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Abstract— We study a closed-loop scalar control system with
feedback transmitted over a discrete noisy channel. For this
problem, we propose a joint design of the state measurement
quantization, protection against channel errors, and control.
The goal is to minimize a linear quadratic cost function overa
finite horizon. In particular we focus on a special case wherewe
verify that certainty equivalence holds, and for this case we de-
sign joint source–channel encoder and decoder/estimator pairs.
The proposed algorithm leads to a practically feasible design of
time-varying non-uniform quantization and control. Numer ical
results demonstrate the promising performance obtained by
employing the proposed iterative optimization algorithm.

I. INTRODUCTION

In recent years, the demand for sharing resources effi-
ciently in large networked systems has been continuously
increasing. However, in many situations, there is a challeng-
ing conflict between the amount of transmitted data and the
response time. In particular for emerging control applica-
tions, limits imposed on available signaling bandwidth from
communication channels can severely restrict the closed-loop
performance and even destabilize the system. Networked
control based on limited sensor and actuator information has
therefore attracted much attention during the past decade.
The literature particularly related to the results in this paper
includes [5], [8], [9], [10], [11], [12], [13], [14]. Up tillnow,
results on control with limited information have often been
derived based on rather simple scenarios. In some early work,
for instance, the initial state was the only unknown entity that
the encoder needs to convey to the decoder. Generalizations
to more complex situations, e.g., systems with process noise,
measurement noise, and transmission errors, are challenging
research topics. Some cases studied recently include systems
with feedback over noisy channels, e.g., [8], [11], [12], [13],
and systems corrupted by process noise, e.g., [10].

The main contribution of the present paper is a practical
synthesis technique for joint optimization of the quantization
and error protection for state observations over a bandlimited
and noisy channel. We study a special case where we verify
that certainty equivalence holds, and for this case we design
joint source–channel encoder and decoder/estimator pairs1.
We assume that the probability density functions (pdfs) of the
plant initialization and the process noise, and the transition

1As in previous works on quantizer design for noisy channels,we
use “encoder” as a generic term that describes combined source–channel
encoding, i.e., joint quantization and error control. The “decoder” is the
inverse mapping, and as we will see in Sec. V-A, decoding willspecialize
to state estimation based on the received symbols.
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Fig. 1. Feedback control over a wireless sensor network. Theapproach
developed in the paper can be applied to optimize the use of the wireless
medium.

probability of the channel are known, or can be accurately
estimated. We show that this problem is numerically solvable
and leads to channel optimized encoder–decoder pairs that
provide better control performance than existing solutions in
the literature. The corresponding scenario for a plant without
process noise was considered in our previous papers [2], [3].
The case with process noise is more realistic, but leads to a
more complex optimization problem which depends on the
pdf of the noise.

The paper is organized as follows. A motivating example is
presented in Sec. II. Sec. III defines the control system with
encoder, decoder, controller, and communication channel.
The problem statement, which concerns a linear quadratic
(LQ) objective over finite horizon, is presented in Sec. IV.
The joint encoder–decoder design and the training procedure
based on dynamic programming are described in Sec. V.
In Sec. VI, a sequential Monte Carlo method is introduced
to solve the nonlinear estimation problem. Sec. VII presents
numerical results and discusses some implementation issues.
Finally, the conclusions are given in Sec. VIII.

II. MOTIVATING EXAMPLE

Consider the wireless networked control system in Fig. 1.
Suppose there is a large number of sensor nodes that can
connect through a shared wireless medium to a control
node. The sensors are spatially distributed over a large area
and they measure the state of the control object, which is
affected by rarely occurring local disturbances. The control
commands for keeping the states around their equilibrium
working points are executed through a common actuator,
therefore all the sensors report their state measurements
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Fig. 2. System description.

to a common control node. The described system is quite
representative for many emerging applications with control
using wireless sensor networks, in areas such as industrial
automation, environmental monitoring, surveillance etc.

It is desirable to efficiently utilize the communication
resource, in order to allow for more sensors and tighter
control. Therefore, consider the following decentralizedcon-
trol strategy. Let the control command corresponding to a
specific sensor be zero as long as no disturbance is detected.
When the sensor detects a disturbance, the sensor reading is
encoded and transmitted to the controller node. The message
is decoded at the controller node and a control command is
derived and actuated to counteract the specific disturbance
acting on the transmitting sensor. The controller and the
encoder–decoder pair can be designed based on a finite-
horizon LQ criterion. Assuming that the local disturbance
is possible to detect and that an estimate of the disturbance
magnitude pdf at each sensor location is known, we can
optimize the encoder–decoder pair together with the control
law. Such a design takes into account uncertainties due to
initial state, process noise, and noisy channel. A class of
time-varying non-uniform encoder–decoders are derived in
the paper, which, together with a simple state feedback
control, is suitable to handle the described scenario.

III. PRELIMINARIES

Consider the control system with a communication chan-
nel depicted in Fig. 2. Sensor data are encoded and trans-
mitted over an unreliable communication channel. Control
commands are then derived based on the received data. In
this section, we describe this system in detail.

Let xb
a = {xa, . . . ,xb} denote the evolution of a discrete-

time signalxt from t = a to t = b. The plant is given by the
scalar system

xt+1 = θt(xt
t−Mx

,ut ,vt)

yt = ht(xt ,et),
(1)

wherext ,ut ,yt ∈ R are the state, the control, and the mea-
surement, respectively. The variablevt is referred to as the
process noise andet is the measurement noise. The system
has a memory of orderMx.

Let Et denote the set of information available at the
encoder at timet, i.e., the set of variables whose values
are known to the encoder. In particular, we consider an
encoder thatcausallyutilizes full information, in the sense
that Et = {yt

0, i
t−1
0 ,kt−1

0 ,ut−1
0 }, where it is the transmitted

index andkt represents the encoder’s knowledge about the

index jt received by the decoder. (The mapping fromjt to
kt will be discussed below.) Theencoderis a mapping from
Et to a discrete set of symbols. We take each symbol to
be represented by an integer index. At timet, the index is
it ∈ IL = {0,1, . . . ,L− 1}, whereL = 2R with R denoting
the rate of the transmission, in bits per state measurement.
Hence, the encoder is described by a mapping

it = ft (yt
0, i

t−1
0 ,kt−1

0 ,ut−1
0 ). (2)

Let the discrete channelhave input variableit and output
jt ∈ IL, with one channel use defined by

jt = κt(itt−Mc
), (3)

whereκt : I
Mc+1
L → IL is a random mapping, andMc ≥ 0

indicates (potential) channel memory.
At the receiver, we denote the information available at

the controller byCt ; in particular, we consider a controller
that causally utilizes full information, i.e.,Ct = {j t0,u

t−1
0 },

see Fig. 2. Thecontroller is then a mapping

ut = φt(j t0,u
t−1
0 ), (4)

from Ct to R.
In some particular cases, the overall controllerφt can be

separated into two components, a decoder part (estimator)
and a separate controller part. To model these situations, let
D t = {j t0,u

t−1
0 } denote the full information at the decoder

part. Thedecoderis a mapping

dt = gt(j t0,u
t−1
0 ), (5)

from D t to R. Also, let C t = {dt
0,u

t−1
0 } denote the (full)

information available at the controller part. Separate control
based on the output from the decoder/estimator is then
defined by the mapping

ut = zt(dt
0,u

t−1
0 ), (6)

from C t to R.

IV. PROBLEM STATEMENT

In this section we describe the special case of the system
defined above that is considered in the paper. The perfor-
mance measure is detailed together with the encoder–decoder
side information.

A. System Description and Performance Measure

Consider a stable scalar linear time-invariant plant con-
trolled over a binary symmetric channel (BSC). The process
noisevt , which contributes to the uncertainty in system, is
white noise with pdfpvt . We assume that the pdf of the
initial state, px0, is known, and that full state information
is available at the encoder, i.e.,yt = xt . The system is then
given by

xt+1 = axt +ut +vt , yt = xt , |a| < 1. (7)

Let c(it) ∈ {0,1}R be a binary codeword of lengthR repre-
senting the encoder outputit ∈ IL. The mapping between
it and c(it) is referred to as theindex assignment[6]. For



example, the natural binary code assigns the natural binary
representation of an integeri to the codewordci . At time t,
the relation between the indexit and the transmitted binary
codewordc(it) is

it = n ⇔ c(it) = cn, n∈ IL.

In a similar way,c( jt ) denotes the received binary codeword,
where jt ∈IL is the received index. The (memoryless) com-
munication channel is a binary symmetric channel described
by a channel transition probabilityε = p(0|1) = p(1|0).
Assuming independent transmission of each binary bit, the
conditional probability of a codewordp(c j |ci) is

p(c j |ci) = (1− ε)R−dH(ci ,cj )εdH(ci ,cj ), (8)

wheredH(ci ,c j) is the Hamming distance betweenci andc j ,
i.e., number of bits which they differ.

Our goal is to solve an optimal encoder–decoder and
control problem for the plant (7). The performance measure
for this integrated communication and control problem is the
linear quadratic cost function

JT = E

{

x2
T +

T−1

∑
t=0

x2
t + ρu2

t

}

, (9)

whereT is the horizon andρ ≥ 0 the control weight.

B. Encoder–Decoder Common Information

For memory based coding schemes, the system perfor-
mance relies heavily on the encoder’s knowledge about the
decoder memory state and vice versa. In the presence of a
noisy channel, care has to be taken in specifying how to
synchronize the states of the encoder and decoder.

We use the termencoder side-informationto specify the
encoder’s knowledge about the symboljt received by the
decoder. Consequently,no encoder side-information is the
extreme case when the encoder has no information at all
about jt , andfull encoder side-information denotes the situa-
tion that the encoder, at each time instantt, knows exactly the
previously received symbolsjt−1

0 . This is the case when the
channel is noiseless, so thatjt = it , or when there is an error-
free side-information channel from the output of the forward
channel to the encoder. Note that full side-information can
also be obtained if the joint decoder–controller function is
an invertible mapping, i.e., ifjt can be deduced fromut

0.
To model different degrees of side information, we define

the common informationshared by the encoder and decoder
to be the value of the variable

kt = γt( jt ) ∈ KK = {0,1, . . . ,K −1}, K ≤ L,

whereγt( jt) is a mapping that specifies howkt is obtained
from the received variablejt . In particular, kt = jt and
K = L when full side-information is available, whileK = 1
when there is no side-information at the encoder. Between
the extremes, there are a variety of cases with incomplete
side-information, for which 1< K < L. One example is the
case with no side-information channel and a non-invertible
decoder–controller mapping, e.g., ifut takes on onlyK < L
distinct values.
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Fig. 3. The encoder and the decoder structures. The encoder is a mapping
from {x0,vt−1

0 ,kt−1
0 } to an integer symbolit , while the decoder maps

{j t0,u
t−1
0 } to x̂t|t . Then the controller executesut based on ˆxt|t .

We assume the general case, 1≤ K ≤ L, in the paper.
Hence we letkt−1

0 specify the state of the encoder. Since this
sequence is known also at the decoder, the encoder and the
decoder are “synchronized” in this way. Note that in Fig. 2
we illustrate the mapping fromjt to kt as an explicit side-
information channel, even though this information can be
obtained by other means, e.g., by inverting the decoder–
controller mapping as previously discussed. Note also that
the encoder has direct access to the controlsut .

V. ENCODER–DECODER DESIGN

This section presents the main result of the paper. After
discussing certainty equivalence and encoder–decoder map-
pings, we present the overall design algorithm. The encoder–
decoder structure is shown in Fig. 3. The encoder–decoder
design problem is on finding a strategy for the encoder to
inform the decoder aboutx0 andvt−1

0 . Note that by knowing
xt

0 andut−1
0 , the encoder can deducevt−1

0 , based on (7). We
can therefore assume thatit is generated as

it = ft (x0,vt−1
0 ,kt−1

0 ), t = 0, . . . ,T, (10)

based onx0, vt−1
0 and the side-informationkt−1

0 .
At the receiver,ut

0 is computed fromj t0, hence in the
following the assumed decoder–controller mapping will be
ut = φt(j t0), and, if implemented separately, the decoder is
a functiondt = gt(j t0). The optimal state estimator based on
the received indices is

x̂s|t = E{xs|j t0}, s≤ t = 0, . . . ,T −1. (11)

A. Certainty Equivalence

Here we will show that under the assumptions of Sec. IV-
B, the mappingφt can be split into a separate decodergt and
controllerzt , i.e., certainty equivalenceholds [4].

The necessary and sufficient condition for certainty equiv-
alence presented in [4] corresponds in our case to the
requirement that the average estimation error

E{(xt − x̂t|t)
2}, t = 0, . . . ,T (12)

is not a function ofus
0, s = 0, . . . ,t − 1, for any sequence

ut
0. This condition is satisfied in our scenario, a fact easily

shown as follows. Note that

x̂t|t = E{xt |j t0} = qj t0
+

t−1

∑
s=0

at−1−sus (13)



with qj t0
= E{x̄t |j t0} wherex̄t is defined as

x̄t = atx0 +
t−1

∑
s=0

at−1−svs. (14)

Now, according to (10),

i0 = f0(x0)

i1 = f1(x0,v0,k0)

...

it = ft(x0,vt−1
0 ,kt−1

0 ),

with kt = γt( jt), the variablesit0, kt
0 and j t0 depend only on

x0, vt−1
0 , γt−1

0 and potential channel errors, but not onus
0

for any s < t. Hence,xt − x̂t|t = x̄t − qj t0
is not a function

of us
0. It follows that certainty equivalence control is optimal

for fixed encoders{ ft}T
0 , with the given structureft(x0,vt−1

0 ,
kt−1

0 ). Consequently, the optimal control is given as

ut = −ℓtdt , dt = x̂t|t (15)

with

ℓt =
aPt+1

Pt+1 + ρ
, Pt = 1+

a2Pt+1ρ
Pt+1 + ρ

(16)

for t = 0, . . . ,T − 1, andPt initialized with PT = 1. In the
notation of Sec. III, we thus have that the optimalφt can be
split into decoding (estimation) and control, according to

φt (j t0) = −ℓtgt(j t0) = −ℓtdt = −ℓt x̂t|t . (17)

The proof of the above statement is completed in the
appendix.

B. Design Algorithm

In this section we propose a training method to obtain
the optimal encoder–decoder pair. It can be interpreted
as a design suitable for short codewords, accomplishing
source compression and channel protection simultaneously.
The encoder–decoder mapping consists of functions with
memory, whose role is to successively provide refinements of
information about the initial state and the process noise. The
proposed iterative approach starts with an initial set-up,and
updates reconstruction points and encoding rules considering
not only the past but also the predicted future state evolution.
Similar to traditional quantizer design [6], the idea here is to
fix the encoder and update the decoder, then fix the decoder
and update the encoder etc.

For fixed encoders, theoptimal decoderis

gt(j t0) = x̂t|t = E{xt |j t0} = qj t0
+

t−1

∑
s=0

at−1−sus, (18)

whereqj t0
= E{x̄t |j t0} is the reconstruction pointat time t,

stored in a codebook at the decoder. The task for the decoder
is thus to estimate ¯xt based onj t0. (It needs not to knowx0

andvt−1
0 separately.)

The optimal encoderneeds to take the impact of the pre-
dicted future state evolutions into account. Hence, for fixed
decoders and controllers, and given the encoder mappingsft

for t = 0, . . . ,t − 1 and t + 1, . . . ,T − 1, we get the optimal
encoderft = ft(x0,vt−1

0 ,kt−1
0 ) as

it = arg min
i∈IL

E

{

T

∑
s=t

x2
s + ρu2

s

∣

∣

∣
x0,v

t−1
0 ,kt−1

0 , it = i

}

, (19)

which is closely related tokt−1
0 , the available side-

information. Also, observe that the channel transition proba-
bility p(c j |ci), recall (8), is implicitly included in (19). The
encoding rules are updated once the reconstruction points
are recalculated. Therefore, both the encoder and decoder
are specified by the set of reconstruction points{qj t0

}.
We summarize the previous discussion in the following

design algorithm.

Encoder–Decoder Design Algorithm

1) Initialize the encoder–decoder mappings{ ft} and{gt}.
2) Compute the controller parameters{ℓt} using (16).
3) a) For eacht = 0, . . . ,T −1,

• Update the encoder functionft using (19).
• Update the decoder functiondt and the control

ut using (15).

b) If JT has not converged, go to step 3a), otherwise
stop.

Convergence is monitored by updatingJT in each step. Un-
fortunately, the design algorithm does not guarantee global
optimality. The algorithm converges to a local minimum,
which has shown to work well in practice.

VI. SEQUENTIAL MONTE CARLO SAMPLING

The encoder–decoder design presented in previous section
is computationally demanding. Therefore we resort to a
Monte Carlo approach to handle the resulting nonlinear
filtering. The most computationally intensive part is the
computation of

E{x̄t |j t0} and E{x2
s + ρu2

s|x0,vt−1
0 ,kt−1

0 , it}, s> t.

When the encoder–decoder pairs are known, as well as the
pdfs px0 and pvt , transition probabilitiesp(c j |ci), and the
side-information mappingγt , the conditional pdfp(x̄t |j t0), t <

T, can be derived. Similarly, given the pdf of the current
state, the pdfs of future estimates can also be derived. These
estimation problems are solved through a sequential Monte
Carlo approach.

To obtainE{x̄t |j t0}, the following steps are performed. At
each timet:

1) Generate a set of samples according top(x̄t−1|j t−1
0 ).

2) Generate a set of process noise samplesvt−1 according
to p(vt−1).

3) Compute ¯xt based on (14) and the samples from steps 1
and 2.

4) Encode the samples in step 3 according to (19).
5) Simulate the transmission over the channel and create a

sequence of symbolsjt .
6) EstimateE{x̄t |j t0}.



Since the transition probability of a BSC has a closed-form
expression, steps 4 and 5 can be replaced by

E{x̄t |j t−1
0 , jt = n} = ∑

it

E{x̄t |j t−1
0 , it}

Pr( jt = n|it)P(it)
Pr( jt = n)

,

whereP(it) andP( jt) are estimated based on sampling.

VII. NUMERICAL RESULTS

In this section we present simulation results from applying
the encoder–decoder design of Sec. V.

The random magnitudes of the initial state and the process
noise are both modeled using the generalized Gaussian distri-
bution (GGD) (e.g., [7]), since it provides a wide coverage of
pdfs from narrow-tailed to broad tailed. We use the notation
GGD(α,β ), whereα describes the exponential rate of decay,
and β is the standard deviation. We assume for simplicity
that full side-information is available at the encoder.

Fig. 4 illustrates simulation results for a numerical exam-
ple with a = 0.8, T = 3, R= 2, ρ = 1 px0 = GGD(2,1) and
pvt = GGD(2,0.25). In Fig. 4, we showJ̄T as a function
of the channel transition probabilityε. This performance
measure is computed by normalizingJT in (9) with the cost
obtained when no control action is taken, cf. the horizontal
dashed line in Fig. 4. A performance comparison between the
proposed coding scheme and a time-invariant uniform quan-
tizer is depicted in Fig. 4. In particular, the time-invariant
uniform quantizer is optimized by a grid search. At low
ε, control using quantized feedback provides improvements
more than 30%, compared to the case without feedback
control. Whenε increases, the proposed encoder–decoder
outperforms the time-invariant uniform quantizer apparently.
At the scenario of 35% bit errors, the improvement compared
to using no control strategy, is around 16% for the proposed
encoder–decoders, while only 3% for using uniform quantiz-
ers. Moreover, the figure demonstrates that there is still some
advantage to feedback state observation on a noisy channel
even with 35% bit errors.

Since the contributionx2
t + ρu2

t to the total cost (9) typi-
cally decreases with time, the reconstruction points att = 0,
i.e., {qj0=n}

L−1
n=0, are important. Fig. 5 shows the resulting

encoding boundaries and the reconstruction points att = 0
versusε. We can note that the number of reconstruction
points chosen by the encoder decreases with increasingε.
This phenomenon is well known in quantization for noisy
channels and is attributed to the varying abilities of binary
codewords in combating channel errors. For very noisy chan-
nels, it is beneficial to transmit only the “stronger” codewords
[6], providing true redundancy for error protection. However
observe that the number of reconstruction points does not
decrease with increasingε. In Fig. 5, for ε = 0.3 and
ε = 0.35, the two middle reconstruction points are close,
so that additional zooming would be needed to distinguish
them. Another impact of increasingε is that the ranges of the
reconstruction points decrease, so the encoding boundaries
and the reconstruction points are all moved closer to zero,
indicating that control magnitude is small.
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Fig. 4. A performance comparison between using the proposedencoder–
decoder of this paper and using a uniform quantizer. Performance measure
J̄T is shown as a function of channel transition probabilityε , and it is
obtained by normalizingJT in (9) with the cost obtained with no control
action. The horizontal line corresponds to the resulting cost when no control
action (ρ = ∞) is taken.
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the channel transition probabilityε . ⋆ markers an encoding boundary, and
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The proposed iterative design requires an initial set-up of
reconstruction points. Two initialization methods are com-
pared in Fig. 6. The first method, referred to asinit uni,
exploits properly scaled uniform quantizers, in whichpx0

and pvt have been given consideration, but not the channel
transition probabilityε. The second method, referred to as
init chop, applies channel optimized quantizers [6], designed
for each pdf p(x̄t |j t0), t = 0, . . . ,T. Note that the channel
transition probability has been taken into account in this ini-
tialization. Fig. 6 illustrates that with iterative improvements,
both initializations converge to quite similar final results, i.e.,
traineduni, and trainedchop, although the performances of
init uni is notably worse than the performance ofinit chop.

VIII. CONCLUSION

This paper has introduced an approach that jointly op-
timizes the encoder and decoder in closed-loop control
of a linear plant with low-rate feedback over a binary
symmetric channel. The variability of the plant is modeled
as process noise. Having argued that a fixed sequence of
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encoder mappings will result in the certainty equivalence
condition being fulfilled, we fixed the receiver structure to
implement separate decoding (estimation) and control. Our
main contribution is to introduce optimized encoders given
this structure on the estimation–control. We have performed
various numerical investigations of the proposed optimization
algorithm and illustrated quite promising results.

Even though our results were presented for a scalar
system with full state observation, the overall problem was
formulated under quite general assumptions, allowing for
extensions, e.g., to systems of multiple dimensions and with
partial observations. Another interesting extension of our
work is to examine, the trade-off between the channel transi-
tion probabilityε and how coarse the feedback information
can be, given a certain control performance requirement.
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APPENDIX

In this section, we will show that the certainty equivalence
controller in (15) is optimal for the system (7), and the design
criterion (9). As in [1], one can show that

x2
T = x2

0P0+
T−1

∑
t=0

(

x2
t+1Pt+1−x2

t Pt
)

= P0x2
0 +

T−1

∑
t=0

(

2Pt+1(axt +ut)vt +Pt+1v2
t

+(l2t (Pt+1 + ρ)−1)x2
t +2axtutPt+1 +u2

t Pt+1

)

Accordingly, the costJT can be written as

JT = E{x2
T +

T−1

∑
t=0

(

x2
t + ρu2

t

)

}

= E{P0x2
0 +

T−1

∑
t=0

(

2Pt+1(axt +ut)vt +Pt+1v2
t

+(Pt+1 + ρ)(xt lt +ut)
2)} (20)

Sincevt is white noise, and uncorrelated withxt andut , the
contribution from the first term within the sum in (20) is
zero. The controlut that minimizesJT , is hence obtained as

min
ut

(

E{(ρ +Pt+1)(ut + ltxt)
2}

)

= Ej t0

(

min
ut

(

E{(ρ +Pt+1)(ut + ltxt)
2|j t0}

)

)

= Ej t0

(

min
ut

(

E{(ρ +Pt+1)(ut + lt x̂t|t)
2|j t0}

+(Pt+1 + ρ)l2t E{(x̂t|t −xt)
2|j t0}

)

)

, (21)

where Ej t0
denotes expectation overj t0. By assuming the

encoder has the structure in (10), the received symboljt
depends onx0, vt−1

0 , the potential channel errors and side-
information kt−1

0 , but not on the control signalsut−1
0 . This

implies that the last term in (21) is not a function of
the control signals. Hence, optimal control is obtained by
minimizing the first term in (21), which givesut = −lt x̂t|t .


