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Abstract— A major goal of smart grid technology (e.g.,
smart meters) is to provide consumers with demand response
signals such as electricity tariff and CO2 footprint so that the
consumers can consciously control their electricity consumption
patterns. These demand response signals provide incentives
for the consumers to help reduce peak energy demand by
load balancing, as this is particularly relevant in a situation
with high level of renewable energy penetration. However, the
volume of information can be overwhelming for the consumers.
Further, in some situation minimization of electricity bill and
CO2 emission can be conflicting goals and a trade-off analysis
is required. To enable the consumers to participate in smart
grid effort this paper proposes a decision aiding framework
for optimal household appliances scheduling and trade-off
analysis through Pareto frontier exploration. To compute the
optimal schedules associated with Pareto optimal points, linear
optimization problems with SOS2 (special ordered set of type
2) constraints are solved using CPLEX, in the case where the
demand response signals are assumed to be piecewise constant.
For arbitrary demand response signals, a corresponding dy-
namic programming solution is proposed. A numerical study
demonstrates that in a realistic test case the Pareto frontier
analysis can provide valuable information leading to schedules
with drastically different electricity and CO2 emission patterns.
In addition, the case study verifies that the Pareto frontier can
be computed in real-time in a realistic residential computing
environment.

I. INTRODUCTION

Electricity consumption varies between different hours of
the day, between days of the week, and between seasons of
the year, where the highest power demand in the Northern
countries typically occurs when the outdoor temperature
drops. In recent years, the power demand has reached new
peak levels and created extra stress to balance demand and
generation. Environmental and economical reasons will, in
the near future, require distribution companies to consider
more complex power balance scenarios based on the in-
troduction of large scale renewable electricity generation,
plug-in electrical vehicles (PEVs) and distributed electricity
generation in residential areas. Intermittent renewable energy
sources, such as wind, are dynamic by definition and will
require additional balancing power to maintain quality of
electrical supply to consumers. Additionally, an increasing
number of PEVs will introduce high electricity consumption

Kin Cheong Sou is with the Department of Mathematical Sciences,
Chalmers University of Technology and the University of Gothenburg, Swe-
den. The other authors are with the ACCESS Linnaeus Center and the Au-
tomatic Control Lab, the School of Electrical Engineering, KTH Royal In-
stitute of Technology, Sweden. kincheong.sou@chalmers.se,
{mkordel,ogwu,hsan,kallej}@kth.se
This work is supported by the European Institute of Technology ICT Lab,
the Swedish Governmental Agency for Innovation Systems (VINNOVA),
the Swedish Foundation for Strategic Research (SSF) and the Knut and
Alice Wallenberg Foundation.

that is not always predictable. Both the wind power’s dy-
namic contribution to electricity generation and the PEVs’
random demand of electricity require a balancing force in
the electricity grid.

Load balancing of urban electrical loads, such as res-
idential/industrial electricity consumption, can be accom-
plished by minimizing the usage of non-renewable generation
and scheduling controllable loads to times when renewable
energy generation is high. Particular ways to engage the
consumers in participating in load balancing is achieved
through economic incentives such as time-varying electricity
tariff (e.g., spot pricing [1], [2]), or CO2 footprint [3] for
environmentally concerned consumers (e.g., the Stockholm
Royal Seaport project [4]).

References such as [5]–[8] have demonstrated the value
of time-varying electricity tariff in the management of the
power grid, especially in the reduction of peak power con-
sumption; however, such load balancing is feasible only if
the consumers are both able and willing to consider tariff
information. For instance, it is unrealistic to expect most
consumers to identify the most economical operation of their
appliances in the presence of dynamic tariff prices and peak
consumption penalties. Hence, an automatic decision support
system is highly desirable, that either directly takes control
of the appliance operation or provides simple advice to the
consumers. This scheduling problem has been considered
in the context of electricity bill minimization for a given
electricity tariff, in both residential and industrial settings
(e.g., [8]–[13]).

In general, electricity tariff is positively correlated with
CO2 footprint. This is, however, not always the case in
certain countries including Sweden. During daytime Sweden
utilizes its relatively clean energy sources such as hydro
power plants and nuclear power plants. However, during
nighttime Sweden imports relatively inexpensive but CO2
intense energy from Denmark, Germany and Poland whose
primary energy source is combustive fuel power plants [14].
See Fig. 1 for an illustration of the electricity tariff and
CO2 footprint. The situation in Fig. 1 presents a trade-off
for the consumers who desire to simultaneously minimize
their electricity bills and CO2 emission. This trade-off can
be studied through the Pareto frontier (i.e., the set of all
Pareto optimal solutions). See Fig. 2 for an illustration and
[15], [16] for more details.

A. Contributions of the Paper

This paper investigates the appliances scheduling problems
whose solutions correspond to the Pareto optimal points
in the electricity bill and CO2 emission trade-off analysis.
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Fig. 1. Electricity tariff and CO2 footprint in Sweden on January 5th, 2010.
Tariff data is taken from Nordpool Spot (www.nordpoolspot.com).
CO2 footprint data is taken from [3]. The demand response signals are
piecewise constant, with possible jumps at the beginning of each hour.
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Fig. 2. Each point on the blue line and to its “northeast” corresponds
to the electricity bill and CO2 emission for a specific scheduling of the
appliances. Points on the blue line are Pareto optimal. A point is Pareto
optimal if there is no other point whose electricity bill and CO2 emission
are no worse, and better in at least one regard. The Pareto optimal points in
the upper-left corners correspond to the cheap schedules, whereas the Pareto
optimal points in the lower-right corners correspond to the clean schedules.
Points to the “southwest” of a Pareto optimal point are not achievable, and
points to the “northeast” of a Pareto optimal are not worth considering.

The formulation of the scheduling problem depends on the
assumption on the demand response signals (i.e., electricity
tariff and CO2 intensity). Two cases are considered. In
the first case, the demand response signals are assumed
to be piecewise constant as specified by the Stockholm
Royal Seaport project. It is demonstrated that the scheduling
problem becomes a linear optimization problem with SOS2
constraints (SOS2 stands for special ordered set type 2 [17]).
This formulation can be solved much more efficiently than
the mixed integer programming formulation in [8]. In the
second case the demand response signals are arbitrary. In
this case the scheduling problem is a nonconvex nonlinear
knapsack (or resource allocation) problem with precedence

constraints. While solutions for special cases are known
(e.g., nonconvex piecewise linear knapsack problem [18]
and convex nonlinear resource allocation problem [19]), a
complete treatment of the general problem considered in this
paper is not yet known. In this paper a dynamic program-
ming solution is provided for this scheduling problem with
arbitrary demand response signals. In general, the dynamic
programming problem is difficult to solve because of the
arbitrariness of the signals. Appropriate discretization and
quantization of relevant objects in the problem are introduced
to ensure that the problem can be solved in practice.

B. Outline

In Section II the appliances scheduling problem is intro-
duced. Then the procedure for Pareto frontier exploration for
the electricity bill and CO2 trade-off analysis is described.
The corresponding optimal scheduling problems for finding
the Pareto optimal points are defined. Section III derives
the optimal scheduling problems under the assumption that
demand response signals are piecewise constant. Section IV
derives the optimal scheduling problems with arbitrary de-
mand response signals. In Section V some case studies are
presented, and the paper is concluded in Section VI.

II. MODEL OF SCHEDULING PROBLEM AND PARETO
FRONTIER EXPLORATION

A. Demand Response Signals

The demand response signals considered in this paper
are the 24-hour (i.e., day ahead) electricity tariff and CO2
footprint, which are assumed known when the appliances
scheduling problem is to be solved. The schedule determined
according to the day ahead demand response signals can
serve as the basis for further adjustments in real-time when
updates become available. Two cases of these signals are
considered. In the first case both the tariff and CO2 footprint
signals are piecewise constant with possible jumps at every
hour [2], [3]. In the second case the demand response signals
are arbitrary. See Fig. 1 for the signal values on January 5th,
2010 for the first case.

B. Appliances

In the proposed scheduling framework, the operation pro-
cess of an appliance is divided into a set of sequential energy
phases. An energy phase is a sub-task of the appliance
operation, and it is uninterruptible. That is, once an energy
phase starts, it must continue until it is finished. The time
dependent power assignment to all energy phases is referred
to as a power profile (for an appliance) [20]. See Fig. 3
for an illustration. In this paper, the models of the energy
phases are further simplified: each energy phase requires a
pre-specified amount of time to process and the power it
can be assigned is constant and pre-specified. Therefore, the
only decisions regarding the scheduling is when to start the
energy phases. However, the assignment of the start time
is not arbitrary since certain constraints must be observed.
The energy phases are sequential since an appliance sub-task
cannot begin until the previous sub-task is completed (e.g.,
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Fig. 3. The eight energy phases constituting the operation process of an
example washing machine (movement, pre-heating, heating, etc.) [20].

the washing machine agitator cannot start until the basin is
filled with water). In addition, there can be delays between
the energy phases for an appliance (e.g., the washing machine
agitator can delay starting after the basin is filled, but the
delay cannot be longer than ten minutes). Furthermore, there
can also be a temporal relationship between appliances (e.g.,
the dryer cannot start before the washing machine finishes).
Nevertheless, in this paper the total power limit constraint is
not considered since the scheduler cannot alter the assigned
power levels of the appliances and it is assumed that it is
safe to run multiple appliances at the same time.

C. User Preferences

The household users can optionally specify a preference
that each appliance should be run between a corresponding
time interval (e.g., the laundry must be completed by 17:00).

D. Pareto Frontier Exploration of Optimal Schedules

As discussed in Section I the trade-off between electricity
bill and CO2 emission minimization can be studied through
the Pareto frontier. In the proposed scheduling framework the
ε-constraint method [16], [21] is used to calculate the Pareto
frontier. In the current context, this method contains two
steps: In step one, the two endpoints of the Pareto frontier
(cf., Fig. 2) are found by solving two separate optimization
problems:

minimize electricity bill
subject to constraints in Sections II-B an II-C. (1)

and

minimize CO2 consumption
subject to constraints in Sections II-B an II-C. (2)

After step one, the ranges for possible electricity bill and
CO2 emission become known. For step two a griding of the
range of electricity bill of interest is defined. Let εk denote
possible values on the grid for k = 1,2, . . .. For each εk, the
following problem is solved:

minimize CO2 consumption,
subject to electricity bill less than εk

constraints in Sections II-B and II-C.
(3)

After step two the Pareto frontier is obtained (Fig. 2 is
obtained in this manner). Notice that a parallel approach can

be taken, where the griding is on the CO2 emission instead.
It is merely a convention of the proposed framework that the
electricity bill is gridded.

III. OPTIMAL SCHEDULING WITH PIECEWISE-CONSTANT
TARIFFS

In this section the precise formulation of (3) will be given,
under the assumption that the electricity tariff and CO2
footprint signals are piecewise constant. The formulations
of (1) and (2) are similar to that of (3), and hence they are
only briefly mentioned in the end of Section III-C.
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Fig. 4. Piecewise linear electricity cost function Ei j(ti j) and its break points
(circles in blue).

A. Decision Variables and Objective Function

Let N be the number of appliances which need to be sched-
uled, and these appliances are indexed by i ∈ {1, . . . ,N}.
For appliance i, let ni denote the number of energy phases
associated with its operation. The energy phases are indexed
by j ∈ {1, . . . ,ni} each for appliance. The decision regarding
the appliances use is when the energy phases start. These
start time decision variables are denoted by ti j (for the
energy phase j in appliance i). From the start time ti j the
energy phase continues to run until ti j + Ti j, where Ti j is
the pre-specified process time. During this operation, the
power consumption is constant as assumed in Section II-B.
The process of the energy phase induces electricity and CO2
costs, which are functions of the start time ti j. These cost
functions are denoted by Ei j(ti j) and Ci j(ti j) respectively. In
this subsection, because of the constant power consumption
and the fact that the tariff and CO2 footprint are piecewise
constant, Ei j and Ci j are continuous piecewise linear func-
tions (different for different energy phases). These piecewise
linear cost functions are fully characterized by their “break
points”, which are points where the cost functions change
slopes, plus the points with the earliest and latest time when
the energy phase can be scheduled. The break points for
Ei j are denoted as

(
ak

i j,Ei j

(
ak

i j

))
for the kth break point,

with energy phase j in appliance i. The break points (for
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Ei j) can be computed with known tariff and appliances
technical data. See Fig. 4 for an illustration. The CO2 cost
functions are defined similarly, and they are also described
by the break points

(
ak

i j,Ci j

(
ak

i j

))
. To take advantage well-

studied optimization paradigms (i.e., linear optimization), a
particular representation for the cost functions Ei j and Ci j is
necessary. To begin, ti j is described as a linear combination
of the time-coordinates of the break points:

ti j =
bi j

∑
k=1

λ
k
i ja

k
i j, (4)

where bi j is the number of break points for Ei j (same as
that for the Ci j case), and λ k

i j are auxiliary decision variables
satisfying the following three sets of constraints:

λ k
i j ∈ [0,1], ∀ i, j,k,

bi j

∑
k=1

λ k
i j = 1, ∀ i, j,

The tuple (λ 1
i j, . . . ,λ

bi j
i j ) satisfies the SOS2 constraint [17],

for all i and j.
(5)

In (5), the SOS2 constraint requires that at most two variables
in the tuple (λ 1

i j, . . . ,λ
bi j
i j ) can be nonzero, and in case there

are two nonzero variables they must be consecutive. The
SOS2 constraint can be either modeled using binary decision
variables [22], or directly handled by an appropriate solver.
Using the representation of ti j in (4), the cost functions
Ei j(ti j) and Ci j(ti j) can be described as

Ei j
(
ti j(λ

k
i j)
)

=
bi j

∑
k=1

λ k
i jEi j

(
ak

i j

)
,

Ci j
(
ti j(λ

k
i j)
)

=
bi j

∑
k=1

λ k
i jCi j

(
ak

i j

)
.

(6)

With (6), the objective function and the first constraint in
(3) can be described (by summing up the costs in (6) for all
energy phases in all appliances).

B. Appliances and User Preference Constraints
The processing of the energy phases is subject to ap-

pliances and user preference constraints, as described in
Sections II-B and II-C. Let nonnegative numbers Di j and Di j
denote the minimum and maximum delays between energy
phase j and its preceding one ( j−1) in appliance i. Then the
sequential processing of the energy phases and the between-
phase delay requirements can be jointly modeled as

ti( j−1)+Ti( j−1)+Di j ≤ ti j ≤ ti( j−1)+Ti( j−1)+Di j, ∀ i, j≥ 2.
(7)

Also, for any pair (i1, i2) which requires a precedence
relationship (e.g., i1 being the washing machine and i2 being
the dryer), the following constraint is enforced:

ti1ni1
+Ti1ni1

≤ ti21, (8)

where ni1 denotes the number of energy phases for appliance
i1. Furthermore, the household users can specify a time inter-
val during which an appliance should be run. For appliance

i, the interval is specified by a lower bound T i
lb before which

the appliance cannot run, and a upper bound T i
ub after which

the appliance cannot run. The corresponding constraints are
described as:

ti1 ≥ T i
lb, ∀ i

tini +Tini ≤ T i
ub, ∀ i.

(9)

Constraints (9) are in fact always enforced. If the household
users do not specify explicitly, T i

lb would be equal to the
earliest start time of the planning period. Similarly, T i

ub would
become the latest end time of the planning period.

C. Optimization Formulation with SOS2 Constraints

To sum up, the Pareto frontier exploration optimization
problem in (3) can be modeled as:

minimize
ti j ,λ

k
i j

N
∑

i=1

ni
∑
j=1

bi j

∑
k=1

λ k
i jCi j

(
ak

i j

)
subject to

N
∑

i=1

ni
∑
j=1

bi j

∑
k=1

λ k
i jEi j

(
ak

i j

)
< εk

constraints in (4), (5), (7), (8) and (9).

(10)

Again, because of the SOS2 constraint on λ k
i j in (5) problem

(10) should be solved with a solver which can handle SOS2
constraint or binary decision variables (e.g., CPLEX can
handle both).

Finally, notice that the corresponding optimization prob-
lem for (2) has the same form as (10), except that the

electricity bill budget constraint
N
∑

i=1

ni
∑
j=1

bi j

∑
k=1

λ k
i jEi j

(
ak

i j

)
< εk

is removed. Further, the problem for (1) is similarly defined
with the electricity cost replacing the CO2 emission in the
objective function.

IV. OPTIMAL SCHEDULING WITH ARBITRARY TARIFFS

To solve the optimal scheduling problem with arbitrary
tariffs a dynamic programming approach (e.g., [23], [24])
is proposed in this paper. In this section the start times for
all energy phases for all appliances are labeled through a
single index, namely t1, t2, . . . , tNep , where Nep denotes the
total number of all energy phases. Concerning an appliance
the sequential energy phase processing constraint in (7) can
be rewritten as

dn ≤ tn+1− tn ≤ dn ∀ n > 1, (11)

where dn and dn are defined using Di j, Di j and Ti j in
(7). Setting dn = −∞ means that the lower bound is not
enforced. Similarly, setting dn = ∞ means that the upper
bound is not enforced. (11) can model certain simple inter-
appliance sequential relationship in (8). One such case is
that the washing machine must be finished before the dryer
can start, but there is no constraint on the dishwasher. The
more complex situations can arise, for example when both
the washing machine and the dishwasher need to finish
before the dryer but there is no sequential relationship
between the former two appliances. These more complex
situations require a more complex formulation than what can
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be modeled by (11). Unfortunately they are out of the scope
of this paper. The user time preference constraint in (9) can
similarly be modeled as:

ln ≤ tn ≤ un ∀ n, (12)

where ln and un are defined through (9). Furthermore, for
reasons to be explained shortly, the time axis of the planning
period is discretized. That is,

tn ∈ {0,∆t,2∆t, . . . ,(Nt −1)∆t}, ∀ n, (13)

where Nt is given and ∆t = Tf
Nt

with Tf being the last moment
any energy phase can start during the entire planning period.
Nt controls the granularity of the discretization of the time
axis.

A. Dynamic Programming Formulation for (1) or (2)

The dynamic programming formulation for (1) or (2) is
described first, since it is different from that for (3). Let
fn(tn) denote the cost (i.e., either electricity cost for (1) or
CO2 emission for (2)) for starting energy phase n at time
tn. By definition, the total cost for scheduling the appliances
is ∑

Nep
k=1 fk(tk). For any given n, let J(tn) denote the optimal

partial cost for scheduling energy phases 1 through n in the
following sense: in the calculation of J(tn) energy phase n
is started at tn, while energy phases 1 through n− 1 are
scheduled to minimize ∑

n−1
k=1 fk(tk) subjected to constraints

(11) and (12). That is, for n > 1

J(tn) = fn(tn)+ min
t1, t2, ..., tn−1
constraint (11)
constraint (12)

{ f1(t1)+ . . .+ fn−1(tn−1)} , (14)

with the convention that J(tn) = ∞ if the minimization above
is infeasible, and for n = 1,

J(t1) = f1(t1). (15)

If J(tNep) can be evaluated for all possible values of tNep ,
then the cost of the optimal schedule for all energy phases
can be obtained by minimizing J(tNep) with respect to tNep

subject to (12). By [23], [24], (14) can be computed through
the following dynamic programming recursion:

J(tn) = fn(tn) + min
tn−1

constraint (11)
constraint (12)

J(tn−1), ∀ n > 1, (16)

where the boundary condition is given in (15). The argument
of minimum in (16) can be stored while (16) is being eval-
uated. Hence, upon completion of the recursion the optimal
schedule is also available. In general, the minimization in
(16) is difficult to carry out because the cost function fn is
arbitrary. However, with assumption (13) this minimization,
for each n, becomes a comparison of Nt scalars. As a result,
the computation effort for evaluating J(tNep) through the
dynamic programming recursion (16) is O(NtNep).

B. Dynamic Programming Formulation for (3)
The additional feature of (3) is the “electricity bill bud-

get” constraint requiring that the total electricity cost for
scheduling the appliances must be less than a given threshold
εk. To handle this budget constraint, extra bookkeeping and
added computation are needed in the dynamic programming
formulation. The detail is as follows: For each n= 1, . . . ,Nep,
let cn(tn) and en(tn) respectively denote the CO2 emission
and electricity cost when energy phase n is started at tn. For
this subsection, it is further assumed that the values of en(tn)
are quantized. That is,

en(tn) ∈ QE , ∀ n with QE = {0,∆e,2∆e, . . . ,(Ne−1)∆e},
(17)

and

∆e =
Emax

Ne
, Emax = max

n

{
max

tn
{en(tn)}

}
, Ne is given.

(18)
In above, Ne controls the quantization level of the electricity
cost en.

Similar to the formulation in Section IV-A, let tn denote
that start time of energy phase n. In addition, for 1≤ n≤Nep
let bn denote the electricity bill budget left for running
energy phase n+1,n+2, . . . ,Nep. By convention, bNep ∈QE
represents the leftover budget after assigning all energy
phases. In addition, bn−1 = bn+en

′ for all n> 1, for en
′ ∈QE .

This implies that bn are quantized in the same way as en:

bn ∈ QE , ∀ n. (19)

Indeed, if (17) were not enforced, the set of all possible
values of bn would be very difficult to characterize.

Let JC(tn,bn) denote the optimal partial CO2 emission,
defined in a similar way as J(tn) in Section IV-A except with
the additional electricity bill budget constraint. For n > 1,

JC(tn,bn) = cn(tn)+ min
t1, t2, ..., tn−1
constraint (11)
constraint (12)
n
∑

i=1
ei(ti)<εk−bn

{
c1(t1)+ . . .+cn−1(tn−1)

}
,

(20)
with the convention that JC(tn,bn) = ∞ if the minimization
above is infeasible, and for n = 1,

JC(t1,b1) =

{
c1(t1) if e1(t1)< εk−b1

∞ if e1(t1)≥ εk−b1
(21)

If JC
(
tNep ,bNep

)
can be evaluated for all possible combi-

nations of (tNep ,bNep) (i.e., Nt × Ne combinations in total
because of (13) and (19)), then the minimum value of
JC
(
tNep ,bNep

)
is the optimal objective value of (3). The

dynamic programming recursion to calculate (20) is

JC(tn,bn) = cn(tn)+ min
tn−1, bn−1

constraint (11)
constraint (12)

bn−1=bn+en(tn)

JC(tn−1,bn−1)

= cn(tn)+ min
tn−1

constraint (11)
constraint (12)

JC(tn−1,bn + en(tn)),

(22)
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where the boundary condition is given in (21). Similar to
the case in Section IV-A the argument of minimum in
(22) can be stored, and upon completion of the dynamic
programming recursion in (22) the optimal scheduling for
the appliances can be recovered. Again, because of (13) and
(19) the minimization in (22) for each n is a comparison
of Ne × Nt scalars. Therefore, the computation effort for
evaluating JC

(
tNep ,bNep

)
through (22) is O(NeNtNep).

Finally, notice that if the quantization assumption in (17)
is not valid, then the procedure described in this subsection
can still be used to obtain an approximate solution to (3).
The violation of the electricity bill budget constraint and
optimality is controlled through the quantization parameter
Ne. The effect of the quantization in (17), as well as that of
the time axis discretization in (13), will be evaluated in a
numerical case study in Section V.

V. NUMERICAL CASE STUDY

The case study considers an apartment with three typical
appliances (i.e., washing machine, dryer and dishwasher) as
in [8]. The demand response signals are shown in Fig. 1,
corresponding to the electricity tariff and CO2 footprint in
Sweden on January 5th, 2010. The specifications of the
energy phases of the appliances are listed in Tables I, II and
III respectively. The constant assigned power for each energy
phase is obtained by dividing the required energy (column
two in the tables) by the energy phase process time (column
five in the tables). The washing machine is scheduled

TABLE I
DISHWASHER TECHNICAL SPECIFICATIONS [20]

Energy phase Energy Min power Max power Process
(Wh) (W) (W) time (min)

pre-wash 16.0 6.47 140 14.9
wash 751.2 140.26 2117.8 32.1

1st rinse 17.3 10.28 132.4 10.1
drain 1.6 2.26 136.2 4.3

2nd rinse 572.3 187.3 2143 18.3
drain & dry 1.7 0.2 2.3 52.4

TABLE II
WASHING MACHINE TECHNICAL SPECIFICATIONS [20]

Energy phase Energy Min power Max power Process
(Wh) (W) (W) time (min)

movement 118 27.231 2100 26
pre-heating 5.5 5 300 6.6

heating 2054.9 206.523 2200 59.7
maintenance 36.6 11.035 200 19.9

cooling 18 10.8 500 10
1st rinse 18 10.385 700 10.4
2nd rinse 17 9.903 700 10.3
3rd rinse 78 23.636 1170 19.8

TABLE III
DRYER TECHNICAL SPECIFICATIONS [20]

Energy phase Energy Min power Max power Process
(Wh) (W) (W) time (min)

drying 2426.3 120.51 1454 120.8

to finish working before the dryer can start. Furthermore,

the user time-preference specifies that the washing machine
and dryer must operate between 0:00 and 23:00, and the
dishwasher must operate between 19:00 and 24:00. All
computations in this case study were performed on a 32-bit
machine with 2.4GHz processors and 2GB of RAM.

A. Pareto Frontier Calculation via Linear Optimization with
SOS2 Constraints

For this part of the case study the Pareto frontier is
computed by solving (1), (2) and (3) which are specified
to the linear optimization problem with SOS2 constraints
in (10) and its variants. Fig. 5 shows the Pareto frontier
with ten Pareto optimal points. The computation of the
whole Pareto frontier took about 2 seconds. This is practical
for real-time computation in a residential environment. The
schedules corresponding to points A, B and C in Fig. 5 are
shown in Fig. 6, 7 and 8 respectively. The results agree
with intuition. Because of the user time preference constraint
(usage between 19:00 and 24:00) the dishwasher is scheduled
towards the end of the day. However, the schedules for
the washing machine and dryer are subject to more drastic
changes. For the cheap schedule in Figure 6 the two loads
are scheduled during the earlier hours of the day because
of the electricity is least expensive, even though it can be
CO2 costly. On the other hand, for the clean schedule in
Figure 7 the loads are scheduled in the “valleys” of the CO2
footprint curve. Finally, for the balanced schedule in Figure 8
the strategy seems to suggest the middle-ground, with the
washing machine scheduled to the spot in the cheap case
and the dryer scheduled to the spot in the clean case.
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Fig. 5. Pareto frontier representing the electricity bill and CO2 trade-off.

B. Pareto Frontier Calculation via Dynamic Programming

In this part of the case study the Pareto frontier is com-
puted by solving (1), (2) and (3) using the proposed dynamic
programming formulations in Section IV-A and Section IV-
B. The demand response signals involved in this study are
the same piecewise constant ones as depicted in Fig. 1, even
though the dynamic programming formulations can handle
the more general situation. Rather, the purpose of this study
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Fig. 6. Cost minimizing schedule corresponding to point A in Fig. 5.

is to evaluate the accuracy loss due to the discretization
defined in (13) and the quantization in (17), where the
granularity is controlled by Nt and Ne respectively. Fig. 9
shows the Pareto optimal points computed using dynamic
programming with four different combinations of (Nt ,Ne),
as well as the exact Pareto frontier obtained by solving
(10) and it variants. Fig. 9 indicates that, even with the
approximation due to the discretization and quantization, the
dynamic programming generated Pareto optimal points are
reasonably accurate. In the least accurate case (i.e., Nt = 300
and Ne = 300), the average (over ten Pareto optimal points)
relative error is less than 1%. Regarding computation time,
obtaining ten Pareto optimal points requires 1 minute, 4.6
minutes, 3.5 minutes and 15.8 minutes, respectively for the
case (Nt ,Ne) = (300,300), (Nt ,Ne) = (300,1000), (Nt ,Ne) =
(1000,300) and (Nt ,Ne) = (1000,1000). While one minute
of dynamic programming solving is much longer than the
two-second solving of (10) and it variants. The increased
computation effort is the price to pay for the generality of
the dynamic programming formulation. Further refinements
of the dynamic programming formulation can be studied to
ensure that it is truly real-time implementable in a residential
computing environment.

VI. CONCLUSION

In this paper an automatic decision framework to sched-
ule smart home appliances to minimize electricity bill and
CO2 emission is considered. In a situation such as Sweden
where the two objectives may conflict with each other, the
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Fig. 7. CO2 minimizing schedule corresponding to point B in Fig. 5.

Pareto frontier computed in this paper can provide valuable
guideline for operating the appliances. In particular, with the
Swedish demand response signals on January 5th, 2010 (a
cold day), preferences over electricity bill minimization or
over CO2 emission minimization can lead to very different
appliances schedules with drastically different consequences
on electricity bill and CO2 emission. This is demonstrated by
Fig. 5 through Fig. 8. The figures also demonstrated that ap-
propriate choices of the demand response signals will lead to
appliances schedules which avoid the peak of electricity load
during the day. By giving up certain degrees of freedom in
the scheduling setup as compared to [8], a linear optimization
problem with SOS2 constraints can be set up to compute the
Pareto optimal points in a realistic setting in about 2 seconds
using a standard laptop equipped with CPLEX solver. Further
detail regarding the comparison of the computation times of
the formulations in [8] and in Section III in this paper can
be found in [25, Chapter 4.3]. For the more general case
where the demand response signals are arbitrary, a dynamic
programming based procedure to compute the Pareto frontier
is possible as demonstrated. However, more investigations
are needed to make the dynamic programming solution
implementable in real-time and to allow it to handle the case
with arbitrary precedence relationship among the operations
of the appliances.
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