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Abstract

Dither signals provide an effective way of compensating
for nonlinearities in control systems. The seminal works
by Zames and Shneydor and more recently by Mossaheb
present rigorous tools for systematic design of dithered sys-
tems. Their results rely however on a Lipschitz assumption
on the nonlinearity and thus do not cover important applica-
tions with discontinuities. This paper presents initial results
on how to analyze and design dither in nonsmooth systems.
In particular, it is shown that a dithered relay feedback sys-
tem can be approximated by a smoothed system obtained
through an averaging approach. Guidelines are given for
tuning the amplitude and the period time of the dither sig-
nal, in order to stabilize the nonsmooth system.

1 Introduction

The use of dither signals for stabilization of nonlinear con-
trol systems is a well-known and frequently used tech-
nique. The idea is that by injecting a suitably chosen high-
frequency signal in the control loop, the nonlinear sec-
tor is effectively narrowed and the system can thereby be
stabilized. Theoretical justification of this idea for sys-
tems with continuous nonlinearities has been obtained by
Zames and Shneydor [1, 2] and Mossaheb [3]. Their re-
sults rely however on a crucial Lipschitz assumption on
the nonlinearity and thus do not cover important applica-
tions with discontinuities. Indeed, discontinuous nonlinear-
ities in feedback control systems with high-frequency exci-
tations appear in a large variety of models, including sys-
tems with adaptive control [4], friction [5, 6], pulse-width
modulated converters [7], quantizers [8], relays [9], and
variable-structure controllers [10]. In their paper on the
analysis of the (smooth) LuGre friction model, Pervozvan-
ski and Canudas de Wit [11] point out that a rigorous analy-
sis of dither in discontinuous systems does not exist. Dither
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tuning in nonsmooth systems is to our knowledge limited
to approximate design methods mainly based on describing
functions [12].

The contribution of the paper is to present an initial attempt
to develop a theory for the design of dither in nonsmooth
systems. We limit the analysis to an important class of non-
linearities and dither signals, namely, relay systems with tri-
angular dither signals. Our main result states that a dithered
relay feedback system can be approximated by a system
with no dither and the relay replaced by a saturation. The
dither period determines the accuracy of the approximation.
The dither amplitude determines the gain of the saturation
and thus the stability of the smoothed system. Exponential
stability of the smoothed system is linked to practical sta-
bility of the dithered system through a theorem based on a
frequency response criterion similar to the circle and Popov
criteria. The theoretical results suggest a procedure for tun-
ing dither systems.

In spite of the particular class of systems considered, our re-
sults can be applied to several control applications. For ex-
ample some PWM power electronic converters can be rep-
resented as relay feedback systems with dither. Averaging
techniques are routinely used for design of such systems and
some rigorous results have been developed in [13, 14].

The outline of the paper is as follows. Some notation is in-
troduced in Section 2. A motivating example is presented
in Section 3, illustrating how a high-frequency dither sig-
nal can be injected to dissolve oscillations in relay feedback
systems. The main theorem is presented in Section 4 and
it states that the solutions of the dithered system can be ar-
bitrarily well approximated by the solutions of a smoothed
system. The section also discusses practical stability. Sec-
tion 5 relates these results to dither design, which is applied
to the example. The paper is concluded in Section 6, where
topics for future work is discussed.

2 Preliminaries

The dithered system is a relay feedback system (see Fig-
ure 1)

ẋ
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t ��� Lx
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 (1)

Here L, b, and c are constant matrices of dimensions q � q,
q � 1, and 1 � q, respectively, q � 0. The nonlinearity n :
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Figure 1: Dithered system.�����
is given by the relay characteristic
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Throughout the paper we assume that the relay feedback
system has a solution x : % 0 � ∞ � ��� n (in a classical sense),
which on every compact subinterval of % 0 � ∞ � is C1 every-
where except at finitely many points. We sometimes use the
notation x

�
t � x0 � for the solution of (1).

The smoothed system is given by
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�
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�
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�
cw
�
t �-�.� w

�
0 ��� w0 � (2)

where the smoothed nonlinearity N :
�/�0�

is defined as
the average N

�
z �1� p 2 1 3 p

0 n
�
z � δ

�
t �-� dt. For the relay, it is

easy to show that
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�
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It will be shown below that the smoothed system in many
cases is a good approximation of the dithered relay feedback
system. Therefore analysis and design can be performed on
the smoothed system, which is often easier to treat, and then
be carried over to the dithered system.

Note that the term “smoothed system” is standard in the lit-
erature on dither design and refer to that the nonlinear sector
is narrowed by the dither signal. The nonlinearity is not nec-
essarily C∞, as illustrated above by the saturation function
being the smoothed nonlinearity corresponding to the sign
function.

We use 47684 to denote the Euclidean norm of a vector and 9:689
to denote the corresponding induced matrix norm.
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Figure 2: Output ; cx of the relay feedback system (1) with (3)
but without dither signal (δ < 0).

3 A Motivating Example

A second-order relay feedback system is used as a represen-
tative example. Consider the system (1) with

L �>= # 2 # 1
1 0 ? � b �>= 10? � c �A@ 1 # 1B 
 (3)

The linear part of the relay feedback system thus has a
nonminimum-phase zero at 1 and a double pole at # 1.
When no dither is present (δ

�
t �DC 0), the relay feedback sys-

tem presents a limit cycle as reported in Figure 2. The out-
put of the linear part # cx of (1) is plotted for a solution with
initial condition x0 � @ 2 1 B T . If we apply a triangle dither
signal δ with amplitude A � 1 and period p � 1 + 50, the limit
cycle in Figure 2 is dissolved as shown in Figure 3. Hence,
the dither in a sense attenuates the oscillations present in the
original system. Figure 3 shows also the output # cw of the
smoothed system (2). The two systems have almost identi-
cal responses. Hence the smoothed system provides an ac-
curate approximation of the dithered system for p � 1 + 50.
Figure 4 shows the responses when the dither signal has a
larger period: p � 1. The responses are no longer close and
the output of the dithered system (solid) is oscillating with
a larger ripple.

The simulations suggest that the dither period p is related
to how accurately the smoothed system approximates the
dithered system. In next section it is shown that by choosing
p sufficiently small the approximation can be made arbitrar-
ily tight (Theorem 4.1). Regarding the dither amplitude A,
note that the smoothed system is not absolutely stable for
A $ 1 + 2, since the closed-loop system is linear with charac-
teristic polynomial equal to s2 � � 2 # A 2 1 � s � 1 � A 2 1 when4 cw 4E$ A. The dither amplitude hence defines the response
dynamics. This is shown in next section by relating A to the
stability of the dithered system (Theorem 4.2).
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Figure 3: Outputs of the dithered relay feedback system (1)
(solid) and the smoothed system (2) (dashed). The re-
sponses are almost identical.

4 Main Results

This section presents two result for the dithered system: one
on accurate approximation and one on practical stability.

4.1 Accurate Approximation
The following theorem states that by choosing the dither pe-
riod p sufficiently small, it is possible to make the solution x
of the relay feedback system arbitrarily close to the solution
w of the smoothed system on any compact time interval.

Theorem 4.1 Let T � ε � 0 and x0 ) � n be given. There ex-
ists p0 � 0 such that if p ) � 0 � p0 � , then 4 x � t � x0 � # w

�
t � x0 �F4.G

ε for all t )*% 0 � T H .
Proof: Here we provide a sketch of the proof (the complete
proof is reported in [15]).

Consider the dithered system (1) and the smoothed system
(2) on the time interval % 0 � T H and with w

�
0 ��� x

�
0 ��� x0.

Note that the right-hand side of (1) is bounded on every
compact time interval % 0 � T H , so there exists a positive con-
stant M such that 4 cẋ

�
t �F45G M, for all t )*% 0 � T H . An explicit

estimate for M is given below. By integrating the two mem-
bers of (1)–(2), we obtain

x
�
t � # w

�
t �(� L I t

0
% x � s � # w

�
s �JH ds� b I t

0
% n � cx

�
s ��� δ

�
s ��� # N

�
cw
�
s ���JH ds 
 (4)

The idea is to show that 3 t
0 % n � cx

�
s ��� δ

�
s ���JH ds can be ap-

proximated as 3 t
0 N

�
cx
�
s �-� ds and the error introduced by this

approximation is a function of the dither period p and it can
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Figure 4: Outputs of the dithered relay feedback system (1)
(solid) and the smoothed system (2) (dashed). Similar
simulation as in Figure 3 but with dither signal having
50 times longer period. Note the deviation between the
responses.

be made little by decreasing the period p. This is not obvi-
ous, particularly, since n is a discontinuous nonlinearity. It
is shown in [15] that (4) can be written as

x
�
t � # w

�
t �(� L I t

0
% x � s � # w

�
s �JH ds� b I t

0
%N � cx

�
s �-� # N

�
cw
�
s �-�KH ds � O

�
p �	�

(5)

where O
�
p � is the approximation error of ordo p. Then, by

using the Lipschitz property of the nonlinearity N and by
applying the Grönvall-Bellman Lemma [18], we get4 x � t � # w

�
t �L4MG O

�
p � e N8O L OQPSR b R T R c RA U T � ε �WV t ),% 0 � T H 
 (6)

An estimate of p0 of the theorem can be derived:

p0 � min XY 4A
7M

� εZ 9
2 6 M

A T � 2 [(4 b 4 e N-O L O\P R b R T R c RA U T ]^ 
 (7)

Note that the smoothed system (2) has a bounded solution
w
�
t � on a finite time interval % 0 � T H , so there exists d � 0

such that 4w � t �L4EG d, for all t )_% 0 � T H . A possible choice of
M (the bound of 4 cẋ 4 ) based on (1) and (7) is

M �`9 L 9 � d � ε ��� 4 b 486L4 c 4
A 
 (8)

The bound obtained for p0 in the proof is conservative, since
the derivation is done using no particular knowledge of the



system data. Tighter bounds can be obtained by exploiting
more of the problem structure [16], but is not needed for the
proof of the theorem.

Theorem 4.1 can be interpreted as an extension of Theo-
rem 1 in [3] to a class of nonsmooth systems. The result
in [3] relies on continuity properties of the solutions of the
original and the smoothed systems. This argument cannot
be used here, since a relay feedback system in general do
not have solutions that depend continuously on initial con-
ditions or system parameters. Instead, we pay particular at-
tention in the proof to the system evolution at and between
relay switchings.

4.2 Practical Stability
We will use Theorem 4.1 to obtain conditions for practical
stability of the dithered system (1). The idea is the follow-
ing. First we choose the amplitude A of the dither signal,
such that the smoothed system in (2) is stable. Then if the
period p of the dither signal is chosen small enough, the
output of the dithered system closely follows the output of
the smoothed system. This implies that the output of the
dithered system converges close to zero. Note that we can-
not obtain convergence strictly to zero, since the dither sig-
nal always cause small fluctuations of the output. We use
the following definition of stability.

Definition 4.1 (Practical stability) The system in (1) is
called practically (exponentially) stable if for any ε � 0
there exists A � 0, p0 � 0, α � 0, and β a 1, such that4 x � t �L45G βe 2 αt 4 x0 47� ε �bV t ),% 0 � ∞ �
for any dither period p ) � 0 � p0 � .
There are many available results for stability analysis of the
smoothed system. We will here use a criterion by Zames
and Falb [17], which generalizes the Popov criterion.

Theorem 4.2 Let G
�
jω �:� # c

�
jωI # L � 2 1b with L Hurwitz

and consider some H
�
jω �c� 3 ∞2 ∞ h

�
t � e 2 jωtdt, where h :

�*��
satisfies 3 ∞2 ∞ 4 h � t �F4 dt G 1. If there exists ε � 0 such that

Re
�
G
�
jω ��� A � � 1 � H

�
jω �-�da ε �eV ω ) � � (9)

then there exists p0 such that for p ) � 0 � p0 � the system (1)
is practically stable.

Proof: See [15].

Note that the criterion (9) corresponds to one of the least
conservative conditions for stability available for systems
with a slope restricted nonlinearity. However, it does not
give any immediate information on the performance (e.g.,
the exponential decay parameters), and it is not convex in
the pair A � H. The most straightforward use of the theorem
is to put H � 0, which corresponds to the circle criterion.

From the Kalman–Yakubovich–Popov Lemma one can then
derive a linear matrix inequality that verifies (9) and results
in explicit estimates of the exponential decay parameters,
α0 � β0, for the smoothed system.

5 Dither Design

In this section we use Theorems 4.1 and 4.2 to design the
dither signal, for example, in order to stabilize an oscilla-
tion. We also present a heuristic method, which gives less
conservative designs. The design methods are illustrated on
the example in Section 3.

5.1 Tuning Algorithm
The dither design choice will necessarily be a compromise
between conflicting consequences of the dither amplitude A
and dither period p on the control performance. Based on
our theoretical results we obtain the following algorithm for
tuning the parameters of the dither signal.

Step 1 Choose A based on (9) in Theorem 4.2, so that the
smoothed system in (2) is exponentially stable.

Step 2 Estimate α0 � β0 and let T � # ln
�
0 
 1 + β0 ��+ α0, where

α0 � β0 are the exponential stability parameters for the
smoothed system.

Step 3 Choose p0 based on T and the smoothed dynamics.

A few comments are in place. In Step 1 we need to choose
the amplitude A of the dither signal large enough to allow
the smoothed system to be stable and to have fast enough
exponential decay rate. At the same time we want to keep A
as small as possible in order to avoid injecting a large signal
in the control loop.

In Step 2 the estimates of α0 and β0 can be derived based
on the Kalman–Yakubovich–Popov Lemma, as discussed
above. Then we can compute time interval length T , which
is an auxiliary variable in the proof of Theorem 4.2. The
parameter T gives a bound on the period of the dither signal
through (7) in the proof of Theorem 4.1. The bound is in
general quite conservative, since it is derived without using
any structure of the problem. It may thus suggest periods p
that are too small to be used in practice. Better bounds can
be derived if we for example use the structure of the satura-
tion nonlinearity and that the smoothed dynamics is chosen
to be exponentially stable.

5.2 Heuristic Tuning Rules
A practical issue that can be taken into account when tuning
the dither period is how much fluctuations on the output we
get due to the dither signal. We derive a heuristic bound on
these fluctuations.

Assume the transients have decayed and signals are small
enough, so that we can consider the linear range of the
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smoothed nonlinearity. Then the transfer function

Gcl
�
s ���gf 1 � G

�
s �

A h 2 1 G
�
s �

A
�

where G
�
s �i� # c

�
sI # L � 2 1b, approximately describe the

mapping from the dither signal to the output y � # cx.
Choose ω0 � 0 such that4Gcl

�
jω �F4MG µ

A
�jV ω a ω0 � (10)

for some small µ � 0. Then we can expect 4 y � t �F4�G µ for
sufficiently large t, if the dither period is chosen such that
p G 2π + ω0. The following heuristic tuning rule follows:

Step 1 Choose an output bound µ � 0.

Step 2 Choose A such that the circle criterion holds.

Step 3 Choose p such that p G 2π + ω0, where ω0 satis-
fies (10).

5.3 Example Revisited
Let continue discussing the example in Section 3. Recall
that

G
�
s �1� # c

�
sI # L � 2 1b � 1 # s�

s � 1 � 2 

Consider Theorem 4.2 with H

�
s �k� 0, which corresponds to

the circle criterion. We see from the Nyquist curve of G in
Figure 5 that for A � 0 
 56

ReG
�
jω ��� A a ε �DV ω ) � 


Hence, the dithered system is practically stable for A � 0 
 56
and p sufficiently small. By using Theorem 4.2 instead
with H

�
s �c� # � s � 1 � 2 1, we can prove practical stability for

A � 0 
 501. Figure 6 shows a simulation for A � 0 
 502 and
p � 1 + 10. It is clear that the system is close to the stability
boundary for this choice of A.
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Figure 6: Outputs of the dithered (solid) and smoothed (dotted)
systems close to the stability boundary predicted by
Theorem 4.2.

Figure 7 shows the effect of the dither amplitude on the sta-
bility of the smoothed system: it is possible to obtain a fast
convergence by increasing A. The upper plot shows a simu-
lation for A � 0 
 56 and the lower A � 0 
 70.

Figure 8 shows finally the effect of the dither frequency
on the approximation between the dithered system and the
smoothed system: it is possible to obtain a response very
close to the output of the smoothed system by decreasing
the dither period. Compare the figure in Section 3.

6 Conclusions

In this paper we have shown how dither can be analyzed
in nonsmooth systems. The main result is that a relay feed-
back system with a triangular dither signal at the input of the
hard nonlinearity can be viewed as a feedback system (with-
out dither) in which the relay is replaced by a saturation.
While the amplitude of the dither signal affects the slope
of the saturation, the approximate equivalence between the
dithered and smoothed systems depends on the frequency
of the dither signal. Explicit relations to achieve a desired
approximation error have been given. Furthermore analyti-
cal and practical guidelines to design dithered systems have
been presented. They were verified by simulations.

These preliminary results are the basis for some going work
on the bound computation improvement, analysis of dither
signals with different shapes, infinite time horizon extension
of the Theorem 4.1 [16].
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Figure 7: Output of the dithered system with δ having period
p l 1 m 50. The amplitude is A l 0 n 56 (upper) and A l
0 n 7 (lower), respectively. A smaller A gives thus a less
oscillating response.
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