius) and the phase of the second oscillator evolves on the
toroidal direction (large radius) on the torus.

We see that the oscillators synchronize, i.e., Xx; = x, which is
a solution of (22). Thus the overall system practically converges
according to the results of the previous section.

5. Summary and outlook

In this paper, we introduced extremum seeking systems on sub-
manifolds of the real Euclidian space. By exploiting the Lie bracket
approximation analysis introduced in Diirr et al. (2013), we proved
practical uniform asymptotic stability of the set of minima of an un-
known function on a manifold when only the function values are
measurable. We illustrated the results with a numerical example
for extremum seeking on submanifolds of the Euclidian space.

Several interesting extensions of this setup are possible.

First, an interesting extension is to consider non-integrable dis-
tributions, i.e., the vector fields in (13) do not span the tangent
space but the Lie algebra generated by these vector fields do span
the tangent space, i.e., extremum seeking for non-holonomic sys-
tems.

Second, the introduced tangent vector fields g; can either be
imposed by the proposed feedback or they can be part of the dy-
namics of the plant, i.e., in the above setup the dynamics evolve
exclusively on the manifold and therefore cannot leave the mani-
fold. For the former case, a future research direction is to consider
the robustness of the system with respect to the possible presence
of disturbances which drive the states away from the manifold.
Third, it is also attractive to consider the minimization of dynamic
maps, as it was done in the classical extremum seeking (see e.g.
Krsti¢ & Ariyur, 2003). This requires a combination of Lie bracket
approximation method of extremum seeking systems with a sin-
gular perturbation analysis, which allows to consider the dynamics
of the map as a quasi-steady map.

Finally, the introduced approach potentially allows to extend
many results in the synchronization literature to the case when
only distance measurements are available.
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