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Abstract— This paper makes an attempt to explore the
fundamental properties of distributed methods for minimizing a
sum of objective functions with each component only known to
a particular node, given a certain level of node knowledge and
computation capacity. The information each node receives from
its neighbors can be any nonlinear function of its neighbors’
states as long as the function takes value zero within the local
consensus manifold. Each node also observes the gradient of its
own objective function at its current state. The update dynamics
of each node is a first-order integrator. The admissible control
input of each node is homogeneous, given by a binary function
with each variable corresponding to the neighboring term and
the gradient term, respectively. The function determining the
control law is assumed to be injective when the first variable is
fixed to zero. It is proven that there exists a control rule which
guarantees global optimal consensus if and only if the solution
sets of the local objectives admit a nonempty intersection set
for fixed strongly connected graphs. Then we show that for
any tolerated error, we can find a simple control rule that
guarantees global optimal consensus within this error for fixed,
bidirectional, and connected graphs under mild conditions.
For time-varying graphs, we show that optimal consensus
can always be achieved by a simple control rule as long as
the graph is uniformly jointly strongly connected and the
nonempty intersection condition holds. The results illustrate
that nonempty intersection for the local optimal solution sets is
a critical condition for distributed optimization using consensus
processing to connect the information over the nodes.

Index Terms— Distributed optimization, Dynamical Systems,
Multi-agent systems, Optimal consensus

I. INTRODUCTION

In recent years networked dynamics for various problems
such as consensus, formation, coverage, etc., have received
much research interest [16], [11], [10], [8], [14], [18], [20],
[21], [24], [12], [15]. A central idea is that a collective task
can be reached for a group of nodes as long as, the right
information is exchanged by each node, the proper design of
individual node dynamics, and the communication graph is
well structured.

Distributed control, communication and estimation in
multi-agent systems and wireless networks naturally result in
distributed optimization problems [29], [31], [30], [32]. Min-
imizing a sum of convex objective functions,

∑N
i=1 fi(z),

where each component fi is known only to node i, has served
as a basic model. Tremendous research efforts have been
devoted to finding solutions to this distributed optimization
problem, and a number of methods have been derived which
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were proven to be effective [35], [32], [33], [25], [26], [27],
[36], [28], [41], [39], [40].

However, the literature has not to sufficient extent studied
the real meaning of “distributed” optimization, or the level
of “distribution” possible for convergence. Some algorithms
perform better than others in the sense of faster convergence,
while they depend on more information exchange and more
complex iteration rule. In order for a precise definition of
distributed optimization method, the knowledge set of the
sharing information among the nodes, and the computation
capacity each node is equipped, should be clarified.

An interesting question arises: fixing the knowledge set
and the computation capacity, what is the best one can
do for solving the distributed optimization problems? In
this paper, we make an attempt to propose an answer to
such a question when the knowledge set for each node i is
restricted to a neighboring term as any nonlinear function
of node i’s neighbors’ states which takes value zero within
the local consensus manifold, and a gradient term as the
gradient of fi at its current estimate, and the node dynamics
is restricted to continuous-time feedback laws with respect
to the neighboring and gradient terms.

The main results we obtain are stated as follows:

• We prove that there exists a control rule which guaran-
tees global optimal consensus if and only if the solution
sets of fi, i = 1, . . . , N admit a nonempty intersection
set for fixed strongly connected graphs.

• We show that given any ε > 0, a simple control rule can
be found which guarantees global optimal consensus
with error no larger than ε for fixed, bidirectional, and
connected graphs under some mild conditions.

• We show that optimal consensus can always be achieved
by a simple control rule with time-varying graphs as
long as the graph is uniformly jointly strongly connected
and the nonempty intersection condition holds.

The rest of the paper is organized as follows. In Section II,
some preliminary mathematical concepts and lemmas are
introduced. In Section III, we formulate considered opti-
mization model, node dynamics, and define the problem
of interest. Section IV focuses on fixed graphs, where a
necessary and sufficient condition will be presented for
exact solutions of optimal consensus, and then approximate
solutions are investigated by ε-optimal consensus. Section V
turns to time-varying graphs, and we will show optimal
consensus under uniformly jointly strongly connected graphs.
Finally, in Section VI some concluding remarks are given.
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II. PRELIMINARIES

In this section, we introduce some notations and provide
preliminary results that will be used in the rest of the paper.

A. Directed Graphs

A directed graph (digraph) G = (V, E) consists of a finite
set V of nodes and an arc set E , where an arc is an ordered
pair of distinct nodes of V . An element (i, j) ∈ E describes
an arc which leaves i and enters j. A walk in digraph G is
an alternating sequence W : i1e1i2e2 . . . em−1im of nodes
iκ and arcs eκ = (iκ, iκ+1) ∈ E for κ = 1, 2, . . . ,m − 1.
A walk is called a path if the nodes of this walk are
distinct, and a path from i to j is denoted as i → j. G
is said to be strongly connected if it contains path i → j
and j → i for every pair of nodes i and j. A digraph
G is called bidirectional when for any two nodes i and j,
(i, j) ∈ E if and only if (j, i) ∈ E . Ignoring the direction of
the arcs, the connectivity of a bidirectional digraph will be
transformed to that of the corresponding undirected graph.
A time-varying graph is defined as Gσ(t) = (V, Eσ(t)) with
σ : [0,+∞) → Q as a piecewise constant function, where
Q is a finite set containing all possible graphs with node
set V . Moreover, the joint graph of Gσ(t) in time interval
[t1, t2) with t1 < t2 ≤ +∞ is defined as G([t1, t2)) =
∪t∈[t1,t2)G(t) = (V,∪t∈[t1,t2)Eσ(t)).

B. Dini Derivatives

The upper Dini derivative of a continuous function h :
(a, b)→ R (−∞ ≤ a < b ≤ ∞) at t is defined as

D+h(t) = lim sup
s→0+

h(t+ s)− h(t)

s
.

When h is continuous on (a, b), h is non-increasing on (a, b)
if and only if D+h(t) ≤ 0 for any t ∈ (a, b). The next result
is given for the calculation of Dini derivative (see [6], [23]).

Lemma 2.1: Let Vi(t, x) : R × Rd → R (i = 1, . . . , n)
be C1 and V (t, x) = maxi=1,...,n Vi(t, x). If I(t) = {i ∈
{1, 2, . . . , n} : V (t, x(t)) = Vi(t, x(t))} is the set of indices
where the maximum is reached at t, then D+V (t, x(t)) =
maxi∈I(t) V̇i(t, x(t)).

C. Limit Sets

Consider the following autonomous system

ẋ = f(x), (1)

where f : Rd → Rd is a continuous function. Let x(t) be
a solution of (1) with initial condition x(t0) = x0. Then
Ω0 ⊂ Rd is called a positively invariant set of (1) if, for any
t0 ∈ R and any x0 ∈ Ω0, we have x(t) ∈ Ω0 when t ≥ t0
along every solution x(t) of (1).

We call y a ω-limit point of x(t) if there exists a sequence
{tk} with limk→∞ tk =∞ such that

lim
k→∞

x(tk) = y.

The set of all ω-limit points of x(t) is called the ω-limit
set of x(t), denoted as Λ+

(
x(t)

)
. The following lemma is

well-known (see [5]).

Lemma 2.2: Let x(t) be a solution of (1). Then Λ+
(
x(t)

)
is positively invariant. Moreover, if x(t) is contained in a
compact set, then Λ+

(
x(t)

)
6= ∅.

D. Convex Analysis

A set K ⊂ Rd is said to be convex if (1− λ)x+ λy ∈ K
whenever x ∈ K, y ∈ K and 0 ≤ λ ≤ 1. For any set
S ⊂ Rd, the intersection of all convex sets containing S is
called the convex hull of S, denoted by co(S).

Let K be a closed convex subset in Rd and denote |x|K
.
=

infy∈K |x−y| as the distance between x ∈ Rd and K, where
| · | denotes the Euclidean norm. There is a unique element
PK(x) ∈ K satisfying |x − PK(x)| = |x|K associated to
any x ∈ Rd [2]. The map PK is called the projector onto
K. The following properties hold (see [2]).

Lemma 2.3: (i). We have

〈PK(x)− x, PK(x)− y〉 ≤ 0, ∀y ∈ K. (2)

(ii). PK has the following non-expansiveness property:

|PK(x)− PK(y)| ≤ |x− y|, x, y ∈ Rd. (3)

(iii) |x|2K is continuously differentiable at point x with

∇|x|2K = 2
(
x− PK(x)

)
. (4)

Let f : Rd → R be a real-valued function. We call f
a convex function if for any x, y ∈ Rd and 0 ≤ λ ≤ 1,
it holds that f

(
(1 − λ)x + λy

)
≤ (1 − λ)f(x) + λf(y).

The following lemma states some well-known properties for
convex functions.

Lemma 2.4: Let f : Rd → R ∈ C1 be a convex function.
(i). f(x) ≥ f(y) +

〈
x− y,∇f(y)

〉
.

(ii). Any local minimum is a global minimum, i.e.,
arg min f =

{
z : ∇f(z) = 0

}
.

III. PROBLEM DEFINITION

A. Optimization Model

Consider a network with node set V = {1, 2, . . . , N}.
The state of node i is denoted as xi ∈ Rm, and node i
is associated with a cost function fi : Rm → R which is
observed by node i only. The objective for this group of
autonomous agents is to cooperatively solve the following
optimization problem

minimize
∑N
i=1 fi(z)

subject to z ∈ Rm. (5)

We impose the following assumption on the functions
fi, i = 1, . . . , N .

A1. For all i = 1, . . . , N , we have (i) fi ∈ C1; (ii) fi is a
convex function; (iii) arg min fi 6= ∅.

Problem (5) is equivalent with the following problem:

minimize
∑N
i=1 fi(xi)

subject to xi ∈ Rm
x1 = · · · = xN .

(6)

Then from (6) we see that consensus is a natural mean for
solving (5).
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B. Dynamics

The dynamics of each node is assumed to be a first-order
integrator:

ẋi = ui, i = 1, . . . , N, (7)

where ui is the control input.
The structure of the information flow through the network

is modeled as a directed graph G = (V, E). A node j is said
to be a neighbor of i at time t when there is an arc (j, i) ∈ E ,
and we denote Ni the set of neighbors for node i.

The local optimization information, gi(t), that node i
receives from its objective fi, is simply assume to be the
gradient of fi at its current state, i.e.,

gi(t)
.
= ∇fi

(
xi(t)

)
. (8)

We define the neighboring information, ni(t) which node
i receives from its neighbors at time t as

ni(t)
.
= hi

(
xi(t), xj(t) : j ∈ Ni

)
. (9)

where hi : Rm × Rm|Ni| → Rn is a continuous function
with |Ni| denoting the number of elements in Ni and n a
given integer indicating the dimension of the neighboring
information. For each hi, we use the following assumption.

A2. For all i ∈ V , hi ≡ 0 within the local consensus manifold{
xi = xj : j ∈ Ni

}
.

Remark 3.1: Assumption A2 is to say that the neighboring
information a node receives from the neighbors becomes
trivial when it is in the same state with all its neighbors. This
is a quite natural assumption in the literature on distributed
averaging and optimization algorithms [16], [24], [13], [26],
[27].

For the control strategy of the nodes, we impose the
following assumption.

A3. There exists a function J ∈ F∗
.
=
{
F(·, ·) ∈ C0 :

Rn ×Rm → Rm, F(0, ·) is injective
}

such that

ui = J
(
ni, gi

)
, i = 1, . . . , N. (10)

Remark 3.2: Assumption A3 indicates that control proto-
cols are applied to each node without difference with respect
to individual local optimization information and neighboring
information. Note that our network model is an equitable
world because one cannot tell the difference from one node
to another. The admissible control rule requires J (0, ·) to
be injective, which indicates that each node should take
different response to different gradient information on the
local consensus manifold. Assumption A3 indeed has been
widely applied in the literature, see [16], [24], [13], [26],
[27].

C. Problem

Let x(t) be the trajectory of system (7) with con-
trol law (10) for initial condition x0 = x(t0) =
(xT1 (t0), . . . , xTN (t0))T ∈ RmN . Denote F (z) =∑N
i=1 fi(z). We introduce the following definition.

Definition 3.1: Global optimal consensus is achieved if
for all x0 ∈ RmN , we have

lim sup
t→+∞

F
(
xi(t)

)
= min
z∈Rm

F (z) (11)

and

lim
t→+∞

∣∣xi(t)− xj(t)∣∣ = 0, i, j = 1, . . . , N. (12)

We see from the definition of optimal consensus that
it means a consensus meanwhile solving the optimization
problem (5).

IV. FIXED GRAPHS: FUNDAMENTAL LIMIT AND
APPROXIMATE SOLUTION

In this section, we consider the possibility of solving
optimal consensus using feedback law (10) under fixed com-
munication graphs. We first discuss whether exact optimal
consensus can be reached for the network with directed node
interactions. Then we show the existence of an approximate
solution for optimal consensus with bidirectional graphs.

A. Exact Solution

This section presents the result for optimal consensus.
We make another assumption on the solution set of F =∑N
i=1 fi.

A4. arg minF (z) 6= ∅ is a bounded set.

The main result we obtain on the existence of a control
law solving optimal consensus is stated as follows.

Theorem 4.1: Assume that A1–A4 hold. Let the commu-
nication graph G be fixed and strongly connected. There
exists a distributed control which guarantees global optimal
consensus if and only if

N⋂
i=1

arg min fi(z) 6= ∅. (13)

According to Theorem 4.1, the optimal solution sets of
fi, i = 1, . . . , N having nonempty intersection is a critical
condition for the existence of a simple control rule (10)
that solves the optimal consensus problem. The arg min f ′is
admit an nonempty intersection is a strong constraint which
in general does not hold. Therefore, basically Theorem
4.1 suggests that exact solution for optimal consensus is
impossible of the considered model. The sufficiency claim of
Theorem 4.1 follows from the upcoming Theorem 5.2. The
proof of the necessity part is as follows.
Proof of Theorem 4.1: (Necessity) Suppose⋂N
i=1 arg min fi(z) = ∅ and there exists a distributed

control in the form of (10), say J0
(
ni, gi

)
, under which

global optimal consensus is reached. Let x(t) be a trajectory
of system (7) with control J0

(
ni, gi

)
and Λ+(x(t)) be its

ω-limit set. The definition of optimal consensus leads to that

x(t) converges to the bounded set
(

arg minF (z)
)N ⋂

M,

where
(

arg minF (z)
)N

denotes the N ’th power set of
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arg minF (z) and M denotes the consensus manifold,
defined by

M .
=
{
x = (xT1 . . . x

T
N )T ∈ RmN : x1 = · · · = xN

}
.
(14)

Therefore, each trajectory x(t) is contained in a compact set.
Based on Lemma 2.2, we conclude that Λ+(x(t)) 6= ∅ and

Λ+(x(t)) ⊆
(

arg minF (z)
)N⋂

M, (15)

Moreover, Λ+(x(t)) is positively invariant since system (7)
is autonomous under control J0

(
ni, gi

)
when the communi-

cation graph is fixed. This is to say, any trajectory of system
(7) under control J0

(
ni, gi

)
must stay within Λ+(x(t)) for

any initial value in Λ+(x(t)).
Now we take y ∈ Λ+(x(t)). Then we have y ∈(
arg minF (z)

)N ⋂
M according to (15), and thus y =

(zT∗ . . . z
T
∗ )T for some z∗ ∈ arg minF (z). With Assumption

A1, the convexity of fi’s implies that

arg minF (z) =
{
z ∈ Rm :

N∑
i=1

∇fi(z) = 0
}
. (16)

On the other hand, we have

N⋂
i=1

arg min fi(z) =

N⋂
i=1

{
z ∈ Rm : ∇fi(z) = 0

}
= ∅.

Therefore, there exist two indices i1, i2 ∈ {1, . . . , N} with
i1 6= i2 such that

∇fi1(z∗) 6= ∇fi2(z∗). (17)

Consider the solution of (7) under control J0
(
ni, gi

)
for

initial time t0 and initial value y. The fact that y belongs to
the consensus manifold guarantees

ni1(t0) = ni2(t0) = 0. (18)

With Assumption A4, we have

J0
(
ni1(t0), gi1(t0)

)
= J0

(
0,∇fi1(z∗)

)
6= J0

(
0,∇fi2(z∗)

)
= J0

(
ni2(t0), gi2(t0)

)
. (19)

This implies ẋi1(t0) 6= ẋi2(t0). As a result, there exists a
constant ε > 0 such that xi1(t) 6= xi2(t) for t ∈ (t0, t0 + ε).
In other word, the trajectory will leave the set(

arg minF (z)
)N⋂

M

for (t0, t0+ε), and therefore will also leave the set Λ+(x(t)).
This contradicts the fact that Λ+(x(t)) is positively invariant.
The necessity part of Theorem 4.1 has been proved.

B. Approximate Solution
Theorem 4.1 indicates that optimal consensus is impossi-

ble no matter how the control rule is chosen from F∗ as long
as the nonempty intersection condition (13) is not fulfilled.
In this subsection, we discuss the approximate solution of
optimal consensus in the absence of (13). We introduce the
following definition.

Definition 4.1: Global ε-optimal consensus is achieved if
for all x0 ∈ RmN , we have

lim sup
t→+∞

F
(
xi(t)

)
≤ min
z∈Rm

F (z) + ε (20)

and

lim
t→+∞

∣∣xi(t)− xj(t)∣∣ ≤ ε, i, j = 1, . . . , N. (21)
Let the communication graph G be bidirectional. In this

case, we will use an unordered pair {i, j} to denote the edge
between node i and j in E . We also allow a weight aij > 0
marking the strength of the information flow of edge {i, j}.
Hence we have aij = aji in this case.

Denoting FG(x;K) =
∑N
i=1 fi(xi)+

K
2

∑
{j,i}∈E aij

∣∣xj−
xi
∣∣2, we impose the following assumption.

A5. (i) arg minF (z) 6= ∅, where F (z) =
∑N
i=1 fi(z);

(ii) arg minFG(x;K) 6= ∅ for all K ≥ 0; (iii)⋃
K≥0 arg minFG(x;K) is bounded.

For ε-optimal consensus, we present the following result.
Theorem 4.2: Assume that A1, A2, A3, and A5 hold.

Let the communication graph G be fixed, bidirectional, and
connected. Then for any ε > 0, there exists a constant
K(ε) > 0 such that simple control rule

ui = JK(ni, gi)
.
= K(ε)

∑
j∈Ni

aij
(
xj − xi

)
−∇fi

(
xi
)
(22)

guarantees global ε-optimal consensus.
Proof. It is straightforward to see that

JK(ni, gi) = K
∑
j∈Ni

aij
(
xj − xi

)
−∇fi

(
xi
)

= −∇xi

(K
2

∑
j∈Ni

aij
∣∣xj − xi∣∣2 + fi(xi)

)
.

(23)

Thus, System (7) with control law ui = JK(ni, gi) can be
written into the following compact form

ẋ = −∇FG(x;K), x = (xT1 . . . x
T
N )T ∈ RmN . (24)

Then the convexity of FG(x;K) ensures that every trajectory
of (22) asymptotically solves the following convex optimiza-
tion problem

minimize FG(x;K)
subject to xi ∈ Rm, i = 1, . . . , N.

(25)

Convexity gives

arg minFG(x;K) =

{
x : −K(L⊗ Im)x

=
((
∇f1(x1)

)T
. . .
(
∇fN (xN )

)T)T}
, (26)
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where ⊗ represents the Kronecker product, Im is the identity
matrix in Rm, and L = D − A is the Laplacian of graph
G with A = [aij ] and D = diag(d1, . . . , dN ), where di =∑n
j=1 aij . Under Assumptions A1 and A5, we have

L0
.
= sup

{∣∣∇F̃ (x)
∣∣ : x ∈

⋃
K≥0

arg minFG(x;K)
}

(27)

is a finite number, where F̃ (x) =
∑N
i=1 fi(xi). We also

define

D0
.
= sup

{∣∣z∗ − xi∣∣ : i = 1, . . . , N,

x ∈
⋃
K≥0

arg minFG(x;K)
}
, (28)

where z∗ ∈ arg minF is an arbitrarily chosen point.
Let p = (pT1 . . . p

T
N )T ∈ arg minFG(x;K). Since the

graph is bidirectional and connected, we can sort the eigen-
values of the Laplacian L⊗ Im as

0 = λ1 = · · · = λm < λm+1 ≤ · · · ≤ λmN .

Let l1 . . . , lmN be the orthonormal basis of RmN formed
by the right eigenvectors of L ⊗ Im, where l1, . . . , lm are
eigenvectors corresponding to the zero eigenvalue. Suppose
p =

∑mN
k=1 cklk with ck ∈ R, k = 1, . . . ,mN .

According to (26), we have∣∣∣K(L⊗ Im)p
∣∣∣2 = K2

mN∑
k=m+1

c2kλ
2
k ≤ L2

0, (29)

which yields
mN∑

k=m+1

c2k ≤
( L0

Kλ∗2

)2
, (30)

where λ∗2 = λm+1 > 0 denotes the second smallest
eigenvalue of L.

Now recall that

M .
=
{
x = (xT1 . . . x

T
N )T : x1 = · · · = xN

}
. (31)

is the consensus manifold. Noticing that M =
span{l1, . . . , lm}, we conclude from (30) that

mN∑
k=m+1

c2k =
∣∣∣ mN∑
k=m+1

cklk

∣∣∣2
= |p|2M

=

N∑
i=1

∣∣∣pi − ∑N
i=1 pi
N

∣∣∣2
≤
( L0

Kλ∗2

)2
. (32)

Thus, for any ς > 0, there is K1(ς) > 0 such that when
K ≥ K1(ς), ∣∣∣pi − pave∣∣∣ ≤ ς, i = 1, . . . , N

and
|F (pi)− F (pave)

∣∣∣ ≤ ς, i = 1, . . . , N,

where pave =
∑N

i=1 pi
N .

On the other hand, with (26), we have
N∑
i=1

∇fi(pi) =

N∑
i=1

∇fi(pave + p̂i) = 0, (33)

where and p̂i = pi − pave. Now since each fi ∈ C1, for any
ς > 0, there is K2(ς) > 0 such that when K ≥ K2(ς),∣∣∣ N∑

i=1

∇fi(pave)
∣∣∣ ≤ ς

D0
. (34)

This implies

F (pave) ≤ F (z∗) + |z∗ − pave| ×
∣∣∣ N∑
i=1

∇fi(pave)
∣∣∣

≤ F (z∗) + ς. (35)

Therefore, for any ε > 0, we can take K0 =
max{K1(ε/2),K2(ε/2)}. Then when K ≥ K0, we have

|pi − pj | ≤ ε; F (pi) ≤ min
z
F (z) + ε (36)

for all i and j. Now that FG(x;K) is a convex function and
observing (24), every limit point of System (7) with control
rule JK(ni, gi) is contained in the set arg minFG(x;K).
Noting that p is arbitrarily chosen from arg minFG(x;K), ε-
optimal consensus is achieved as long as we choose K ≥ K0.
This completes the proof. �

With Theorem 4.2, we see that even though we know
that without nonempty intersection condition, it is impossible
to reach optimal consensus via any feedback control in
the form of (10), it is still possible to find a control law
(10) which guarantees approximate optimal consensus with
arbitrary accuracy.

It is worth pointing out that to determine the proper K in
(22) for a given ε relies on the knowledge of structure of the
network, and the information of all fi, i = 1, . . . , N . This
to say, finding a proper control (22) for ε-optimal consensus
requires the global knowledge of the whole network. Appar-
ently the nonempty intersection condition in Theorem 4.1 is
also a global knowledge. Then we see that from Theorem
4.1 to Theorem 4.2, some global information (or constraint)
is always needed to guarantee a collective convergence.

C. Assumption Feasibility

This subsection discusses the feasibility of Assumptions
A4 and A5 and shows that some mild conditions are enough
to ensure A4 and A5.

Proposition 4.1: Assume that A1 holds. If F̃ (x) =∑N
i=1 fi(xi) is coercive, i.e., F̃ (x) → ∞ as long as |x| →

∞, then A4 and A5 hold.
Proof. a). Since F̃ (x) =

∑N
i=1 fi(xi) is coercive, it follows

straightforwardly that F (z) =
∑N
i=1 fi(z) is also coercive.

As a result, arg minF (z) 6= ∅ is a bounded set. Thus, A4
and A5.(i) hold.

b). Observing that K
2

∑
{j,i}∈E aij

∣∣xj − xi∣∣2 ≥ 0 for all
x = (xT1 . . . x

T
N )T ∈ RmN and that F̃ (x) =

∑N
i=1 fi(xi)
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is coercive, we obtain that arg minFG(x;K) 6= ∅ for all
K ≥ 0. Thus, A5.(ii) holds.

c). Based on a), we can denote F∗ = minz F (z) =
F (z∗). Since

∑N
i=1 fi(xi) is coercive, there exists a constant

M(F∗) > 0 such that
∑N
i=1 fi(xi) > F∗ for all |x| > M .

This implies

FG(x;K) > FG(1N ⊗ z∗;K) = F∗ (37)

for all |x| > M . That is to say, the global minimum of
FG(x;K) is reached within the set {|x| ≤M} for all K > 0.
Therefore, we have⋃

K≥0

arg minFG(x;K) ⊆
{
|x| ≤M

}
. (38)

This proves A5.(iii). �

V. TIME-VARYING GRAPHS

Now we consider time-varying graphs. The communi-
cation in the multi-agent network is modeled as Gσ(t) =
(V, Eσ(t)) with σ : [0,+∞) → Q as a piecewise constant
function, where Q is a finite set indicating all possible
graphs. In this case the neighbor set for each node is time-
varying, and we let Ni(σ(t)) represent the set of agent i’s
neighbors at time t. As usual in the literature [16], [23], [20],
an assumption is given to the variation of Gσ(t).

A6 (Dwell Time) There is a lower bound constant τD > 0
between two consecutive switching time instants of σ(t).

We also allow the arc weights aij to be time-varying and
another assumption is made on each aij(t), i, j = 1, 2, ..., N .

A7 (Weights Rule) (i) Each aij(t) is piece-wise continuous
and aij(t) ≥ 0 for all i and j.
(ii). There are a∗ > 0 and a∗ > 0 such that a∗ ≤ aij(t) ≤
a∗, t ∈ R+.

We have the following definition.
Definition 5.1: (i) Gσ(t) is said to be uniformly jointly

strongly connected (UJSC) if there exists a constant T > 0
such that G([t, t+ T )) is strongly connected for any t ≥ 0.

(ii) Gσ(t) is said to be uniformly jointly quasi-strongly
connected (UQSC) if there exists a constant T > 0 such
that G([t, t+ T )) has a spanning tree for any t ≥ 0.

For optimal consensus with time-varying graphs, we
present the following result.

Theorem 5.1: Suppose A1–A3, A6–A7 hold and Gσ(t) is
UJSC. Suppose

⋂N
i=1 arg min fi 6= ∅, and it contains at least

one interior point. Then simple control rule

ui = J?(ni, gi)
.
=

∑
j∈Ni(σ(t))

aij(t)
(
xj − xi

)
−∇fi

(
xi
)

guarantees global optimal consensus. Furthermore, there
exists a point x∗ ∈

⋂N
i=1 arg min fi such that

lim
t→∞

xi(t) = x∗. (39)
Note that (39) indeed a stronger conclusion than our

definition of optimal consensus since it guarantees all the
node states converge to a common point in the global solution

set of F (z). We will see from the proof of Theorem 5.1
that this state convergence highly relies on the existence
of a interior point

⋂N
i=1 arg min fi. In the absence of this

interior point condition, it turns out that optimal consensus
still stands. We present another theorem.

Theorem 5.2: Suppose A1–A3, A6–A7 hold and Gσ(t) is
UJSC. Suppose also

⋂N
i=1 arg min fi 6= ∅. Then control rule

ui = J?(ni, gi)
.
=

∑
j∈Ni(σ(t))

aij(t)
(
xj − xi

)
−∇fi

(
xi
)

guarantees global optimal consensus.

A. Preliminary Lemmas

We establish several useful lemmas in this subsection.
Suppose

⋂N
i=1 arg min fi 6= ∅ and take z∗ ∈⋂N

i=1 arg min fi. We define

Vi(t) =
∣∣xi(t)− z∗∣∣2, i = 1, . . . , N, (40)

and then

V (t) = max
i=1,...,N

Vi(t). (41)

The following lemma holds.
Lemma 5.1: Let A1, A3 and A7 hold. Suppose⋂N
i=1 arg min fi 6= ∅. Then along any trajectory of system

(7) with control rule J?(ni, gi), we have D+V (t) ≤ 0 for
all t.
Proof. Based on Lemma 2.1, we have

D+V (t) = max
i∈I(t)

d

dt
Vi(t)

= max
i∈I(t)

2
〈
xi(t)− z∗,∑

j∈Ni(σ(t))

aij(t)
(
xj − xi

)
−∇fi

(
xi
)〉
, (42)

where I(t) denotes the index set which contains all the nodes
reaching the maximum for V (t).

Let m ∈ I(t). Denote

Zt =
{
z : |z − z∗| ≤

√
V (t)

}
as the disk centered at z∗ with radius

√
V (t). Take y =

xm(t)+(xm(t)−z∗). Then it is obvious to see that PZt(y) =
xm(t), where PZt

is the projector onto Zt. Thus, for all
j ∈ Nm(σ(t)), we obtain〈
xm(t)− z∗, xj(t)− xm(t)

〉
=
〈
y − xm(t), xj(t)− xm(t)

〉
=
〈
y − PZt(y), xj(t)− PZt(y)

〉
≤ 0 (43)

according to inequality (2) in Lemma 2.3 since xj(t) ∈ Zt.
On the other hand, based on inequality (i) in Lemma 2.4, we
also have〈
xm(t)− z∗,−∇fm

(
xm(t)

)〉
≤ fm(z∗)− fm

(
xm(t)

)
≤ 0
(44)

in light of the definition of z∗.
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With (42), (43) and (44), we conclude that

D+V (t) ≤ 0, (45)

which completes the proof. �
A direct consequence of Lemma 5.1 is that when⋂N
i=1 arg min fi 6= ∅, we have

lim
t→∞

V (t) = V 2
∗ (46)

for some V∗ ∈ R along any trajectory of system (7) with
control rule J?(ni, gi). However, it is still unclear whether
Vi(t) converges, or Vi(t) converges to what if it did converge.

We establish another lemma indicating that with proper
connectivity condition for the communication graph, all
Vi(t)’s have the same limit V 2

∗ .
Lemma 5.2: Let A1, A6, and A7 hold. Suppose⋂N
i=1 arg min fi 6= ∅ and Gσ(t) is UJSC. Then along any

trajectory of system (7) with control rule J?(ni, gi), we have
limt→∞ Vi(t) = V 2

∗ for all i.
The next lemma shows that each node will reach its own

optimum along the trajectories of system (7) under control
rule J?(ni, gi).

Lemma 5.3: Let A1, A6, and A7 hold. Suppose⋂N
i=1 arg min fi 6= ∅ and Gσ(t) is UJSC. Then along any

trajectory of system (7) with control rule J?(ni, gi), we have
lim supt→∞

∣∣xi(t)∣∣argmin fi
= 0 for all i.

The proofs of Lemmas 5.2 and 5.3 are based on contra-
diction arguments, and are omitted due to space limitations.

B. Proof of Theorem 5.1

The proof of Theorem 5.1 relies on the following lemma.
Lemma 5.4: Let z1, . . . , zm+1 ∈ Rm and d1, . . . , dm+1 ∈

R+. Suppose there exist solutions to equations (with variable
y) 

|y − z1| = d1;

. . .

|y − zm+1| = dm+1.

(47)

Then the the solution of (47) is unique if rank
(
z2 −

z1, . . . , zm+1 − z1
)

= m.
Proof. Take j > 1 and let y be a solution to the equations.
Noticing that

〈y − z1, y − z1〉 = d1; 〈y − zj , y − zj〉 = dj

we obtain

〈y, zj − z1〉 =
1

2

(
d1 − dj + |zj |2 − |z1|2

)
, j = 2, . . . ,m+ 1.

(48)

The desired conclusion following immediately. �
We now prove Theorem 5.1. Let r? = (rT1 . . . r

T
N )T be

a limit point of a trajectory of system (7) with control rule
J?(ni, gi).

We first show consensus. Based on Lemma 5.2, we have
limt→∞ Vi(t) = V∗ for all z∗ ∈

⋂N
i=1 arg min fi. This is to

say, |ri − z∗| = V∗ for all i and z∗ ∈
⋂N
i=1 arg min fi.

Since
⋂N
i=1 arg min fi 6= ∅ contains at least one interior

point, it is obvious to see that we can find z1, . . . , zm+1 ∈

⋂N
i=1 arg min fi with rank

(
z2 − z1, . . . , zm+1 − z1

)
= m

and d1, . . . , dm+1 ∈ R+, such that each ri, i = 1, . . . , N is
a solution of equations (47). Then based on Lemma 5.4, we
conclude that r1 = · · · = rN . Next, with Lemma 5.3, we
have |ri|argmin fi = 0. This implies that r1 = · · · = rN ∈⋂N
i=1 arg min fi, i.e., optimal consensus is achieved.
We turn to state convergence. We only need to show that r?

is unique along any trajectory of system (7) with control rule
J?(ni, gi). Now suppose r1? = 1N⊗r1 and r2? = 1N⊗r2 are
two different limit points with r1 6= r2 ∈

⋂N
i=1 arg min fi.

According to the definition of limit point, we have that for
any ε > 0. there exists a time instant tε such that |xi(tε)−
r1| ≤ ε for all i. Note that Lemma 5.1 indicates that the
disc B(r1, ε) = {y : |y − r1| ≤ ε} is an invariant set for
initial time tε. While taking ε = |r1 − r2|/4, we see that
r2 /∈ B(r1, |r1 − r2|/4). Thus, r2 cannot be a limit point.

Now since the limit point is unique, we denote it as
1N ⊗ x∗ with x∗ ∈

⋂N
i=1 arg min fi. Then we have

limt→∞ xi(t) = x∗ for all i = 1, . . . , N . This completes
the proof.

C. Proof of Theorem 5.2

In this subsection, we prove Theorem 5.2. We need the
following lemma on robust consensus, which can be found
in [22].

Lemma 5.5: Consider a network with node set V =
{1, . . . , N} with time-varying communication graph Gσ(t).
Let the dynamics of node i be

ẋi =
∑

j∈Ni(σ(t))

aij(t)
(
xj − xi

)
+ wi(t), (49)

where wi(t) is a piecewise continuous function. Suppose A6
and A7 hold and Gσ(t) is UQSC. Then we have

lim
t→+∞

∣∣xi(t)− xj(t)∣∣ = 0, i, j = 1, . . . , N (50)

if limt→∞ wi(t) = 0 for all i.
Lemma 5.3 indicates that lim supt→∞

∣∣xi(t)∣∣argmin fi
= 0

for all i, which yields

lim
t→∞

∇fi
(
xi(t)

)
= 0 (51)

for all i according to Assumption A1. Then the consensus
part in the definition of optimal consensus follows imme-
diately from Lemma 5.5. Again by Lemma 5.3, we further
conclude that lim supt→∞ dist

(
xi(t),

⋂N
i=1 arg min fi

)
= 0.

The desired conclusion thus follows.

VI. CONCLUSIONS

Various algorithms have been established in the litera-
ture for the distributed optimization problem of minimizing∑N
i=1 fi with fi only known to node i. This paper made

an attempt to explore the fundamental limit that distributed
methods can do for this problem given a certain level of
node knowledge and computation capacity. We assume that
the neighboring information each node receives from its
neighbors can be any nonlinear function of its neighbors’
states which takes value zero within the local consensus
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manifold, and each node i can get the gradient of fi at its
current state. The dynamics of each node is a first-order inte-
grator with the control input given by a binary function, each
variable corresponds to the neighboring information and the
gradient information, respectively. This function determining
the control law is assumed to be injective when the first
variable is fixed to zero. We proved that there exists a control
rule which guarantees global optimal consensus if and only
if arg min fi, i = 1, . . . , N admit a nonempty intersection
set for fixed strongly connected graphs. Then we showed
that for any tolerated error, we can find a simple control
rule which guarantees global optimal consensus within this
error for fixed, bidirectional, and connected graphs under
some mild conditions such as fi is coercive for some i. For
time-varying graphs, it was proven that optimal consensus
can always be achieved by simple control rule as long as
the graph is uniformly jointly strongly connected and the
nonempty intersection condition holds. It was then concluded
that nonempty intersection for the local optimal solution
sets is a critical condition for distributed optimization using
consensus processing to connect the information over the
nodes.
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