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Abstract—Although an appropriate choice of measured state
variables may ensure observability, designing state observers for
the state estimation of epidemic models remains a challenging
task. Epidemic spread is a nonlinear process, often modeled
as the law of mass action, which is of a quadratic form; thus,
on a compact domain, its Lipschitz constant turns out to be
local and relatively large, which renders the Lipschitz-based
design criteria of existing observer architectures infeasible. In
this paper, a novel observer architecture is proposed for the state
estimation of a class of nonlinear systems that encompasses the
deterministic epidemic models. The proposed observer offers
extra leverage to reduce the influence of nonlinearity in the
estimation error dynamics, which is not possible in other
Luenberger-like observers. Algebraic Riccati inequalities are
derived as sufficient conditions for the asymptotic convergence
of the estimation error to zero under local Lipschitz and
generalized Lipschitz assumptions. Equivalent linear matrix
inequality formulations of the algebraic Riccati inequalities are
also provided. The efficacy of the proposed observer design is
illustrated by its application on the celebrated SIDARTHE-V
epidemic model.

Index Terms—Nonlinear systems, epidemic processes, state
estimation, observer design.

I. INTRODUCTION

Epidemic processes comprise spreading phenomena in
biological, social, geographic, and cyber domains. Therefore,
in addition to epidemiology [1], modeling and analysis
of epidemic processes have found applications in wildfires
[2], cyber-physical systems [3], computer networks [4], and
wireless communications [5]. State estimation is crucial for
efficient monitoring and control of these processes. Because
of the physical and economic limitations of available sensing
resources, it is generally not possible to measure all the state
variables of an epidemic process. This limitation is well-
understood in real-world epidemics, where it is impossible
to obtain data on epidemic variables like the number of
susceptible, undetected infected, and recovered cases.

Observers are dynamical systems that utilize the avail-
able online measurements to estimate the state of a lin-
ear/nonlinear process. For this, they require a suitable model
of the process. Therefore, before state estimation, it is
necessary to identify the model parameters. The notions of
identifiability and observability, which have been extensively
studied for epidemic models [6], [7], ensure whether the
parameters can be identified and the state variables can
be reconstructed, respectively. Several parameter estimation
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techniques for epidemic models are proposed in [8]–[10].
However, despite being equally important, state estimation
of epidemic models didn’t receive enough attention in the
research literature. The existing state estimation techniques
for epidemic models either consider a linearized epidemic
model [11] or design an extended Kalman filter [12]–[14],
which is also a sophisticated estimation technique based on
linearization [15]. The problem with these techniques is that
they only guarantee local convergence of the state estimation
algorithm. The adaptive observer proposed in [16] ensures
a global convergence result; however, it assumes that the
nonlinearity in the model is a measured output, which is a
very restrictive assumption.

In this paper, we propose a novel observer for a class
of nonlinear systems that encompasses both compartmental
and networked epidemic models. The form of the proposed
observer combines ideas of feedforward output injection and
innovation term in the nonlinearity, which were originally
proposed by Luenberger [17], [18] for linear systems and by
Arcak and Kokotović [19] for nonlinear systems, respectively.
Using the Lyapunov stability analysis and local Lipschitz
property of epidemic processes, we provide a sufficient
condition for the asymptotic convergence of estimation error
to zero in terms of an algebraic Riccati inequality (ARI),
which can be equivalently formulated as a linear matrix
inequality (LMI) feasibility condition. Under the assumption
of generalized Lipschitz property, we provide a less restrictive
ARI as a sufficient condition of the error convergence. The
proposed observer is easy to design and provides extra
leverage to minimize the influence of nonlinearity in the
estimation error dynamics. Such a leverage is not possible in
the Luenberger-like observer [20]–[22] and cannot be fully
exploited in the Arcak-Kokotović observer [19].

We use standard notations throughout the paper; nonethe-
less, we clarify wherever an ambiguity can arise. The depen-
dence of signals on time variable t is sometimes omitted for
brevity, and it should be considered as implicit. The rest of
the paper is organized as follows: In Section II, we describe
motivation, problems, and challenges in epidemic monitoring
and control. After stating the problem in Section III, we
briefly review the existing observer design techniques for
nonlinear systems and highlight difficulties in using them for
epidemic processes in Section IV. The proposed observer
design is presented in Section V. Finally, Section VI and VII
provide simulation results and concluding remarks, respec-
tively.
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II. MOTIVATION AND CHALLENGES

In this section, we define a class of nonlinear systems
encompassing the deterministic epidemic models. We em-
phasize the need to perform identifiability and observability
analysis of epidemic models, and choosing the appropriate
measured output variables. After briefly reviewing the pa-
rameter and state estimation problems, and demarcating the
scope of this paper, we list some challenges that should be
addressed in future for effective epidemic monitoring and
control.

A. Models of epidemic processes

Epidemic processes are usually described by either pop-
ulation/compartmental or metapopulation/networked models.
Compartmental models consider a lumped population divided
into multiple epidemic compartments such as susceptible,
exposed, infected, recovered, etc. These models assume a
homogeneous population structure without an underlying
network; therefore, each person is assumed to be equally
likely to get infected when the epidemic starts. The basic
compartmental models, among others [1], are SIS (Sus-
ceptible, Infected, Susceptible), SIR (Susceptible, Infected,
Removed), and SEIR (Susceptible, Exposed, Infected, Re-
moved). Their variations include SIQR (Susceptible, Infected,
Quarantined, Removed) [23], SIDUR (Susceptible, unde-
tected Infected, Detected infected, Unidentified recovered,
identified Removed) [24], SIDARTHE (Susceptible, Infected,
Diagnosed, Ailing, Recognized, Threatened, Healed, Extinct)
[25], and many others (see [6]).

Networked models are more sophisticated than the com-
partmental models as they also take into account the geo-
graphic and/or demographic heterogeneity of an epidemic
process. The underlying network governs the infection trans-
mission from one node to another, [26]–[28], where the
edges between nodes represent interactions between different
population classes separated from each other either demo-
graphically (e.g., age groups) or geographically.

All the epidemic models mentioned above belong to a
specific class of nonlinear systems described by

ẋ = Ax+Gf(Hx), y = Cx (1)

where x(t) ∈ X ⊂ Rnx is the state and y(t) ∈ Rny is the
measured output. The matrices A ∈ Rnx×nx , G ∈ Rnx×nf ,
H ∈ Rk×nx , and C ∈ Rny×nx . The nonlinearity f :
X → Rnf is of polynomial type; therefore, it is continuously
differentiable and Lipschitz continuous on a bounded domain
X . In other words, for every x, x̂ ∈ X ,

‖f(Hx)− f(Hx̂)‖ ≤ `‖H(x− x̂)‖ (2)

where ‖ · ‖ denotes the Euclidean norm and

` = sup
x∈X

σmax

(
∂f

∂x
(Hx)

)
(3)

is the Lipschitz constant (see [29]) with σmax the maximum
singular value. The problem (3) can be solved numerically

using a suitable solver for nonlinear constrained optimization
problems (e.g., fmincon in MATLAB).

Both SIDARTHE and SIDARTHE-V models, for instance,
developed in [25] and [30], respectively, can be written as
(1) with f(Hx) = [ SI SD SA SR ]T (see Section VI).
Networked SIS epidemic model [28] in the form of (1)
has f(Hx) = −diag(x)BWx, G = H = In, and A =
(BW − D), where B = diag(β1, . . . , βn) is the matrix of
infection susceptiblities of nodes, D = diag(δ1, . . . , δn) is
the matrix of healing rates of nodes, and W is the weighted
adjacency matrix.

When selecting a suitable model describing an epidemic
process, particular consideration should be given to its iden-
tifiability and observability properties with respect to the
available measurements. The measured output in compart-
mental models comprise the variables corresponding to the
measurable compartments—for example, active number of
diagnosed cases and total number of deaths—and/or the
variables corresponding to the flows from one compartment
to another—for example, daily number of diagnosed and hos-
pitalized cases. Similarly, the measured output in networked
models can be obtained, for instance, by recording the active
number of diagnosed cases in each node. In the engineering
applications [3]–[5], one can also assume that the full states
of some gateway nodes [31] in the network are measured
directly by the dedicated sensors.

B. Identifiability and parameter estimation

Let θ ∈ Θ ⊂ Rnθ be the vector of parameters of (1), where
A := A(θ), G := G(θ), and C := C(θ). Then, the notion of
(global) identifiability ensures that, for any generic θ, θ̂ ∈ Θ,

y(t; θ) ≡ y(t; θ̂) =⇒ θ = θ̂.

If this implication holds locally within an open neighborhood
of every θ ∈ Θ, then (1) is said to be locally identifiable [32],
[33]. In other words, for (1) to be identifiable, there must exist
a time t > 0 such that the map θ 7→ y(t; θ) is injective, at
least locally, for any θ ∈ Θ.

There are several softwares like DAISY [34] and GenSSI
[35] that employ tools from differential geometry and differ-
ential algebra for checking the identifiability of a nonlinear
model from its output y(t) and its derivatives. Identifiability
is necessary for the identification of θ by using the knowledge
of output trajectory of the system (1). See [36] for an
extensive survey on the identification of nonlinear systems.

Identification of epidemic models is crucial for understand-
ing and forecasting the epidemic evolution. It is extensively
studied in the literature (see, e.g., [8]–[10]). Given that the
system (1) is identifiable and that output data is available,
the parameter estimation problem can be formulated as a
maximum likelihood estimation problem

θ̂ = arg min
θ∈Θ

T−1∑
k=0

‖ȳ(k)− y(k; θ)‖2 (4)
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where θ̂ is the estimated parameter vector, ȳ(k) is the mea-
surement data, y(k; θ) is the sampled output from the model
(1), and T is the total time duration. If the parameters are time
varying, it can be assumed that they are piece-wise constant,
as in [30]. Then, a moving horizon estimation technique
[37] can be employed to find the optimal parameters. In the
current paper, we focus on the state estimation problem of
epidemic models by assuming that the parameters θ have
already been estimated.

C. Observability, detectability, and state estimation

To assess and predict the epidemic evolution and the
attained population-level immunity, it is crucial to estimate
the unmeasurable states of an epidemic process—for exam-
ple, number of susceptible, undetected infected, and immune
cases. Such information is also necessary to devise optimal
epidemic mitigation policies [38].

Given the parameters θ, the notion of observability guar-
antees whether or not the state trajectory x(t;x0) of (1) with
x0 = x(0) can be uniquely determined from the output
trajectory y(t;x0). That is, (1) is (globally) observable if,
for any x0, x̂0 ∈ X ,

y(t;x0) ≡ y(t; x̂0) =⇒ x0 = x̂0. (5)

If the implication (5) holds locally within an open neigh-
borhood of every x0 ∈ X , then (1) is said to be locally
observable. See [39] or [40, Chapter 1] for all the characteri-
zations of observability and [6] for the observability analysis
of several compartmental epidemic models.

A more flexible notion than observability is detectability,
which ensures the following implication

y(t;x0) ≡ y(t; x̂0) =⇒ lim
t→∞

‖x(t;x0)− x(t; x̂0)‖ = 0.

Detectability of (1) is a necessary condition for the existence
of an (asymptotic) observer, [41], which is a dynamical
system

ż = φ(z, y), x̂ = ψ(z, y) (6)

with φ : Rnz × Rny → Rnz and ψ : Rnz × Rny → Rnx
designed to ensure limt→∞ ‖x(t)− x̂(t)‖ = 0. On the other
hand, observability of (1) is a necessary condition for the
existence of a tunable observer, [42], where an observer (6)
is said to be tunable if φ, ψ can be designed such that, for
any ε > 0, there exists T > 0 ensuring ‖x(t) − x̂(t)‖ ≤ ε,
∀t ≥ T. For now, we limit our investigation to asymptotic
observers.

D. Challenges in epidemic monitoring and control

It has been highlighted in [38] that uncertainties and time
delays in data acquisition and reporting pose a big chal-
lenge in efficient epidemic monitoring and control. Moreover,
epidemic parameters vary with the external conditions such
as epidemic mitigation policies, social behavior, and disease
mutations, which are highly uncertain and create difficulties
in the analysis of epidemic processes. The treatment of such
uncertainties and time delays is beyond the scope of this

paper. However, we acknowledge that it is a very important
research problem and will surely be addressed in our future
work. The current paper can be considered as a preliminary
step towards the observer design of epidemic processes.

Here, we focus on the technical challenges posed by the
models of epidemic processes in the absence of uncertainties
and noise. As we saw earlier that epidemic spread is a
nonlinear process with quadratic type nonlinearity. Generally
speaking, such nonlinearities are only locally Lipschitz and
the Lipschitz constant may turn out be relatively large.
Moreover, the matrix A representing the linear part of an
epidemic process is usually sparse, which makes the LMI-
based observer design task difficult.

III. PROBLEM STATEMENT

We assume that the system (1) is detectable in a sense
defined in Section II-C, which is necessary for the existence
of φ, ψ such that an asymptotic observer (6) converges, i.e.,

lim
t→∞

‖x(t;x0)− x̂(t;ψ(z0, Cx0))‖ = 0.

Note that if (1) is observable, differentially observable, or
differentially detectable, then it is also detectable. Thus,
detectability is the least restrictive assumption to ensure the
well-posedness of the observation problem.

Secondly, we assume that the pair (A,C) is a detectable
pair. That is, if there exist v ∈ Rnx and λ ∈ C such that
Av = λv and Cv = 0, then the real part Re(λ) < 0.

Under the above assumptions, we aim to design an ob-
server of the form (6) that asymptotically estimates the state
of (1), i.e., limt→∞ ‖x(t) − x̂(t)‖ = 0, given the model
A,G,H,C and the output measurements y(t).

IV. EXISTING OBSERVER DESIGN TECHNIQUES

We briefly review observer design techniques for a class of
nonlinear systems (1) and discuss their scope and limitations.

A. Luenberger-like observer

Observer design of nonlinear systems that belong to the
class (1) is a classical problem in control theory. In this
regard, [20] was the first to study the problem and proposed
a Luenberger-like observer

˙̂x = Ax̂+Gf(Hx̂) + L(y − Cx̂) (7)

where L ∈ Rnx×ny is the gain matrix to be designed to
ensure that the estimation error e(t) = x(t)− x̂(t) satisfying

ė = (A− LC)e+G[f(Hx)− f(Hx̂)]

asymptotically converges to zero.
1) Design using Lipschitz property: The design criteria

proposed in [20] was very conservative and worked for a
very small subset of applications. Subsequently, multiple
approaches [21], [22], [43] attempted to reduce the conser-
vativeness. However, all these methods, in one way or other,
require that the Lipschitz constant ` is sufficiently small. As
the nonlinearity in epidemic models is quadratic in nature,
the Lipschitz constant (3) may turn out to be large. Thus,
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Lipschitz-based design criteria of Luenberger-like observers
turn out to be infeasible for epidemic models.

2) Design using bounded Jacobian property: As the non-
linearity f is differentiable on the state space X , it has a
bounded Jacobian. A design criterion using bounded Jacobian
property is proposed in [44] for Luenberger-like observer (7).
This criterion is based on the modified mean value theorem
(MVT) for a vector-valued function f : X → Rnf , which
postulates that, for any x, x̂ ∈ X ,

f(Hx)− f(Hx̂) = (∆ ◦D + ∆ ◦D)(Hx−Hx̂) (8)

where ◦ denotes the Hadamard product and matrices ∆ =
[δij ], D = [dij ], ∆ = [δij ], D = [dij ] are defined such that
0 ≤ δij , δij ≤ 1 with δij+δij = 1, and dij ≥ max(∂fi/∂xj)
and dij ≤ min(∂fi/∂xj). The proof of this modified MVT
in [44] assumes an extended version of MVT saying that, for
some c ∈ X , it holds

f(Hx)− f(Hx̂) = Df(Hc)(Hx−Hx̂) (9)

where D is the Jacobian operator. However, (9) is
well-known to be an incorrect extension of MVT to
vector-valued functions. A counter example is f(Hx) =
[ cos(x1) sin(x1) ]T for x = [ x1 x2 ]T and x̂ =
[ x̂1 x̂2 ]T with xi, x̂i ∈ R. Now, for x1 = 2π, x̂1 = 0,
and any x2, x̂2 ∈ R, we have the left-hand side of (9)
equal to zero; however, the right-hand side is non-zero with
Hx−Hx̂ 6= 0 for x− x̂ /∈ ker(H) and

Df(Hc) =

[
− sin(c1) 0

0 cos(c1)

]
6= 0, ∀ c ∈ R2.

Therefore, the results (8) and (9) claimed in [44] do not hold
in general. See [29, Section 1.3.2 (b)] for a correct extension
of MVT, which is in an integral form.

3) Design using one-sided Lipschitz and quadratically
inner boundedness properties: A function f : X → Rnf is
said to be one-sided Lipschitz (OSL) if, for every x, x̂ ∈ X ,
there exists ϕ ∈ R such that

〈G(f(Hx)− f(Hx̂)), x− x̂〉 ≤ ϕ‖x− x̂‖2. (10)

It is said to be quadratically inner bounded (QIB) if, for every
x, x̂ ∈ X , there exist %1, %2 ∈ R such that

‖G(f(Hx)− f(Hx̂))‖2 ≤ %1‖x− x̂‖2
+%2〈G(f(Hx)− f(Hx̂)), x− x̂〉. (11)

See [45] for methods to compute the constants ϕ, %1, %2.
The design criterion of a Luenberger-like observer (7)

using the OSL and QIB properties was first provided in [46].
However, the design is still conservative as the one-sided Lip-
schitz property cannot be used directly. To elucidate, consider
a Lyapunov function V = eTPe, where P = P T > 0, then

V̇ = eT[(A− LC)TP + P (A− LC)]e+ 2eTPGf̃

where f̃ := f(Hx) − f(Hx̂). Thus, OSL property must
hold for eTPGf̃ , instead of eTGf̃ as in (10), for some
P > 0. Assuming P = I significantly, and unnecessarily,

increases the conservativeness. The technique proposed by
[46] tries to reduce the difference between the maximum
and minimum eigenvalues of P . Another technique proposed
by [47] constrains P to be block diagonal to satisfy OSL
property (10) for Pe instead of e = x − x̂. However, these
assumptions hold for very peculiar nonlinearities and turn
out to be quite conservative in general. An approach based
on Algebraic Riccati Equation presented in [48] results in a
Linear Matrix Inequality, which uses the OSL property in the
QIB (11) and obtain a Lipschitz-type inequality. This method
turns out to be as restrictive as those based on the Lipschitz
property.

B. Arcak-Kokotović observer

An interesting approach proposed by Arcak and Kokotović
[19] considers the following observer:

˙̂x = Ax̂+Gf(Hx̂+K(y − Cx̂)) + L(y − Cx̂) (12)

where K ∈ Rk×ny and L ∈ Rnx×ny are two design matrices.
The estimation error e(t) = x(t)− x̂(t) satisfies

ė = (A− LC)e+Gf̃(x, x̂, y)

where f̃(x, x̂, y) := f(Hx) − f(Hx̂ + K(y − Cx̂)). The
Lipschitz property (2) results in

‖f̃‖ ≤ `‖(H −KC)e‖. (13)

Thus, we have an extra leverage to minimize the right-
hand side of (13) by choosing appropriate K. The design
proposed in [19] is catered to a special class of systems where
f(Hx) is nondecreasing, which is not the case with epidemic
models. This limitation is removed in [49], which provides
an equivalent characterization of the Lipschitz property (13).
However, this characterization is time-varying and is not easy
to satisfy in general. Finally, [50] designs the observer (12)
with switched gains; however, designing the switching signal
remains an open problem.

C. Observer design using nonlinear state transformation

Assume there exists an injective map T : Rnx → Rnz ,
where nz ≥ nx, such that the coordinate transformation
z = T (x) of (1) yields another system in z(t) ∈ Rnz ,
which has a specific structure (triangular, normal, etc.) or
it is linear upto output injection. Then, several observer
design methods like high-gain, backstepping, finite-time, and
Kazantis-Kravaris-Luenberger become convenient. See [40]–
[42] for more details on these observer design techniques.
However, the problem with this approach is that, once the
estimate ẑ(t) is obtained, one needs to find the inverse
of the transformation T to obtain the estimate x̂(t) in the
original coordinates. Unless T is a diffeomorphism, which
means nz = nx, obtaining a left inverse of T is very
challenging [51]. The papers [52], [53] approximate T and
its left inverse by a neural network. However, the neural
network results in overfitting and doesn’t generalize well
when the real trajectory is significantly different from the
training trajectories.
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V. PROPOSED OBSERVER DESIGN

We propose an observer of the form

ż = Mz + (ML+ J)y +NGf(v)
v = Hx̂+K(y − Cx̂)
x̂ = z + Ly

(14)

where

M = A− LCA− JC, N = I − LC (15)

and J, L ∈ Rnx×ny and K ∈ Rk×ny are gain matrices to be
designed. The estimation error e(t) = x(t)−x̂(t) = Nx(t)−
z(t) satisfies

ė = Me+NG[f(Hx)− f(v)] (16)

where M,N are given in (15).
The form of the observer (14) enables one to design L

and K so that the influence of NG[f(Hx) − f(v)] in the
error dynamics (16) is filtered out. This is made possible by
appropriately choosing the feedforward output injection Ly
in (14), which is inspired by the Luenberger observer [17],
[18] for linear systems and Daruoach observer [54] for linear
systems with unknown inputs. Also, the internal innovation
term K(y − Cx̂) in the function f , which is inspired by
the Arcak-Kokotovic observer (12) for monotonic nonlinear
systems (see [19]), enables one to choose K such that the
difference f(Hx)−f(v) in the error dynamics is minimized.
These leverages allow to reduce the conservativeness of
the Lipschitz-based design criteria of our observer, which
is not possible in the contemporary observers presented in
Section IV. Finally, note that J can always be chosen such
that M = A−LCA− JC is Hurwitz given that (A,C) is a
detectable pair.

A. Design criterion using Lipschitz property

We present a design criterion for the gain matrices J , L,
and K based on the Lipschitz property (13) to guarantee the
asymptotic stability of the (estimation) error dynamics (16).

Theorem 1. Subject to the Lipschitz property (13), if there
exist a positive definite matrix P ∈ Rnx×nx and design
matrices J, L ∈ Rnx×ny and K ∈ Rk×ny such that the
following algebraic Riccati inequality holds

(A− LCA− JC)TP + P (A− LCA− JC)
+P (I − LC)GGT(I − LC)TP

+ `2(H −KC)T(H −KC) < 0
(17)

then the error dynamics (16) is asymptotically stable.

Proof: For the asymptotic stability of the error dynamics
(16), we consider a radially unbounded, positive definite
function V : Rnx \ {0} → R>0 with V (0) = 0, and show
that it is a Lyapunov function, i.e., V̇ < 0, if (17) is satisfied.
Let V (e(t)) = eT(t)Pe(t) be such a Lyapunov function with
P > 0. Then, by differentiating V with respect to time t
along the trajectories of the error dynamics (16), we obtain

V̇ = ėTPe+ eTP ė

= eT(MTP + PM)e+ 2eTPNGf̃
(18)

where f̃ := f(Hx)− f(Hx̂+K(y − Cx̂)). Notice that

2eTPNGf̃ ≤ |2eTPNGf̃ |
≤ 2‖GTNTPe‖‖f̃‖
≤ ‖GTNTPe‖2 + ‖f̃‖2

where the last two steps are due to Cauchy-Schwarz and
Young’s inequalities, respectively. Then, from (13), we have

‖f̃‖2 ≤ `2‖(H −KC)e‖2

implying

2eTPNGf̃ ≤ eTPNGGTNTPe+`2eT(H−KC)T(H−KC)e.

Using it in (18) and using the values of M and N from (15),
we obtain that if (17) holds then V̇ < 0 for every e 6= 0.

The ARI in (17) can be equivalently formulated as an LMI
condition, whose feasibility can be checked using a suitable
semidefinite programming software (e.g., YALMIP).

Corollary 1.1. The ARI (17) holds if and only if there exist
positive definite matrices P,Q ∈ Rnx×nx , K ∈ Rk×ny , and
R,S ∈ Rnx×ny such that the following LMIs are feasible[

sym(PA−RCA− SC) +Q (P −RC)G
GT(P −RC)T −Inf

]
< 0

(19a)[
−Q (H −KC)T

H −KC − 1
`2 Ik

]
≤ 0

(19b)

where sym(X) = X +XT, and J = P−1S and L = P−1R.

Proof: Assume that (19) holds. Then, by Schur comple-
ment lemma [55, Chapter 1], (19b) is equivalent to

`2(H −KC)T(H −KC) ≤ Q.

Thus, if

(A− LCA− JC)TP + P (A− LCA− JC)
+P (I − LC)GGT(I − LC)TP +Q < 0

then (17) holds. Substituting R = PL and S = PJ , we can
write

sym(PA−RCA−SC)+(P−RC)GGT(P−RC)T+Q < 0.
(20)

Again, by Schur complement lemma, (20) is equivalent to
(19a). Thus, if (19) holds, then (17) is satisfied.

For proving the necessity, assume (19a) holds but not
(19b), then `2(H−KC)T(H−KC) > Q. Thus, even if (19a)
holds, (17) cannot be guaranteed. Second, assume (19b) holds
but not (19a), then, even for `2(H −KC)T(H −KC) = Q,
(20) doesn’t hold. Thus, (17) doesn’t hold either.

The LMI condition (19) is less restrictive than the design
criteria of Luenberger-like and Arcak-Kokotović observers
presented in the previous section. However, using the gener-
alized Lipschitz condition, we can further reduce the conser-
vativeness of the above design criterion.
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B. Design criterion using generalized Lipschitz property

Lipschitz property is considered to be conservative, espe-
cially when the Lipschitz constant turns out to be very large.
The generalized Lipschitz condition, introduced in [56], is
considered to be less conservative, which states that, for every
x, x̂ ∈ X , there exist positive definite matrices Π ∈ Rnf×nf
and Φ ∈ Rk×k such that

‖f(Hx)− f(Hx̂)‖Π ≤ ‖H(x− x̂)‖Φ (21)

where the norms ‖a‖Π :=
√
aTΠa and ‖b‖Φ :=

√
bTΦb for

a ∈ Rnf and b ∈ Rk.

Lemma 2. If the generalized Lipschitz property (21) holds
for some positive definite matrices Π and Φ, then, for every
Γ ∈ Rnf×k and x, x̂ ∈ X , it holds

2ξTΓTf̃ ≤ ‖Γξ‖2Π−1 + ‖ξ‖2Φ
where ξ := H(x− x̂) and f̃ := f(Hx)− f(Hx̂).

Proof: It holds that

0 ≤ (Π−
1
2 Γξ −Π

1
2 f̃)T(Π−

1
2 Γξ −Π

1
2 f̃)

= ‖Γξ‖2Π−1 + ‖f̃‖2Π − 2ξTΓTf̃

≤ ‖Γξ‖2Π−1 + ‖ξ‖2Φ − 2ξTΓTf̃ .

Similar to Theorem 1 that employs the Lipschitz property,
we present an ARI-based design criterion that employs the
generalized Lipschitz property.

Theorem 3. Subject to the generalized Lipschitz condition
(21), if there exist a positive definite matrix P ∈ Rnx×nx
and design matrices J, L ∈ Rnx×ny and K ∈ Rk×ny such
that the following algebraic Riccati inequality holds

(A− LCA− JC)TP + P (A− LCA− JC)
+P (I − LC)GΠ−1GT(I − LC)TP

+ (H −KC)TΦ(H −KC) < 0
(22)

then the error dynamics (16) is asymptotically stable.

Proof: By using Lemma 2 in (18), it is straightforward
to see that V̇ < 0 if (22) holds.

If one can find Π,Φ that satisfy the generalized Lipschitz
condition (21), then it is trivial to see that the ARI (22) is
less restrictive than the ARI (17). As in Corollary 1.1, we can
find equivalent LMI condition for the ARI (22) as follows.

Corollary 3.1. The ARI (22) holds if and only if there exist
positive definite matrices P,Q ∈ Rnx×nx , K ∈ Rk×ny , and
R,S ∈ Rnx×ny such that the following LMIs are feasible[

sym(PA−RCA− SC) +Q (P −RC)G
GT(P −RC)T −Π

]
< 0

(23a)[
−Q (H −KC)T

H −KC −Φ−1

]
≤ 0

(23b)

where J = P−1S and L = P−1R.

Proof: The proof is similar to that of Corollary 1.1.
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Fig. 1: Estimation of susceptible and healed cases.
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Fig. 2: Percentage estimation error.

VI. SIMULATION RESULTS

For illustrating the proposed observer design, we consider
the SIDARTHE-V model [30] described by

Ṡ = −S(αI + βD + γA + δR)− ϕS
İ = S(αI + βD + γA + δR)− (ε+ ζ + λ)I
Ḋ = εI− (η + ρ)D
Ȧ = ζI− (θ + µ+ κ)A
Ṙ = ηD + θA− (ν + ξ + τ1)R
Ṫ = µA + νR− (σ + τ2)T
Ḣ = λI + ρD + κA + ξR + σT
Ė = τ1R + τ2T
V̇ = ϕS

(24)

where the states correspond to the proportion of Suscepti-
ble, Infected (asymptomatic, undetected), Diagnosed (asymp-
tomatic, detected), Ailing (symptomatic, undetected), Rec-
ognized (symptomatic, detected), Threatened (acutely symp-
tomatic, detected), Healed (recovered naturally or with treat-
ment), Extinct (died due to the disease). That is, the state
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space X = [0, 1]nx with nx = 9. For the definition and
interpretation of all the parameters, please refer to [30].
Below, except ϕ, which is chosen arbitrarily, we list the
parameters as estimated for the last segment of the time
period considered in [30]:

α = 0.3872 β = 0.0053 γ = 0.1485 δ = 0.0050
ε = 0.2988 θ = 0.3700 ζ = 0.0025 η = 0.0018
µ = 0.1200 ν = 0.0200 τ1 = 0.0050 τ2 = 0.1700
λ = 0.1128 ρ = 0.0320 κ = 0.0200 ξ = 0.0120

σ = 0.0240 ϕ = 0.0500.

The measured output corresponds to the available data for
COVID-19, and is given by

y =



0 ε 0 θ + µ 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1


︸ ︷︷ ︸

C



S
I
D
A
R
T
H
E
V


︸ ︷︷ ︸

x

.

The elements of y respectively comprise the normalized num-
ber of daily detected cases, active asymptomatic cases, active
symptomatic cases, hospitalized cases, deaths, vaccinated
cases, and total population. The measured output is assumed
to be corrupted by an additive zero-mean white noise vector.

The linear and nonlinear terms in (24) can be collected
in Ax and Gf(Hx) in (1), respectively, where f(Hx) =
[ SI SD SA SR ]T with H = [ I5 05×4 ] and A,G
obtained accordingly from (24). The Lipschitz constant (3)
is obtained to be ` = 1. For the observer (14), we solve the
LMI (19) and obtain a feasible solution J, L,K, where

J=



0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
104.1222 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.7771 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 −0.0202 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

−40.4200 0.0000 0.0000 0.0000 −1.1936 −1.1936 1.1936
0.0000 0.0000 0.0000 0.0000 1.1508 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 1.1508 0.0000



L=



−3.3467 −0.0775 −1.4559 −2.0955 −2.3914 119.09380
3.3467−99.8836−95.6678−111.7653−127.2438 −46.26170
0.0000 −9.7224 0.0000 0.0000 0.0000 0.00000
0.0000 −5.1274−96.2807 302.5176 356.3921 0.00000
0.0000 −2.2362−29.7965 0.0000 0.0000 0.00000
0.0000 −0.1708 −3.2065 −4.9320 0.0000 0.00000
0.0000 36.7216 44.2257 19.0293 14.8359−127.89990
0.0000 0.0000 0.0000 0.0000 1.0000 0.00000
0.0000 0.0000 0.0000 0.0000 0.0000 1.00000


K=

−0.9283 −0.3876 −0.3876 −0.3876 −0.3876 −0.3876 0.3876
0.4916 −0.1103 −0.1103 −0.1103 −0.1103 −0.1103 0.1103
0.0000 0.8329 0.0000 0.0000 0.0000 0.0000 0.0000
1.4001 0.0672 0.0672 0.0672 0.0672 0.0672 −0.0672
0.0000 0.0000 0.8329 0.0000 0.0000 0.0000 0.0000

 .
The initial condition of the observer is chosen to be z(0) =
−Ly(0). In Figure 1, we illustrate the estimation of two
unmeasured states, S(t) and H(t). The overall estimation
performance is illustrated in Figure 2, which shows the norm
of the estimation error as compared to the norm of the state

is about 2% under noisy measurements. The estimation error
is stable under measurement noise and converges to zero
asymptotically in the absence of noise.

VII. CONCLUSION

State estimation of epidemic processes is crucial to assess
and predict the infection spread in a population. It is also nec-
essary for devising mitigation policies and optimal allocation
of resources. However, it is a challenging problem and the
existing observer design techniques turn out to be infeasible
for epidemic processes. We proposed a novel observer archi-
tecture for a class of nonlinear systems that encompasses
both the compartmental and networked epidemic models
described by a system of ordinary differential equations. The
proposed architecture provides extra leverage against a large
Lipschitz constant. This aspect makes the proposed observer
less restrictive than other contemporary observers. In addition
to the design criterion under Lipschitz property, we proposed
another criterion based on generalized Lipschitz condition,
which is less restrictive than the Lipschitz condition. Other
parametrizations of the system’s nonlinearity, like bounded
Jacobian or one-sided Lipschitz conditions, can also be
considered. The future prospects of the proposed observer
architecture include robust design for epidemic processes
under model uncertainties and measurement noise.
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