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Abstract— Feedfoward control is widely used to compensate
measurable external disturbances. This paper studies feedfor-
ward control using an event-triggered sensor. Stability condi-
tions when the feedback control is subject to actuator saturation
are derived. We also obtain stability conditions of event-
triggered feedforward control with anti-windup compensation.
A numerical example shows that event-triggered feedforward
control significantly reduces communication between the sensor
and the controller without performance degradation compared
with continuous-time feedforward control.

I. INTRODUCTION

Compensating external disturbances is one of the most im-

portant role of feedback control systems. The controller takes

corrective action when the controlled variable deviates from

its set-point, for instance, due to an external disturbance.

However, disturbance compensation is unsuccessful when the

time constant of the closed-loop system is too large. To im-

prove the performance in this situation, feedforward control

[1], [2] is widely used when the disturbance can be mea-

sured directly, for example, in process control [1], aircraft

control [3], and active vehicle suspension [4]. By measuring

disturbances, the control system can take corrective action

before the disturbance affects the controlled variables. Thus,

adding feedforward control is a promising way to improve

control performance against external disturbances.

Event-triggered control has received much attention from

both academic and industrial communities [5]–[7]. The main

motivation for event-triggered feedback control is to re-

duce communication among the system components. Event-

triggered PID control is discussed by many research groups

[8]–[15]. As presented in [8], event-triggered PID control

can significantly reduce the communication effort with only

slight or no degradation of control performance.

Some practical problems when introducing event-triggered

PI control are discussed in the literatures [10], [13], [16].

In [10], it is shown that event-triggering results in the

sticking effect and stationary large oscillations. To overcome

these two problems, [10] proposes a modified PI controller.

Furthermore, [13], [16]–[18] focus on actuator saturation on

event-triggered control. Actuator saturation is often observed

in practical application due to physical or safety constraints.
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Even for linear plants, the closed-loop with actuator satura-

tion may become unstable and stability can be guaranteed

only localy [19]. Thus, it is important to consider actuator

saturation for event-triggered control. In fact, the stability

region is influenced by the use of event-triggered control

[16]. In [16], it is shown that an anti-windup technique can

significantly improve the performance of control systems

with event-trigged sampling.
In this paper, we investigate event-triggered feedforward

control for disturbance compensation. Especially, we con-

sider the following scenario: i) A feedback control loop

which stabilizes a plant is under operation, ii) There exists a

measurable external disturbance which degrades the control

performance, iii) We introduce feedforward control by mea-

suring the disturbance through a wireless sensor. Practically,

adding a new sensor into a control system under operation

is often difficult since it requires installation efforts such

as cabling. Hence, using wireless sensors is an effective

solution [20]. When using wireless sensors, however, energy

limitation affects the control performance since they have

usually no reliable energy source. Thus, introducing event-

triggered feedforward control is reasonable.
The contributions of this work are the following:

1) We formulate event-triggered feedforward control and

derive stability conditions by using LMIs when the

control input is subject to actuator saturation.

2) We also derive stability conditions of event-triggered

feedforward control with anti-windup compensation.

3) We provide a numerical example which shows that the

event-triggered feedforward contol significantly reduce

the communication without performance degradation

compared with conventional continuous-time feedfor-

ward contol.

The remainder of the paper is organized as follows. Sec-

tion 2 describes the plant considered in this paper. An event-

triggered feedforward contol is given in Section 3. Stability

analysis under actuator saturation is provided in Section 4.

Anti-windup compensation is discussed in Section 5. A nu-

merical example is provided in Section 6. Section 7 presents

the conclusion.
Notation: Throughout this paper, N and R are the sets of

nonnegative integers and real numbers, respectively. A scalar

variable is denoted by italic letters (x ∈ R), a vector by bold

italic letters (x ∈ R
n) and a matrix by upper-case bold italic

letters (X ∈ R
n×n). The i-th entry of a vector x is denoted

by x(i), and the i-th row vector of a matrix X by X(i).

The relation of two vectors x � y indicates x(i) ≥ y(i) for

all elements i. The set of n by n positive definite (positive

2018 European Control Conference (ECC)
June 12-15, 2018. Limassol, Cyprus

978-3-9524-2699-9 ©2018 EUCA 501



�������	
��

�	
�

��	
������	��
��
�������

��������	��
��
�������

�������
��
���

��
���

���
�
��
��	���

�

��
������� ��	
����
���������

Fig. 1. Block diagram of the control system with event-triggered feedfor-
ward control

semi-definite) matrices restricted to be Hermitian over the

field R
n×n is denoted as S

n
++ (Sn+). For simplicity, we write

X > Y (X ≥ Y ), where X,Y ∈ S
n
++, if X − Y ∈ S

n
++

(X−Y ∈ S
n
+) and X > 0 (X ≥ 0) if X ∈ S

n
++ (X ∈ S

n
+).

Symmetric matrices of the form

[
A BT

B C

]
are written as[

A �
B C

]
with BT denoting the transpose of matrix B.

II. PLANT AND DISTURBANCE MODELS

In this paper, we consider event-triggered feedforward

control compensating an external disturbance as depicted in

Figure 1. The plant is given by a continuous-time linear

system

ẋp(t) = Ãxp(t) + B̃ũ(t) + B̃ww(t), xp(0) = xp0 (1)

y(t) = C̃xp(t) (2)

where xp ∈ R
np denotes the state, ũ ∈ R

m control,

w ∈ R
p disturbance, and y ∈ R

q the measurement output.

The disturbance affects the plant state through the linear

disturbance system

ẋd(t) = Ãdxd(t) + B̃dd(t), xd(0) = xd0 (3)

w(t) = C̃wxd(t) (4)

where xd ∈ R
nd denotes the disturbance state, d ∈ R

r the

original disturbance, which is assumed to be continuous in t
and bounded according to

d ∈ VD =
{
d ∈ R

r : dTQDd ≤ ε−1
D

}
(5)

with QD ∈ S
r
++ and εD > 0. The matrices Ã, B̃, B̃w, C̃,

Ãd, B̃d, and C̃w are real matrices of appropriate dimensions.

In the following, for the plant (1)–(2), we assume that

(Ã, B̃) is controllable and (Ã, C̃) is observable. To ensure

the boundedness of w(t), we also need to assume that the

disturbance system (3)–(4) is stable, i.e., Ãd is Hurwitz.

The plant input ũ(t) is given by ũ(t) = sat(u(t)), where

sat(·) denotes the saturation function

sat(u)(i) =

⎧⎪⎨
⎪⎩
umax(i), if u(i) > umax(i);

u(i), if − umin(i) ≤ u(i) ≤ umax(i);

−umin(i), if u(i) < −umin(i),
(6)

with i ∈ {1, . . . ,m}, where umax � 0 and umin � 0 are the

upper and lower bound vectors of the input ũ, respectively.

For simplicity, we assume symmetric constraints u0 =
umax = umin.

III. FEEDBACK CONTROL AND EVENT-TRIGGERED

FEEDFORWARD CONTROL

The goal of this paper is to investigate event-triggered

feedforward control when applied to a feedback control

system already under operation. See Figure 1. We assume

that the feedback control is established with continuous-time

information exchanged through wired communication.

A. Feedback controller

In the following we consider a general linear dynamic

output feedback controller given by

ẋc(t) = Ãcxc(t) + B̃cy(t) + B̃cRr(t), xc(0) = xc0

(7)

uc(t) = C̃cxc(t) + D̃cy(t) + D̃cRr(t) (8)

where xc ∈ R
nc denotes the state, uc ∈ R

m feedback

control, and r ∈ R
s reference signal. The matrices Ãc, B̃c,

B̃cR, C̃c, D̃c, and D̃cR are real matrices of appropriate

dimensions.

B. Feedforward controller

We assume that the disturbance considered can be ob-

served by an event-triggered wireless sensor which is de-

scribed as

yd(t) = C̃dd(t) (9)

where yd ∈ R
md is the original disturbance measurement

output and C̃d is a real matrix with appropriate dimension.

Based on the measurement yd(t), a wireless sensor invokes

a new communication event. Let tk with k ∈ N be the time

of transmission k. Then the new event occurs whenever the

disturbance error e(t) given by

e(t) = yd(t)− yd(tk), ∀t ∈ [tk, tk+1) (10)

reaches the boundary of the set

W =
{
e ∈ R

md : eTRe ≤ δ−1
}

(11)

with R ∈ S
nd
++and δ > 0, that is, when e(t) ∈ ∂W .

The feedforward controller calculates the output ud(t) ∈
R

m based on the disturbance information form the wireless

sensor. We consider static feedforward control described as

ud(t) = D̃cDyd(tk), ∀t ∈ [tk, tk+1), (12)

which compensates the control vector by

u(t) = uc(t) + ud(t). (13)
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C. Closed-loop system

From (1)–(4), (7)–(8), (10)–(12), and (13), and by intro-

ducing the augmented state vector

x(t) =

⎡
⎣xp(t)
xc(t)
xd(t)

⎤
⎦ ∈ R

n

where n = np+nc+nd, we obtain the augmented state-space

model

ẋ(t) = Ax(t) +Bũ(t) +BDd(t) +BRr(t) (14)

u(t) = Kx(t) +KDd(t) +KEe(t) +KRr(t) (15)

y(t) = Cx(t) (16)

with

A =

⎡
⎣ Ã O B̃wC̃w

B̃cC̃ Ãc O

O O Ãd

⎤
⎦ , B =

⎡
⎣B̃O
O

⎤
⎦ ,

BD =

⎡
⎣ O
O

B̃d

⎤
⎦ , BR =

⎡
⎣ O

B̃cR

O

⎤
⎦ ,

K =
[
D̃cC̃ C̃c O

]
, KD = D̃cDC̃d, KE = −D̃cD,

KR = D̃cR, C =
[
C̃ O O

]
.

To characterize the stability of the closed-loop system (14)–

(16), we first introduce the deadzone nonlinearity [19], which

is defined by

φ(u) = sat(u)− u. (17)

The deadzone nonlinearity allows us to use a modified sector

condition as follows.

Lemma 1: [19] If v ∈ R
m and z ∈ R

m are elements of

the set

S =
{
v, z ∈ R

m : |v(i) − z(i)| ≤ u0(i), ∀i ∈ {1, . . . ,m}
}

then the nonlinearity φ(v) satisfies the inequality

φ(v)TT (φ(v) + z) ≤ 0

for any diagonal matrix T ∈ S++.

By using (17), we can rewrite the closed-loop system as

ẋ(t) =(A+BK)x(t)

+ B̄φ(Kx(t) +KDd(t) +KEe(t) +KRr(t))

+ (BD +BKD)d(t) +BKEe(t)

+ (BR +BKR)r(t) (18)

y(t) =Cx(t). (19)

where Ā = A +BK and B̄ = B. Note that the feedback

controller (7)–(8) can stabilize the plant (1)–(2) at least for a

sufficiently small region around the equilibrium point of the

system (18). Thus, the matrix Ā is Hurwitz. The closed-loop

system is illustrated in Figure 2. For simplicity, we assume

that r(t) ≡ 0 in the following.

����������	�
�

�
������ ���
�

Fig. 2. Block diagram of the closedd-loop system with event-triggered
feedforward control

IV. STABILITY ANALYSIS UNDER ACTUATOR

SATURATION

For practical application, it is important to consider input

constraints since almost all systems have physical or safety

constraints. Under actuator saturation, the stability is guar-

anteed only locally. Hence, our stability analysis focuses on

estimating the stability region.

First, we derive stability conditions of the system with

continuous-time feedforward control, which is simple exten-

sion of the discussion in [19]. It is used later to evaluate

the effect of the event-triggered feedforward control. With

continuous-time feedforward control, the closed-loop system

(18)–(19) can be rewritten as

ẋ(t) =Āx(t) + B̄φ(Kx(t) +KDd(t)

+ (BD +BKD)d(t) (20)

y(t) =Cx(t). (21)

Then we have the following theorem.

Theorem 2: If there exist a symmetric matrix W ∈ S
n
++,

a diagonal matrix S ∈ S
m
++, a matrix Z ∈ R

m×n, three

positive scalars τ1, τ2 and η satisfying⎡
⎢⎣WĀ

T
+ ĀW + τ1W � �

SB̄
T −Z −KW −2S �

(BD +BKD)T −KT
D −τ2QD

⎤
⎥⎦ < 0 (22)

[
W ZT

(i)

Z(i) ηu2
0(i)

]
≥ 0, i = 1, . . . ,m (23)

− τ1εD + τ2η < 0 (24)

then for any d ∈ VD and x(0) ∈ E(P , η) with P = W−1,

the state x(t) of closed-loop system (20)–(21) does not leave

the ellipsoid E(P , η) for all t ≥ 0.

Proof: It follows from Remark 3.1 and Proposition 3.6

in [19].

Remark 3: It is obvious that the stability conditions of

the system without feedforward control can be derived by

substituting KD = O which corresponds Proposition 3.6 in

[19].

Next, we derive stability conditions for event-triggered feed-

forward control systems.

Theorem 4: If there exist a symmetric matrix W ∈ S
n
++,

a diagonal matrix S ∈ S
m
++, a matrix Z ∈ R

m×n, four
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positive scalars τ1, τ2, τ3 and η satisfying⎡
⎢⎢⎢⎣
WĀ

T
+ ĀW + τ1W � � �

SB̄
T −Z −KW −2S � �

(BD +BKD)T −KT
D −τ2QD �

KT
EB

T −KT
E O −τ3R

⎤
⎥⎥⎥⎦ < 0

(25)[
W ZT

(i)

Z(i) ηu2
0(i)

]
≥ 0, i = 1, . . . ,m (26)

− τ1δεD + τ2δη + τ3εDη < 0 (27)

then for any d ∈ VD, e ∈ W and x(0) ∈ E(P , η) with

P = W−1, the state x(t) of closed-loop system (18)–(19)

does not leave the ellipsoid E(P , η) for all t ≥ 0.

Proof: By setting v = u = Kx +KDd +KEe and

z = u + Gx = Kx + KDd + KEe + Gx, Lemma 1

guarantees that

φT(u)T (φ(u) + u+Gx) ≤ 0 (28)

for any x belonging to the set

SG = {x ∈ R
n : |G(i)x| ≤ u0(i), ∀i}.

Consider Lyapunov function candidate

V (x) = xTPx

with P = PT > 0, which defines the ellipsoid E(P , η).
This ellipsoid is included in the set SG if the condition

(26) is satisfied. This can be shown by left-multiplying

the vector [ηu0(i)(W
−1x)T ± 1] and right-multiplying

[ηu0(i)(W
−1x)T ±1]T by the matrix in the condition (26).

Next, we will show that V̇ (x) < 0 for any x ∈ intE(P , η)
and d ∈ VD, e ∈ W so that any trajectories of x(t) never

leave the ellipsoid E(P , η). By applying the S-procedure, we

have the condition

V̇ (x) + τ1(x
TPx− η−1) + τ2(ε

−1
D − dTQDd)+

τ3(δ
−1 − eTRe) < 0,

which can be split further into two conditions:

V̇ (x) + τ1x
TPx− τ2d

TQDd− τ3e
TRe < 0

−τ1η
−1 + τ2ε

−1
D + τ3δ

−1 < 0.

The condition (27) directly results in the second inequality

above. By the inequality (28), we have

V̇ (x) + τ1x
TPx− τ2d

TQDd− τ3e
TRe

≤ V̇ (x) + τ1x
TPx− τ2d

TQDd− τ3e
TRe

− 2φTT (φ+ u+Gx).

By using the system representation (14) and transfor-

mation W = P−1, S = T−1 and Z = GW ,

the condition (25) guarantees that the right term of the

above inequality is negative, which can be shown by

left-multiplying [(W−1x)T (S−1φ)T dT eT] and right-

multiplying [(W−1x)T (S−1φ)T dT eT]T by the matrix

in the condition (25). This completes the proof.

V. ANTI-WINDUP COMPENSATION

It is known that anti-windup is effective to compensate

performance degradation due to actuator saturation [16],

[19]. In this section, we define the stability conditions for

event-triggered feedforward control with anti-windup com-

pensation. The idea of anti-windup compensation is to feed

back the difference between control input and actual actuator

output, i.e., φ(u), to the controller. We assume that the anti-

windup feedback gain is static KAW , then the controller

state is given by

ẋc(t) = Ãcxc(t) + B̃cy(t) +KAWφ(u), xc(0) = xc0,

and therefore, the closed loop system becomes

ẋ(t) =Āx(t) +BAWφ(Kx(t) +KDd(t) +KEe(t))

+ (BD +BKD)d(t) +BKEe(t) (29)

y(t) =Cx(t). (30)

with

BAW =

⎡
⎣ B̃
KAW

O

⎤
⎦ .

Now, we have the following stability conditions which is

obtained by replacing B̄ by BAW in Theorem 4.

Corollary 5: If there exist a symmetric matrix W ∈ S
n
++,

a diagonal matrix S ∈ S
m
++, a matrix Z ∈ R

m×n, four

positive scalars τ1, τ2, τ3 and η satisfying⎡
⎢⎢⎣
WĀ

T
+ ĀW + τ1W � � �

SBT
AW −Z −KW −2S � �

(BD +BKD)T −KT
D −τ2QD �

KT
EB

T −KT
E O −τ3R

⎤
⎥⎥⎦ < 0

(31)[
W ZT

(i)

Z(i) ηu2
0(i)

]
≥ 0, i = 1, . . . ,m (32)

− τ1δεD + τ2δη + τ3εDη < 0 (33)

then for any d ∈ VD, e ∈ W and x(0) ∈ E(P , η) with

P = W−1, the state x(t) of closed-loop system (29)–(30)

does not leave the ellipsoid E(P , η) for all t ≥ 0.

VI. NUMERICAL EXAMPLE

In this section, we provide a numerical example of scalar

PI control to see the effect of event-triggered feedforward

control.

A. Plant and controller

Consider the following scalar unstable system

ẋp(t) = 0.5xp(t) + ũ(t) + 2xd(t), x(0) = 0

y(t) = xp(t)

and the disturbance system

ẋd(t) = −3xd(t) + 2d(t), xd(0) = 0

w(t) = xd(t)

yd(t) = d(tk), t ∈ [tk, tk+1)
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with PI control including feedforward compensation

ẋc(t) = −y(t)

u(t) = xc(t)− 1.2y(t) + kfyd(t)

where kf is the scalar feedfoward gain. The input is affected

by the actuator saturation

ũ(t) = sat(u(t)) =

⎧⎪⎨
⎪⎩
2, if u(t) > 2;

u(t), if − 2 ≤ u(t) ≤ 2;

−2, if u(t) < −2.

An event is generated whenever e2(t) = δ−1, i.e., R = 1.

We define ē � δ−1/2 for simplicity.

B. Computation of stability region

In the simulation, we evaluate the region of stability

E(P , η) for some cases. To estimate the region, we formulate

the following optimization problem with different constraints

corresponding to the three cases in Sections 4 and 5:

min trace(−W )

s.t. (22)–(24), or

(25)–(27), or

(31)–(33).

With this objective function, the optimization problem is a

semi-definite program under given τi, i = 1, 2, 3, which is

effectively solved by YALMIP toolbox [21]. Note that the

outcome of the optimization problem depends on the values

of τi. Thus, a search on a grid defined by τi is needed in

order to obtain the maximum stability region [19].

Figure 3 shows the stability regions of xp and xc derived

based on Theorem 2 and Theorem 4 for the three cases:

(i) event-triggered feedforward control (ET-FF: red) with

ē = 0.1 and kf = −0.75, (ii) continuous-time feedforward

control (CT-FF: green) with kf = −0.75, and (iii) no

feedforward control (no-FF: blue) with kf = 0. We find that

the continuous-time feedforward control obtains the largest

stability region and PI control without feedfoward control

does the smallest. The event-triggered feedforward control

has smaller stability region than continuous-time one. The

difference of the stability regions with the continuous-time

feedforward control stems from the disturbance measurement

error e(t). However, even if the information of disturbance is

thinned out by event-generator, the event-triggered feedfor-

ward control still has larger stability region compared with

the case without feedforward control. In addition, comparing

two event-triggering conditions with ē = 0.1 and ē = 0.3,

the case with ē = 0.1 has larger stability region. This is due

to smaller disturbance error e(t) than the case with ē = 0.3.

We also compare the two cases: event-triggered feedforward

control with and without anti-windup compensation. The

result with kAW = −1 is shown in Figure 4. We find that

anti-windup compensation has much influence on the size of

the stability region for event-triggered feedforward control.
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Fig. 3. Stability regions (dashed line, dotted lines) and the trajectories
(solid lines) with the disturbance (34) of three cases: (i) event-triggered
feedforward control (red, ET-FF), (ii) continuous-time feedforward control
(green, CT-FF), and (iii) no feedforward control (blue, no-FF)
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Fig. 4. Stability regions of event-triggered feedforward control: (i) with
anti-windup compensation (solid line, AWET-FF), (ii) without anti-windup
compensation (dashed line, ET-FF)
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Fig. 5. Top: Disturbance and triggering times. Middle: Outputs of
three cases; (i) with event-triggered feedforward control (red), (ii) with
continuous-time feedworward control (green), and (iii) no feedforward
control (blue). Bottom: Inputs of the same three cases.

C. Behaviours of the control loop

We also show the behaviours of each control loop with

a given disturbance. Here, we assume that a disturbance

appears when t = 1 [s] with

d(t) = 1− e−0.5(t+1). (34)

The results of the three cases: (i) PI control with event-

triggered feedforward control (ET-FF: red) with ē = 0.1
and kf = −0.75, (ii) PI control with continuous-time

feedforward control (CT-FF, green) with kf = −0.75, and

(iii) PI control without feedforward control (no-FF, blue), are

shown in Figures 3 and 5. From Figure 5, we find that the

event-triggered feedfoward control achieves almost the same

performance against the disturbance as the continuous-time

feedforward control with only 9 samples of the disturbance

being communicated. This implies that the event-triggered

feedforward control significantly reduces the communication

with basically no performance degradation compared with

the continuous-time feedforward control. In Figure 3, the tra-

jectories of the three cases converge to different equilibrium

points. This difference comes from the feedforward gain kf ,

and leads to the performance improvement.

VII. CONCLUSION

In this paper, we investigated event-triggered feedforward

control under actuator saturation. As a main result, LMI

conditions were derived to determine the stability region of

the control loop with event-trigged feedforward control. The

numerical example showed that event-triggered feedforward

control is able to significantly reduce the communication

with no performance degradation compared with continuous-

time feedfoward control. Possible future works will focus

on systematic design synthesis to determine the feedforward

gain.
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