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Abstract

It was shown by Zames and Shneydor and later by Mossaheb that a high-frequency dither signal of a quite arbitrary shape can be used to
narrow the effective nonlinear sector of Lipschitz continuous feedback systems. In this paper, it is shown that also discontinuous nonlinearities
of feedback systems can be narrowed using dither, as long as the amplitude distribution function of the dither is absolutely continuous and has
bounded derivative. The averaged system is proven to approximate the dithered system with an error of the order of dither period.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A frequently used technique to stabilize a nonlinear feed-
back system in Luré form is by injecting a high-frequency
dither signal, which narrows the nonlinear sector. If the dither
frequency is sufficiently high, the behavior of the dithered
system will be qualitatively the same as an averaged system,
whose nonlinearity is the convolution of the amplitude distri-
bution of the dither and the original nonlinearity. Analysis and
control design can then be carried out on the averaged sys-
tem, which in most cases is simpler to analyze due to lack
of external dither signal and narrower nonlinearity. For the
case when the original nonlinearity is Lipschitz continuous, the
scheme outlined above was rigorously justified using properties
of the amplitude distribution function of the dither Zames &

� This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor Naomi E.
Leonard under the direction of Editor Hassan Khalil. The work by L. Iannelli
and F. Vasca was supported by EC within the SICONOS project (IST2001-
37172). The work by K.H. Johansson and U. Jönsson was supported by
Swedish Research Council and by EC within the RECSYS project (IST2001-
37170).

∗ Corresponding author. Tel.: +39 0824 305568; fax: +39 0824 325246.
E-mail addresses: luiannel@unina.it, luigi.iannelli@unisannio.it

(L. Iannelli), kallej@s3.kth.se (K.H. Johansson), ulfj@math.kth.se
(U.T. Jönsson), vasca@unisannio.it (F. Vasca).

0005-1098/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2005.12.012

Shneydor, 1976, 1977). Similar results were obtained later using
classical averaging theory (Mossaheb, 1983).

The Lipschitz continuity assumption on the nonlinearity
of the dithered system is often violated in practice. Indeed,
discontinuous nonlinearities in feedback systems with high-
frequency excitations appear in a large variety of applications,
including systems with adaptive control (Åström & Witten-
mark, 1989), friction (Armstrong-Helouvry, 1991), power
electronics (Lehman & Bass, 1996), pulse-width modulation
(Peterchev & Sanders, 2001), quantization (Gray & Neuhoff,
1998), relays (Tsypkin, 1984), and variable-structure control
(Utkin, 1992). It is common to analyze these systems using
empirical methods such as describing functions, which can
give a quite good intuitive understanding. It is hard, however,
to get bounds on the approximation these methods provide
and they may even give erroneous results, so therefore there
is a need for a solid treatment of discontinuous systems with
high-frequency excitation. Recently, certain classes of these
systems have been thoroughly studied, such as power convert-
ers (Lehman & Bass, 1996), pulse-width modulated systems
(Gelig & Churilov, 1998; Teel, Moreau, & Nesic, 2004), relay
systems (Iannelli, Johansson, Jönsson, & Vasca, 2003a), and
stick-slip drives (Sedghi, 2003).

The main contribution of the paper is an averaging theorem
for a general class of nonsmooth systems with a quite arbitrary
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periodic dither. The result states that the dithered and the av-
eraged systems have qualitatively the same behavior when the
dither has sufficiently high frequency and an absolutely contin-
uous amplitude distribution function with bounded derivative.
The averaging theorem might be interpreted as an extension to
nonsmooth feedback system of previous results, which were
limited to Lipschitz-continuous systems (Zames & Shneydor,
1976, 1977; Mossaheb, 1983).

The outline of the paper is as follows. The dithered system
and the corresponding averaged system are introduced in Sec-
tion 2. The amplitude distribution function of the dither signal
is thoroughly discussed, since it plays a key role in the anal-
ysis. The main result on the approximation error between the
dithered and the averaged systems is presented in Section 3.
The paper is concluded in Section 4 and the proofs are reported
in Appendix.

2. Preliminaries

2.1. Dithered system

The dithered feedback system is defined as

ẋ(t) = f0(x(t), t) +
m∑

i=1

fi(x(t), t)ni(gi(x(t), t) + �i (t)),

x(0) = x0. (1)

The state x belongs to Rq . The functions fi : Rq × R → Rq ,
i =1, . . . , m, are assumed to be globally Lipschitz with respect
to both x and t, i.e., there exists a positive constant Lf such
that for all x1, x2 ∈ Rq and t1, t2 �0,

|fi(x1, t1) − fi(x2, t2)|�Lf (|x1 − x2| + |t1 − t2|).
We further assume that f0 is piecewise continuous with respect
to t, f0(0, t) = 0 for all t �0, and

|f0(x1, t) − f0(x2, t)|�Lf |x1 − x2|
for all x1, x2 ∈ Rq and t �0. Similarly, the functions gi :
Rq × R → R, i = 1, . . . , m, are assumed to have a common
Lipschitz constant Lg > 0, i.e.,

|gi(x1, t1) − gi(x2, t2)|�Lg(|x1 − x2| + |t1 − t2|)
for all x1, x2 ∈ Rq , t1, t2 �0. The nonlinearities ni : R → R,
i=1, . . . , m, are assumed to be functions of bounded variation.
Recall that the total variation TV of a function n : R → R is

TV(n)� sup
−∞<z0 �z1 � ···�zk<∞

k∑
i=1

|n(zi) − n(zi−1)|,

where the supremum is taken over all finite sequences {zi}ki=0
with k�1 (Wheeden & Zygmund, 1977). If the total variation is
bounded, we simply say that n is of bounded variation. Hence,
the functions ni can be discontinuous, but they are necessarily
bounded. Each dither signal �i : [0, ∞) → R is supposed
to be a p-periodic measurable function bounded by a positive
constant M�, i.e., |�i |�M� ∀i.

When the differential equation (1) has a discontinuous right-
hand side (due to that at least one ni is discontinuous), existence
and uniqueness of solutions depend critically on the consid-
ered definition of solution (Filippov, 1988). In the following,
we assume that the differential equation (1) has at least one
absolutely continuous solution x(t, x0) on [0, ∞) (in the sense
of Carathéodory). We suppose that the time intervals when the
solution is at a discontinuity point of ni are of zero Lebesgue
measure. Note that as a consequence, we do not consider
solutions with sliding modes. Furthermore, we suppose that
the solutions have no accumulation of switching events (Zeno
solutions).

The assumptions on system (1) imply that there exists a
positive constant Lx such that |x(t1) − x(t2)|�Lx |t1 − t2| for
almost all 0� t1 � t2 < ∞. Estimates of the Lipschitz constant
Lx can be easily obtained on any compact interval.

Remark 1. The assumption on the nonlinearity ni is weak. The
class of considered systems thus contains quite exotic differen-
tial equations for which, for example, existence and uniqueness
of solution cannot easily be addressed. However, for most cases
in applications the existence of a Carathéodory solution is rea-
sonable. Existence and uniqueness of solutions for dithered re-
lay systems are discussed in Iannelli, Johansson, Jönsson, and
Vasca (2004).

Remark 2. The assumption on global Lipschitz continuity of
the functions fi , gi is used to derive the Lipschitz bound Lx .
The assumption can be relaxed by assuming Lipschitzness on
a bounded set provided that dithered and averaged solutions
belong to such set, see Teel and Nesic (2000).

2.2. Dither signals and their amplitude distribution functions

Definition 2.1. The amplitude distribution function F� : R →
[0, 1] of a p-periodic dither signal � : [0, ∞) → R is defined as

F�(�)� 1

p
�({t ∈ [0, p) : �(t)��}),

where � denotes the Lebesgue measure.

When the amplitude distribution function is absolutely con-
tinuous (with respect to its Lebesgue measure), the amplitude
density function f�(�) is defined as

f�(�)�dF�

d�
(�),

which exists almost everywhere.
The amplitude density and amplitude distribution functions

play in a deterministic framework the same role as the prob-
ability density and cumulative distribution functions play in
a stochastic framework. In particular, the amplitude distribu-
tion function is bounded, monotonously increasing, continuous
from the right, and, if it is absolutely continuous, its derivative
corresponds to the amplitude density function.
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Fig. 1. Triangular dither signal with its corresponding amplitude distribution
function and amplitude density function.
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Fig. 2. Trapezoidal dither with its amplitude distribution function and the
corresponding generalized derivative.

Typical dither signals are sawtooth, triangular, sinusoidal,
trapezoidal, and square wave signals. Fig. 1 shows a triangular
dither signal together with its amplitude distribution function
F� and amplitude density function f�. A sawtooth dither with
amplitude A� and period p has the same amplitude distribution
function. For a trapezoidal dither, the amplitude distribution
and its generalized derivative are reported in Fig. 2. Note that
square wave dither corresponds to � = 0. It is easy to see that
dither signals that are constant over nonvanishing time intervals,
such as trapezoidal and square wave signals, have discontinuous
amplitude distribution function, which is thus in contrast to
triangular dither.

2.3. Averaged system

The averaged system is given by

ẇ(t) = f0(w(t), t) +
m∑

i=1

fi(w(t), t)Ni(gi(w(t), t)),

w(0) = w0, (2)

where Ni is the averaged nonlinearity defined as follows.

Definition 2.2. For each dither signal � : [0, ∞) → R and
nonlinearity n : R → R the averaged nonlinearity N : R → R

is defined as

N(z)�
∫

R
n(z + �) dF�(�), (3)

where the integral is a Lebesgue–Stieltjes integral.

In many cases the averaged nonlinearity can be formulated
as a time average, as the following lemma states.

Lemma 2.1 (Chung, 1974; Taylor, 1966). The following equal-
ity holds provided that either side exists:∫

R
n(z + �) dF�(�) = 1

p

∫
[0,p)

n(z + �(s)) ds.

It is interesting to investigate some aspects related to the con-
tinuity of the amplitude distribution function. When the ampli-
tude distribution function is absolutely continuous, we have

N(z) =
∫

R
n(z + �) dF�(�) =

∫
R

n(z + �)f�(�) d�,

which is well defined under the given assumptions on n.
When the Lebesgue–Stieltjes measure corresponding to the

amplitude distribution function has a decomposition (relative
to the Lebesgue measure) into an absolutely continuous part
with derivative f� and an atomic part, we have

N(z) =
∫

R
n(z + �) dF�(�)

=
∫

R
n(z + �)f�(�) d� +

∑
k

n(z + �k)Fk , (4)

where Fk �= 0 are the jump discontinuities corresponding to
the atomic parts of the measure defined by the amplitude dis-
tribution function. Square wave and trapezoidal dither signals
have this kind of amplitude distribution functions, cf., Fig. 2.
Eq. (4) is well defined except at possible discontinuity points
of n. Thus, in the case in which n is continuous, the results
of Zames and Shneydor (1976) and Mossaheb (1983) can be
applied together with Eq. (4) to compute the averaged sys-
tem. If the amplitude distribution function is discontinuous in
�k and n is discontinuous in z + �k , then neither these results
from the literature nor the averaging theorem in Section 3 can
be applied. Indeed, it can be shown that the averaged and the
dithered systems can behave qualitatively quite different when
n is discontinuous. See Iannelli et al. (2004) for an illustrative
example of this case.
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3. Averaging theorem

The main result of the paper states conditions under which
the averaged system approximates the behavior of the dithered
system for a sufficiently high dither frequency.

Theorem 3.1. Consider the dithered system (1) and the aver-
aged system (2) under the following assumptions:

(i) the dithered system has an absolutely continuous solution;
(ii) fi and gi are globally Lipschitz with Lipschitz constants

Lf and Lg , respectively;
(iii) f0 is globally Lipschitz with respect to x with Lipschitz

constant Lf , and f0(0, t) = 0;
(iv) ni is a function of bounded variation;
(v) each dither �i is p-periodic, |�i |�M�, and has abso-

lutely continuous amplitude distribution function F�i
with

derivative bounded by LF �maxi sup�∈R|f�i
(�)| < ∞.

Then, the averaged nonlinearities Ni are globally Lips-
chitz continuous and the averaged system (2) has a unique
absolutely continuous solution on [0, ∞). Moreover, for
any compact set K ⊂ Rn and any T > 0, there exists a positive
constant c(K, T ) such that

|x(t, x0) − w(t, x0)|�c(K, T )p, ∀x0 ∈ K, t ∈ [0, T ].
(5)

Proof. See Appendix.

Remark 3. It is possible to relax the periodicity assumption
on the dither and instead consider F-repetitive dither signals as
in Zames and Shneydor (1976). A dither signal � is F-repetitive
if there exists an unbounded sequence {tk}, 0 = t0 < t1, . . . ,

of sampling times such that (1) the maximal repetition interval
supk(tk − tk−1) is bounded and (2) the amplitude distribution
function of � on every interval (tk−1, tk) is equal to the am-
plitude distribution function of � on (t0, t1). See Iannelli et al.
(2004) for details.

Remark 4. The statement of the theorem appears to be fairly
tight, because examples suggest that dithering might lose its
effect when the hypotheses are violated. In particular, the
dithered and the averaged solution may have qualitatively
different behavior when the averaged nonlinearity is not Lips-
chitz continuous. Experimental confirmation of such behaviors
on a DC motor are provided in Iannelli, Johansson, Jönsson,
and Vasca (2003b). We have discovered similar phenomena
for limit cycles of the averaged and the dithered systems in
Iannelli (2002) and Iannelli et al. (2003a,b). The reason for the
different behaviors in these examples is that averaged solution
converges to a point of discontinuity of the nonlinearity, while
the dithered system has a solution with a small amplitude
ripple that perturbs the solution across the boundary of the dis-
continuity. This behavior gives rise to a new type of oscillation
of the dithered system, which deserves more careful analysis.
Obviously, a bound as in (5), which is uniform in every given

compact set, cannot be fulfilled when the qualitative presence
of the dithered and the averaged systems are so different.

Remark 5. Dithering can be interpreted as a technique for
regularization of solutions of nonsmooth systems. In fact, if n is
discontinuous, the solution of (1) might not be unique. On the
other hand, if the amplitude distribution function of the dither
is Lipschitz, then the averaged nonlinearity will be Lipschitz,
so the averaged system (2) will have a unique solution. Now,
from Theorem 3.1 one can conclude that by decreasing the
dither period, all possible solutions of (1) will become closer
and closer to the unique solution of the averaged system (2).

4. Conclusions

It was shown that a high-frequency dither signal of a quite
arbitrary shape can be used to narrow the effective nonlin-
ear sector of nonsmooth feedback systems. The result can be
interpreted as an extension of existing results for Lipschitz-
continuous systems. The main theorem related the dynamics
of the dithered system with an averaged system and stated that
the approximation error is of the order of the dither period,
under the condition that the amplitude distribution function of
the dither is absolutely continuous and has bounded derivative.
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Appendix A. Proof of Theorem 3.1

The proof is based on three lemmas. In the first lemma we
show that the averaged nonlinearity under our assumptions is
Lipschitz continuous, which implies that there exists a unique
absolutely continuous solution of the averaged system on any
finite time-horizon.

Lemma A.1. Suppose n is of bounded variation with total vari-
ation TV(n) and that F� is absolutely continuous with deriva-
tive f� and LF = sup�∈R|f�(�)| < ∞. Then ‖n‖∞ �Mn and

N(z) =
∫

R
n(z + �)f�(�) d�

has a Lipschitz constant LN �LF T V (n) and ‖N‖∞ �‖n‖∞.

Proof. Since n is of bounded variation, it follows that
‖n‖∞ �Mn, for some Mn > 0. Moreover, we have

|N(z1) − N(z2)| =
∣∣∣∣
∫

R
[n(z1 + �) − n(z2 + �)] dF�(�)

∣∣∣∣
=
∣∣∣∣
∫

R
n(�)[dF�(� − z1) − dF�(� − z2)]

∣∣∣∣ .
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Let V (�) = F�(� − z1) − F�(� − z2). We have V (�) = 0 for
� /∈ S=[−M�+min(z1, z2), M�+max(z1, z2)]. Hence, for any
I = [a, b] ⊃ S integration by parts gives

|N(z1) − N(z2)| =
∣∣∣∣
∫

I

n(�)(dF�(� − z1) − dF�(� − z2)

∣∣∣∣
=
∣∣∣∣n(b)V (b) − n(a)V (a) −

∫
I

V (�)dn(�)

∣∣∣∣
� sup

�∈I

|V (�)|
∫

I

|dn(�)|�LF |z1 − z2|TV(n),

where the last inequalities follow because V (a)=V (b)=0 and

|V (�)| =
∣∣∣∣
∫ z1

z2

f�(� − �) d�

∣∣∣∣ �LF |z1 − z2|.

The boundedness follows since

|N(z)| =
∣∣∣∣
∫

R
n(z + �)f�(�) d�

∣∣∣∣ �‖n‖∞
∫

R
f�(�) d�

= ‖n‖∞

f� being nonnegative. �

It should be noticed that if n is Lipschitz then the correspond-
ing averaged nonlinearity N will be Lipschitz independently
on the characteristic of F�, see Zames and Shneydor (1976).
Lemma A.1 says that in order to have N Lipschitz even when
n is not Lipschitz, we can impose the conditions of F� being
absolute continuous with bounded derivative. The next lemma
is the key to the proof of Theorem 3.1.

Lemma A.2. Suppose the signal y : [0, p] → R has Lipschitz
constant Ly . Introduce a constant ỹ satisfying

min
s∈[0,p] y(s)� ỹ� max

s∈[0,p] y(s).

Suppose that F� is absolutely continuous with bounded deriva-
tive: LF = sup�∈R |f�(�)| < ∞. Then

∣∣∣∣
∫ p

0
n(−y(s) + �(s)) ds −

∫ p

0
n(−ỹ + �(s)) ds

∣∣∣∣
�2LF LyT V (n)p2,

where TV(n) is the total variation of n.

Proof. From the definition of F� we have

F−y+�(�) = 1

p
�({s ∈ [0, p) : −y(s) + �(s)��}),

so that

E�
∣∣∣∣
∫ p

0
n(−y(s) + �(s)) ds −

∫ p

0
n(−ỹ + �(s)) ds

∣∣∣∣
= p

∣∣∣∣
∫

R
n(�) dF−y+�(�) −

∫
R

n(�) dF−ỹ+�(�)

∣∣∣∣ .

By hypothesis

ỹ − Lyp�y(s)� ỹ + Lyp, ∀s ∈ [0, p],
and thus it follows that for any � ∈ R,

F−ỹ+�(� − Lyp)�F−y+�(�)�F−ỹ+�(� + Lyp). (A.1)

On the other hand, since F−ỹ+� is nondecreasing,

F−ỹ+�(� − Lyp)�F−ỹ+�(�)�F−ỹ+�(� + Lyp). (A.2)

By combining (A.1) and (A.2) and using that F−ỹ+�(�) =
F�(� + ỹ) is Lipschitz and nonnegative, we get

F−y+�(�) − F−ỹ+�(�)

�F−ỹ+�(� + Lyp) − F−ỹ+�(� − Lyp)

�2LF Lyp.

In an analogous way,

−2LF Lyp�F−y+�(�) − F−ỹ+�(�).

So we can write

F−y+�(�) = F−ỹ+�(�) + V (�)

with |V (�)|�2LF Lyp and thus

E = p

∣∣∣∣
∫

R
n(�) dV (�)

∣∣∣∣ .

Since for s ∈ [0, p] we have |y(s)− ỹ|�Lyp and |�(s)|�M�,

V (�) = 0, ∀ � /∈ [−ỹ − Lyp − M�, −ỹ + Lyp + M�]�S.

The function V (�) is of bounded variation and continuous from
the right, since it is the difference of two functions that satisfy
both these properties. By hypothesis n is of bounded variation
with total variation TV(n), so we can integrate by parts (Riesz
& Sz-Nagy, 1990):∫

[a,b]
n(�)dV (�) = n(b)V (b) − n(a)V (a) −

∫
[a,b]

V (�) dn(�),

where right and left limits of n and V are used in order to cope
with discontinuities. If [a, b] ⊃ S then V (a) = V (b) = 0, and
thus in general

E�p

∣∣∣∣
∫

S

V (�) dn(�)

∣∣∣∣ �2p2LF LyT V (n),

which proves the lemma. �

Lemmas A.1 and A.2 are used to prove the following result.

Lemma A.3. If the assumptions of Theorem 3.1 hold, then there
exist constants K̄, K̃ > 0 such that∣∣∣∣
∫ p

0
fi(x, s)ni(gi(x, s)+�i )ds−

∫ p

0
fi(w, s)Ni(gi(w, s)) ds

∣∣∣∣
�K̄

∫ p

0
|x(s) − w(s)| ds + K̃p2.
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Proof. For this proof we need a Lipschitz constant for x(t) on
[0, T ]. By our assumptions we have

|x(t)|=
∣∣∣∣∣x0+

∫ t

0

(
f0(x(s), s)+

m∑
i=1

fi(x(s), s)ni(gi(x(s), s)

+�i (s))

)
ds

∣∣∣∣∣
� |x0| + (1 + mMn)Lf

∫ t

0
|x(s)| ds + mMnT MI ,

where we used |fi(x, s) − fi(0, s) + fi(0, s)|�Lf |x(s)| +
|fi(0, s)| and introduced

MI = max
i=1,...,m

max
t∈[0,T ] |fi(0, t)|.

Grönvall–Bellman Lemma gives

|x(t)|�(mMnMIT + |x0|)e(1+mMn)Lf T =: Mx, t ∈ [0, T ].
(A.3)

This implies that |ẋ(t)|�Lf Mx + mMf Mn a.e., with

Mf = Lf (Mx + T ) + max
i

|fi(0, 0)|. (A.4)

This gives the Lipschitz bound Lx =Lf Mx +mMf Mn. Hence,
for any t̃ ∈ [0, p] and x̃ := x(t̃), we have that |x(s)− x̃|�Lxp

for all s ∈ [0, p].
Let us consider the following equality:

fi(x, t)ni(gi(x, t) + �i ) − fi(w, t)Ni(gi(w, t))

=fi(x, t)ni(gi(x, t)+�i ) − fi(x̃, t̃)ni(gi(x, t)+�i ) (A.5a)

+fi(x̃, t̃)ni(gi(x, t)+�i )−fi(x̃, t̃)ni(gi(x̃, t̃)+�i ) (A.5b)

+ fi(x̃, t̃)ni(gi(x̃, t̃) + �i ) − fi(x̃, t̃)Ni(gi(x̃, t̃)) (A.5c)

+ fi(x̃, t̃)Ni(gi(x̃, t̃)) − fi(x, t)Ni(gi(x, t)) (A.5d)

+ fi(x, t)Ni(gi(x, t)) − fi(w, t)Ni(gi(w, t)). (A.5e)

Integrating (A.5) leads to the inequality∣∣∣∣
∫ p

0
[fi(x, s)ni(gi(x, s) + �i ) − fi(w, s)Ni(gi(w, s))] ds

∣∣∣∣
�MnLf (Lx + 1)p2 (A.6a)

+ |fi(x̃, t̃)|
∣∣∣∣
∫ p

0
[ni(gi(x, t) + �i ) − ni(gi(x̃, t̃)

+ �i )] ds

∣∣∣∣ (A.6b)

+ MnLf (Lx + 1)p2 + Mf LNLg(Lx + 1)p2 (A.6c)

+ (MnLf + Mf LNLg)

∫ p

0
|x − w| ds, (A.6d)

where we used that the integral of (A.5c) is zero by the defini-
tion of the averaged nonlinearity in (3). The other terms follow
from the following arguments. First note that

|fi(x, t) − fi(x̃, t̃)|�Lf (Lx + 1)p,

over the interval [0, p]. This gives (A.6a). Similarly,

|gi(x, t) − gi(x̃, t̃)|�Lg(Lx + 1)p

over the interval [0, p]. Thus, by applying Lemma A.2 with
−y(s) = gi(x(s), s) and −ỹ = gi(x̃, t̃), it follows that (A.6b)
is bounded by

2p2Mf LF Lg(Lx + 1)TV(n), (A.7)

where we used Mf in (A.4). For the remaining terms we use
that the Lipschitz constant of fiNi is

L[fiNi]�Lf Mn + Mf LN .

We use this to show that (A.5d) is bounded by MnLf (Lx +
1)p+Mf LNLg(Lx +1)p and (A.6c) follows. In an analogous
way we can show that the upper bound of (A.5e) is MnLf |x −
w| + Mf LNLg|x − w|.

For any p > 0, we have shown that∣∣∣∣
∫ p

0
[fi(x, s) · ni(gi(x, s)+�i )−fi(w, s) · Ni(gi(w, s))] ds

∣∣∣∣
�K̄

∫ p

0
|x − w| ds + K̃p2,

with

K̄ = MnLf + Mf LNLg ,

K̃ = MnLf (Lx + 1) + 2Mf LF Lg(Lx + 1)TV(n)

+ MnLf (Lx + 1) + Mf LNLg(Lx + 1). �

Now we can proceed by showing that the approximation
error between the dithered and the averaged system can be
arbitrarily small by increasing the dither frequency, as stated in
the theorem.

Proof of Theorem 3.1. Consider the dithered system (1) and
the averaged system (2) on the time interval [0, T ] with w0=x0.
By integrating the right-hand sides of (1) and (2), we can write

|x(t) − w(t)|�
∫ t

0
|f0(x, s) − f0(w, s)| ds

+
m∑

i=1

∣∣∣∣
∫ t

0
[fi(x, s)ni(gi(x, s) + �i )

−fi(w, s)Ni(gi(w, s))] ds

∣∣∣∣
for all t ∈ [0, T ].

If we introduce � = 
T/p�, the largest integer such that
�p�T , then by using the periodicity of �i ,

|x(t) − w(t)|�
∫ t

0
|f0(x(s), s) − f0(w(s), s)| ds

+
�−1∑
k=0

m∑
i=1

∣∣∣∣∣
∫ (k+1)p

kp

fi(x(s), s)ni(gi(x(s), s) + �i (s)) ds

−
∫ (k+1)p

kp

fi(w(s), s)Ni(gi(w(s), s)) ds

∣∣∣∣∣+ V1(p),

(A.8)

where the last term is bounded as |V1(p)|�2mMf Mnp.
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The Lipschitz property of f0 gives∣∣∣∣
∫ t

0
[f0(x(s), s) − f0(w(s), s)] ds

∣∣∣∣ �Lf

∫ t

0
|x(s) − w(s)| ds.

Next, we notice that each integral in the sum of (A.8) can be
written as∫ p

0
fi(xk(s), sk)ni(gi(xk(s), sk) + �i (s)) ds

−
∫ p

0
fi(wk(s), sk)Ni(gi(wk(s), sk)) ds,

where the subscript k denotes a time translation: sk = s + kp,
xk(s) = x(s + kp), and similarly for w. Then applying Lemma
A.3, each integral

∫ p

0 (fi(xk, sk)ni(gi(xk, sk)+�i (s))) ds can be
approximated by

∫ p

0 fi(wk, sk)Ni(gi(wk, sk)) ds. Indeed, the
Lipschitz assumptions on fi and gi are uniform in t, so Lemma
A.3 can be applied to all functions xk . The approximation error
has an upper bound K̄

∫ p

0 |xk −wk| ds + K̃p2. By summing all
the contributions given by the time intervals [kp, (k + 1)p] ⊂
[0, T ], we get

|x(t) − w(t)|�K

∫ t

0
|x(s) − w(s)| ds + mK̃pT

+ V1(p) + V2(p), ∀t ∈ [0, T ],
where K = Lf + mK̄ = Lf + MnLf + Mf LNLg and V2(p)

is bounded by

|V2(p)|�mK̄(Mx + Mw)p,

where Mx was derived in (A.3) and Mw can in a similar way be
shown to be bounded by the same constant since w(0) = x(0)

and ‖N‖∞ �‖n‖∞, so that in fact Mw �Mx .
By applying Grönvall–Bellman Lemma (Sastry, 1999), the

theorem follows since

|x(t) − w(t)|�(mK̃Tp + V1(p) + V2(p))eKT ∀t ∈ [0, T ],
where the right hand side is of order p. We have proven the
bound in (5) with

c(K, T ) = m sup
x0∈K

(K̃T + 2Mf Mn + 2K̄Mx)e
KT ,

where K, K̄ , K, Mx and Mf all depend on x0. �
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