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Abstract: This paper studies sampled-data implementation of event-triggered PI control for continuous-time linear sys-
tems. We propose an event-triggered PI controller, in which the controller transmits its signal to the actuator when
its relative value goes beyond a threshold. An exponential stability condition is derived in the form of LMIs using a
Lyapunov-Krasovskii functional. It is shown that our proposed controller has the capability to track a desired constant
setpoint. Furthermore, the controller can reject an uncertain disturbance by introducing an observer. A numerical example
illustrates that our proposed controller reduces the communication load without performance degradation.
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1. INTRODUCTION

Control of process plants using wireless sensors and
actuators is of growing interest in process automation
industries [1-3]. Wireless process control offers advan-
tages through massive sensing, flexible deployment, op-
eration, and efficient maintenance. However, there re-
mains an important problem, which is how to limit the
amount of information that needs to be exchanged over
the network, since the system performance is critically
affected by network-induced delay, packet dropout, and
sensor energy shortage.

In this context, event-triggered control has received
a lot of attention from both academia and industry as
a measure to reduce the communication load in net-
works [4,5]. Various event-triggered control architectures
appeared recently (see the survey in [6] and the references
therein). Event-triggered PID control for process automa-
tion systems is considered in some studies. For example,
stability conditions of PI control subject to actuator sat-
uration are derived in [7,8]. Event-triggered PI control
for first-order systems using the PIDPLUS implementa-
tion [9] is discussed in [10]. Experimental validation is
carried out in [7, 11]. Implementations on a real indus-
trial plant is presented in [12-14].

The main objective of a PID controller is either set-
point tracking or disturbance rejection. However, the
studies above mainly focus on the stability of the sys-
tems. For setpoint tracking, it is shown that the out-
put converges to a constant setpoint when its value and
the controller state are available at the sensor [10, 15],
while sensors usually have no capability as a controller
in process automation systems. In [16], the authors show
that an event-triggered PI controller has bounded proper-
ties for setpoint tracking and disturbance rejection. Thus,
the asymptotic behaviors for event-triggered control still
need to be investigated.

In this paper, we study an event-triggered PI control
for a time-continuous linear system. The controller up-
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dates the signal to the actuator when its relative value
goes beyond a given threshold [17]. An exponential sta-
bility condition is derived using a Lyapunov-Krasovskii
functional via Wirtinger’s inequality [18] in the form of
Linear Matrix Inequalities (LMIs). By modifying the
event condition, we show that the event-triggered PI con-
troller has a capability of setpoint tracking. Furthermore,
the controller can reject an uncertain disturbance by intro-
ducing an observer. The event threshold synthesis is also
proposed in this paper. A numerical example illustrates
that our proposed controller reduces the communication
load without performance degradation.

The remainder of the paper is organized as follows.
Section 2 describes the plant and the time-trigged PI con-
troller. An exponential stability condition for this system
is derived. In Section 3, we introduce an event-trigged
PI control and a stability condition is provided. Setpoint
tracking and disturbance rejection are discussed in Sec-
tion 4. We provide a numerical example in Section 5.
The conclusion is presented in Section 6.

Notation

Throughout this paper, R is the set of real numbers.
The set of n by n positive definite (positive semi-definite)
matrices over R"*" is denoted as S’ , (S7}). For sim-
plicity, we write X > Y (X > Y), X|Y € ST_ZH_, if
X-YeS, X-YeShand X >0(X >0)if
X € S}, (X € S7%). Symmetric matrices of the form

A B . A
[BT C] are written as L
transpose of B.

g} with BT denoting the

2. TIME-TRIGGERED PI CONTROL

In this section, we introduce a continuous-time linear
plant and a time-triggered PI controller. An exponential
stability condition is derived. The block diagram of the
system is shown in Fig. 1.
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Fig. 1 Block diagram of the event-triggered PI control
system. The event trigger is introduced in Section 3.

2.1. System model
Consider a plant given by

Zp(t) = Apxp(t) + Bpu(t) + Bad, (1)
y(t) = Cpap(t), (2)

where x,(t) € R™, u(t) € R, d € Rand y(t) € R are
the state, input, the constant disturbance, and output, re-
spectively. We assume that the sensor samples and trans-
mits its measurement every h time interval. The time-
triggered PI controller, which updates its state and control
signal every h time interval, is given by

de(t) =7 —y(te), tE€ [tr,tht1), 3)
u(t) = Kize(te) + Kp(r — y(te)), “4)

where z.(t) € R is the controller state, € R the con-
stant reference signal, and 5, k = 0,1, 2, ..., is the time
of transmission k of the sensor, i.e., tx4+1 — tx, = h for all
t>0.

By augmenting the state z(t) = [z, (¢),z) (t)]T €
R"™*1, we have the following closed-loop system descrip-
tion

@(t) = Ax(t) + Ayx(ty)
+ Bpd+ Brr, t€[tptry)  (5)

with
|4, 0 | =BpK,C, BpK;
A{o 0]’ Al[ —C, 0 |
B B, K
BD = Od:| 9 BR = |: pl p:|

2.2, Stability condition of time-triggered PI control

We derive a stability condition of the system (5).
Theorem 1 Consider the plant (1)—(2) and the con-
troller (3)—(4). Given K, K; € R, and decay rate o > 0,

assume that there exist P, W &€ Sff, such that

D11 Pih ATQ
2| & -TW (A+A4)"TQ| <0 (6)
* * —Q

where ®1; 2 P(A+ A)) + (A+ A)) TP + 2aP and
Q £ h%e®*"V. Then the closed-loop system (5) is ex-
ponentially stable with decay rate a.

Proof: See Appendix A. O

3. EVENT-TRIGGERED PI CONTROL

In this section, we discuss the event-triggered control
introduced in [17,19]. We derive a stability condition and
propose how to tune the event threshold for this setting.

3.1. System model of event-triggered PI control
Consider a plant given by
Ip(t) = Apxp(t) + Bpt(t) + Bad, 7
y(t) = Cpzp (t), (3

where 4(t) is the event-triggered control signal. We as-
sume that @(¢) is updated by checking the event condition

(u(tr) — @(tr—1))* > ou(ty) )

at every sampling time ¢, k = 0,1,..., where o € [0,1)
is a relative threshold. Thus, the event-triggered control
signal is given by

a(t) = u(ty), tE€[thtrr1),  if(9)is true,
U(tk—1), tE€ [thstrr) if (9)is false,

with @y = u(tp). Define the control signal error as
v(t) £ a(t) —u(t)
ﬁ(tk) — u(tk), te [tk,tqul).

Then the closed-loop system is given by

#(t) = Ax(t) + A1z(tx) + Bu(t) + Bpd + Bgrr  (10)

B= [ff)p]

3.2. Stability conditions of event-triggered PI control

with

We have the following stability condition of the sys-
tem (10) withd = r = 0.
Theorem 2 Consider the plant (1)—(2) with d = 0, the
controller (3)—(4) with » = 0, and the event condition (9).
Given K, K; € R, and decay rate o > 0, assume that
there exist P, W € S', w > 0, and o > 0, such that

\ PB woK"
) 10 woKT
VS QB 0 <0 (11)
x ox % —w 0
* %k : 0 —wo

where K = [-K,C, K;]. Then the closed-loop sys-
tem (10) is exponentially stable with decay rate a.
Proof: See Appendix B. O

3.3. Event threshold tuning

Using (11), we can tune the event threshold o to give a
minimum communication load satisfying a given stability
margin a.
Corollary 1 Given K,,, K; € R, and o > 0, if the semi-
definite programming problem (SDP):

o* £max o (12a)

s.t. U <O, (12b)
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Fig. 2 Block diagram of the event-triggered PI control
system for setpoint tracking and disturbance rejection.

is feasible, then the closed-loop system (10) under the
event condition (9) with o* is exponentially stable with
decay rate a.

4. SETPOINT TRACKING AND
DISTURBANCE REJECTION OF
EVENT-TRIGGERED PI CONTROL

Theorem 2 provides the stability condition of the
event-triggered PI control with d = r = 0. In this case,
the state converges to the origin. When r # 0 or d # 0,
however, each element of the state converges possibly
non-zero values even if the event-triggered controller suc-
cessfully stabilizes the plant. This requires us to modify
the event condition.

In this section, we discuss the setpoint tracking of the
event-triggered control, i.e., the case r # 0. Then we
consider the disturbance rejection, d # 0. The block dia-
gram of the proposed system is shown in Fig 2.

4.1. Setpoint tracking

We have the following result on the system (10) with
d=0.
Theorem 3 Consider the plant (1)—~(2) with d = 0, the
controller (3)—(4), and the event condition

(u(te) — a(te-1))? > o(u(ty) — Kz.)? (13)

where 7, & —(A + A1)~ !Bgr. Given K, K; € R, and
decay rate o > 0, assume that there exist P, W & Siﬁ_l,
w > 0, and o > 0, such that ¥ < 0. Then y(t) — r as
t — 0o

Proof: Suppose that ¥ < 0. Then ®;; < 0 and there-
fore A + A; is Hurwitz and non-singular. We apply a
coordinate transformation Z(t) = x(t) — x.. Then the

system (9) can be written as

z(t) = AzZ(t) + A1Z(tr) + Bo(t).

By Theorem 2, this system is exponentially stable with
the event condition

(a(ty) — ’I:L(tk_l))Q > UﬁQ(tk)

where 4(ty) = KZ(ty) = u(ty) — Kx.. This completes
the proof. O

4.2. Disturbance rejection

Theorem 3 implies that the event trigger needs to com-
pute the steady-state input. However, it cannot be ob-
tained for uncertain disturbance d. The idea to tackle this
problem is to introduce an observer.

Consider an augmented plant
Ga(t) = Agza(t) + Bai(t), (14)
y(t) = Caza(l), 5)
where x,(t) = [z} (t),d]" € R"*! with

A, B B
Aa:[op od}’ Ba:[op}, C.=[C, 0].

For the system (14)—(15), we introduce an observer with
sampled-data implementation

To(t) = Agda(tr) + Bau(t)

+ L(y(te) — Caii(tr)) (16)
where £ (t) = [, (t), d(t)]T is the estimation of x4 (t),
L = [L;,Lq) € R™! the observer gain. Denoting
ep(t) 2 2,(t) — 2,(t) and ey(t) 2 d — d(t) as the esti-
mation errors, we have
ép(t) = App(t) — Apwp(ti)

+ (Ap — L,Cp)ep(tr) + Baea(tr),

éd(t) == 7Ld0p€p(tk).

By augmenting the state

(
x(t) & ePEt

we have the following closed-loop system description
x(t) = Ax(t) + Ai1x(tr) + Bo(t)
+ BDdA(tk) +Bgr, t€ [tk trr1) (17)

with
A, 000
|4, 000
A=109 0 0 of
0 000
~B,K,C, 0 By B,K;
A —| A A-LC Ba 0
0 ~LsC, 0 0 |
—Cy 0 0 0
B, By B,K,
0 0 0
B=1lg| Bo=|g| Br=| g
0 0 1

We are now ready to present the stability condition
with the constant disturbance d.
Theorem 4 Consider the plant (1)—(2), the observer (16),
the controller (3)—(4), and the event condition

(u(tr) = a(tr-1))* > o(u(ty) — Kxe(tr))? (18)

where x.(tr) £ —(A + A1)~ }(Bpd(ty) + Bgr) and
K £ [-K,C,,0,0, K;]. Given K, K; € R, L € R"t!



and decay rate o > 0, assume that there exist P, W €
S, w > 0,and o > 0, such that

— A
Ell PA1 ATQ PB U)O'I(T
x —TW (A+A)TQ 0 woK'
* * —Q @B 0 <0,
* * * —w 0
* * * * —wo

where 211 = P(A+ A1)+ (A+A;)T P+ 2aP. Then
the closed-loop system (17) is exponentially stable with
decay rate . Furthermore, y(t) — 7 as t — oo for any
constants 7 and d.

Proof: This can be shown as well as Theorem 2 and
Theorem 3. O
Corollary 2 Given K, K; € R, L € R""!, and o > 0,
if the SDP:

max o (19a)
st. =2<0, (19b)

is feasible, then the closed-loop system (17) under the
event condition (18) with o* is exponentially stable with
decay rate a.

S. NUMERICAL EXAMPLE

In this section, we provide a numerical example to il-
lustrate our theoretical results. Consider a first-order lin-
ear system

&p(t) = 0.1zp(t) + 0.2a(t — 1) + 0.1d, (20)
y(t) = zp(). QD

By solving SDP (19) with K, = 2.20, K; = 0.31, L, =
1.0,Lgy = 2.0, the sampling interval A = 0.2, the de-
cay rate o« = 0.04, we obtain the event thresholds o* =
0.277. The SDP can be solved effectively by YALMIP
toolbox [20]. To evaluate the system performance, we
use the Integral of the Absolute Error (IAE) which is cal-
culated as

+oo
IAE = / |r — y(¢t)|dt.
0

We consider a reference signal r(t) = 1,V¢ > 0 and
a disturbance d(t) = —2,V¢t > 80. The numerical
results for two strategies: the proposed event-triggered
PI control (ET-control, red solid line) and the conven-
tional sampled-data PI control without event-triggering
(SD-control, blue dashed line) are shown in Table 1 and
Fig. 3. It can be found that the event-triggered controller
compensates for the disturbance d and the output con-
verges to r = 1 as well as the conventional PI controller
with slight performance degradation. In fact, the IAE for
the event-triggered controller and the conventional con-
troller is 8.52 and 8.37, respectively. The third plot in
Fig. 3 shows the time instances of the control signal up-
dates. We can see, as well as Table 1, that the com-
munications between the controller and the actuator are

Comm. Comm.
until ¢ = 160 Reduction IAE
ET-control 1676 47.7% 8.52
SD-control 3202 0% 8.37

Table 1 Number of communications, their reductions,
and the IAE for each strategy.
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Fig. 3 Responses to the setpoint (t) = 1, V¢ > 0 and
the disturbance d(t) = —2,Vt > 80 of the two cases:
Event-triggered PI control (ET-control, red solid line)
and sampled-data PI control without event-triggering
(SD-control, blue dashed line). The third plot shows
the event generation at the event-triggered controller.

performed only 75 times until £ = 160. Including the
communications between the sensor and the controller,
the proposed controller reduces the communications by
47.7% compared to the conventional PI controller.

6. CONCLUSION

In this paper, we investigated the event-triggered PI
control for the time-continuous liner systems, where the
controller updated its input signal when its relative value
went beyond a given threshold. An exponential stabil-
ity condition was derived. Furthermore, it was shown
that the proposed controller has a capability of setpoint
tracking and disturbance rejection. The event threshold
synthesis was also proposed. Future work includes the
extension to a PID controller for uncertain systems.

APPENDIX
A. PROOF OF THEOREM 1

Before presenting the proof, we introduce the follow-
ing lemma.
Lemma1l [21] Let z : [a,b] — R”™ be an absolutely
continuous function with a square integrable first order
derivative such that z(a) = 0 or z(b) = 0. Then for any
a>0and W € S, the following inequality holds:

b
[T ewaea



b
se2la\<b—a>4(b;72a)2 e 2T (W E(§)dE.

Now, we derive the stabilitya condition of the sys-
tem (5). Consider the functional

V=V+Vwy (22)

where

VO ‘T(t>TP$(t)7

¢
Viv = h2e2ah/ i(s) " Wi(s)ds
tr
72 [t
- —/ e 229 5(5) TW(s)ds,
4 Ji,

with §(t) £ z(t,) —x(t). Using Lemma 1 and t —t;, < h,
we have Vi > 0. We take the derivatives of each term:
‘./() + 20&‘/()
=" (t)Pi(t) + &' (t)Px(t) + 20z " (t)Px(t),
=z (t)(P(A+ A1)+ P(A+ A1) + 2aP)x(t)

+ 2T (t)PALS(t) + 67 (1) A Px(t),
and

2
Viv + 2aViy = h2e2hi T ()W (t) — %6T(t)W6(t).

Thus, we have

. d,, PA
V—|—2aV§¢>T([ 1 1}

* —’TTQW
T
+ [(A fAlQ)TQ} Q71 [QA Q(A+A1)]) ¢ <0

where ¢ = [ (t),6"(t)]". The proof completes by
Schur complements.

B. PROOF OF THEOREM 2

First, note that by the event condition (9), for some
w > 0, we have

wou? (ty) — wv*(t) > 0.
Introducing the functional (22) gives
(o)
{ 11 ]?éh ] p
—=W
+ 2" (t)PBu(t) +v' (t)B' Px(t)
+ 27 (1)Qi(t) + wou(ty,) — wov?(t)
&, PA | PB
=y’ | x —ZWi 0 |4

V+2aV <o’

where ¢ = [27(t),67(¢),v" (t)]". Since u(ty) =
Kx(tx) and by Schur complements, we have that V' +

2aV < 0if ¥ < 0.

[4]

[9]

[13]
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