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ABSTRACT

New event-based sampling strategies can support the effi-
cient use of radio resources in wireless control systems. Moti-
vated by the recent introduction of wireless network nodes in
process control industry, we consider the particular demands
these closed-loop systems set on the wireless communication
and the influence the communication has on the control per-
formance. In the paper, it is pointed out that by letting
sensor nodes transmit only when needed, it is possible to
minimize the communication bandwidth utilization in these
systems. We show how classical control strategies commonly
based on periodic sampling, such as proportional-integral-
derivative control and minimum variance control, can be
cast in an event-based setting in which decentralized com-
munication decisions are taken suitable for commonly used
contention-based medium access control protocols. Event-
triggered sampling for estimation is also reviewed. Simu-
lated examples illustrate the results.

1. INTRODUCTION

There is a growing deployment of wireless networks in in-
dustrial control and automation. The lower installation cost
and easier system reconfiguration for wireless devices can
have a major influence on future control systems. Employing
several control loops over a common wireless medium raises
however new issues on how to allocate radio resources in an
efficient way with guarantees on closed-loop system perfor-
mance for the control applications. In some situations, a
deterministic scheduling of the communication medium for
control and estimation applications is required. In many
cases, however, feedback control can provide good perfor-
mance also with contention-based access schemes. In this

paper, we show precisely that by indicating how event-triggered

sensing and control provides a more scalable and efficient
trade-off between control performance and communication
cost. By making transmissions only when needed and taking
the communication decisions locally at the sensor nodes, it
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Figure 1: Control architecture for event-triggered
control over a wireless network.

is possible to minimize the communication bandwidth uti-
lization.

Proportional-integral-derivative (PID) control is by far
the dominating controller in process industry [5]. Design and
implementation of PID controllers with periodically sampled
sensor readings and control actuations is a well established
area [4]. Stochastic optimal control is in its simplest for-
mulation denoted minimum variance control, in which, the
variance of the plant output is minimized by suitable zero-
order hold control [2]. The traditional implementation of
also minimum variance control is through periodic updates
of the controller and actuator.

The main contribution of this paper is to propose exten-
sions of these traditional control architectures to event-based
implementations. By removing the constraint of periodic
communication of sensor and control data, the wireless net-
work resources can be used more efficiently. The proposed
event-triggered control architecture is shown in Figure 3. An
event detector decides on when to transmit plant informa-
tion depending on the sensor measurements. The receiver
generates a control command that is executed by the actu-
ator. The main inspiration to this scheme comes from the
work on event-triggered and time-triggered control in [3].
More recent contributions in the area includes [9, 11, 7, 10].
A deadband-based PID controller was proposed in [1].

The outline of the paper is as follows. Section 2 introduces
event-triggered PID control. In particular, a suitable event
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detector based on the desired proportional and integral ac-
tion is introduced. Section 3 presents event-triggered sam-
pling for minimum variance control, where it is shown that
an event detector based on a time-varying threshold is opti-
mal. Event-triggered sampling for estimation is reviewed in
Section 4. Finally, the paper is concluded in Section 5. The
results of Sections 3—4 are discussed in further detail in [10]
and [11], respectively.

2. EVENT-TRIGGERED SAMPLING FOR PID
CONTROL

In this section we present a new scheme for event-triggered
PID control. We first recall the basics of PID control. Then
we discuss the event detector and the control generator blocks
in the event-triggered control architecture of Figure 3. The
section is ended with an illustration of disturbance rejection
for a first-order plant.

Consider the control system

j:’.t = f(CUt,’U,t,dt),

where x; is the controlled state, u; the control, and d; an
exogenous disturbance signal. The function f is supposed to
be Liphschitz continuous. To simplify the discussion, sup-
pose the system is scalar.

In a conventional PID controller, we form the error signal

& =Tt — T,

where 7, is the reference signal to track and x; is the plant
output. The error and the integral of the error

t
dp, = / £uds,
0

form the basis of PID control action, together with the
derivative of the error. We focus on PI control and recall
that in continuous-time control systems, the PI controller
has the basic structure

Ut = *Kpft — KIPt-

In sampled data control, the sampling is typically periodic
and the sampled data PI controller [4] is a discretization of
the continuous-time PI controller. Within the sample inter-
vals, a zero-order hold is usually employed, so the control
signal is piecewise constant.

2.1 Event detector for PI control

The internal structure of the event detector block of the
control architecture of Figure 3 is shown in Figure 2. The
event detector consists of a P-part with a gain and a level
crossing detector and an I-part with an integrator and an-
other level crossing detector. The input to the event detec-
tor is the plant error and the output of the event detector
is the encoded word to be communicated over the wireless
medium. *

The P- and the I-parts of the event detector generate the
sampling instances that trigger the communication and thus
the updates of the control generator. Let the sequence of
sampling times be denoted

T ={r0,71,...}.

'The implementation of derivative action and other filters
can be done by extending the approach presented next. The
details will be presented elsewhere.
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Figure 2: Event detector for PI control.

Let 7» denote the last sample time, where A is the count of
samples till now. Some of these samplings are generated by
the P-part and the others by the I-part.

P-sampling

The P-part monitors the instantaneous magnitude of the
error signal &. The idea is that, if the error grows in mag-
nitude, we need to register this as an event to update the
control action. We do this by looking for up crossing times
of |&:|, where up crossings are level crossings away from zero.
Down crossings of |¢;| mean that plant is behaving well.

Assume a threshold of § > 0 for the level crossing of the
P-part. Define the P-sampling instances as the up-crossing
times

9. s = inf inf{t:&, -& <0, |&| >0, t >},
"o nf {t: €| = [&] 26, t>m) [

This sequence of crossing times capture two types of events.
We trigger a sample if the unsigned error signal has grown by
an amount of §. If the error signal diminishes in magnitude
since the last sample time 7, as desired, but has shot over
the origin by at least §, we also trigger a new sample.

It is not enough to use P control. It is easy to see that P
control can result in a steady state error. To prevent such
a situation, the sensor needs to check if the error signal is
indeed decaying to zero. I-sampling describe next, addresses
this concern.

I-sampling

Assume a fixed threshold 7 for changes in the integral error
signal. For i = 1,2,...,, define the I-sampling instances as

Ti,n :inf{t: ‘pTA _Pt| >n, t> T>\}

Note that we do not mind if the integral error is stuck at a
particular value or if it is always between two crossing levels,
because if the integral error converges, the error signal itself
is converging to zero.

The sampling time succeeding 7, is the earlier of the P-
sampling and the I-sampling times:

TA+1 = inf{@iﬂg,mm}. (1)

If the system has reached the desired reference point and if it
stays there, no further samples are triggered until either the
reference changes or the system is hit by a fresh disturbance.
If the thresholds 6, n are increased, the communication cost
is lowered to the cost of lower performance.

At sampling times, the control waveform is updated in the
control generator block of Figure 3. We will now suggest a
form for these updates.
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Figure 3: Response to a step disturbance at time
zero. The threshold for the integral error n = 1, and
the control increment du = 1.

2.2 Control generator for PI control

The control waveform we propose is a superposition of two
simple waveforms. The two base waveforms are a series of
pulses triggered by samples of the error signal, and a piece-
wise constant waveform whose values depend on samples of
the integral error signal. Recall that the sampling times are
determined by level crossings of either the error signal or of
its integral. At these times, the parameters for updating the
control waveform are transmitted to the controller.

The control waveform is given by:

w — —Kp&r, — Kipr,, forte[m,m+e(Kp,Kr)],
.=
—Kipry, fOI‘tG(7’)\—I-E(I(P,I(I),T)\Jrl)7

where € (Kp, K1) is the duration for which the proportional
part of the update in control is applied. The integral com-
ponent is on the other hand applied till the next update is
received. This control waveform is inspired by the tradi-
tional PI controller, but has updates only at event-triggered
time instances. It is an improvement over the purely pro-
portional event-triggered controller.

2.3 Disturbance rejection

Next we illustrate how the event-triggered PID controller
acts by applying it to the scalar linear plant:

1
dxy = _T$t+Kut+dt7 (2)

where K > 0 is the gain and T" > 0 the time constant of the
plant. The disturbance d; is an exogenous non-deterministic
signal. We assume that it is an unknown piecewise constant
signal, which is a common and realistic assumption in prac-
tice. The task of a good controller is to make sure that the
disturbance is attenuated at the plant output.

Traditional PI control relies on integral action to counter
disturbances. Our event-trigged PI controller is able to cap-
ture this merit of periodic PI control. Figures 3-5 show
simulations of the closed-loop system when the reference r;
is zero. The parameters of the plant are T'=1 and K = 1.
The system is at steady state when, at time zero, a unit
step disturbance is applied to the plant input. To isolate
the behavior of the integral action, we set Kp equal zero.

Error signal
: r T

e 11 - 7
1 1 L L 1 1 L Il 1
0 2 4 6 8 10 12 14 16 18 20
Integral Error signal
6 T . ; : ;
4L —
2 * -
o i i | B |
20

[ [ .
0 2 4 6 8 10 12 14 16 18

Control signal
2 T T T . T T T T

u o B
= 1 I Il L 1 1 L Il I
0 2 4 6 8 10 12 14 16 18 20
Sampling times
2 : : ! | . :
o1 111 [ | | | |
- L 1 L L Il 1 L L 1
0 2 4 6 8 10 12 14 16 18 20

Time

Figure 4: Response to a step disturbance at time
zero. The threshold for the integral error n = 0.5,
and the control increment du = 0.1.

Error signal
1 | : T . .
© 01\/\/\/\/\/\/\/\/\/\/\/\
= | L Il Il L L
0 10 20 30 40 50 60

0 10 20 30 40 50 60
Control signal
:

u o . . - . . . . 4

0 10 20 30 40 50 60
Samples

2 ‘ : : ‘ ;

1L : s - e . o s

o LI TEIE TUEE DEOL 0T AOOr TO00 DQ0h O T 1

) 10 2 30 20 50 60
Time

Figure 5: Response to a step disturbance at time
zero. The threshold for the integral error n = 0.8,
and the control increment du = 2.4.

Figure 3 shows that with a threshold for the integral er-
ror of n = 1 and unit control increment, the event-triggered
controller regulates the error to zero with a single sampling
event. If instead n = 0.5 and the control increment is 0.1,
more sampling events are needed as shown in Figure 4. Fi-
nally, Figure 5 indicates that if not careful tuning of the
integral part is done, sustained oscillations can happen. Sys-
tematic tuning rules for the event-triggered PID control are
currently being developed. In particular, we look into the
problem of how to transfer a PID control design for a pe-
riodic implementation to a event-triggered implementation
based on the control architecture of Figure 3.

3. EVENT-TRIGGERED SAMPLING FOR MIN-

IMUM VARIANCE CONTROL

In the previous section we discussed how PID control can
be implemented on the event-triggered architecture of Fig-
ure . Next we present how the solution to the stochastic
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Figure 6: Plant state x; and piecewise constant con-
trol u; with one switch instance 7 = 7.

control problem of minimum variance control can be cast
into the same framework. In particular, we suppose that
the output of the control generator is piecewise constant
controls and we search for an event detector that minimize
a quadratic cost function. More details of the results are
given in [10].

3.1 Joint optimal control and time stopping
problem

On the time interval [0,7T], consider a scalar controlled
diffusion process x: governed by the stochastic differential
equation

d.’IZt = ,u(xt,t,ut)dt—k J(It,t, Ut)dBt, (3)

where B, is a standard Brownian motion process, the func-
tions f and g are Lipshitz continuous, and the control pro-
cess u; satisfies the usual causality property of being mea-
surable w.r.t. x, thus ensuring existence and uniqueness
of z; [6, 8]. We assume that the sensor measures the state
continuously and with negligible measurement noise. The
control process is given by the piecewise constant signal

N-1
ut = Un - Liry<t<ry + Z Ui 1{711§t<‘r7:+1}’
i=0
where 7;, ¢ = 0,..., N, are the so called stopping times

with respect to ;. These time instances correspond to the
events generating the communication over the wireless net-
work. Figure 6 illustrates a case with N = 1 switch instance
for the piecewise constant control. We seek a feedback con-
trol policy and sampling events that minimize the objective
function

JGeneral = E {/OT c(ws) ds} ; (4)

where the function ¢ (-) is non-negative. This is a joint op-
timal control and time stopping problem, since the decision
variables are both the controls {U;}}L, and the stopping
times {7:}7_,. Note that the decision on the controls are to

be taken in the control generator while the stopping times
are to be decided on in the event detector. We will see that
unlike in the case of periodic sampled-data control, there is
no separation between optimal estimation and control for
this problem.

3.2 Special case: controlled Brownian motion

We consider the special case of controlled Brownian mo-
tion with a quadratic objective function and one switch time,
which is the simplest instance of the general problem dis-
cussed above. It is also a case when the solution can be
explicitly computed in closed form. Consider the particular
case of (3) given by

d&?t = de + ’Uzdt.

Assume the process starts at the origin, o = 0. The piece-
wise constant control is given by

w — Uo Uo(xo,T) if O§t<7',
"TlUi= Ui (2., T—7) if T<t<T,

see Figure 6. The objective function is given by

J:E{/OTxﬁds]. (5)

The decision variables are thus Up, Ui, and 7. The compu-
tation of their optimal values Uy, Uy, and 7" is illustrative
and thus summarized next.

Since no decision is taken in the interval (,7T), it is easy
to derive the optimal choice of the terminal control level Uy .
It is given by the linear feedback law

3z,

Ui (z+, T —7) = YT =)

where hence U7 depends on the state at the switching in-
stance and how close the switching instance is to the end
time T'. The optimal choice Uj on the other hand, is closely
tied with the the choice of 7. In fact, for the best control
performance, Uy and 7 have to be picked jointly. By using
the expression for U7, we have that minimizing the objective
function (5) is achieved by minimizing

JO:]EUOTxids]+EE:CE(T—T)+@].

with respect to Up and 7. It is intuitive that Uj = 0 because
the Brownian motion is a martingale with zero mean, so it
would be costly to steer the mean of the process away from
the origin using nonzero Up. This gives

™ U’ w3 U (T—1)\"

== ~E T -
Jo= T + =5 ( >t )( 7)

T2

=5 - %IE [I?_(T—Tﬂ .

It remains to optimize Jo with respect to 7. The only
crucial restriction on 7 is on the causal dependence on the
state trajectory. It follows from the expression of Jy, that
we seek an admissible stopping time 7 that maximizes the
expected reward function

E [22 (T — 7)]



This can be done using It6 calculations [8]. Suppose that
we can find a smooth function g(z,t) for which

g(z,t) > 2*(T —1t) (6)
0= %gwx + g¢, (7)

where the inequality is tight in the sense that for every T'—¢,
there exists at least one = for which the inequality becomes
an equality. Then, by the It6 change of variable formula [8],
we have that for every stopping time 7 with bounded expec-
tation and 0 <t <7< T,

E[a2 (T -7 |7 <E g m |77],

=g(z¢,t) +E [/tng(:rT,T)} ,

=g(z,t)+E [/j {%gacx‘i‘gt}dt} ;

= g(‘rtvt) .

Thus at any time ¢ on the interval [0,7], we have g (z¢,t)
as an upper bound for the expected reward for stopping at
a later time. Moreover, as we will see shortly, this bound
is achievable so that it is also the maximum achievable ex-
pected reward. The process

St = g (x4, 1)

is called the Snell envelope for the optimal stopping prob-
lem. Because of the assumption on g, the inequality (6)
connecting the instantaneous reward function and the func-
tion g is tight. Hence, there exists a stopping time with
bounded expectation which will achieve the upper bound
for the maximum expected reward. This time is precisely
the earliest instant when the reward collected by stopping
equals the Snell envelope:

T*:inf{tgygT

g(z,v) =z, (T—u)}.

We will now furnish an explicit solution to the sufficiency
conditions (6)—(7) for the controlled Brownian motion. Con-
sider as the candidate solution the fourth Hermite polyno-
mial of the ratio x;/+/6 multiplied by the scaling factor A§>.

Then,
s () )

which gives the Snell envelope
4 2
S, = A x—terf(Tft)Jr& .
6 2
We require the inequality
St :g(xf7t) > CL‘% (Tit)a

to be tight. Indeed the choice A = \/5/1 + v/3 makes the

quantity h := g—2? (T — t) a perfect square, thus providing

the desired tightness:
1

h(:ct,t):2(l+\/§)<3—2\/§ (T—t)+(T—t)).

X
o T T
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Figure 7: Reverse quadratic envelope for determin-
ing the optimal switching time.

Thus the optimal stopping rule is the symmetric quadratic

envelope
7" =inf {t

Figure 7 shows the optimal envelope together with an exam-
ple of a state trajectory and corresponding optimal control.
The envelope is to be implemented in the event detector.
The optimal deterministic switching is to switch at 7'/2. The
expected control performance cost incurred by the optimal
event-triggered switching scheme is T72/8, which is nearly a
third of the the cost of using deterministic switching.

x3>¢§(T—t)}- (8)

4. EVENT-TRIGGERED SAMPLING FOR ES-

TIMATION

In this section we consider an event-triggered estimation
problem. This work was previously reported in [11].

We consider here an estimation problem for the Brownian
motion process x;. The state is sampled at instants {7},
which are stopping times w.r.t the x-process. We will now
describe the MMSE estimate and its variance. Consider a
time ¢ in the (semi-open) interval [7;, Tit1). We have:

i‘t =K |:$t

T <t< Ti+1,{(7'j,f£¢j) ‘O 2] < Z}] s

:E[zt

7 <t< Ti+1,Ti,IE7—i} .
Similarly, its variance p; can be written as:

2 =F [(mt — iy)?

T <t< Ti+1, Ti, QZTi] .

It can be proved [9] that the optimal MMSE estimate re-
duces to
Ty = Tr; vV t c [Ti77'i+1)-

The task then is to choose the sampling times so that the



following estimation distortion is minimized:

J(T,N)=E [/OT (2 f@s)st] .

We first state the solution to the single sampling problem
which is the case when the sample budget equals one. In the
previous section on minimum variance control, we obtained a
solution for the optimal single sampling time problem which
minimized the ensuing control cost when the initial state is
zero 8. The single sampling problem for estimation has the
sample optimal stopping rule as the control problem with
zero initial state [10]. The minimum estimation distortion
with one allowed sample can be computed to be 372 /8.

Now, we will inductively obtain a parametric expression
for the minimal expected distortion given exactly k& samples
with k > 1. Consider the stopping cost:

min(7,T) a 5
go=e| [ as+ Slr-or) O

where o > 0 is a given constant. We can rewrite this as:
1
3 {1? —E 222y (T = 7) + (L= ) (T — 7))°] }

Like in the single sample case, let us pay attention to the
part of the above expression which depends on 7 and define
the following optimal stopping problem:

m‘rinIE [Zmz(T —7)+ (1 —a)(T - 7')2] .

Consider the candidate maximum expected reward function:
2 2 z*
g(x,t):A{(Tft) + 2z (Tft)Jr?}.

where A is a constant chosen such that g(x,t) —22%(T —t) —
(1 — )(T —t)? becomes a perfect square. The only possible
value for A then is:

G+a)—/(5+a) —24
1 .

Then the optimal stopping time is given by:

"= irtlf {t:g(ze,t) <227(T—t)+ (1 — ) (T —1)*},

3(A—1+o¢)(T_t)}7

=i :2>
ugf{t Ty > 2

and the corresponding optimal distortion 7 becomes

T2
J=(1-A)—.
2
Now, we obtain the explicit stopping rules and the cor-
responding minimal distortions for different values of the
sample budget N by defining recursively sy, yn:

(54 kn-1) —/(5+rN-1)"—24
KN = 1-— 4 )

3(&]\771 - F\?N)

W= 1—kN

The (k4 1) sampling time is chosen as:

Thtl = tl>nf {t : (xt — xfk)g > ’7N—k+1T — t} .
>Tk

Figure 8: Estimation error signal and the optimal
envelopes when exactly three samples of a standard
Brownian motion process are to be generated. The
envelope for any sampling time 7; is parabolic: = =
ra_i/ 1T —t, where, r;1 = 1.3161, r2 = 0.8819, r3 = 0.6953.

Figure 8 depicts the optimal envelopes and sampling when
the sample budget equals three. For further details on the
topic of this section, please see [9, 11].

S.  CONCLUSIONS

Event-based sampling strategies that support the efficient
use of radio resources in wireless networks in feedback con-
trol systems were discussed. It was shown that some clas-
sical controllers, like PID control and minimum variance
control, which are typically implemented using periodically
sampled data, can be implemented using an aperiodic sam-
pling scheme. The new control structure was based on an
event detector at the sensor side that decides when to trans-
mit information to the controller node. Examples were given
when an optimal event detector can be analytically derived.
Optimal estimation for event-based sampling was also briefly
presented.
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