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Abstract— Dither signals are commonly used to compensate
for nonlinearities in feedback systems in electronics and me-
chanics. Recently, theoretical results were proposed for the
analysis of a particularly interesting class of nonsmooth systems,
namely relay feedback systems with triangular dither. In this
paper the class of dither signals is enlarged by considering
square and trapezoidal dither: it is shown how the dither
shape affects the behavior of nonsmooth feedback systems,
differently from the case of dither in Lipschitz continuous
systems. Experimental results support this fact and a theoretical
insight is given in order to explain the phenomena.

I. INTRODUCTION

High-frequency dither signals are commonly used to com-
pensate for nonlinearities in feedback control systems. The
idea is that by injecting a suitably chosen high-frequency
signal in the control loop, the nonlinear sector is effectively
narrowed and the system can thereby be stabilized. A wide
range of examples are found in the areas of electronics [1],
[2], [3] and mechanics [4], [5]. Dithered systems in the
past have been analyzed by using the describing function
approach [6], [7]. Some other approaches exist in the lit-
erature. For example systems with smooth nonlinearity and
smooth dither signal can be analyzed using powerful methods
introduced in [8], [9], [10]. The smoothness assumptions
are however often violated in practice [11]; for example, by
nonsmooth static components such as switches and relays or
by triangular and square wave dither signals. For classes of
nonsmooth systems with high-frequency excitation, rigorous
averaging analysis exists [1], [12].

Recently, new dither design methods based on averaging
analysis were proposed for relay feedback systems with
triangular dither [13]. Some other techniques for improving
these results by exploiting a stability condition based on an
LMI have been proposed in [14], [15]. In these papers we
indicated through simulations that the considered averaging
analysis carried out for triangular dither does not extend
to square dither signals. In the current paper we present
experimental evidence for this fact. We also give a geomet-
ric explanation. The behavior of a dithered relay feedback
system is thus highly affected by the shape of the dither
signal. This is in stark contrast to systems with Lipschitz
continuous dynamics for which it can be shown that the
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form of the dither signal is not critical at all [8], [9]. The
presented dynamical phenomena add to the behaviors known
to appear in (autonomous) relay feedback systems, such as
quasi-periodic orbits [16], chattering and sliding periodic
orbits [17], [18], and asymmetric orbits [19].

The outline of the paper is as follows. Some notation is
given in Section II. Section III presents experimental results
for a DC motor application. The amplitude distribution
function is introduced in Section IV. Section V is used to
explain the influence of the dither shapes in the experiments.

II. PRELIMINARIES

Let us consider a relay nonlinearity

n(z) = sgn(z) ,











1, z > 0
0, z = 0
−1, z < 0.

Suppose that a (deterministic) dither signal δ of period p is
added to the input of the relay. The time averaging of the
output y over a period p when the input z is constant is equal
to

N(z) =
1
p

∫ p

0
sgn(z+δ(t))dt. (1)

This function is called the smoothed (or the averaged) nonlin-
earity and obviously depends on the shape of δ. Typical dither
signals are triangular, sawtooth, sinusoidal, square wave and
trapezoidal. The dithered relay feedback system is defined as

ẋ(t) = Lx(t)+bn(r + cx(t)+δ(t)), x(0) = x0. (2)

Here L, b, and c are constant matrices of dimensions q×q,
q × 1, and 1 × q, respectively. The external reference r is
constant. The smoothed system is given by

ẇ(t) = Lw(t)+bN(r + cw(t)), w(0) = w0. (3)

In many cases the behavior of the dithered relay feedback
system can be analysed by considering the corresponding
smoothed system. In fact, it has been shown that with trian-
gular and sawtooth dithers, the approximation error between
the dithered and the smoothed system is proportional to the
dither period and thus it can be made arbitrarily small by
increasing the dither frequency [13].

For dither signals that have zero-slope over non-vanishing
intervals (such as square wave dither), it has been shown that
the smoothed system can behave significantly different from
the dithered system [14]. In this paper we will illustrate these



Fig. 1. Experimental setup of the DC motor position control system.

phenomena by new experimental results followed by a theo-
retical explanation that the authors have recently rigorously
proved and generalised to a wider class of nonlinear systems
in [20].

III. EXPERIMENTAL RESULTS

The experimental set-up showing the DC motor control
system is reported in Fig. 1. Fig. 2 shows the corresponding
block scheme. The control objective is to put the motor shaft
at a desired angular position. The DC motor is modeled
as an electric (armature) circuit subsystem with a given
armature resistance Ra and inductance La, and a mechanical
subsystem with inertia J and viscous coefficient β. The
motor provides a torque proportional to the armature current
ia through the torque constant kt and a counter electro-
magnetic force proportional to the rotor speed through the
constant ke. The angular position of the shaft θ is measured
by using a rotational potentiometer whose gain is kpot. The
motor supply voltage is ±Va and is obtained through a full
bridge DC/DC converter (H-bridge). This power amplifier
has a logic input that selects a positive or negative supply
voltage to the DC motor. The control loop is closed by
comparing the position error Vref − kpotθ with a sawtooth
waveform (the dither signal). The output of the relay is the
input of the H-bridge driver. By introducing the state vector
x =

(

θ ω ia
)T we have

ẋ(t) =











0 1 0

0 −
β
J

kt

J
0 −

ke

La
−

R
La











x(t)±







0
0

Va

La






, (4)

where the signum depends on the output of the H-bridge.
This control system corresponds to the dithered relay feed-
back system (2) with L and b as given in (4), and c =
(

−kpot 0 0
)

. The external constant reference is equal to
r = Vref. The loop transfer function for the system is

−c(sI −L)−1b =

ktkpot

J
Va

La

s
[

s2 + s
(

β
J

+
R
L

)

+
βR
JL

+
ktke

JL

] . (5)

Vref
+ -

+ +

δ(t)
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Fig. 2. Block diagram of the motor position control system.

Let us consider a DC motor with the following parame-
ters: R = 2.510Ω, La = 0.530mH, kt = ke = 5.700mV/(rad ·
s−1), β = 0.411mN ·cm/(rad ·s−1), J = 31.400g ·cm2, kpot =
3/(2π)V/rad. The motor supply voltage is set to Va =
2.500V. Three dither shapes are considered: a sawtooth
signal, a square wave signal, and a trapezoidal signal. The
dither amplitude is in all cases equal to A = 0.070. With the
parameters above, the loop transfer function is

−c(sI −L)−1b =
4.088 ·106

s(s2 +4.737 ·103 s+2.573 ·104)
. (6)

It can be shown (e.g., using the Popov criterion) that the
smoothed systems corresponding to the sawtooth and trape-
zoidal dither cases are asymptotically stable, see [15]. For
sawtooth dither, the approximation error between the dithered
system and the smoothed system tends to zero as the dither
frequency goes to infinity. Hence, since the smoothed system
is asymptotically stable, the system output goes to zero as
we increase the dither frequency. For trapezoidal dither, the
assumptions of the averaging result in [15] are not fulfilled.
In fact, the approximation error between the dithered system
and the smoothed system may not tend to zero in this case,
as was indicated by a theoretical example in [20]. In the
following, we show that the DC motor application supports
these conclusions: the system is stabilized with sawtooth
dither, while it is not with trapezoidal or square wave dither.

Experiments were carried using sawtooth dither of fre-
quencies 100, 200, and 500 Hz. Fig. 3 reports the angular
position of the motor shaft under steady-state conditions.
Note that by increased dither frequency the behavior of the
dithered system converges to the behavior of the (stable)
smoothed system (i.e., the system output converges to zero).
The ratio between consecutive averages of the peak-to-peak
values of the output signal is equal to 3.33 and 2.84 for 100–
200 Hz and 200–500 Hz, respectively, which thus indicates
the convergence rate. The averaging effect of the dither thus
works properly in this case.

Fig. 4 shows experiments with trapezoidal dither. In this
case, the system output shows a slow oscillation with a
substantial amplitude for all three dither frequencies (note
that the axes are not the same as in Fig. 3). The frequency
of the oscillation is low compared to the dither frequency, and
it seems to be relatively constant. In particular, note that by
the increase of the dither frequency, the system output does
not converge to zero, as was the case with sawtooth dither.
Instead the ratio between consecutive averages of the peak-
to-peak values of the output signal is equal to 1.97 and 0.86
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Fig. 3. Angular position for sawtooth dither of three frequencies.

for 100–200 Hz and 200–500 Hz, respectively, so going from
200 to 500 Hz the amplitude of the oscillation is actually
increasing.

A geometric illustration of these phenomena is obtained
from phase diagrams. Fig. 5 shows a phase diagram for
sawtooth dither, Figs. 6 and 7 show phase diagrams for
trapezoidal dither, while Fig. 8 shows a phase diagram for
square wave dither. The two hyperplanes highlighted in the
figures are given by {x ∈ R

3 : cx±A = 0}, where A = 0.070
is the amplitude of the dither. The hyperplanes bound the
region in which the dither instantaneously can affect the input
to the DC motor, since outside that region the sign of cx+δ
is not affected by δ. In Fig. 5, where sawtooth dither was
applied, we note that the trajectory is always far from the
hyperplanes. In Figs. 6 and 7 it is shown that trapezoidal
dither gives rise to trajectories that hit the hyperplanes. These
periodic orbits show similarities to sliding and chattering
orbits in autonomous relay feedback systems, which was
recently thoroughly analyzed [17], [18], [19]. Note that even
if the frequency was doubled in Fig. 7, the trajectory still
intersects the hyperplanes. To investigate the limiting case
of very high frequency, we applied square wave dither of
1 MHz. Fig. 8 shows the result. Although the trajectory does
not intersect the hyperplanes in this case, the dither still does
not stabilize the system about the origin.

IV. AMPLITUDE DENSITY FUNCTIONS

To gain theoretical insight about the experimental results
in the previous section we discuss the amplitude distribu-
tion function for the various dither signals. The amplitude
distribution function Fδ(a) for a p-periodic dither signal δ
is defined as the Lebesgue measure of the time intervals in
which δ(t) ≤ a for t ∈ [0, p), i.e.,

Fδ(a) =
1
p

µ{t ∈ [0, p) : δ(t) ≤ a}. (7)

A recent result [20] indicates that an important sufficient
condition for the approximation error in the averaging anal-
ysis to tend to zero is that Fδ is absolutely continuous.
Moreover, examples show that if Fδ is discontinuous, then
the approximation error may not go to zero. We illustrate
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Fig. 5. Phase diagram with sawtooth dither, A = 70mV, f = 200Hz. Recall
that the output signal is θ · kpot, which has a small ripple as illustrated in
Fig. 3.

next that this conclusion is confirmed also by the DC motor
application.

By interpreting (1) as a Lebesgue-Stieltjes integral (e.g.,
[21]), it follows that for almost all z

N(z) =
∫

R

sgn(z+a)dFδ(a)

=
∫ ∞

−z+
dFδ(a)−

∫ −z−

−∞
dFδ(a)

= 1−Fδ(−z+)−Fδ(−z−). (8)

If Fδ(z) is continuous in −z then N(z) = 1 − 2Fδ(−z),
otherwise we have to take into account the left and right
limits of Fδ in −z.

When the amplitude distribution function is absolutely
continuous then the amplitude density function fδ is well
defined as the (Lebesgue integrable) solution to the equation

dFδ = fδ(a)da, (9)

In this case we have

N(z) =

∫ ∞

−∞
sgn(z+δ) fδ(a)da.
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Fig. 7. Phase diagram with trapezoidal dither, A = 70mV, f = 200Hz.

If the amplitude distribution function has jump discontinu-
ities we here represent these singularities with Dirac impulses
in fδ.

Note that a time average formula for deriving N was
suggested in (1), while the analysis above suggest an output
average formula. For the dither signals and nonlinearities in
this paper, this two formulae are equal.

Let us discuss the amplitude density functions for the
dithers applied to the DC motor. Fig. 9 shows the amplitude
distribution function Fδ and the amplitude density function
fδ of triangular dither applied to the relay. The corresponding
smoothed nonlinearity N is also reported. A sawtooth dither
with amplitude A and period p has the same amplitude distri-
bution function and thus also the same smoothed nonlinearity.
Note that N has Lipschitz constant equal to 1/A < ∞, while
the original relay nonlinearity is discontinuous. The dither
thus has “smoothed” the relay.

The amplitude distribution and density functions of square
wave and trapezoidal dither and the corresponding smoothed
nonlinearities are reported in Fig. 10 and Fig. 11. In these
cases, the amplitude density functions have two Dirac im-
pulses, which lead to that the smoothed nonlinearity is dis-
continuous (at z =±A). Thus for the square wave and trape-
zoidal dithers the smoothed nonlinearity has discontinuities,

i[A]

θ · kpot[V ]

ω[rad/s]

Fig. 8. Phase diagram with square wave dither, A = 70mV, f = 1MHz.

which is in contrast to the triangular case. The discontinuous
system gives rise to oscillations, as shown in the previous
section. It is easy to see that dither signals that are constant
over non-vanishing time intervals has Dirac impulses in
their amplitude density functions, and thus discontinuous
smoothed nonlinearities. This class of of zero-slope dither
signals show interesting dynamical behavior and has to be
carefully analysed.

V. CONCLUSIONS

The paper points towards a need for a framework for ana-
lyzing dithered nonsmooth systems. Existing results mainly
consider special cases, such as relay systems with triangular
dither [13], [15], PWM converters with ramp comparison [1],
and various other PWM systems [12]. For Lipschitz con-
tinuous systems, a nice theory was developed by Zames
and Shneydor [8], [9], which covers a large class of dither
signals. For discontinuous systems, however, the shape of
the dither signal is important, as shown in this paper. The
approximation error between the dithered and the smoothed
systems converges to zero as the frequency of the dither
tends to infinity, only under certain regularity assumptions.
It was indicated in the paper that for discontinuous systems,
an important assumption is that the amplitude distribution
function should be absolutely continuous, i.e. no jump dis-
continuities are allowed. If this assumption does not hold,
the approximation error may not go to zero. Recently this
conjecture was theoretically justified through an averaging
result for a quite general class of nonsmooth systems and
periodic dither signals, see [20]. In particular the class of the
considered dithered systems include the following nonsmooth
feedback system:

ẋ = f0(x,d)+ f1(x,d)n(g(x,d,r)+δ), x(0) = x0,

where f0, f1 and g are Lipschitz, the reference r and the
disturbance d are Lipschitz signals and the nonlinearity n is
assumed to be Borel-measurable and of bounded variation.
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