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Abstract— Optimal rate allocation in a networked con-
trol system with highly limited communication resources is
instrumental to achieve satisfactory overall performance. In
this paper, we propose a rate allocation technique for state
feedback control in linear dynamic systems over a noisy
channel. Our method consists of two steps: (i) the overall
distortion is expressed as a function of rates at all time
instants by means of high-rate quantization theory, and (ii)
a constrained optimization problem to minimize the overall
distortion is solved. We show that a non-uniform quantization
is in general the best strategy for state feedback control over
noisy channels. Monte Carlo simulations illustrate the proposed
scheme, which is shown to have good performance compared
to arbitrarily selected rate allocations.

I. INTRODUCTION

Networked control systems based on limited sensor and

actuator information have attracted increasing attention dur-

ing the past decade. In these systems, it is important to

encode the sensor measurements before sending them to the

controller using a few bits, because of the limited information

that can be transmitted using battery-powered devices. How-

ever, the distortion introduced by the quantization should not

reduce the performance of the controller. Hence, optimizing

the rate allocation is important to overcome the limited

communication resources and to achieve a better overall

performance.

The effect of low-rate feedback quantization on the overall

performance of a control system has been studied by a

number of researchers, e.g., [1], [2], [3] and the refer-

ences therein. The problem of optimizing encoder–controller

mappings to improve performance of control over finite-

rate channels, with or without transmission errors, has been

addressed in, e.g., [4], [3], [5]. How to assign bits among

the elements of the state vector of the plant, while imposing

a constraint on the number of bits over time, can be found

in e.g., [6], [7]. In these works, it has been assumed that

bits (rates) are evenly distributed to sensor measurements

over time. However, owing to the non-stationarity of the state

observations, an even distribution of bits to sensor measure-

ments is often not efficient for networked control. Hence, it

is natural to expect considerable gains by employing a non-

uniform allocation of rates.

In this paper, we extend our previous work of optimizing

the rate allocation for state estimation [8] to solve the rate

allocation problem for state feedback control. How to achieve

the optimal rate allocation in control systems is a challenging

task. One main obstacle is the lack of tractable distortion

functions, which we need to use as objective functions for

the rate optimization problem. The optimization problem is

often non-convex and non-linear, which implies that it is

difficult to compute the optimal solution.

The main contribution of this paper is a novel method for

rate allocation for state feedback control of a linear system

over a noisy channel. By resorting to an approximation based

on high-rate quantization theory, we are able to derive a

computationally feasible scheme that seeks to minimize the

overall distortion over a finite time horizon. The resulting

rate allocation is not necessarily evenly distributed. Practical

considerations concerning integer rate constraints and the

accuracy of the high-rate approximation are discussed and

illustrated through numerical examples. Overall good per-

formance of our method is shown by numerical simulations.

The problem we are addressing here is related to clas-

sical rate allocation problems in communications [9], [10],

and high-rate quantization theory [9], [11], [12]. We also

contribute to rate allocation based on high-rate theory by

studying a general class of quantizers, while previous work

has often focused on the special case of optimized quantizers.

For example in [13], the problem is studied in the context

of transform codes, where the objective function is convex,

and the optimal solution can be derived in a closed-form.

However, in our setting we will show that the overall

distortion is a non-convex function of the rates, which makes

it more difficult the computation of the optimal solution.

The remainder of the paper is organized as follows. In

Section II, the overall system is described and the rate

allocation problem is formulated. Some useful results on

high-rate quantization theory are given in Section III, which

are then used in Section IV, where we solve the rate

constrained optimization problem. Here we should mention

that due to limited space, in this paper the main results

are stated without proof. The proofs can be found in the

full version of the paper, [14]. Section V is devoted to

practical issues such as the non-negativity and integer nature

of the rates. Finally, numerical simulations are carried out in

Section VI to demonstrate the performance of the proposed

bit-rate allocation scheme.

II. PROBLEM FORMULATION

The goal of this work is to arrive at a rate allocation

scheme for state feedback control of a dynamic system over

a noisy channel. We consider a scalar system with full state

observation. The plant is governed by the linear equation
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Fig. 1. A block-diagram of a closed-loop control system with a commu-
nication channel.

xt+1 = axt + ut + vt , (1)

where xt ,ut ,vt ∈ R. The initial state x0 and the process

noise vt are mutually independent. They are i.i.d. zero-mean

Gaussian with variances σ2
x0

and σ2
v . Following the block

diagram in Fig. 1, we describe each system component in

detail. The state measurement xt is encoded and transmitted

to the controller and decoder units through a noisy channel.

The encoder is time-varying and memoryless,

it = ft(xt) ∈
{

0, . . . ,2Rt −1
}

. (2)

The rate Rt is a non-negative integer. The index it will

be mapped to a binary codeword before being fed to a

binary channel. The mapping from an index to a codeword is

commonly referred to as the index assignment (IA). Unlike

in the error-free scenario where all IA’s perform equally well,

in the presence of channel errors different IA’s have different

impact on the system performance. Finding the optimal IA

is a combinatorial problem which is known to be NP-hard

[15]. Therefore, in this paper, we average out the dependence

on a specific IA by randomization. At each transmission, a

random assignment is generated and revealed to the encoder

and decoder. Previous work that assumed a random IA to

facilitate further analysis includes [16], [12].

Throughout the paper, the overall noisy channel is com-

posed by the combination of the random IA and a bi-

nary symmetric channel (BSC). The channel is completely

specified by the symbol transition probabilities Pr( jt | it).
At bit level, the channel is characterized by the crossover

probability ε = Pr(0|1) = Pr(1|0) of the BSC, while the

overall symbol error probability Pr( jt |it) is determined by

both ε and the randomized IA, according to

Pr( jt | it) =

{

α (Rt) , jt 6= it ,
1− (2Rt −1)α (Rt) , jt = it ,

(3)

(cf., [16]), where α(Rt ) , (1− (1− ε)Rt )/(2Rt − 1) is ob-

tained by averaging over all possible index assignments. For

this channel, all symbol errors are equally probable.

At the receiver side, the decoder takes the current channel

output as the input, and generates an output,

dt = Dt( jt ) ∈ R, (4)

where Dt is a deterministic function. The estimate dt can take

one of 2Rt values. Finally, the control ut is determined by the

decoded symbol, ut = gt(dt) ∈ R, where gt(·) is the control

law. We will be more specific about gt(·) after the presen-

tation of the control objective, which is the minimization of

the expected value of the cost Jtot(R), R = {R0, . . . ,RT−1},

Jtot (R) =
T

∑
t=1

Jt(Rt−1) =
T

∑
t=1

(

x2
t + ρu2

t−1

)

, ρ ≥ 0, (5)

subject to a rate constraint ∑T−1
t=0 Rt ≤ Rtot , with Rtot denoting

the total rate. We refer to R as the bit-rate allocation.

In (5), the instantaneous cost Jt depends on the previous

rates Rt−1 = {R0, . . . ,Rt−1}. The function (5) is the linear

quadratic (LQ) cost from classical stochastic control [17],

where ρ is the importance factor of the control input with

respect to the state. The cost (5) can be minimized by

minimizing the state variance at all time instances, with a

power constraint on the control signal. The implicit relation

of the cost E{Jtot (R)} and the allocation R is determined

by the channel and coding–control scheme.

Throughout this paper, the control is a linear function of

the decoded symbol dt ,

ut = ℓtdt . (6)

If the estimate dt is close to the true state xt then the

classical linear quadratic Gaussian (LQG) theory is expected

to give good results, even though it does not account for

channel errors and quantization distortion. Accordingly, it is

reasonable to use ℓt given by the classical LQG theory, i.e.,

ℓt , − aφt+1

φt+1 + ρ
, φt = 1 +

a2φt+1ρ

φt+1 + ρ
, φT = 1. (7)

Problem 1 below specifies the rate allocation problems

studied in this paper.

Problem 1: Given the linear plant (1), the discrete memo-

ryless channel (3), the memoryless encoder–decoder pair (2)

and (4), the control law (6)–(7), find the optimal bit-rate

allocation R minimizing the expected cost of (5), subject to

the total bits constraint:

min
R

E{Jtot(R)} , s. t.∑T−1
t=0 Rt ≤ Rtot .

From (5), one can show that

E{Jtot}=E

{

(φ0−1)x2
0+

T−1

∑
t=0

φt+1v2
t +

T−1

∑
t=0

(φt+1+ρ)(−xtℓt +ut)
2

}

.

(8)

It follows that we can rewrite (5) as

Jtot (R) =
T−1

∑
t=0

(φt+1 + ρ)ℓ2
t (xt −dt)

2 =
T−1

∑
t=0

πt(xt −dt)
2,

(9)

with πt , (φt+1 + ρ)ℓ2
t , and then the instantaneous cost is

E{Jt (Rt)} = E
{

πt(xt −dt)
2
}

. (10)

One main difficulty of Problem 1 is that the cost function

does not have an analytical expression of R. In the next

section, we propose an approximation of adequate accuracy,

which will then be used for the solution of the optimization

problem.
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III. HIGH-RATE APPROXIMATION OF MSE

By (10), we note that the mean-squared error (MSE) is a

key factor in the overall cost, therefore, a major challenge

lies in deriving a useful expression for the MSE. In general,

it is not possible to derive a closed-form expression, even

in the case of simple uniform quantizers. Therefore, we

resort to approximations based on high-rate theory [9] (for

further details, we refer the reader to [16] and [12]). Roughly

speaking, the high-rate assumption requires the probability

distribution function (PDF) of the source to be approximately

constant within a quantization cell. Let P(x) denote the PDF

of the source xt , which is zero-mean and with variance σ2
xt

.

Following [12], the MSE E
{

(xt −dt)
2
}

at high-rate can be

approximated by the expression,

E
{

(xt −dt)
2
}

≈ 2Rt α(Rt)σ
2
xt

+ ϕtα(Rt)

∫

y
y2λt(y)dy

+
G−2

3
ϕ−2

t

∫

x
λ−2

t (x)P(x)dx.

(11)

The constant G is the volume of a unit sphere. The function

λt(x) is referred to as the quantizer point density function.

This function is used to specify a quantizer in terms of the

density of the reconstruction points. It holds that λt(x) ≥ 0,

∀x, and
∫

λt(x)dx = 1, which resembles a probability density

function. Finally, the parameter 1 ≤ ϕt ≤ 2Rt specifies the

number of codewords the encoder will chose. If the crossover

probability ε is large, in order to protect against channel

error, a good encoder may only use a part of the available

codewords. In this paper, we consider only the encoder–

decoders for which ϕt = 2Rt .

Essentially, we are in need of a useful expression to

describe the relation between the MSE and the rate Rt .

Therefore, we observe that 2Rt α(Rt) ≈ 1 − (1 − ε)Rt , and

we rewrite (11) and introduce the high-rate approximation

Ĵt(βt ,κt ,Rt) as

E
{

(xt −dt)
2
}

≈ Ĵt(βt ,κt ,Rt) , βt(1− (1− ε)Rt)+ κt2
−2Rt ,

βt , σ2
xt
+
∫

y
y2λt(y)dy, κt ,

G−2

3

∫

x
λ−2

t (x)P(x)dx.

(12)

Such an expression of the distortion Ĵt is rather general for

a large variety of quantizers, described in terms of the point

density function, and derived under the high-rate assumption.

For practical sources and quantizers, it holds that 0<βt <∞
and 0<κt <∞, which is assumed throughout the paper. The

distortion (12) has certain useful properties that will allow

us to solve the rate allocation problem.

The crossover probability ε plays a significant role on the

convexity of the objective function Ĵt . When ε = 0, Ĵt is

monotonically decreasing with respect to Rt . In fact, Ĵt is a

convex function of Rt , for all 0<κt <∞. On the other hand,

for the general case of an arbitrary {βt ,κt} pair, (12) is a

quasi-convex function, as shown by the following lemma.

Lemma 1: The distortion function Ĵt = βt(1−(1−ε)Rt )+
κt2

−2Rt , 0 < βt < ∞, 0 < κt < ∞, is a quasi-convex function

and has a unique global minimum.

As shown later, Lemma 1 is instrumental in solving the rate

allocation problems. Here we introduce a class of Ĵt which

can be written as

Ĵt = σ2
xt

(

β̃t(1− (1− ε)Rt)+ κ̃t2
−2Rt

)

= σ2
xt

J̃t(β̃t , κ̃t ,Rt),

(13)

with J̃t(β̃t , κ̃t ,Rt) , β̃t(1− (1− ε)Rt )+ κ̃t2
−2Rt , where 0 <

β̃t < ∞ and 0 < κ̃t < ∞ are independent of Rt and of σ2
xt

. As

will be shown later, this class of Ĵt is central to our solutions

to the state feedback control problems. Owing to the fact

that J̃t is a special case of Ĵt , Lemma 1 applies directly to

J̃t .

Next, we use the uniform quantizer as an example to

illustrate the use of (12) and (13). Consider a uniform

quantizer, for which the step size ∆t = 2νt/2Rt is a function

of the quantizer range [−νt ,νt ] and the rate Rt , then the point

density function is λt(x) = 1/(2νt). If the source signal and

the uniform quantizer have the same support [−νt ,νt ], then

a high-rate approximation of the MSE distortion according

to (12) is given by

Ĵt =

(

σ2
xt

+
ν2

t

3

)

(

1− (1− ε)Rt
)

+
4

3
ν2

t G−22−2Rt .

Consider a zero-mean Gaussian source and if the distortion

caused by the signals out of the quantizer support [−νt ,νt ]
is negligible, then a high-rate approximation of the MSE can

use (13) with the following β̃t and κ̃t ,

β̃t = 1 +

(

Q−1
(

1−pνt
2

))2

3
, κ̃t =

4

3
G−2

(

Q−1

(

1− pνt

2

))2

.

where pνt denotes the probability that xt is within the support

of the quantizer, i.e., pνt = Pr(xt ∈ [−νt ,νt ]), and Q−1(·) is

the inverse function of the Q-function which is defined as

Q(x),
∫ ∞

x 1/
√

2πe−y2/2dy.

In the next Section, we show that the high rate approxi-

mation of MSE described in this section is instrumental to

formulate a useful version of (9). By using these results, we

propose a solution to Problem 1.

IV. RATE ALLOCATION FOR STATE FEEDBACK CONTROL

We notice that the terms E
{

x2
t

}

and E
{

(xt −dt)
2
}

are

essential to the instantaneous cost (10). In order to proceed,

we will approximate the state xt by a zero-mean Gaussian

source, because the initial state and the process noise are

zero-mean Gaussian. By imposing such a Gaussian approx-

imation, we only need to estimate the variance, which we

denote by σ̂2
xt

. The next challenge lies in the derivation of

σ̂2
xt

. In order to facilitate the derivation of a tractable overall

cost for optimization, we consider an upper bound for σ̂2
xt

by simplifying the correlation between xt and dt , so that it

holds

σ̂2
xt

= (At + Bt(β̃t(1−(1−ε)Rt−1)+κ̃t2
−2Rt−1)σ̂2

xt−1
+σ2

v ,
(14)

where At > 0 and Bt > 0 are terms independent of Rt−1 and

σ̂2
xt−1

. The following two cases are used to illustrate the utility

and motivation of (14).
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Case 1: Consider the decoder dt−1 = E{xt−1| jt−1}, for

which the estimation error xt−1−dt−1 is uncorrelated with the

estimate dt−1. Therefore (14) becomes an exact expression,

with

At = a2 + ℓ2
t−1 + 2aℓt−1, Bt = −(ℓ2

t−1 + 2aℓt−1).

Case 2: In general, we can write E
{

x2
t

}

as

E
{

x2
t

}

= ℓ2
t−1E

{

(xt−1 −dt−1)
2
}

+(a + ℓt−1)
2E
{

x2
t−1

}

−2(a + ℓt−1)ℓt−1E{xt−1(xt−1 −dt−1)}+ σ2
v .

The term E{xt−1(xt−1 −dt−1)} depends on the source, the

quantizer and the channel. In the special case that

E{xt−1(xt−1 −dt−1)} = γ(ε)E
{

x2
t−1

}

,

where γ(ε) does not depend on xt−1 and dt−1, then σ̂2
xt

can

be expressed in the form of (14), with

At = (a + ℓt−1)
2 −2(a + ℓt−1)ℓt−1γ(ε), Bt = ℓ2

t−1. (15)

Based on the above Gaussian approximation, we arrive at

the instantaneous cost

E{Jt(Rt)} = πt σ̂
2
xt
(β̃t(1− (1− ε)Rt)+ κ̃t2

−2Rt ), (16)

where σ̂2
xt

can be recursively calculated according to (14).

In practice, (16) can be applied generally to all systems in

Section II by finding suitable At and Bt to approximate the

true instantaneous costs. Therefore, the unconstrained and

constrained rate allocation problems based on (16) are for-

mulated as the following approximate versions of Problem 1.

Problem 2: Find R that solves the problem

min
R

∑T−1
t=0 E{Jt(Rt)} ,

where E{Jt(Rt)} is as given in (16).

Problem 3: Find R that solves the problem

min
R

∑T−1
t=0 E{Jt(Rt)} , s. t.∑T−1

t=0 Rt ≤ Rtot ,

where E{Jt(Rt)} is given in (16).

By recursively replacing σ̂2
xt

with σ̂2
xt−1

, back to σ̂2
x0

= σ2
x0

,

we are able to represent σ̂2
xt

by Rt−1 and σ2
x0

. In particular,

E{Jt(Rt)} is a sum of 2t terms, as shown in Lemma 2,

Lemma 2: The cost (16) can be written as

E{Jt(Rt)} =
1

∑
b0=0

. . .
1

∑
bt−1=0

πtΨt(b
t−1
0 )J̃t(β̃t , κ̃t ,Rt),

where bs∈{0,1}, 0 ≤ s ≤ t −1, is a binary variable, and the

term Ψt(b
t−1
0 ) is

Ψt(b
t−1
0 ) , B

(

t−1

∏
s=s+1

B
bs

s

(

J̃s(β̃s, κ̃s,Rs)
)bs

)

, (17)

with

B ,

{

τs−1, s > 0,
B0σ2

x0
, s = 0,

(18)

where s is the smallest integer s for which bs =1, (in other

words bs =0, s<s), and τs−1 is calculated recursively as,

τs = Asτs−1 + σ2
v , τ0 = A0σ2

x0
+ σ2

v .

The parameter Bs is determined by bs, as

Bs ,

{

As, bs = 0,
Bs, bs = 1.

(19)

Lemma 2 is proved by direct calculations. We note that

each E{Jt(Rt)} is a sum of 2t product terms, where all of

them have the common terms πt and J̃t (β̃t , κ̃t ,Rt). Based on

Lemma 2, we solve Problem 2 and Problem 3 as shown in

Theorem 1.

Theorem 1: Suppose R ∈RT . The solution to Problem 3

is as follows:

1) If Rtot≥∑T−1
t=0 R⋆

t , where R⋆ is the solution to











0 = J̃0(β̃0, κ̃0,R
⋆
0),

...

0 = J̃T−1(β̃T−1, κ̃T−1,R
⋆
T−1),

(20)

then R⋆ also solves Problem 3.

2) If Rtot < ∑T−1
t=0 R⋆

t , where R⋆ is the solution to (20),

then the solution {R,θ} to the system of equations










−
T−1

∑
s=t

Ψt,s = θ , t = 0, . . . ,T −1,

∑T−1
t=0 Rt = Rtot ,

(21)

solves Problem 3, where θ is the associated Lagrange

multiplier. The term Ψt,s is defined as

Ψt,s ,
1

∑
b0=0

. . .
1

∑
bt=1

. . .
1

∑
bs=0

πsΨ(bs
0), (22)

where bk is a binary variable, πt is as given by (9),

and Ψ(bs
0) is

Ψ(bs
0) , B

(

s−1

∏
m=s+1

B
bm

m

)(

s

∏
n=s+1

Cbn
n

)

.

The terms B and Bm are previously given in (18)–(19),

and Cn is

Cn ,

{

∂ J̃n

∂Rn
(β̃n, κ̃n,Rn), n = t,

J̃n(β̃n, κ̃n,Rn), n 6= t,

where ∂ J̃t/∂Rt is the first order derivative of

J̃t(β̃t , κ̃t ,Rt) with respect to Rt .

The proof of Theorem 1 can be found in [14]. Here we

comment the steps briefly. We prove the general case for

noisy channels in three steps. First, we use Lemma 2 to write

the overall objective as a function of Rt , t = 0, . . . ,T − 1,

explicitly. Then, we show that when ε >0, the unconstrained

rate allocation problem has a global minimum which solves

the system of equations (20). This global minimum is the

solution to the constrained rate allocation problem if the

rate constraint fulfills. Finally, we show that the solution

to the system of equations (21) solves the constrained rate

allocation problem, if the rate constraint is violated by the

global minimum.

The analogous result for the special case that ε = 0 is

summarized in Proposition 1.
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Fig. 2. Performance comparison among various rate allocations. The x-axis
is associated to the allocation, whereas the y-axis is the overall distortion.
A rate allocation scheme is described by an integer sequence, e.g., RA1 :
8888888888 means that the rate allocation RA1 has Rt = 8, t = 0, . . . ,9.
Notice that schemes marked with a diamond do not satisfy the total rate
constraint, i.e., Rtot > 30.

Proposition 1: Suppose R ∈ RT . A solution {R,θ} to

Problem 3 for an noise-free channel (ε = 0) is



















2
T−1

∑
s=t

1

∑
b0=0

. . .
1

∑
bt=1

. . .
1

∑
bs−1=0

Ψs(b
s−1
0 ) = θ , t =0,. . .,T−1,

T−1

∑
t=0

Rt = Rtot .

where θ is the Lagrange multiplier, and

Ψt(b
t−1
0 ) , πtB

(

t−1

∏
s=s+1

B
bs

s

)(

t

∏
m=s+1

κ̃bm
m

)

2−2(∑
t−1
n=0 bnRn+Rt).

The rest of the notations are referred to Lemma 2 and

Theorem 1.

V. PRACTICAL CONSIDERATIONS

In this section we deal with the assumption of Theorem 1

that Rt is allowed to be real and negative. In practice Rt is

integer-valued and positive. If Problem 2 and Problem 3 give

negative rates, then we set them to zero, which is equiva-

lent to excluding the corresponding instantaneous distortions

from the overall distortion. Then, we resolve Problem 2

and Problem 3 with respect to the new overall distortion.

The proposed algorithms in Section IV result in real-valued

rates. As a simple approach, we round the solutions to the

nearest integer. A more sophisticate rounding algorithm can

be formulated as a binary optimization problem, where the

rounded rate R̃t is related to the real-valued rate Rt as,

R̃t = bt⌈Rt⌉+ (1− bt)⌊Rt⌋, bt ∈ {0,1}, where ⌈·⌉ and ⌊·⌋
denote the rounding upwards and downwards to the nearest

integer, respectively. We optimize the rounding by finding

the binary sequence bT−1
0 which minimizes ∑T−1

t=0 E
{

Jt (R̃t)
}

,

subject to ∑T−1
t=0 R̃t ≤ Rtot . A solution to the optimization

problem can always be obtained by applying exhaustive

search or combinatorial algorithms [18].

VI. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments per-

formed to verify performance of the proposed bit-rate al-

location algorithm for state feedback control. Let us first

address some issues common for all experiments in this

paper. The optimized rate allocation is the one obtained

by applying Theorem 1 and the binary rounding algorithm

from Section V. In particular, we optimize the rate allocation

by means of the objective function (16) of Problem 3. The

overall performance is on the other hand evaluated in terms

of the objective function (5) of Problem 1, which is achieved

numerically. We use time-varying uniform quantizers where

the quantizer range is related to the estimated signal variance

as νt = 4σ̂xt and the distortion caused by the signals outside

the support of the quantizer is negligible. Moreover, (14)

and (15) are utilized, where we let γ(ε) be a linear function

heuristically obtained by numerical experiments. We remark

that γ(ε) is interfluent in the optimization, since it is a

common multiplicative constant in the cost function.

First we demonstrate the performance of the proposed

scheme by comparing it with several other allocations. The

system parameters are chosen in the interest of demonstrating

non-uniform rate allocations, in particular, the system setup

is: a = 0.5, ρ = 2, T = 10, Rtot = 30, ε = 0.005, σ2
x0

= 10,

and σ2
v = 0.1. The simulated costs are obtained by averaging

over 100 IA’s and each IA 150 000 samples. In Fig. 2, we

compare the optimized allocation scheme, denoted by RA14,

which was obtained by the method proposed in this paper,

with 13 other schemes, denoted by RA1–RA13. Especially, the

scheme RA5 was achieved with our method by solving the

unconstrained rate allocation problem. Performance shown in

Fig. 2 is measured by the overall cost (5). Regarding this op-

timized allocation, Rt is fairly evenly distributed over t, and

compared with the uniform allocation RA6, the performance

improvement is evident. The uniform allocations RA1–RA8

have a time-invariant rate from 8 bits to 1 bit. Among

these allocations, RA8, for which Rt = 1, ∀t, has the worst

performance, while RA5, for which Rt = 4, ∀t, has the best

performance. In fact, based on our analysis, β̃t = β̃ , κ̃t = κ̃ ,

and the solution to Problem 2 is R⋆
t = 4. In the presence of

the channel errors, more bits can sometimes do more harm

than good. This is consistent with the simulation result that

RA5 is superior to allocations that are assigned more than 4

bits for every t, cf., RA1–RA4. The allocations RA9–RA13 are

used to represent the strategies that more bits are assigned

to the initial states. Obviously, this strategy is not efficient

in the current example because of the following facts. First,

as discussed, the additional bits exceeding the critical point

do more harm than good. Second, the degradation caused by

reducing one bit at a lower rate is more significant than the

improvement along with adding one bit at a higher rate.

The next example shows the impact of ρ , a parameter

which plays a role of regulating the power of control

signal. More precisely, the magnitude of the control signal

decreases as ρ increases. That is to say, a large ρ yields in

average small-valued controls, and consequently, a slow state
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Fig. 3. Performance comparison between ρ = 0.1 and ρ = 10.

response and a high steady-state level. In this experiment,

the system setup is: a = 0.5, T = 10, Rtot = 30, ε = 0.001,

σ2
x0

= 10 and σ2
v = 0.1. The quantizer is still the time-varying

uniform quantizer. In Fig. 3, the optimized rate allocations

are demonstrated for two ρ-values. By applying Theorem 1,

we have that the global minimum to the rate unconstrained

problem is R⋆
t = R⋆ = 5. This is consistent with Fig. 3, where

there is no Rt larger than 5. When ρ is small, for example

ρ = 0.1, large-valued controls are allowed and the steady

state is quickly reached. As ρ increases, only small-valued

controls are allowed and it takes longer time to reach the

steady state. This explains what we see from Fig. 3 that

more bits are needed in the initial states when ρ is large.

The simulated instantaneous costs for ρ = 0.1 and ρ = 10

are depicted in the same figure.

Since we formulated a useful overall objective function

by a number of approximations and simplifications, certain

performance degradation is expected. However, the proposed

algorithms are still able to provide a satisfactory solution,

because what really matters is often the ratios among the

costs at all time instants. In addition, even though the high-

rate assumption requires the source PDF to be approximately

constant over one quantization cell, however, the quantization

works fairly well in practice for low rates such as 3, 4 bits.

On the other hand, we may say generally that the accuracy

decreases when the rate approaches 0. That is to say, at low

rates the proposed rate allocation algorithm does not work

as well as in the high-rate region, attributed to all high-

rate approximations made in the calculation. The worst case

occurs at Rt = 0, where the estimation error given by (12) is

even worse than E
{

x2
t

}

= σ2
x , obtained by setting dt = 0. The

Gaussian approximation becomes also inaccurate as the rate

decreases. The problem becomes more serious for unstable

systems because errors accumulate as time goes on. As the

rate increases, the problem of accuracy is quickly resolved.

VII. CONCLUSION

In this paper, we formulated a problem to optimally

assign totally Rtot bits to T time units for control over

noisy channels. First, we approximated the overall distortion

function by means of high-rate quantization theory. Second,

we showed that the unconstrained optimization problem has

a global minimum, which solves the rate allocation problem

if such a global minimum does not violate the rate constraint.

On the other hand, if the global minimum violates the rate

constraint, then we solved the rate constrained optimization

problem by means of Lagrangian duality for non-convex non-

linear problems. Finally, numerical simulations showed good

performance of the proposed scheme. By studying the rate

allocation problem, we see that in the presence of the channel

errors, the encoder–controller mapping is instrumental to

achieve satisfactory overall performance.

ACKNOWLEDGMENT

This work was partly supported by the EU project Feed-

NetBack and the Swedish Research Council.

REFERENCES

[1] N. Elia and S. K. Mitter, “Stabilization of linear systems with limited
information,” IEEE Transactions on Automatic Control, vol. 46, no. 9,
Sept. 2001.

[2] D. Liberzon, “Hybrid feedback stabilization of systems with quantized
signals,” Automatica, vol. 39, pp. 1543–1554, 2003.

[3] G. N. Nair, F. Fagnani, S. Zampieri, and R. Evans, “Feedback control
under data rate constraints: an overview,” in Proc. of the IEEE, Jan.
2007, pp. 108–137.

[4] S. Tatikonda, A. Sahai, and S. Mitter, “Stochastic linear control over
a communication channel,” IEEE Transactions on Automatic Control,
vol. 49, no. 9, pp. 1549–1561, Sept. 2004.

[5] L. Bao, M. Skoglund, and K. H. Johansson, “On the separation
principle in optimal control over noisy channels,” in IFAC World

Congress 2008, July 2008.
[6] Q. Ling and M. D. Lemmon, “Optimal dynamic bit assignment in

noise-free quantized linear control systems,” in Proc. of the 44th

IEEE Conference on Decision and Control, and the European Control

Conference 2005, Dec. 2005, pp. 8191–8196.
[7] L. Xiao, M. Johansson, H. Hindi, S. Boyd, and A. Goldsmith,

“Joint optimization of wireless communication and networked control
systems,” Chapter in Switching and Learning, Springer Lecture Notes

in Computer Science 3355, pp. 248–272, Sept. 2005.
[8] L. Bao, M. Skoglund, C. Fischione, and K. H. Johansson, “Optimized

rate allocation for state estimation over noisy channels,” in Proc. of

2009 IEEE International Symposium on Information Theory, 2009.
[9] A. Gersho and R. M. Gray, Vector quantization and signal compres-

sion. Kluwer, 1992.
[10] B. Farber and K. Zeger, “Quantization of multiple sources using

nonnegative integer bit allocation,” IEEE Transactions on Information
Theory, vol. 52, pp. 4945–4964, Jan. 2006.

[11] S. W. Mclaughlin and D. L. Neuhoff, “Asymptotic quantization for
noisy channels,” in Proc. of 1993 IEEE International Symposium on

Information Theory, Jan. 1993, p. 442.
[12] C. R. Murthy and B. D. Rao, “High-rate analysis of source coding for

symmetric error channels,” in Data Compression Conf. (DCC), Mar.
2006.

[13] J. Lim, “Optimal bit allocation for noisy channels,” Electronics Letters,
vol. 41, no. 7, Mar. 2005.

[14] L. Bao, M. Skoglund, C. Fischione, and K. H. Johansson, “Opti-
mized rate allocation for closed-loop control over noisy channels,”
Manuscript in preparation for journal publication, 2009.

[15] N. Farvardin, “A study of vector quantization for noisy channels,”
IEEE Transactions on Information Theory, vol. 36, no. 4, pp. 799–
809, 1990.

[16] K. Zeger and V. Manzella, “Asymptotic bounds on optimal noisy
channel quantization via random coding,” IEEE Transactions on

Information Theory, vol. 40, no. 6, Nov. 1994.
[17] M. Aoki, Optimization of Stochastic Systems - Topics in Discrete-Time

Systems. Academic Press, 1967.
[18] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:

Algorithms and Complexity. Dover, 1998.

WeA17.1

578


