
Nonserial Dynamic Programming with Applications in Smart Home
Appliances Scheduling – Part I: Precedence Graph Simplification

Kin Cheong Sou, Henrik Sandberg and Karl Henrik Johansson

Abstract— In this and a companion paper a dynamic pro-
gramming (DP) approach to solve a smart home appliances
scheduling problem is considered. The challenge with solving
the scheduling problem is the coupling of decision variables due
to some time precedence constraints. In general, the system
of precedence constraints may contain redundant constraints
that offer opportunities for simplification. This simplification is
desirable for reducing the computation effort of the nonserial
DP procedure presented in the companion paper (i.e., Part II).
The current paper establishes the uniqueness of the maximum
set of redundant constraints and its polynomial-time solvability
with optimality guarantee, under the sufficient and necessary
condition that the precedence graph (a graph representation
of the precedence constraints system) does not contain any
cycle with nonnegative weight. A numerical case study indicates
the efficiency of the proposed simplification algorithm versus
the brute-force enumerative search. Besides helping to reduce
the computation effort in the DP procedure described in the
companion paper, the algorithm in the current paper solves
a generalization of a precedence graph simplification problem
arising from application areas such as parallel computing.

I. INTRODUCTION

A major goal of smart grid technology (e.g., smart meters)
is to provide consumers with demand response signals such
as electricity tariff and CO2 footprint so that the consumers
can consciously control their energy consumption patterns.
These demand response signals provide incentives for the
consumers to help reduce peak energy demand by load bal-
ancing, as this is particularly relevant in a situation with high
level of renewable energy penetration. However, the volume
of information of the time-varying tariff and CO2 demand
response signals can be overwhelming for the consumers.
Therefore, optimal appliances scheduling is a key component
for the automatic decision supporting technologies to enable
smart grid realizability. Recently, the appliances scheduling
problem to exploit demand response signals has received
much attention (e.g., [1]–[7]).

This paper describes the extension of the dynamic pro-
gramming (DP) approach to the smart home appliances
scheduling problem considered in [1], [2]. The problem seeks
to determine the start times, denoted by ti for i = 1,2, . . . ,n,
of the energy phases of the appliances. The start times ti
are discrete (i.e., ti ∈ {0,∆t,2∆t, . . . (N − 1)∆t} for some
∆t > 0 and positive integer N). In addition, it is assumed
that Li ≤ ti ≤ Ui for all i, and Li and Ui are given (0 ≤

Kin Cheong Sou is with the Department of Mathematical Sciences,
Chalmers University of Technology and the University of Gothenburg, Swe-
den. The other authors are with the ACCESS Linnaeus Center and the Au-
tomatic Control Lab, the School of Electrical Engineering, KTH Royal In-
stitute of Technology, Sweden. kincheong.sou@chalmers.se,
{hsan,kallej}@kth.se

Li ≤ Ui). It is possible to have Li = −∞ and/or Ui = ∞ to
indicate that the corresponding constraints are in fact not
present. Further, the start times must satisfy time precedence
constraints of the form li j ≤ t j− ti ≤ ui j for all {i, j} pairs,
where li j and ui j are given numbers with li j ≤ ui j. Again, it is
allowed to have li j =−∞ and/or ui j = ∞ to indicate that the
corresponding constraints are in fact not present. Without
loss of generality, it is assumed that all Li, Ui, li j and ui j
are integer multiples of ∆t. The time precedence constraints
can model the time precedence relationships between energy
phases within and between appliances. They can also handle
minimum and maximum delays between energy phases. In
addition, the schedule is subjected to a resource budget

constraint:
n
∑

i=1
gi(ti)≤ b for some arbitrary given functions gi

and given budget b. It is assumed that the values of gi and
b are quantized. That is, gi(ti) and b are nonnegative integer
multiples of some given ∆b > 0. Examples of the resource
in the budget constraint include financial cost or CO2 cost.
The budget constraint is imposed, for instance, when the
ε-constraint method is used to compute the Pareto optimal
solution in the electricity bill/CO2 cost trade-off problem
[2]. The objective of the scheduling problem is to minimize
the sum of fi(ti) (e.g., electricity cost or CO2 cost). The
objective function components fi are given but arbitrary. The
optimization problem can be summarized as follows:

minimize
t1,t2,...,tn

n
∑

i=1
fi(ti)

subject to li j ≤ t j− ti ≤ ui j, ∀ {i, j}

Li ≤ ti ≤Ui, ∀ i
n
∑

i=1
gi(ti)≤ b.

(1)

In [2] a DP approach was reported to solve (1) when the
time precedence constraints are serial. That is, there exists
a permutation i1, i2, . . . , in of 1,2, . . . ,n such that the time
precedence constraints can be written as the following at
most n−1 constraints:

li1i2 ≤ ti2 − ti1 ≤ ui1i2 ,
li2i3 ≤ ti3 − ti2 ≤ ui2i3 ,

...
lin−1in ≤ tin − tin−1 ≤ uin−1in .

(2)

Again, the u’s and l’s in (2) can be set to +∞ and/or −∞

respectively, depending on whether the specific constraints
exist or not. Any set of time precedence constraints not in
the form of (2) is referred to as nonserial.

While standard DP can handle problem (1) with serial time
precedence constraints, it is not obvious whether it is possible
or in what manner the standard DP can be applied to the
general problem with nonserial time precedence constraints
[8]. The main objective of this and the companion paper
[9] is to describe a modified DP approach to solve (1) with
nonserial time precedence constraints. The approach should
provide the exact optimal solution to (1), and the computation
should be as efficient as possible.

A. Problem Statement

In this paper a procedure to simplify the system of time
precedence constraints in (1) is described. The procedure
identifies redundant time precedence constraints that are
implied by other time precedence constraints in the system.
For example, in the following system of constraints the first
one is implied by the later two: t3 − t1 ≥ 3, t3 − t2 ≥ 2,
t2− t1 ≥ 2. In general, given a system of time precedence
constraints

li j ≤ t j− ti ≤ ui j, ∀{i, j}, (3)

where li j and ui j are given multiples of ∆t. The simplification
problem seeks a more compact equivalent system of time
precedence constraints

l̃i j ≤ t j− ti ≤ ũi j, ∀{i, j}, (4)

by finding appropriate values of l̃i j and ũi j, so that under the
constraints that

1) l̃i j = li j or l̃i j =−∞, for all {i, j},
2) ũi j = ui j or ũi j = ∞, for all {i, j},
3) (3) and (4) define the same constraint set,

the number of l̃i j and ũi j setting to their respective extreme
values (i.e., −∞ or +∞) is maximized. In order words, (3)
and (4) define the same constraint set, while in (4) the
maximum number redundant constraints are removed.

One motivation for the simplification is that by describ-
ing (1) with a more compact system of time precedence
constraints, the computation effort for the nonserial DP
procedure presented in the companion paper [9] can be
reduced. As an alternative motivation, the time precedence
constraint system simplification problem is a generalization
of a precedence relation simplification problem considered
in the literature (e.g., parallel computing [10]–[12] and
manufacturing system [13], [14]).

B. Contribution and Organization of the Paper

In Section II a directed precedence graph representation
of the time precedence constraint system in (3) is described.
Some properties of the precedence graph are discussed.
In particular, it will be argued that the precedence graph
naturally does not contain any nonnegative weight cycle,
provided that the degeneracy in the precedence graph is
resolved. The simplification problem associated with (3)
and (4) can be written as a precedence graph simplification
problem in which the maximum redundant edge set is sought.
Section III describes the main contribution of the paper. It is
shown that under the no-nonnegative-weight-cycle condition,

the maximum redundant edge set is unique. In addition, this
paper establishes that the maximum redundant edge set can
be found in polynomial-time by providing a polynomial-
time solution algorithm based on Bellman-Ford longest path
computation (for graphs without nonnegative weight cycles).
Thus, the computationally intensive enumerative search for
the maximum redundant edge set can be avoided. In the
end of Section III, it is shown that the no-nonnegative-
weight-cycle condition is also necessary for the uniqueness
of the maximum redundant edge set. This is established by
a counterexample. In Section IV a numerical case study
demonstrates the effectiveness of the proposed algorithm for
precedence graph simplification.

II. DIRECTED PRECEDENCE GRAPH REPRESENTATION
OF PRECEDENCE CONSTRAINTS SYSTEM

To proceed with the simplification, a directed graph rep-
resentation of the time precedence constraint system in (1)
needs to be described first. These constraints can always be
written as tv − tu ≥ cuv with appropriately defined indices
u ∈ {1,2, . . . ,n} and v ∈ {1,2, . . . ,n} and weight cuv. For
instance, the constraint li j ≤ t j − ti ≤ ui j can be written as
t j− ti ≥ li j and ti− t j ≥−ui j. The time precedence constraint
system can be described by a directed time precedence graph
G = (V,E) with edge weights. G and the weights are defined
by
• The set of all nodes, denoted by V , is defined as V =
{1,2, . . . ,n}. Each node in V corresponds to a start time
decision variable in (1).

• The set of all weighted directed edges, denoted by E,
is defined as the set of all ordered pairs (u,v) for u ∈V
and v ∈ V such that (u,v) ∈ E with weight cuv if and
only if the time precedence constraint tv− tu ≥ cuv is
present (i.e., cuv >−∞).

A time precedence graph G cannot be arbitrary. For instance,
G does not have any self-cycles (i.e., edges originating and
ending at the same node). Also, it is assumed that G does
not have parallel edges with the same direction connecting
two nodes, since one edge will imply the rest. Furthermore,
G does not have positive weight directed cycles:

Lemma 1: Let the sequence of nodes i0, i1, i2, . . . , im de-
note a directed cycle in the time precedence graph G, with
(ik, ik+1) ∈ E for k = 0, . . . ,m− 1 and ik 6= i j for k 6= j
except i0 = im. Then the weight of the cycle, defined as
ci0i1 + ci1i2 + . . .+ cim−1im , must be nonpositive.

Proof: The time precedence constraints corresponding
to all edges in the cycle are listed as

ti1 − ti0 ≥ ci0i1
ti2 − ti1 ≥ ci1i2

...
tim − tim−1 ≥ cim−1im .

(5)

Summing up all inequalities, with the fact that i0 = im, leads
to the desired inequality that 0 ≥ ci0i1 + ci1i2 + . . .+ cim−1im .

Remark 1: Lemma 1 does not exclude the cases where
cycles in a time precedence graph G have zero weights.

However, this paper makes a further assumption that zero
weight cycles are not allowed (i.e., all cycles have negative
weights). This assumption amounts to the removal of degen-
eracy which does not affect the optimal solution of problem
(1). The details can be found in Appendix A. The assumption
of cycles having negative weights is critical in the systematic
approach to simplify G. This will be clear in the subsequent
discussions.

Because of the correspondence between the time prece-
dence constraint and the edge of the time precedence graph,
in the sequel the simplification of the time precedence con-
straint system will be discussed in terms of the simplification
of the corresponding precedence graph.

III. SIMPLIFICATION OF PRECEDENCE GRAPH

To describe the systematic procedure to simplify the time
precedence graph G, some definitions are needed. In G,
a (directed) walk from node u to node v is described by
a sequence of traversed nodes u = i0, i1, . . . , im = v, where
(ik, ik+1) ∈ E for all k. A closed (directed) walk is a walk
with i0 = im. A (directed) path from u to v is a walk from
u to v with the additional requirement that all traversed
nodes are distinct. A (directed) cycle is a closed walk where
i0, i1, . . . , im−1 are distinct and i0 = im. If w denotes a walk
(including path and cycle), then the weight of w, denoted by
cw is cw = ci0i1 +ci1i2 + . . .+cim−1im . That is, the weight of the
walk is the sum of the weights of the traversed edges, with
the edge weight added as many times as an edge is traversed.
An edge set Er ⊂ E is referred to as a set of redundant edges
(or redundant edge set) if it satisfies the following condition:

For all (u,v) ∈ E with weight cuv, there exists a path puv

in (V,E \Er) from u to v such that cpuv ≥ cuv.
(6)

There can be multiple sets of redundant edges in a time
precedence graph. However, the redundant edge set with the
maximum number of edges, denoted by E?

r , is unique. The
following statement and its corollary provide the rationale:

Lemma 2: Let E1
r and E2

r both be redundant edge sets
satisfying (6). Then E1

r ∪ E2
r is also a redundant edge set

satisfying (6).
Proof: To verify that E1

r ∪E2
r is indeed a redundant edge

set, it is sufficient to verify that for each (u,v)∈E1
r ∪E2

r with
weight cuv, it holds that

∃ a path puv in (V,E \ (E1
r ∪E2

r)) from u to v s.t. cpuv ≥ cuv.
(7)

Without loss of generality, assume that (u,v)∈E1
r (otherwise

the labels can be exchanged). Then by (6) there exists a walk
(which is in fact a path) w1 in (V,E \E1

r) from u to v such
that cw1 ≥ cuv. If w1 is also in (V,E \E2

r) then w1 belongs
to (V,E \ (E1

r ∪E2
r)) and (u,v) satisfies (7). If, on the other

hand, w1 contains edges belonging to E2
r , then by (6) each

of these edges can be replaced by a corresponding path in
(V,E \E2

r). Also by (6), the weights of the replacement paths
are no less than the weights of the corresponding edges. This
results in another walk w2 in (V,E \E2

r) from u to v, with
possible edges in E1

r . The walk w2 has strictly more nodes

(and edges) than w1, and cw2 ≥ cw1 . If w2 is in (V,E \E1
r) then

(u,v) satisfies (7), as argued above. Otherwise, the process of
finding replacement walks w3,w4, . . . with increasing number
of nodes and nondecreasing weights would continue. This
process terminates if and only if a replacement walk from
u to v is found, which is entirely in (V,E \ (E1

r ∪ E2
r)).

Let w? denote such a replacement walk (will be shown to
exist). The proof will be completed (for edge (u,v)) if the
following two claims can be asserted: (a) the replacement-
path-finding process would terminate in a finite number
of iteration with some w?, and (b) upon termination of
the replacement-path-finding process the replacement walk
w? can be used to show that (u,v) satisfies (7). To see
claim (a), assume on the contrary that the replacement-
walk-finding does not terminate. It is noted that any walk
from u to v can be decomposed into a path from u to
v and a finite number of cycles (see Appendix B for a
proof). In addition, in a finite graph the numbers of possible
paths and cycles are finite. Therefore, by the pigeonhole
principle, at some iteration in the replacement-walk-finding
process will generate a walk w̃ traversing a cycle, and one
of the previously constructed walks is exactly the same as
w̃ except that the cycle is not traversed. The construction
of the walks implies that the cycle has nonnegative weight.
This contradicts the assumption that all cycles in G have
negative weights. This shows the finite termination of the
replacement walks construction process, and this implies the
existence of the replacement walk w? from u to v, entirely in
(V,E \ (E1

r ∪E2
r)), because the existence is the sufficient and

necessary condition for finite termination. Hence, claim (a) is
established. Finally, to see claim (b), note again that w? can
be decomposed into a path from u to v and a finite number
of cycles. Removing all cycles in the walk w? will result in
a path from u to v which is entirely in (V,E \ (E1

r ∪E2
r)). In

addition, the weight of this path is greater than that of w?,
from which the path is constructed because all cycles are
assumed to have negative weights. Hence (u,v) satisfies (7),
and claim (b) is established. Applying the same proof to all
members of E1

r ∪E2
r completes the proof.

Lemma 2 implies that the maximum redundant edge set
is unique:

Corollary 1: E?
r , the redundant edge set with the maxi-

mum number of members, contains all redundant edge sets
as subsets. Consequently, E?

r is unique.
Proof: Let E?

r denote a maximum redundant edge set.
Suppose that there exists a redundant edge set Er such that
Er \(Er∩E?

r) 6= /0. Then Lemma 2 implies that E?
r ∪Er, which

has more members than E?
r , is also a redundant edge set

satisfying (6). This contradicts the assumption that E?
r is a

maximum redundant edge set. Hence, Er does not exist and
the desired statements hold.

With the uniqueness asserted by Corollary 1, finding the
maximum redundant edge set E?

r becomes the remaining
goal for simplification. Lemma 2 also leads to a polynomial
time algorithm to find E?

r , avoiding the need for expensive
enumerative search over the power set of E.
Algorithm 1 (finding E?

r)

1) For each (u,v) ∈ E, define Guv := (V,E \ {(u,v)})
with edge weights ci j for all (i, j) ∈ E \ (u,v). Solve
a longest path problem on Guv with u and v being
the origin and destination, respectively. The longest
path problem can be solved using, for example, the
Bellman-Ford algorithm (e.g., [15]) in polynomial time
because all cycles have negative weights. If the longest
path weight is greater than or equal to cuv, then set
Euv

r = {(u,v)}. Otherwise set Euv
r = /0.

2) Set Emax
r := ∪

(u,v)∈E
Euv

r , and Emax
r is the desired maxi-

mum redundant edge set. That is, Emax
r = E?

r , as it will
be shown in Theorem 1.

Remark 2: The computation effort of Algorithm 1 is
O(|V ||E|2) because for each (u,v) ∈ E the Bellman-Ford
algorithm is applied, requiring O(|V ||E|) units of basic
computation [15].

Theorem 1: Let Emax
r be returned by Algorithm 1, and

E?
r denote the maximum redundant edge set satisfying (6),

then Emax
r = E?

r .
Proof: If (u,v) ∈ E?

r , then by (6) there exists a path
puv in (V,E \ E?

r) connecting u to v with cpuv ≥ cuv. puv
is also in (V,E \ {(u,v)}) because {(u,v)} ⊂ E?

r . Hence
(u,v) ∈ Euv

r ⊂ Emax
r as defined in the algorithm. This shows

that E?
r ⊂Emax

r . On the other hand, since Euv
r for all (u,v)∈E

are redundant edge sets and by Lemma 2 Emax
r = ∪

(u,v)∈E
Euv

r

is also a redundant edge set satisfying (6), Emax
r ⊂ E?

r by
Corollary 1.

Remark 3: References [10]–[14] consider the special case
of the maximum redundant edge set problem where the edge
weights are all zero. Except for [14], the above references
do not investigate the simplification problem from the graph
point of view. However, [14] considers only directed acyclic
graphs with zero edge weights. In addition, there is no proof
in the presented algorithm (i.e., Figure 9) in [14].

Remark 4: Algorithm 1 presented in this paper can iden-
tify the maximum redundant edge set for any directed graph
with arbitrary edge weights as long as all directed cycles
have negative weights. The graph does not need to be a time
precedence graph as motivated in this paper. The assumption
of negative weight cycles is sufficient and necessary for
the presented algorithm to be correct. In particular, it is
possible to construct an example with nonnegative weight
cycles where the maximum redundant edge set is not unique.
See Figure 1 for an illustration.

1 2

3

c
12

c
13

c
32

c
23

Fig. 1. A 3-node example which is not a time precedence graph. Consider
the case where the weights ci j = 1 for all edges. There are two redundant
edges, namely (1,2) and (1,3). However, {(1,2),(1,3)} is not a redundant
edge set according to (6). The cycle (2,3,2) has positive weight being two.

IV. NUMERICAL ILLUSTRATION OF PRECEDENCE GRAPH
SIMPLIFICATION

To demonstrate the effectiveness of Algorithm 1, a numer-
ical case study is carried out. All computation is performed
on a PC with 2.5GHz CPU and 8GB of RAM, using MAT-
LAB and MatlabBGL [16] for the Bellman-Ford algorithm.
The precedence graph is a 6-node complete directed graph
whose topology is shown in Figure 2 and the corresponding
edge weights are in the adjacency matrix C defined in (8).

1 2

36

45

Fig. 2. The topology of the example time precedence graph, which is a
six-node complete directed graph.

C =


∞ −15 −3 8 7 8
10 ∞ 12 23 22 23
1 −14 ∞ 11 10 11
−13 −29 −12 ∞ −1 0
−16 −31 −12 −7 ∞ 1
−12 −27 −12 −5 −8 ∞

 . (8)

In (8), the symbol ∞ in the (i, j) entry means edge (i, j)
does not exist (e.g., there is no self cycle). It can be verified
that all cycles in the example precedence graph have negative
weights (see Appendix C for the construction of the example
precedence graph). Applying Algorithm 1 to the example
precedence graph results in a simplified precedence graph
in Figure 3. It can be verified that the removed edges in

1 2

 15

12

12

1

36

 12

45

11

1

1

 1

Fig. 3. The resulted simplified precedence graph after applying Algorithm
1 to the example precedence graph in Figure 2 with edge weight adjacency
matrix defined in (8). The numbers on the edges denote the corresponding
edge weights.

Figure 3 (from those in Figure 2) form a redundant edge set
according to (6). In addition, to verify the optimality of the
simplification due to Algorithm 1, an enumerative search of
the maximum redundant edge set over the power set of the
set of all edges is implemented and applied to this example.
It is found that the enumerative search results in the same
simplified precedence graph as shown in Figure 3.

To compare the computation efficiency, Algorithm 1 and
the enumerative search are applied to random instances
of complete precedence graphs and the computation time

is recorded. For each n = 2,3,4,5, one hundred random
instances of n-node weighted complete graph are generated,
where the edge weights are randomly chosen such that all
cycles (if any) have negative weights. The details of the
construction of the random graph instances can be found
in Appendix C. Figure 4 shows the average and maximum
computation times due to Algorithm 1 and the enumerative
search. It clearly indicates the efficiency of Algorithm 1.
Finally, it is verified that in all cases Algorithm 1 and the
enumerative search result in the same maximum redundant
edge sets.

2 2.5 3 3.5 4 4.5 5
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of nodes

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

Algo 1 ave

Enumerate ave

Algo 1 max

Enumerate max

Fig. 4. Computation times for solving random instances of complete
precedence graph with n nodes. This figure clearly indicates the computation
efficiency of Algorithm 1 over the enumerative search.

V. CONCLUSIONS

While it has been known that the maximum redundant
edge set problem can be solved in polynomial-time when
the edge weights of the precedence graph are all equal
to zero, this paper extends the polynomial-time complexity
result to the case with arbitrary edge weights as long as
all cycles have negative weight. This paper also shows that
precedence graphs naturally do not have any nonnegative
weight cycles, as long as the degeneracy associated with the
zero weight cycles is resolved. Under this no-nonnegative-
weight-cycle condition, it can be established that the max-
imum redundant edge set is unique, and its computation
can be based on polynomial-time Bellman-Ford longest path
algorithm for graphs without nonnegative weight cycles.
The no-nonnegative-weight-cycle condition is analogous to
the no-negative-length-cycle condition for the polynomial
complexity of the shortest path problem.

APPENDIX A

A zero weight cycle implies degeneracy in which only one
(arbitrary) start time among the start times involved in the
cycle is independent. To see this, summing up all constraints
except the first one in (5) results in ti0 − ti1 ≥ −ci0i1 . This
inequality, together with the first constraint ti1 − ti0 ≥ ci0i1 ,
implies that ti1 − ti0 = ci0i1 . Similarly, it can be shown that
tik+1 − tik = cikik+1 for all k. Therefore, the zero weight cycle
can be collapsed to a single “supernode”. For any outside

node u, for any edge between u and a member of the
supernode, there is an edge connecting u and the supernode
with appropriate adjustment of the weight to reflect the
corresponding adjustment to the time precedence constraint.
For example, suppose i0 is chosen to be the independent
start time (i.e., it represents the supernode) and there exists
an edge (u, ik) with weight ciku in G. Then there should be

an edge (u, i0) with weight ciku +
k−1
∑

s=0
cisis+1 .

To identify the zero weight cycles, the Bellman-Ford
shortest path algorithm (e.g., [15]) can be applied to a
modified graph G′. G′ contains the same node and edge sets
of G. However, if (u,v) is an edge in G with weight cuv,
then in G′ the corresponding weight for (u,v) is −cuv− ε ,
where 0 < ε < ∆t

n . By construction, a negative weight cycle
in G becomes a positive weight cycle in G′. However, a
zero weight cycle in G becomes a negative weight cycle in
G′. Since the Bellman-Ford algorithm can identity negative
weight cycles if one exists in G′, it can be used to identify the
zero weight cycles of G. Note that while the Bellman-Ford
algorithm requires only polynomial computation time to find
each negative weight cycle, there can be exponentially many
zero weight cycles in G. Hence, the described procedure is
practical only when G does not have too many zero weight
cycles.

APPENDIX B

In a directed graph G = (V,E) where no parallels edges
pointing from one node to another node are allowed (e.g.,
the time precedence graph), a walk can be represented
by a sequence of node indices w = {i0, i1, . . . , im} where
(ik, ik+1) ∈ E for k = 0,1, . . . ,m− 1. To decompose a walk
w, the following “scan” operation is necessary:

S = scan(w)

• Initialize S← /0 and k← 0.
• While k < length(w), do

1) If there exists r as the smallest index such that r >
k and ir = ik, then update S← S∪{ik, ik+1, . . . , ir}.
The sequence w is also updated according to

w←

{
{ } if k = 0 and r = m
{i0, i1, . . . , ik, ir+1, ir+2, . . . , im} otherwise

.

In updating w, the sub-sequence {ir+1, . . . , im} is
empty by convention if r = m.

2) Increase k← k+1.
End (of While)

• Update S← S∪w.
For any two nodes u 6= v, applying the scan operation to a
walk w = {u = i0, i1, . . . , im = v} results in a path from u to
v and a finite number of closed walks (if any). The scan
operation can be applied to each closed walk and all closed
walks generated subsequently. The recursive application of
the scan operation eventually decomposes all closed walks
into cycles in finite number of steps. To see this, each time
when “children” closed walks are generated by passing a

“parent” closed walk through scan, the number of edges of
the children closed walks must be smaller than that of the
parent. The scan operation can be applied to each children
which is not a cycle, which might generate more “grand-
children” closed walks with even fewer edges. However,
the recursive application of scan cannot continue indefinitely
since all closed walks with two edges are cycles.

APPENDIX C

The main difficulty in the sample precedence graph con-
struction is to guarantee that all cycles have negative weights.
This is ensured by a set of specially chosen edge weights as
follows: Let xi, i = 1,2, . . . ,n each be a sample of a uniform
discrete random variable with values between 1 and N(= 50).
Then, the edge weights ci j’s are defined according to

ci j =

{
xi− x j if i < j,
x j− xi− zi j if i > j,

(9)

where zi j is a sample of a uniform discrete random variable
with value between 1 and Z(= 10). Let (i0, i1, . . . , im), with
i0 = im, denote a cycle in the precedence graph. Then there
must exist a nonempty index set K such that ik > ik+1 for
all k ∈ K. Consequently, according to (9) the weight of the
cycle is

m−1

∑
j=0

ci j i j+1 − ∑
k∈K

zikik+1 = 0− ∑
k∈K

zikik+1 < 0.

Hence, in all samples of precedence graph constructed in
Section IV the negative weight cycle assumption is guaran-
teed.

REFERENCES

[1] K. C. Sou, J. Weimer, H. Sandberg, and K.H. Johansson, “Scheduling
smart home appliances using mixed integer linear programming,” in
Decision and Control and European Control Conference (CDC-ECC),
2011 50th IEEE Conference on, dec. 2011, pp. 5144 –5149.

[2] K.C. Sou, M. Kördel, J. Wu, H. Sandberg, and K.H. Johansson,
“Energy and co2 efficient scheduling of smart home appliances,” in
European Control Conference, 2013.

[3] A. Esser, A. Kamper, M. Frankje, D. Most, and O. Rentz, “Scheduling
of electrical household appliances with price signals,” in Operation
Research Proceedings, 2006, pp. 253–258.

[4] T. Bapat, N. Sengupta, S. K. Ghai, V. Arya, Y. B. Shrinivasan,
and D. Seetharam, “User-sensitive scheduling of home appliances,”
in Proceedings of the 2nd ACM SIGCOMM workshop on Green
networking, 2011, pp. 43–48.

[5] N. Gatsis and G. Giannakis, “Residential demand response with
interruptible tasks: Duality and algorithms,” in Decision and Control
and European Control Conference (CDC-ECC), 2011 50th IEEE
Conference on, dec. 2011.

[6] P. Du and N. Lu, “Appliance commitment for household load schedul-
ing,” Smart Grid, IEEE Transactions on, vol. 2, no. 2, pp. 411–419,
2011.

[7] G. Xiong, C. Chen, S. Kishore, and A. Yener, “Smart (in-home) power
scheduling for demand response on the smart grid,” in Innovative
Smart Grid Technologies (ISGT), 2011 IEEE PES, 2011, pp. 1–7.

[8] T. Ibaraki and N. Katoh, Resource Allocation Problems: Algorithmic
Approaches, no. 4 in Foundations of Computing Series. The MIT
Press, Cambridge, MA, 1988.

[9] K. C. Sou, H. Sandberg, and K. H. Johansson, “Nonserial
dynamic programming with applications in smart home appliances
scheduling – part II: Nonserial dynamic programming,” preprint,
available at the first author’s homepage, 2013. [Online]. Available:
http://www.math.chalmers.se/∼cheong/NSDPpart2.pdf

[10] T. E. Uher, Programming and Scheduling Techniques. UNSW Press,
2003.

[11] Z. Mahjoub and F. Karoui-Sahtout, “Parallel algorithms for redundant
precedence relations elimination in task systems,” Parallel Computing,
vol. 17, pp. 471 – 481, 1991.

[12] B. Pradeep and C. S. R. Murthy, “A constant time algorithm for
redundancy elimination in task graphs on processor arrays with re-
configurable bus systems,” Parallel Processing Letters, vol. 03, no. 02,
pp. 171–177, 1993.

[13] Y. Chang, J. Pinilla, J. Kao, J. Dong, K. Ramaswami, and
F. Prinz, “Automated layer decomposition for additive/subtractive
solid freeform fabrication,” in Proceedings of the Solid Freeform
Fabrication Symposium, The University of Texas at Austin, 1999, pp.
111–120.

[14] J. M. Pinilla, J.-H. Kao, and F. Prinz, “Compact graph representation
for solid freeform fabrication (sff),” Journal of Manufacturing Systems,
vol. 19, no. 5, pp. 341 – 354, 2001.

[15] J. Tsitsiklis and D. Bertsimas, Introduction to Linear Optimization.
Athena Scientific, 1997.

[16] D. Gleich, “Contents matlab bgl v4.0,” 2006.

http://www.math.chalmers.se/~cheong/NSDPpart2.pdf

	Introduction
	Problem Statement
	Contribution and Organization of the Paper

	Directed Precedence Graph Representation of Precedence Constraints System
	Simplification of Precedence Graph
	Numerical Illustration of Precedence Graph Simplification
	Conclusions
	References

