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Abstract— Bandwidth limitations and energy constraints set
severe restrictions on the design of control systems that utilize
wireless sensor and actuator networks. It is common in these
systems that a sensor node needs not be continuously monitored,
but communicates to the controller only at certain instances
when it detects a disturbance event. In this paper, such a
scenario is studied and particular emphasis is on efficient
utilization of the shared communication resources. Encoder—
decoder design for an event-based control system with the plant
affected by pulse disturbances is considered. A new iterative
procedure is proposed which can jointly optimize encoder—
decoder pairs for a certainty equivalent controller. The goal is
to minimize a design criterion, in particular, a linear quadratic
cost over a finite horizon. The algorithm leads to a feasible
design of time-varying non-uniform encoder-decoder pairs.
Numerical results demonstrate significant improvements in
performance compared to a system using uniform quantization.

I. INTRODUCTION

The demands for sharing resources efficiently in large
networked systems are continuously increasing. In many
situations, there is a challenging conflict between the amount
of transmitted data and the response time. In particular for
emerging distributed control applications, limits imposed on
the available signaling bandwidth from communication chan-
nels can severely restrict closed-loop performance and even
destabilize the system. Networked control based on limited
sensor and actuator information has therefore been a research
topic that has attracted attention during the past decade.
There are two main research directions: one is concerned
with the minimum communication rate required to fulfill
certain criteria, e.g., [2], [13], [15]. The other concern sys-
tem performance for particular classes of encoder—decoders,
e.g., [51, [7], [8], [10], [16]. Most of this literature is on
extensions of the traditional sampled feedback control loop.
For control systems utilizing wireless sensors and actuator
networks, it seems reasonable to consider asynchronous
control instead. This approach appears to have been received
little attention in the literature on control with limited data
rate.

Event-triggered control strategies have great potential in
many cases to be more efficient than conventional time-
triggered (or sampled) control [1]. To optimally utilize the
communication resources, it is desirable to let each control
loop communicate less frequently. How this should be done
in general is largely unexplored and only preliminary results
are available, e.g., [1], [14]. In this paper, we propose a

new control strategy combining the approaches from event-
triggered and quantized control. It is shown that for an
interesting class of systems, which are affected by rarely
occurring disturbances drawn from a known probability dis-
tribution, it is possible to achieve a good control performance
with limited control attention and sensor communication.
The focus here is on how to encode sensor data efficiently.
Related problems on encoding control commands for motion
control have been studied in [4], [6], [9].

The main contribution of the paper is a practical synthesis
technique for jointly optimizing the encoder and the decoder
subject to a given probability density function (pdf) of the
plant disturbance. As illustrated in a motivating example,
this is an important problem in event-based control that can
be used when a large set of wireless sensor nodes need to
limit their individual access to the communication medium.
Previous work on control with limited communication has
mainly focused on uniform quantizers, while our main con-
tribution is to introduce the use of optimized (generally non-
uniform) encoders. In a standard approach, the encoder and
decoder are initialized by the current realization of the initial
observation. As the system evolves, the encoder—decoder
pair are adjusted according to the available measurements
and the common agreements between the encoder and the
decoder. A reason for choosing a uniform quantizer is that it
is convenient to implement. However, for applications with
high communication cost (like sensor networks), it is natural
to study optimized encoder—decoder pairs that can provide a
more efficient use of the limited communication resources.

The paper is organized as follows. A motivating example
based on a wireless sensor networks is presented in Sec. II.
Sec. III defines the control system with encoder, decoder,
and communication channel. The problem statement, which
concerns a linear quadratic (LQ) objective over finite horizon,
is presented in Sec. IV. The joint encoder—decoder design
and a proposed training procedure are described in Sec. V.
Sec. VI presents numerical results and discusses some im-
plementation issues. Finally, the conclusions are given in
Sec. VIL

II. WIRELESS SENSOR NETWORK EXAMPLE

Consider the wireless networked control system in Fig. 1.
It consists of a large number of sensor nodes that can connect
through a shared wireless medium to a control node. The
control command is executed through a common actuator.
Suppose that the sensors are spatially distributed over a large
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Fig. 1. Control system which utilizes data from wireless sensor network.
The results in this paper can be applied to optimize the use of the wireless
medium.

area and that they measure the states of a field. The field is
affected by local disturbances, which at each time instance
are affecting at most one of the sensors. The actuator is sup-
posed to be able to counteract the disturbance by a suitable
action determined by the controller. In order to efficiently
utilize the communication resources, it is desirable that at
each disturbance event the corresponding sensor transmits
only a few symbols and that each symbol consists of a few
bits. Under the assumption that an estimate of the probability
density function of the magnitude of the disturbance at each
sensor location is known, we can optimize the encoder—
decoder pair for each sensor transmission together with the
control law. A reasonable control objective when doing this
is to keep the state measured by each sensor close to an
equilibrium by using a small amount of control actuation.

The resulting decentralized control strategy is as follows.
Let the control command corresponding to a specific sensor
be zero as long as the corresponding state is close to zero.
When the sensor detects that the state is outside an &-
interval around the origin, the sensor reading is encoded and
transmitted to the controller node. The message is decoded
at the controller node and a control command is derived
and actuated to counteract the specific disturbance acting
on the transmitting sensor. The controller and the encoder—
decoder pair are designed based on a finite-horizon linear
quadratic criterion. If disturbance events are rare, the design
is mainly dependent on the distribution of the magnitude
of the disturbance. A partial solution is therefore to solve
the a linear quadratic (LQ) problem with uncertainty only
in the initial condition. The plant dynamics will however
propagate the influences of consecutive disturbances. A class
of time-varying non-uniform encoder—decoders are derived
in the paper, which together with a simple state feedback
control is suitable to handle the situation.

III. PRELIMINARIES

Consider a control system with a communication channel
depicted in Fig. 2. For completeness we describe in this
section a general version of the system; while we will later
focus on a special case. Let X3 = {Xa,...,Xp} denote the
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Fig. 2. Feedback control system with channel constraints

I

evolution of a discrete-time signal X; fromt =a to t =h.
The plant is given as the scalar system

Xe+1 = B (Ko Ue) + Vet
Yo = he(Xt) e,

with memory of order My. The variables X;, Uy and Y, in R,
are the state, the control, and the measurement, respectively.
The process disturbance and the measurement noise are
represented by V¢ and é;.

Let & denote the set of “information” available at the
encoder at time t, i.e., the set of variables whose values are
known to the encoder. In particular, we consider an encoder
that causally utilizes full information, in the sense & =
b, iB’I,uB’I}, where i; is defined later on. The encoder is a
mapping from &; to a set of integers, .# = {0,1,---,L—1},
where L = 2R with R denoting the rate of the transmission,
in bits per channel use. Formally, the encoder is described
by the mapping

(1)

ic = fe(yh, iy ' ub ). (2)

The symbol i; € .7 is transmitted over the channel. At time
t, the discrete channel has input variable it and output j,
with one channel use defined by

jt = ke(if ), (3)

where k; : JLMCH — J_ is a random mapping, and M¢ > 0
indicates (potential) channel memory.

At the receiver, we denote the information available at
the decoder by Z; in particular, we consider a decoder that
causally utilizes full information, i.e., % = {jg,u};l}. The
decoder is a deterministic mapping

de = ge(J6. U ), 4)

from % to R.

Also, let %, in particular % = {d(t),uff]}, denote the
(full) information available at the controller. The controller
is defined by a mapping

Uy = 2¢(dg, U 1), )
from %; to R. We also define
Rst = E{xs| Jo, Uy '} (©6)

to be the minimum mean square error estimator of the state
Xs, for s <t, based on j and ufj .
Finally, we comment that even if all variables are not

available at all nodes in the system, we assume that the



functionalities of the encoder, decoder, controller and state-
estimator are known at all nodes.

IV. PROBLEM STATEMENT

Let us focus on a special instance of the system in Fig. 2,
namely, a stable scalar linear time-invariant plant

Xt41 = aXg + U + Vg, Yt =X, laj <1, (7

and assuming a memoryless noise-free channel, j; = i;. The
disturbance occurs (i.e., Vi is non-zero) at random instances
of time. At these time-instants, suppose Vi is drawn from
a zero-mean distribution with pdf py. Let t =0 denote the
occurrence of the first disturbance Vg, and assuming Uy = Xt =
0, V1t <O, it is clear that X9 = Vg, drawn according to py.

A. Performance Measure

The goal of this paper is to solve an integrated encoder—
decoder design and optimal control problem for the system
in (7), with a performance measure of the form

J = llm — z E{Xt +put (8)

where p > 0 specifies the “weight” assigned to the cost
(contribution to J) of closed-loop control; uy > 0. Let tj, i =
0,1,2,..., denote the time instance for the occurrence of the
ith disturbance, assuming ty = 0 (corresponding to the initial
state Xo =Vp), tj >0, Vi >0, and t; #tj, ¥V i# j. Then we
can write

1 K=! 1 tip1—1 ) 5
J=lim — E{xi + pu 9
e Z (ti+1 . t; {xi+p t}> €))

conditioned on a fixed {tj}.

Suppose now that a substantial part of the contribution
of a disturbance to the performance measure is concentrated
to a (small) time-interval of length T time-instants following
each disturbance, i.e., the contribution in the interval tj+T <
t <ty is small compared to the one in tj <t <t +T —
1. This is a reasonable assumption if the feedback control
succeeds in attenuating the disturbance within time T, and
the intensity of the disturbance is low enough such that, with
high probability, there is only one disturbance per interval.
Then, J can be approximated by

ti+T—1 5 )

In (10), and from now on, we assume that the plant is not
controlled in the interval tj+T <t <tj, 1, i.e., Uy = 0 for these
time-instants. We also explicitly assume that tj;; —t > T.

In (10) the expectation is (implicitly) taken with respect to
the pdf py, while the random occurrences {tj} are averaged
out by the time-average. Alternatively, by treating each
disturbance separately and shift time to zero (‘re-starting
the clock™) at the occurrence of each disturbance, we end
up with the following criterion

(10)

.
Ir= %E{xhpu%}, (11)
t=

with the constraint ut = 0.

In (11) the expectation is to be interpreted as averaging
over both the values and time-instants of the disturbances,
in the sense that the expectation E is taken with respect to
a new pdf po for X defined as

po = Jim Z Pi. (12)
where pj is the pdf of X;. As per our discussion, it should
hold that Jt ~ J. In the remaining parts, any reference to
optimality will refer to J7 and the implicit averaging over
all the different disturbances in the sense of py.

B. Disturbance Detector

A detector is employed to mark instances when a distur-
bance event has taken place. Since no measurement error is
present, estimates of the system evolution are readily calcu-
lated without error. Hence, a disturbance can be perfectly
detected by comparing a predicted value for X; with the
observed value. Even though we assume that there is a per-
fect disturbance detection mechanism, the quantization effect
makes it non-trivial to decide when to act. For example, when
the bit rate is low, it may be better to let the disturbance die
out by the plant’s own stabilizing dynamics, than to apply a
control with relatively large estimation errors. We therefore
introduce a threshold € > 0. The control action is triggered
only when the magnitude of the observed state is larger than
the threshold. The threshold is obviously an additional design
parameter. It will be discussed in detail in Sec. V.

C. Encoder-Decoder Structure

In the case of a noise-free connection between the con-
troller and the plant, the encoder is able to predict the future
evolution of the state. Encoder—decoder design is therefore
essentially equivalent to the problem of constructing an
optimal strategy for the encoder to successively inform the
decoder about the initial state, Xp, over a discrete noiseless
channel. Assuming full information available at the encoder,
we notice that & = {x},i ',u"'} is equivalent to & =
{Xo,i5"'}. This since the encoder knows ufy' based on
it-! (remember, j = it), and since th can be computed
from (Xo,u§ ). Hence we assume, from now on, that i is
generated as

it = fe(xo,iy '), t=0,....T—1, (13)

based on Xp and the known previous symbols |t I
At the receiver, full information is equivalent to D = {ig},
since ji = it and U}, can be computed from i), so in the

following the assumed decoder mapping will be

de = (i), t=0,....T—1. (14)
Similarly, the optimal state estimator, based on %, is
Xt =E{Xdip}, t=0,....T—1, s<t. (15)

As explained in Sec. V-A, we will specialize the decoder
mapping to d¢ = X, so Xy will be utilized by the controller
to compute the control output Us.



V. SYSTEM DESIGN

This section presents the main results of the paper. After
discussing certainty equivalence and encoder—decoder train-
ing, we present the overall design algorithm.

A. Certainty Equivalence

In general, optimal performance is achievable only when
the encoder—decoder pair and controller are designed jointly.
There are examples, however, when the separation principle
applies. More precisely, the so-called certainty equivalent
controller remains optimal when the estimation errors are
independent of old control commands [3].

To apply the certainty equivalence principle to our prob-
lem, we consider the design of optimal sequences of de-
coders {gt} and controllers {z}, for a fixed sequence of
encoders {fi} with fi = fi(xo,i '). We notice that the
sufficient condition in [3] corresponds to the requirement
that the estimation error E[(Xo —Xo¢)?], t=0,...,T —1,
must not be a function of u(s), for s=0,...,t —1, for any
sequence Ug of controls. It is straightforward to verify that
this condition holds true in our case, since iy = ip(Xg), i1 =
i1(Xo,i0), - .., it = it(Xo,lg,...,i—1). Hence the values taken
on by iE), given a fixed set of encoders, depend only on Xg
and not on uj for any s < t. Thus, certainty equivalence holds
under our assumptions. Consequently, based on a similar
argumentation as in [3], the optimal decoder and controller
sequences can be shown to be

dt = X’[\h and U»Ek = —Etdt (16)
(ie., 7t (d(t)) = —/f; d) with
CY a’peyip
5 L W Dl L L 17
i M Prei+P an

fort=T —1,...,0 and py is initialized with pt = 1. Notice
that since certainty equivalence holds, there is no loss in
separating the decoder—controller into two separate entities
(as done in Fig. 1).

B. Iterative Design Algorithms

Here we propose a framework for designing the encoder,
decoder and controller mappings. Similar to traditional it-
erative algorithms for optimal quantizer design [12], the
basic idea is to search for locally optimal encoder—decoder
pairs by alternating between updating the decoders for fixed
encoders and vice versa, until convergence. Since, for any
given set { f; };r:_ol of encoder mappings, with f; = f; (X, iB‘l),
the optimal decoder and controller mappings are given by
(16)—(17), the main issue we need to resolve is the structure
of the optimal encoder mappings, given {g:} and {z}.

Given the sets of decoder and controller mappings, and
assuming in addition that f;, t =0,...,T —2, are fixed and
known, it is straightforward to realize that the optimal fy_; =
fr_1(Xo,i§ %) is described by

iT_1 = argirél}E [X-zr —|—pu-2|-_1‘xo,ig*2,i-r_1 =i|. (18)
L

Here we note that X;,...,XT—; and Ugp,...,UT_, are known
deterministically conditioned on Xy and ig—z’ given f; fort =
0,...,T —2 and since the decoder and controller mappings
are fixed. Hence, testing different values for it_; influences
only ur_j and Xt =axt—; +Ut—;. Fort <T —1 we need to
take the impact of it on all future terms into consideration.
Hence, for given decoders and controllers, and given the
encoder mappings fi fort=0,....,t—1landt+1,.... T —1,
we get the optimal f; = fi(xo, i, ') as

-
it:argirg;EE Lz:txﬁ—l-puﬁ‘xo,igl,it:i] i (19)
Note that the optimal mapping f; indeed has the form
it = ft(Xo,itofl). Although straightforward in principle, the
expression in (19) is to our knowledge new.

Based on (16), (17) and (19), we can formulate an
encoder—decoder design algorithm:

Encoder-Decoder Design (EDD)

Initialize the encoder and decoder mappings {fi} and {g:}.
Compute the controller parameters {¢;} using (17).
1) Foreacht=0,..., T —1,
o Update the encoder mapping f; using (19).
« Update the decoder mapping d; using (16).
o Set Uy = —/;0k.

2) If Jr has not converged, go to 1), otherwise stop.
The algorithm requires that the pdf po is known or described
by a training set [12]. Convergence is monitored based
on updating the value of Jt in each step. Unfortunately,
as mentioned, the above design cannot guarantee global
optimality. Still, the algorithm converges to a local minimum,
and in this sense produces a “good” solution.

A crucial step in the design is to specify the initial
encoder—decoders. Note that given a pdf po for Xg, the values
of i}fl, and the corresponding uBﬁl, the pdf’s p(xt|ig’1),
t < T, can be derived (estimated from a training set). A
natural choice to initialize the EDD algorithm above is to
use the encoder—decoder of scalar Lloyd-Max quantizers
[12] designed for these pdf’s. Starting with designing f( for
Po, and using the resulting reconstruction points as initial
estimates for Xoo as well as £y from (17), the conditional
pdf’s p(xilip), ip € AL, can be determined. Base on these, L
different Lloyd—Max quantizers can be trained to determine
f1(Xo,i0), and so on. Alternatively, the encoder-decoders can
be initialized as properly scaled uniform quantizers [12].

As discussed in Sec. IV, an important parameter with
respect to overall performance is the threshold €. Above,
we have discussed the optimal coding and control problem
assuming a fixed threshold. The choice of threshold is
however taken into account in the overall design algorithm
summarized below.

System Design (SD)

1) Initiate the pdf po based on the pdf of the distur-
bance. Initialize the encoder—decoder {fi} and {g:}
using Lloyd—Max or uniform quantizers, as described.
Compute {4}.
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2) Set € =0. Design encoders, decoders and controllers
using the EDD algorithm.

3) Use the resulting encoder—decoder pair and simulate
the disturbance sequence according to the known sta-
tistical properties of {vi}. Find the value & for the
threshold € that minimizes Jr.

4) WHILE J7 has not converged

a) Apply the trained encoder—decoder and & to the
disturbed control system. Collect a training set
that describes py.

b) Train the encoder-decoder using the EDD algo-
rithm.

5) For the final encoder—decoder, find the threshold that

minimizes JT.

In Step 4b) the encoder—decoder pair from the prior
iteration is used to initialize the training. Note that selecting
a threshold is performed once in Step 3), and for the second
time in Step 5) to set a final value for €.

VI. NUMERICAL RESULTS

We investigate a numerical example with a = 0.8, rate
R =2 and T = 3. The disturbance events {tj} are modeled
as a Poisson process, and the pdf py, of the disturbance
magnitude is modeled as a generalized Gaussian distribution
(GGD), e.g., [11]. The GGD(a,3) distribution provides a
wide coverage from narrow-tailed to broad-tailed pdf’s; o
describes the exponential rate of decay, and f3 is the standard
deviation. We use 3 =2 throughout.

Fig. 3 illustrates how the distribution of the training data
changes when a threshold € # 0 is introduced.

To demonstrate the performance of the proposed iterative
algorithm, we compare system performances among several
encoder—decoder pairs. As described previously, the iterative
algorithm requires a set of initial encoder—decoders. Three
initialization methods are studied. The first initialization, re-
ferred to as FixU, employs a fixed optimum step-size uniform
quantizer for the entire period 0 <t < T — 1. The second
method, referred to as VariU, employs time-varying uniform
quantizers with optimized step size. The last initialization,

referred to as (LM), applies Llyod-Max quantizers [12],
designed for each pdf p(xo|if, ') (Sec. V-B).

Fig. 4 shows the performance improvements after training.
The system parameters are stilla=0.8, R=2and T =3. py
is GGD(a,2), where a is varied. The performance measure
V is defined by

v _ E{SE 02 +pud)} —E{55 ()}
E{yo ()} ’

such that the cost function in (11) is normalized by the
energy of the disturbance E{S[ 1(v?)}. Note that a small
V indicates an effective control strategy. We observe that the
new design algorithm always results in an improvement over
the initial encoder—decoder pairs. In addition, all three initial-
izations converge to quite similar final results. However, for
disturbances with a peaked distribution, e.g., GGD(0.5,2),
the performance after training is significantly improved. In
this case, the optimal quantization should obviously not
be uniform. Recalling that the parameter o describes the
exponential rate of decay. The pdf is closer to a uniform
distribution when a is large.

In Fig. 5, we have investigated the impact of the parameter
p on the system behavior. Recall that p is the penalty on
the control signal in the performance measure. The picture
illustrates the state evolution and the corresponding control
signals over 100 time samples. Note that when p is large, the
optimal control signal has small magnitude, so consequently
the response times to the pulse disturbances are longer. The
figure shows also that, due to the effect of coding, the control
signal can only be chosen among a few different values.

(20)

VII. CONCLUSIONS

Motivated by demands from networked control systems
utilizing patches of wireless sensors, an encoder—decoder
design problem was proposed and solved. We introduced an
approach to jointly optimize an encoder—decoder pair for a
closed-loop control system with linear plant and sensor data
being communicated over a low-rate channel. The plant was
assumed to be affected by rare pulse disturbances. Having
argued that the certainty equivalence condition is fulfilled, we
fixed the receiver structure to implement separate decoding
(estimation) and control. Our main contribution was the
introduction of optimized encoders for the given structure
on the estimation—control.

We performed various numerical investigations of the
proposed system. In particular we have demonstrated that
our design is able to outperform a scheme based on fixed or
adaptive uniform quantizers.

Even though our results were presented for a scalar
system and noiseless transmission, the overall problem was
formulated under quite general assumptions, allowing for
extensions, e.g., to multiple dimensions and noisy channels.
We consider this paper as an important first step toward
future work on practical designs in joint control and source—
channel coding.
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