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Abstract—Dither signals provide an effective way to compensate types of dc-dc converters, averaging theory is applied to sepa-
for nonlinearities in control systems. The seminal works by _Zames rate the slow dynamics from the fast dynamics, for example,
and Shneydor, and more recently, by Mossaheb, present rigorous jynosed by switching elements in pulsewidth modulation. Rig-

tools for systematic design of dithered systems. Their results rely, . . .
however, on a Lipschitz assumption relating to nonlinearity, and orous averaging analysis have been done for this class of non-

thus, do not cover important applications with discontinuities. This  SM0oth systems [7], [15]. ' .
paper presents initial results on how to analyze and design dither ~ The contribution of this paper is a theory for the design of
in nonsmooth systems. In particular, it is shown that a dithered dither in nonsmooth feedback systems. We limit the analysis
relay feedback system can be approximated by a smoothed systemto an important class of nonlinearities, namely, relays. The
Guidelines are given for tuning the amplitude and the period time o553y for this is that these systems are common. Early moti-
of the dither signal, in order to stabilize the nonsmooth system. . . .
_ o _ vation for studying relay systems come from mechanical and
_ Index Terms—Averaging theory, bound error estimation, dither,  electromechanical systems [16], [10]. Recently, there has been
limit cycles, linear matrix inequalities (LMIs), nonsmooth systems, renewed interest due to a variety of emerging applications, such
practical stability, relay feedback. - - . . L !
as automatic tuning of proportional integral derivative (PID)
controllers [17], quantized control [18], and supervisory control
I. INTRODUCTION [19]. The analysis of relay feedback systems is nontrivial, even
HE use of dither signals for stabilization of nonlinear co (f the dynamical part of the system is linear. Major progress in

trol systems is a well-known and frequently used techbe study of various properties of autonomous linear systems

nique. The idea is that by iniecting a suitably chosen hi h—frW-ith relay feedback was achieved in the last decade, particu-

que. Th ) yn) 9 oLy "9 Farly in the understanding of limit cycles in these systems, e.g.,
guency signal in the control loop, the nonlinear sector is effe 0]-[25]. See [10] and [21] for further historical remarks and
tively narrowed and the system can thereby be stabilized. Th r(e)ferencés on relay feedback systems

retical justification of this idea for systems with continuous non- In our studv of the discontinuous dithered svstem. we adopt an
linearities has been obtained by Zames and Shneydor [1],&2\) y Y ' P

and Mossaheb [3]. Their results rely however, on a crucial Lip eraging approac.h, V\./hiCh isawidel)_/ app!ied mathematical tool.
chitz assumption on the nonlinearity, and thus, do not cover i betmaln obsErvatlon IS t.hattthg ntf)nlmean(y) Ot]:hg dlthelred it
portant applications with discontinuities. Indeed, discontinuo S em_ ca_nl S approglmade hy e5e s_mor:) de_: h non melarl y
nonlinearities in feedback-control systems with high-frequendy(?) = P~ Jo n(= + 8(2)) dt, wheres(£) is the dither signal

dp its period time. Instead of studying a nonlinear system with

excitations appear in a large variety of applications, includi s X
systems with adaptive control [4], friction [5], [6], power elecanexternal hlgh-frequency &gr@t), one can study asmoothed
“nicer” nonlinearityV (z). In the paper, the non-

tronics [7], pulsewidth modulated converters [8], quantizers [fYSteM With a _ _ : :
relays [10], and variable-structure controllers [11]. In their pap8Pearity n(z) of the dithered system is a relay (sign function)
on the analysis of the (smooth) LuGre friction model, Pervoand the dltheé_(t) is & triangular signal. This leads to that the
vanski and Canudas de Wit [12] pointed out that a rigorous angfoothed nonlineariti (z) = sat(z/A), wheresat denotes the
ysis of dither in discontinuous systems does not exist. Dithgfturation function and is the amplitude of the dither signal. A
tuning of general nonsmooth systems is, to our knowledge, lig@turated systemiis, in general, easier to analyze than a dithered
ited to approximate design methods mainly based on describli§fy System. In this paper, itis shown how to relate the behavior
functions [13], [14]. In power electronic systems such as vario@é the smoothed system in a precise way to the behavior of the
dithered system. We show that the dither period determines the
accuracy of this approximation: the smaller the dither pepiod
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signal. This feature is interesting since relay feedback systeimgot critical [1], [2]. Throughout the paper, we will consider tri-
are known to exhibit several complex behaviors, such as quaaigular dither and, when needed, we will highlight differences
periodic orbits [26], chattering and sliding periodic orbits [21]due to the use of other dither signals.
[25], and asymmetric orbits [22]. When the dither signal is a The relay feedback system is assumed to have a solution
square wave, the dithered system can exhibit an asymmefficoco) — R™ (in a classical sense), which, on every compact
periodic orbit, though the smoothed system is asymptoticakiyibinterval of [0,00) is C! everywhere except at finitely many
stable. We even show an example in which, by using a tragmsints. In general, the solution must not be unique. This is not
zoidal dither signal, both systems have a stable oscillation, mitinterest here, since the results in the paper hold for any of
the period time for the oscillation of the smoothed system is difhese solutions. We sometimes use the notatienz,) for the
ferent from the one of the dithered system. It seems that ditfemiution of (1). We usé - | to denote the Euclidean norm of
signals with zero slope over nonzero time intervals lead to lessector and| - || to denote the corresponding induced matrix
predictable systems. This is in stark contrast to systems witbrm. The notationX > 0 (X > 0) is used to denote that a
Lipschitz continuous dynamics for which it can be shown thatatrix X is positive (semi) definite.
the form of the dither signal is not critical at all, see [1] and [2].

The outline of the paper is as follows. The preliminaries af® Smoothed System
presented in Section Il. The main results are given in Section lll The smoothed systein defined as
showing that the solutions of the dithered system can be arbi-
trarily well approximated by the solutions of a smoothed system. w(t) = Lw(t) + bN (cw(t) + r(t)), w(0) =wy  (3)
The section also discusses practical stability. Section IV relaiggere the smoothed nonlinearity : R — R is the average

these results to dither design. Our main design conditions cgn,) — ;-1 [P n(z + 8(t))dt. For the triangular dither, it is
be formulated in terms of linear matrix inequalities (LMIs). Aeasy to show {)hat

brief discussion on relay feedback systems with other dithers is

given in Section V. The paper is concluded in Section VI. N(z)=p! /p sgn(z + 8(¢))dt
0
[I. DITHERED RELAY FEEDBACK SYSTEMS (z) L, |Z |> AA
=sat(— ) =< &, z| <
The particular class of nonsmooth dithered system considered A fl Y A

in this paper is the linear system with relay feedback. This sec- il be sh bel hat th hed ,
tion presents the notation and a motivating example. It will be shown below that the smoothed system in many

cases is a good approximation of the dithered relay feedback
A. Dithered System system. Therefore, analysis and design can be performed on
the smoothed system, which is often easier to treat, and then be
carried over to the dithered system.
i(t) = La(t) + bncx(t) + r(t) + 6(1)), 2(0) = zo. (1) Note that the term “smoothed system” (which is standard in
the literature on dither) refers to the fact that the nonlinear sector
Here, L, b, andc are constant matrices of dimensiops< ¢, s narrowed by the dither signal. The nonlinearity is not neces-

gx 1, and 1xgq, respectively, wherg > 1. The nonlinearity sarily >, as illustrated above by the saturation function.
n : R — R is given by the relay characteristic

Thedithered systeris the relay feedback system

C. A Motivating Example

1, z>0
n(z) = sgn(z) = { 0, =z=0 A second-order relay feedback system is used as a represen-
-1, z<0O. tative example. Consider the system (1) witk 0 and
The reference signalt) is assumed to be Lipschitz continuous, I - -2 -1 - 1 c=[1 —1] @)
i.e., there exists a constahf, > 0 such thair(ty) — r(t2)| < 10 |0 N '

M,.|t1 — to| V1,12 > 0. T _
The dither signab : [0, o) — R is periodic and of high fre- When no dither is preseni(¢) = 0), the relay feedback system

guency compared to the linear dynamics. An example ofadittfreSents a limit cycle as reported in Fig. 1(a). The output of

RE linear part—cz of (1) is plotted for a solution with initial
signal, which we will study in detail, is a triangular waveform P cv of (1) is p

. . . _ conditionzy = [2 l]T. If we apply a triangular dither signal
of amplitudeA > 0 and periodp > 0, i.e.,8(t + p) = 8(#) for with amplitudeA = 1 and periodp = 1, the limit cycle in

all ¢ and Fig. 1(a) is reduced as shown in Fig. 1(b). Hence, the ditherin a
41—;41‘,7 tel0,%) sense attenuates the oscillations present in the original system.
§(t) = —%t +24, tel?, %Tp) (2) Fig. 1(b) also shows the outputcw of the smoothed system
MMy 44 te ). (3). The two systems have different responses. If we decrease
p ! 47

the dither period (e.g.,p = 1/50) the smoothed system and
It should be pointed out that the results in this paper dependthie original dithered system have practically identical outputs.
the shape of the dither signal. Dither signals with zero slope flence, the smoothed system provides an accurate approxima-
nonvanishing time intervals, such as the square wave, are sotr@ of the dithered system far= 1/50. This suggests that the
times unpredictable. This is in contrast to systems with Lipslither periody is related to how accurately the smoothed system
chitz continuous dynamics, where the form of the dither signapproximates the dithered system. In Section lll, it is shown
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Theorem Ill.1 can be interpreted as an extension of [3, Th. 1]
to a class of nonsmooth systems. The resultin [3] relies on conti-
nuity properties of the solutions of the original and the smoothed
systems. This argument cannot be used here. Instead, we pay
particular attention in the proof to the system evolution at and
between relay switchings.

The proof of Theorem Ill.1 is constructive, so a boundyfer
is derived. It shows that, should be chosen to be of the order
of . The bound om, depends on system data dfidlt is con-

(€Y servative and tighter bounds will be obtained in Section IlI-D
by exploiting more of the problem structure.

Theorem I11.1 holds also for the sawtooth dither [27] or skew-
triangular dither.

10
(s}

B. Practical Stability

We use Theoremlll.1to obtain conditions for practical stability
ofthe dithered system (1). The idea is the following. First choose
theamplituded ofthe dithersignal, suchthatthe smoothed system
w e = in(3)isstable. Then, ifthe perigdfthe dither signalis chosento
(b) be small enough, the output of the dithered system closely follows
Fig. 1. Outputs—ca of the dithered relay feedback system (solid) and thEhe outputof the smoothed system. Thisimplies that the output of
smoothed system (dashed) with triangular ditherAa} 0 andp = 1/50.(b) the dithered system converges close to zero. Note that we cannot
A=1landp=1/50 obtain convergence strictly to zero, since the dither signal always
cause small fluctuations of the output. We use the following def-

that by choosing sufficiently small, the approximation can belnition of stability. . N -

made arbitrarily tight (Theorem 111.1). Regarding the dither am- Definition lll.1 (Practical Stability): The system (1) with tri-
plitude A, note that the smoothed system above is unstable fftgular dither (2) and a given amplitude > 0 is practically
0 < A < 1/2, since the closed-loop system is linear with chafexponentially) stable, if for any > 0, andzy € R", there
acteristic polynomial equal t&? + (2— A~!)s +1+ A~ when &Xista >0, > 1,andpo > 0, such that

|cw| < A. The dither amplitude hence defines the response dy- 1z(t)| < Be*|zo| + € Vt € [0, 00)
namics. This is shown in the next section by relatiigo the ) - /
stability of the dithered system (Theorem I11.2). for any dither periog € (0, po).

Theorem II1.2: Supposer(t) = 0 and that the smoothed
system (3) is exponentially stable. Then there exigtsuch that
lll. ANALYSIS for p € (0,po) the dithered system (1)—(2) is practically stable.
Proof: See Appendix II. [ |

Thi i Its for the dith in (1 . . .
Is section presents results for the dithered system in ( )There are many available results for stability analysis of the

with the triangular dither signal in (2). The first result is on moothed svstem. We will here use a criterion by Zames and
accurate approximation over compact time intervals and the Y ' . o y
. . I alb [28], which generalizes the Popov criterion.

second is on practical stability. These two results are then ) . . .

. : S . ... Corollary Ill.1: Assume thatl is Hurwitz. LetG(jw) =
combined to obtain a result on approximation over infinite _1 . oo et
: . : oo —c(jwl — L)"'bandH(jw) = [ h(t)e~7“tdt, whereh :
time horizon. The proofs do not fully exploit the particular icfies[® h(D)ldt < olg h ) h
structure of the smoothed system in (3) and the resultifly " R satis ies[” [h(t)]dt < 1. If there existss > 0 suc
bounds on the dither period are conservative. In Theorem it ,at
we obtain much tighter bounds by using LMIs to characterize Re (G(jw) + A)(1 + H(jw)) > ¢  VYw € (0,00)  (5)

the structural properties of the system.
brop 4 then there existg, such that fop € (0, po) the dithered system

(1) is practically stable.
Proof: Inequality (5) gives a sufficient condition for the
The following theorem states that by choosing the dither pexponential stability of the smoothed system [28], [29]. By ap-
riod p of the triangular dither in (2) to be sufficiently small, it isplying Theorem 111.2, the corollary is then proven. [ |
possible to make the solutiat{t) of the relay feedback system Note that the criterion (5) corresponds to one of the least
arbitrarily close to the solution(t) of the smoothed system onconservative conditions for stability available for systems with
any compact time interval. a slope-restricted nonlinearity. However, it does not give any
Theorem III.1: Consider systems (1)—(3). L&t > 0 and immediate information onthe performance (e.g., the exponential
xg € R™ be given. Assume that(¢) is Lipschitz on [0,7], decay parametera and /), and it is not convex in the pair
with Lipschitz constani/,.. There existe, > 0 such that if (A, H). The circle criterion corresponds & = 0. From the
p € (0,p0), then|z(t, z9) — w(t,xzo)| < eforallt € [0,T]. Kalman—Yakubovich—Popov lemma, one can for that case derive
Proof: See Appendix I. m an LMI that verifies (5) and results in explicit estimates of the

A. Averaging Theorem
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exponential decay parameters. In Section IV, we will show how Proof: See Appendix IV. ]

a suitable choice aff can help to obtain better tuning df By combining Theorems 111.3 and Theorem IIl.4 we obtain
o ) much better bounds for the dither frequency, also in the case of

C. Infinite Time Horizon infinite time horizon. We state this as the following theorem.

The next result shows that the dithered system can track tiere, we assume that we have an estirat®f the norm
averaged system arbitrarily well over an infinite time horizotiw|lsc = sup¢ 0y [w(t)]-

provided that the dither signal is chosen appropriately. Theorem 111.5: Lete > 0 andzy € R™ be given. Assume
Let us callz(t, r, zo) the solution of (1)—(2) with reference thatr(t) has Lipschitz constani/,.. Suppose that the smoothed
andw(t, r, wg) the solution of (3). system (3) is incrementally exponentially stable with decay rate

Definition I11.2: The smoothed system (3) is incrementallyr and gaing. Then, the boung, on the dither period in The-
exponentially stable if there exists > 1 anda > 0 such that orem I11.3 can be chosen to be
for any given initial conditionss; andws, the corresponding

solutions satisfy Po = min ;1_;27 Fili 9)
lw(t,r,wy) —w(t,r,ws)| < Be” *|wy —ws| vt > 0. (6) (1 + ;_t)
A simple and often very useful criterion for incremental exherex € (0,1),
ponential stability is given by the next lemma. Cs Jé] ¥
Lemma 1: Assume that there exists a matidx > 0 and I —El <m) +2e+ Amin(P)
a > 0 such that the matrix inequality ;
LTQ+QL+20Q Qv+c™] o o . L((‘f_ﬁn( B >+20) _sC§> (10)
b'Q +c —24 | = 3cs « 1—p
holds. Then, the smoothed system (3) is incremewhereP > 0 solves the LMI in (8) and
tally exponentially stable with decay ratee and gain It
ﬂ \/)\max /)\mm( ) €1 :terﬁ)a’l)“(* |€ b|
Theorem 111.3: Consider systems (1)—(3). Let > 0 and
xg € R™ be given. Suppose thatt) has Lipschitz constant ¢y = max |L6Ltb|
M,. and the smoothed system (3) is incrementally exponentially te[0, 7]
stable. Then, there existg > 0 such thatifp € (0, po), then 1 /9M
|z(t, z0) — w(t,zo)| < eforallt € [0,00). €3 =35 (761 + 362)
Proof: See Appendix IlI.
= |cL|(E + €) + |cb| + M,., andT™* = (1/a)In(B/1 — p).
D. Improvedp, Bound Proof: The proof follows by using Theorem 111.4 in an

We first improve the bound op, obtained in the proof of analogous reasoning as in Remark 1 in the proof of Theorem

Theorem Ill.1. A much tighter bound is then obtained when tHY- u
smoothed system is incrementally stable. Note that the parametéd is a bound on the Lipschitz con-

Theorem I11.4: Assumer(t) has Lipschitz constadt,.. Sup- Stant ofcz(t) + r(t). The bounds suggested in Theorems I11.4
pose there exisP = PT > 0 andy > 0 such that and 1.5 can be conservative. The more knowledge we have
about the trajectory of the smoothed system and the reference

L™P+PL Pb+ch 0 signal, the better bound we are able to obtain.
P+c  —24 ¢ | <o, @)
0 e’ -1 IV. DESIGN

Then, the boung, on the dither period in Theorem Ill.1 can be

In this section, we use Theorems Ill.1 and I1l.2 to tune the
chosen to be

dither signal. The purpose can, for example, be to stabilize an
. [ 4A oscillating system. We use Theorem l11I.5 to obtain an LMI-

po =i ( M7F ) based design methodology of the dither parameters. This re-
sults in an exponentially stable system with a state that tracks
the state of the smoothed system with arbitrary precision. We
finally present a heuristic method, which often gives less con-
servative designs. The design methods are illustrated in the ex-
Lty ample in Section II-C.

where

1 .
F :C3T + 261 + ﬁ\/@ ((CST + 261)3 — 80%)

¢1 = max |e
t€[0,T]

co = max |Lel'b| A. First Tuning Algorithm

te[o 7l The dither design will necessarily be a compromise between
cs =5 (%01 + 302> conflicting consequences of the dither amplituti@and period

1Such a bound is easy to obtain for a given reference signal. If we have a class

M = max [|cLeLt1:0| _|_ |cLeLSb|ds + |eb|] + M, of reference signals, then we can obtain a bound by exploiting the incremental
telo,T " exponential stability of the smoothed system.
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p on the control performance. Based on our results we obtdihe first problem can be solved by bisection 6f and the
the following algorithm for tuning the previous parameters afecond by bisection oA. From the last optimization problem,

the dither signal. we obtainy/Amin(P) < . Note that the constraints of these
two optimization problems are LMIs for fixed® and), respec-

Step 1 Choose A based on Corollary 1.1, tively. We have arrived at the following tuning algorithm.

so that the smoothed system is exponen- Step 1) Choosg € (0,1).

tially stable. Step 2) Choose a desired exponential decay diatend then

Step 2 Estimate the exponential stability select the dither amplitudd so that the LMIs(11b)

parameters  «agy, (o for the smoothed system and(12b) are feasible.

by using the Kalman-Yakubovich—-Popov Step 3) Solve the optimization problefhla), which givesQ

Lemma. Let T = —In(a1/00)/0, With 0 <y < 1. and and then problenfl2a), which givesP and~.

Step 3 Choose po based on T and the Step 4) Compute, from (9).

smoothed dynamics.
C. A Heuristic Tuning Algorithm

In Step 1, we need to choose the amplitutlef the dither A practical issue that can be taken into account when tuning
signal to be large enough to allow the smoothed system to the dither period is how much fluctuation on the output we can
stable and to have a fast enough exponential decay rate. At @tlew due to the dither signal. We derive a heuristic bound on
same time, we want to keep as small as possible in order tothese fluctuations. Assume the transients have decayed so that
avoid injecting too large a signal in the control loop. we can consider the linear range of the smoothed nonlinearity.

In Step 2, we compute the time-interval len@thwhich is an Then, the transfer function

auxiliary variable in the proof of Theorem I11.2 and it depends G(s) -1 G(s)

on the parameters,, 3y, anday, a free parameter which rep- Ga(s) = <1 + T) L

resents a tradeoff between a low-ripple and a high-decay rate

of the dithered systerm — 0) and a low-dither frequency whereG(s) = —c(sI — L)~'b approximately describes the

(a1 — 1). The time lengtii gives a bound on the period of themapping from the dither signal to the output= —cz. Choose
dither signal through (36) in the proof of Theorem I1l.1. Betteg, > 0 such that

bounds can be derived if we use the structure of the saturation )
nonlinearity and that the smoothed dynamics is chosen to be ex- |Ga(jw)| <
ponentially stable. The bound derived in Theorem Ill.4 is taki
several of these structural aspects into account.

Yw > wo (13)

NS

"®r some smally > 0. Then, we can expedy(t)| < n for
sufficiently larget, if the dither period is chosen such thgt<
B. A Second Tuning Algorithm 27 /wg. The following heuristic tuning rule follows.

. : . . Step 1) Choose an output bound> 0.
We use Theorem 1115 to derive a tuning algorithm that g|ve§t][ep 2) Choosel based on Theorem IIl.2.

an exponentially stable dither system, which tracks the state L
the smoothed system over an infinite time horizon with any déep 3) Choosgy < 2m/wo, wherew, satisfies(13).

sired accuracy. We assume that we have derived a baufd We have assumed the dither signal to be approximately sinu-
[w]|oe = sup [ J [e(t, 7o) For given tracking accuracy soidal while deriving this bound. Analytical expressions for the
oo te[0,00 s Iy .

¢, Theorem I11.5 giveg,. We would like to optimize the free pa- stationary periodic oscillation in a dithered relay system can be

rameters such that, becomes as small as possible. This is hafif"ved using the same approach as for relay feedback systems

since the dependence on the free parameters in (9)—(10) is n‘ﬁfijih no dither [20]-{22], [24], [25]. This gives the exact dither

convex. One way to obtain a solution is to pieke (0,1) and ripple, see [27].
A, and then choose a desired exponential decay rate such 51atE le Revisi

i : ted
the LMIs (7) and (8) are feasible. We see thHatndy /A ,in (P) xampie ) eVISll © ) ) .
should be as small as possible to makesmall. This can be  Letuscontinue discussing the example in Section II-C. Recall
done by solving the following coupled optimization problems.that

min 32 (11a) G(s) = —c(sI — L)"'b = (31+718)2
s.t.
[LTQ +QL+20Q Qb+ CT:| <0 In all the tuning algorithms, the first step is to choose the dither
v'Q +c 24 | — amplitude A. Consider Theorem I11.2 witH (s) = 0, which
B2 Amin > Q > Amin] (11b) corresponds to the circle criterion. Far > 0.56, we have
.= - ReG(jw) + A > 0 Vw € [0,00). Hence, the dithered system
min A (128) i practically stable fort > 0.56 andp sufficiently small. By
s.t. using Theorem I11.2 withH (s) = —(s + 1)~! instead, we can
LTP+PL Pb+c" 0 prove practical stability fod > 0.501. The first two tuning al-
bTP +c —24 c | <0 gorithms withA = 1 givepy ~ 1/10% andp, ~ 1/10%, respec-
0 c’ I tively, which are both quite conservative bounds. The heuristic

AP > ~I > 0. (12b) tuning algorithm gives the better estimaige~ 1/3.
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Fig. 2. Output of the dithered system withhaving periodp = 1/50. The
amplitude isA = 0.56 (upper) and4 = 0.70 (lower), respectively. A smaller
A thus gives a less oscillating response. of
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The effect of the dither periog on the responses of the (b)

dithered and smoothed systems are shown in Fig. 1. The effggS3. outputs of the dithered relay feedback system (solid) and the smoothed
of the dither amplituded are shown in Fig. 2. It is possible tosystem (dashed) with square and trapezoidal dither signaisi/50, 4 = 1).
obtain a fast convergence by increasMg (a) Square dither andt) = 1. (b) Trapezoidal dither and(t) = 1.02.

different when such dither signals are used. A detailed analysis
V. COUNTER EXAMPLES FOROTHER DITHER SIGNALS of such behaviors is out of the scope of this paper. We have done
some preliminary work in this direction [27], [30] and we have
The averaging theorems in Section 11l cannot be directly exerified that these type of phenomena also can appear in labo-
tended to dither signals that have zero Slope inatime intervalrgfory experiments [3]_] However, further in\/estigation on the
nonzero measure. Indeed, a closer look at the proof of Theorgghavior of relay feedback systems with various dither signals
l11.1 shows that the approximation error is larger than of ordes needed.
p. One would therefore conjecture that averaging may not apply
to such dither signals. We next give two examples that support
this conjecture. VI. CONCLUSION
In the first example, we consider system (1) with squarewave
dither of periodp and amplitudeA, and a constant external
referencer = R. In this case, the smoothed nonlinearity is
dead-band relay. Fig. 3(a) shows the output of the relay fe
back system dithered with a squarewave and the output of
corresponding smoothed system. The waveforms do not chag
when the dither period is decreased. There remains a limit cy
in the dithered system for all periogswe investigated. This
example indicates that the error between the dithered and

In this paper, we have shown how dither can be analyzed in
nonsmooth systems. The main approach is that a relay feedback
ystem with a triangular dither signal at the input of the relay
%ﬂ be viewed as a feedback system without dither in which the
‘Fay is replaced by a saturation. The amplitude of the dither
al affects the slope of the saturation. The approximation of
dithered system by the smoothed system depends on the fre-
uency of the dither signal. Explicit algorithms to achieve a de-
. . .. Sired approximation error have been given. Furthermore, ana-
smoothed s_ystem IS '?Ot of QrdﬁrWh'Ch would be the case If lytical and practical guidelines to design dithered systems have
we use a triangular dither signal. _ ) . been presented. These were verified by simulations. Finally, it
_In our second example, we consider a trapezoidal dith@ts peen shown that for the class of dither signals with zero
signal with slope equal to 1000. It can be shown that the Corrzﬂbpe in nonzero time intervals the averaging might not work as

sponding smoot'he.d non'linearity i's discontinuous ir= —A for dither signals like triangular, sawtooth, or skew triangular.
andz = + A but s linear in the regiofx| < A [27], [30], [31].

The smoothed and the dithered systems have output waveforms
that are highly different in time, see Fig. 3(b). We can see that APPENDIX |
the stationary behaviors of the systems are periodic but the PROOF OFTHEOREM I11.1
period of the smoothed system is different from the period of
the dithered system.

These simulation studies show that averaging may not t
place when we use dither signals that have zero slope on inter-
vals of nonzero measure. Indeed, the examples show that té) =Lz (t) + bn(cz(t)+r(t)+0(t)),  z(0)=zo (14a)
behavior of the dithered and the smoothed systems can be véty) =Lw(t) + bN (cw(t) + r(t)), w(0)=1o. (14b)

Consider the dithered system (1) and the smoothed system (3)
4 the time interval [07'] and withw(0) = x(0) = zg
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Note that the right-hand side of (14a) is bounded on every con i !
pact time interval [07'], so that there exists a positive constant (k) + &) o
M, such thatcz(t)| < M,, for almost every € [0, T )+ )+ M-s
R S S B S _
M,(zp) := max [|cLeLt| . |$0|+/ cLeL(t_S)b‘ ds—|—|cb|} . o) ®
tG[O,T] 5 d
(15) | o
Moreover, by hypothesis(t) is Lipschitz
[r(t) — r(t2)| < M|ty —ta]  Vti, to. |
Then, we introducél = M, + M,. By integrating the two b M
members of (14), we obtain cx(kp) el  ——
t — — >
(1) — w(t) =L / [o(s) — w(s)]ds g e T s
0 . Fig. 4. Time diagrams of the signals.
4 [ [nfea(s) +7(s) + 8(5) . T
0 long as the poinR is above the poins. It is not difficult to
— N(cw(s) +r(s))]ds. (16) show that this is equivalent to
The idea now is to show that the itnteg!fgtl[n(cx(s) +7r(s)+ p< 1,44 = B (20)
4(s))]ds can be approximated by, N(cz(s) + 7(s))ds. The T M

error introduced by this approximation is a function of the dithdp the following, we assume thais chosen such that (20) holds.

periodp. We will show that it can be made small by decreasing All possible cases correspond to different valuesgp) +

the periodp. r(kp) or, equivalently, all possible cases can be obtained by
We first evaluate the terrjbt [n(cx(s) + r(s) + 6(s))]ds. If shifting the h_orizontak axis upward and downward in the top

we introducen. = | T'/p|, the largestinteger such thap < T, diagram of Fig. 4. We have three cases

then 0 < cx(kp) + r(kp) Regionl
t cx(kp) + r(kp) <0 < cxz(kp) + r(kp) + Mp Region2
[ nteator(s) + s(s)as calhp) + r(kp) + Mp < 0 Region3.
mp+At The regions are illustrated to the right in Fig. 4 by the location
= /mp n(ca(s) +r(s) + 6(s))ds of the s axis for the three cases. The partition identifies the time

m—1 a(ki1)p intervals, during which the signak:(s + kp) + r(s + kp) +
+ Z / n(cz(s) +r(s) + 8(s))ds (17) 4(s) can have a zero crossing. It is only dur|.ng these intervals
o ko that the sum of two integrals in (19) can be different from zero.
Introducel; to denote the sum of the lengths of these intervals

With At=T-— mp..SinCE”n ?S a bounded function and the timefor Regioni, as further described below. Next, we discuss each
interval of the last integral in (17) has a Lebesgue measure I?éaion separately

thanp, we can write . ) . .
P Region 1: For the first region; is equal to

ot
[ nten(s) +5) + 8())as n=3 Mo 21)
0 ! 2 24 Mp 2"
m—1  .(k+1)p 1— (m)
= 5(s))ds + Vo(t) (18
2:% ./kp n(ex(s) +r(s) +8(s))ds + Vo(t) - (18) Region 3: In this case
2
with |V(t)| < p. Each term in the sum can be written as I; = % . % . p 5 (22)
M
1= (&)

P
n(cx(s + kp) +r(s+ kp) + 6(s + kp))ds
/0 (ea p)+rl p)+8( P) Note that both/; andI; are independent from the
=pN (cz(kp) + r(kp)) value ofcz(kp) + r(kp).

P ] Region 2: Finally, we consider the second region. It is pos-
+ /0 [n(ca(s + kp) +7(s + kp) + 6(s))ds sible to derive the following bound:

P 2
- / n(cx(kp) + r(kp) + 6(s))ds.  (19) L<Ii+13=2- M p72 (23)
Jo 2A 1— ( Mp )
Fig. 4 illustrates the evolution for one dither period interval. In (44)

the top diagram, the solid lines bouad(s + kp) + r(s + kp) + To conclude the discussion on Regions 1-3, note that the
8(s),0 < s < p. The dashed line is:(kp) +r(kp) + 6(s). The worst casel, say, for all three of them is bounded by the
figure presents all possible cases for the evolutiotxef r + 4, right-hand side of (23). It is easy to see that there exists 0

in the sense that the envelope has the same characteristicsuah that for alp < p*, we havel of ordop?, i.e.,I = O(p?).
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In particular, we may choose SinceN has the Lipschitz constant equalltpA, we get
L 44 V2 c
e L @) 1o -l < (101+ L5 [l - wioastow)
so that (32)
M for p < p where
I<4-—p* Vp<p. (25) 9 M
24 0 = (55 7+2) bl (39

Note that (25) follows from (20). In conclusion, the estimate of _ )
the upperbound (25) is valid for all cases, hence we have tfN@W, by applying the Grénvall-Bellman lemma [32] to (32), we

(19) is equal to getforallp < p
(k+1) c
[ (o) v65) + a1 )=l <0 +0() (J121+ )
kp .
= pN(cz(kp) + r(kp)) + Z1(k), p< P (26) . /t SUILI+(B]lel/A)(E=7) g
. J0
with |Zy (k)| < 8- (M/24)p?
So far, we have mainly considered one pegio8ince in (18), =0(p) + O(p) [e(”L”Hlbl el — 1] -(34)
we havem = |T/p| terms, we have Hence
t m—1
— (NN B]-lel /AN
§(s))ds = N(cx(k k |lz(t) —w(t)] <O(p)e
/0 neals) +7(s) + 0)ds = 3, pN(callp) + r(kr) <O(p) 1B /AT
+ Vo(t) + Va(t) (27) = Vte[0,T]. (35)

with [Vi(t)] < 8- (M/2A)Tp. For a sufficiently small value of This concludes the proof of the theorem.

p, (or equivalently, for a sufficiently large value of), the sum  Note that from (33), we have an estimategbf the theorem,
can be approximated by an integral. The maximum error of thgmely
approximation is related to the maximum slope of the signal

N(ex(s) + r(s)). However,N satisfies the slope condition ) 4A €
v po =min | —rr, o . (36)
L bl-|e|/A)T
0< [N (cx(s1)+r(51)) = N (c(sa) +r(52))| < o |51 — 5] (%55 + 2) [plezi+ it/
A
(28)
for all s1,s2 € [0,T], which implies APPENDIX |
(k+1) PrROOF OFTHEOREM 1.2
/kp N(ca(s)+r(s))ds=pN(cx(kp)+r(kp))+Z2(k) By hypothesis, (3), with+(t) = 0, is exponentially stable.

(29) Hence, there exisis, > 0 andf, > 1 such that

: 2
(Wlth |Z2(k)| < (M/2A)p )and, thus |w(t)| < [30€_a0t|d70| Vi > 0.

m—1 mp . . . . .
Z pN(cz(kp) + r(kp)) = N(cxz(s)+r(s))ds + Va(t) We will use this to prove the practical stability olf (1). We itera-
o tively consider time intervals of length = —ap ! In(a; /6o)
where0 < a3 < 1. Then, ifp, is sufficiently small (see (36)),
/ N(cx(s) +r(s))ds we have
+ Va(t) + Vs(t) (30) lz(t) — w(t)| < eo

with [Va(#)] < (M/2A)Tp and| V()| < p. _ ont e [0,7]. If we consider a sequence of variabteg, k =
We have up to now proved that (16) can be written as 1,2,..., each defined on an intervatT, (k + 1)T] and satis-

/t (2(s) — w(s)]ds fying (3) with @ (kT) = z(kT), then it follows that
ik (8)] < Boe™FD | (kT)| Vit > kT.
+b / (cz(s) +7(s)) By applying Theorem lIl.1 again
= N(cw(s) +r(s)lds + V() (L) |a(t)] = |a(t)—dx (g ()] < cotBoe™ D |x(kT)|  (37)
for all p < pwhereV (t) = b(Vo(t) + Vi(t) + Va(t) + Va(t)) ont € [kT,(k + 1)T]. By evaluating (37) it = (k + 1)T
and l2((k + 1)T)| < a1 |z(kT)| + 0. 38)

M M
V(&) <[b] <p+ 8- 5 Tp+ ﬁprLp) Hence

I9M X 1—ak
bl (55 7+2) 0 oK) < f ool + 20—, (39
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Then, (37) becomes Now, let us consider a generic time interval.[ 73.41] with
c |z(T}, 0, 10) —w®(1})| < € (note that this inequality holds for
|dMs%eWt”%eMWm+l(;)+% Ee )
— a1
<foe” " ol + foy U, 40y o, 0,20) — w’(t)]
T =|z(t, Ty, 2(Tk)) — w(t, T, w(T))|
wherea = —T7'lna; < ag. We have thus shown practical <|z(t, T, z(T3)) — w(t, Tp)| + |o(t, Tir) — w(t, T, w(T}))|

stability witha = =T 'ln oy andg = fo.
for all t € [Tk, Tr4+1]. For the first term, we apply Theorem
APPENDIX Il [11.1 on the finite time horizon on the intervall[, Tx1]. It
PROOF OFTHEOREM I11.3 shows that there exisis) (z(1%), T, M, u&), which gives the

We will need to consider the dithered and the smoothéjtﬁ)per bound:¢. For the second term, we use the incremental

system from arbitrary initial timeé, > 0. Hence, for the proof exponential stability condition in (43), which implies

we consider the dithered system | (t, Th) — w(t, T, w(T}))] 5[3e*a(t*T")|x(Tk) — w(Ty)|
{ i(t) = Lz(t)+bn(cx(t)+8(t)+r(t)) VYt >t 41) <Pe~2t-T¢ < ¢

z(to) = o forall t € [Ty, T+1]. In the time instant = T, we have

and the smoothed system 0
- LN i s |2(Tht1,0,20) — w (Thy1)|
{5((;)) - ww(t)+ wltero) =h @ <|@(Tt1, T, 2(Tk)) — D(Thor1, T
0) — WwWo
+ | W(Tht1,Tx) — w(Lky1, T, w(Tk
whereN(z) = sat(z/A). We suppress the variabi¢t) and < fﬁ-ﬂii ka/;) (T, Ty o 21)(5')
<u e .

denotez(t, to, o) the solution of (41) with initial condition
z(to) = w0 andw(t,to,wo) the solution of (42) with initial |f we choose & > (1/a)In(8/(1 — 1)), then, the inequality
conditionw(to) = wo. We want to evaluate the approximation46) can be written as

error|z(t, to, xo) — w(t, to, xzo)| Vt > to. Forthis, we will make

critical use of the incremental exponential stability assumption [#(Zx-+1,0,20) = 0 (Ti41)| < pé + (1 —p)é = & (47)

which means that We have shown that there exist§f > 0 and

lw(t, to, w1) — w(t, to, wy)| < Be 0wy —wy|. (43)  po(@(Tk), T, M., pu€) such that iflz(Ty, 0, z9) — w®(Ti)| <&,
then, the approximation error is bounded from
above by the value((p + () on [Ix,Tiy+1] and
|2(Th11,0,20) —w°(Try1)| < €. The infinite horizon theorem
now follows by continuing this process inductively. Indeed,
the incremental exponential stability assumption can be used
to show that||lw|lec = supsep,o0) [w(t,0,70)] < oo and

Let us indicate as/°(t), the solutionu(t, ¢y, ¢ ) of the problem
(42). In the following, we will denote the time instakil’ asT},
and the time instar(tt + 1)T" asTy41. The idea is to show that
for each time interval®y, Tx.41], £ > 0, T > 0 the approxima-
tion error|z(t,to, mo) — w'(t)| t € [Tk, Tk+1] is bounded by
a function of ordemp,. . .

Let us callw(t,t) = w(t,t,z(t)) t > t the solution of the a(::g;esvsgng;guggu;i ggﬂ;vét,£7zo)(lw +c?nTb](T/[dir)|vi(;d.
smoothed system (42) when the initial condition (at the '[imeach ir’1ductive ste 0= o
instantt, = t) is equal to the value that the state of dithered R K 1 If P trod _ (1L b A d
system assumes at= t. In other words, during each time in- se;rrlazl/&) IIYE/;/T io L;Jclfﬁu;n(||(3l;—a(r!d|(;;|)/ vv)ez (?l?tain
terval [I}, Ti41], w(t) is the solution of the smoothed systerrfh TN 1), By 9 '
when the initial condition is equal te(1}). € approximation error

By the triangle inequality we have e =(u+p)¢

£,0,20) —w’ (£)| < |2(t, 0, 20) = (t)|+|w(t) —w(t, 0 3 M1, § 3\
000 e Ol 0 DO 00 vt Ol (0 DML P (B g
for all ¢ € [0,400). Let us consider the first time interval [0,
T]. In this cases(t) = w’(t) since the initial condition is the
same for both the solutions. Hence, (44) reduces to

Ao 1- I

whereM = M, (E+ pé) + M,, whereM, (-) is defined in (15).
The approximation error is independent from the length of the
time interval, and depends only on the free parametbat can
|2(t, 0, z0) — w(t)] = |2(t,0,z0) — w(t)]. be chosen such that the expression (48) is minimized.

Wecanapply Theoremlll.1andchoosga= po(xo, T, M., u€)
(wherexy, T', M., ande = p& are the parameters that defime APPENDIX [V

in (36) sincell = M, (o) + M, andM, (o) is defined in (15)) PROOF OFTHEOREM 1.4
suchthatthe approximation erroris bounded by the vafueith The differential form of (31) is

0<p<landé >0 . .

ot 0, 0) — w0 (£)| = (£, 0, ) — b (1)| < € < € ¥t € [0,T]. z(t) — w(t) =L(z(t) — w(t)) + b[N (cz(t) + r(t))
- - N (45) = N(ew(t) +r(t)] + bo(t)

In particular,|=(T, 0, z0) — w°(T)| < €. whereu(t) = n(cx(t) + r(t) + §(t)) — N(cx(t) + r(t)). This
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system can equivalently be written forall¢ € [0, T]. Finally, since the Lipschitz constantHf(s) =
y eLt=9)pN (ca(s) + r(s)) can be bounded as
z(t)—w(t) = / ePE=b(N (cx(s) + 7(s)) — N(cw(s) M
0 Lip[H] < e3 + e1 =
+7(s)))ds + e(?) (49) A
wheree(t) = fot eLt=3)by(s)ds.
Lemma 2: We have

IMt 3t
le(t)] < <<ﬁ + 2) c1+ EQ) p = (et +2¢q)p

and a similar argument as in (28)—(30) gives

M\t
)< (e +all)fp el

If we put everything together, we get

for all t € [0,T]. Moreover, Mt 3
: 1 et < ((Sa +2) et Fer)p el
20 < 3 o.3).2
/0 le(s)]"ds < 3en ((C3t + 2¢1) 801) P i
where A state—space realization of (49) is
c1 = max |e"b| #(t) =Lz(t) + bu(t)
te[0,T]
2(0) =z(0) —w(0) =0
o = max |LeLtb|
te[o T] u(t) =N (cz(t) + r(t)) — N(cw(t) + r(t))
vt (o). (1) = w(t) ==(1) + <(t).

We will use the slope condition on the saturation nonlinearity
Proof: Letm = |T/p], thene(t) = e1(t) +e2(t) +e3(t) N, which gives the relation
and
" (e(z +e) — Au)u > 0. (50)

e1(t) :/ eL(t_S)b[n(c:E(s)—l—r(s)+6(s))—N(ca:(s)—}—r(s))]ds

mp Now, let us multiply the LMI with[ 2"« ¢T'] on the left,
m=1 (k+1)p and by its transpose on the right. This gives
et =3 / (4= bm(e(s) +r(s) + 6(s))] ds )
k=0 kP — 2T P2+ 2(c(z+e) — Au)u —yeTe < 0.

dt

m=1l c(k+1)p

-y / [e" = ) bn(ca(kp) + r(kp) + 6(s))lds  If we integrate this inequality and use that the second term is
k=0 kP positive due to (50) then we get

m—1
= el (t=kp) cx T ¢
2 TN erthn) el AP0 < A0 Pa(0) 4 [ Je(o)ds

mp
—/ e"IbN (cx(s) + r(s))ds. Hence, using:(0) = 0
0
For the first term, we havi, (¢)| < 2¢;p. Each term ok, can /\mak 2
be split into two terms, = Y7L (e5,., + €3,,) l2(t)] < Nonin Tsw s)[*ds
~(k+1)p
es,. :/ (ePt=3) — L=k Vb (car(s) + 7(s) + 6(s))ds <4 ISP \/3 - (esT + 2¢1)° — 801)
kp mln

(k1)
o :/ peL(t_kp)b[n(cx(s) +7(s) + 6(s))ds We see thaltz(t) —w(t)| < alont € [0, T]if |z(t)|+|e(t)| < e,
kp which is the case ip < I'"*e where

(k+1)p
- L(t=kp)p, k kp) + 6(s))]ds. 2l 1
/’;p € [n(cx( p) + T( p) + (3))] s F = C3T =+ 201 =+ m @ ((C3T + 201)3 - 80?)-

For the first, we get the bounjes, , | < c2p? and for the second,
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