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Abstract— A novel distributed algorithm is proposed in
this paper for a network of consumers coupled by energy
resource sharing constraints, which aims at minimizing the
aggregated electricity costs. Each consumers is equipped
with an energy management system that schedules the
shiftable loads accounting for user preferences, while an
aggregator entity coordinates the consumers demand and
manages the interaction with the grid and the shared energy
storage system (ESS) via a distributed strategy. The proposed
distributed coordination algorithm requires the computation
of Mixed Integer Linear Programs (MILPs) at each iteration.
The proposed approach guarantees constraints satisfaction,
cooperation among consumers, and fairness in the use of the
shared resources among consumers. The strategy requires
limited message exchange between each consumer and the
aggregator, and no messaging among the consumers, which
protects consumers privacy. Performance of the proposed
distributed algorithm in comparison with a centralized one is
illustrated using numerical experiments.

Index Terms—Demand response, mixed integer linear pro-
gramming, distributed scheduling algorithms.

I. INTRODUCTION

Residential areas are responsible for nearly 40% of the en-
ergy consumption in developed countries, which are known
to have significant potential for energy and cost savings, as
well as for load shifting, compared to industry and trans-
portation [1]. To take advantage of this potential, Demand
Response (DR) has received increased attention in recent
years since it can efficiently support load balancing and
economical/environmental cost reduction [2]. DR is com-
monly defined as changes in electricity use by consumers
in response to changes in the electricity price over time [2].
Effective DR policies naturally require smart appliances,
which can be switched on or off in response to specific
DR signals, e.g., price signals. Several works have proposed
load management strategies and scheduling smart appliances,
accounting for price information (e.g., see [2], [3], [4], [5],
[6], [7], [8], and [9]).

The aforementioned works do not consider electrical stor-
age systems (ESS), while it would be more flexible and effi-
cient for consumers to manage their energy use in response
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to time-varying electricity prices and network congestion,
taking advantage of the capability of these devices to store
energy and release it when it is more convenient [10], [11],
[12], [13], and [14]. Since storage devices are still expensive,
a reasonable solution to afford the expense and benefit from
the use of an ESS would be to share it among several con-
sumers. Therefore, the households should be coordinated by
an aggregator/coordinator. Aggregators are new entities in the
electricity market that act as mediators between users and the
utility operator, and possess the technology to perform DR
signals and communicate with both users and utilities [15].
In [16], an algorithm is built on the alternating directions
method of multipliers (ADMM), focusing on decentralized
algorithms for Electric Vehicles charging. In addition, a
coordination framework based on ADMM is proposed in [17]
to negotiate among the households and a coordinator, with
the main goal being to minimize the imbalance among
communities, while including objectives and constraints for
each community and taking into account each user’s quality
of life/activities.

The main contribution of this paper is to propose a novel
distributed optimization algorithm for scheduling of smart
appliances in residential areas sharing an ESS. Here, in
addition to the detailed modeling of loads and ESS, state
of health of the ESS is taken into account. The scheduling
problem is formulated as a MILP problem with the aim of
minimizing the aggregated electricity cost. In this study, an
ESS is integrated with the aggregator to increase level of
comfort and profit for the users. The role of the aggregator
is thus to provide DR services to the grid operator and
economical incentives to the users to reshape their demand
profiles, guaranteeing that the benefits of using a shared
resources are fairly allocated to all the users. The aggregator
negotiates with the home users to shift their loads and
increase the ESS benefits, providing incentives to the users
to shift their consumption.

The rest of the paper is structured as follows. Section II
describes the system and the connections between the two
layers (aggregator and apartment) of the system. Section III
proposes a distributed scheduling algorithm for smart ap-
pliances and EESs to cope with peak-demand shaving, and
fairly devoting the monetary profits to the apartments (based
on their flexibility in load shifting). Section IV presents a
simple motivation example to show the coupling between
ESS and apartment consumption. In addition, preliminary
simulation results in this section, illustrate the performance
of the proposed distributed algorithm in comparison with a
centralized one. Finally, Section V provides conclusions and

2015 IEEE 54th Annual Conference on Decision and Control (CDC)
December 15-18, 2015. Osaka, Japan

978-1-4799-7886-1/15/$31.00 ©2015 IEEE 2024



Apartment #1 Apartment #i Apartment #N

Aggregator

Grid

Electric 
Utility 

Operator

PCC

ESS

HEMSHEMSHEMS

Distributed Optimization Algorithm
Solving a MILP

Fig. 1. Schematic of interconnected apartments and aggregator.

suggestions for future studies.

II. SYSTEM DESCRIPTION

In this paper, we consider active apartments, i.e., houses
where effective DR policies are enabled through the inte-
gration of smart appliances, scheduling algorithms, energy
management systems, and information exchange over wire-
less communication technologies. As depicted in Figure 1,
we consider a small-scale community which can range from
the apartments in one building to a small district of a city.
The overall system forms a microgrid, with one single point
of common coupling (PCC) with the distribution grid. Each
apartment is equipped with a Home Energy Management
System (HEMS), which is responsible for locally operating
end-user smart appliances. Each HEMS is connected to
an aggregator entity via a communication network, which
aims at coordinating the apartments, scheduling the ESS
and managing the interaction with the distribution grid. The
apartments are independent from each other and coupled
only through the shared ESS and the PCC power limits.
In this structure, the aggregator coordinates the apartments
through energy shift request signals. In this negotiation, the
aggregator provides economical incentives to home users
accepting to modify their energy pattern.

In the next section we describe the distributed approach to
the energy management of the system under consideration.

III. PROBLEM FORMULATION

In this section we describe a distributed approach to
solve the problem of coordinating a set of smart appliances
located in N apartments sharing an ESS such that each
apartment can profit from the use of the ESS while technical
and operational constraints, as well as user preferences, are
satisfied. In order to manage a large set of appliances we
propose an iterative two-layer hierarchical approach. The
approach is based on a distributed algorithm with problems
formulated at the apartment and at the aggregator levels being
MILP problems. The local HEMSs are coordinated by the
aggregator in order to come up with an agreement throughout
negotiation iterations and provide a feasible solution to the
centralized problem. We remark that the proposed algorithm
is suitable for model predictive control frameworks: it can

be implemented in a hierarchical fashion where the problems
at apartment levels are executed in parallel and the updates
of aggregated demand profile is carried out by the high-level
aggregator. In the following we first describe the appliance
and the ESS modeling, based on the study [14].

A. Appliances and ESS constraints

This section is based on the mathematical formulation
illustrated in [14]. The scheduling horizon is discretized
into T uniform time slots. The number of appliances in
the apartment a is denoted by Na, and ni denotes the
number of un-interruptible energy phases for each appliance.
The energy assigned to energy phase j of appliance i for
apartment a during the whole period of time slot k is denoted
by pijak . Binary decision variables (xijak ) are required to
indicate whether a particular energy phase is being processed
or not. Moreover, two other sets of binary decision variables
are needed to model the decision problem. One is denoted
as sijak , with a value of one indicating that, in appliance
i, energy phase j is already finished by time slot k. The
other set is denoted as tijak . These decision variables are used
to indicate whether at time slot k, appliance i is making a
transition between running phase j − 1 to j.

The constraint that is enforced to make sure that the energy
phases fulfill their energy requirement is as

T∑
k=1

pijak = Eija, ∀i, j, (1)

where Eija is the energy requirements for energy phase j
in appliance i. To determine that an energy phase is being
processed during time slot k, while the limitation on lower
and upper power assignment to the phase are satisfied, the
constraint

pija
k
xijak ≤ pijak ≤ pijak xijak , ∀i, j, k, (2)

is enforced, and the pija
k

and pijak are the lower and upper
limits. Also, the power safety constraint is imposed as

N∑
i=1

ni∑
j=1

pijak ≤ P k, ∀k, (3)

where P k is the upper limit of the total energy assigned at
time slot k, for each apartment. The limits on energy phases
process time are imposed as

T ija ≤
m∑

k=1

xijak ≤ T ija
, ∀i, j, (4)

where the T ija and T
ija

are the lower and upper limits of
the number of time slots for the related energy phase to be
processed. To satisfy the sequential processing of the energy
phases of an appliance and sequential operation of appli-
ances, the following constraints are imposed respectively

xijak ≤ s
i(j−1)a
k , ∀i, k, ∀j = 2, . . . , ni,

xijak ≤ sĩn
ĩa

k , ∀k,
(5)
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with the ĩ being the index of the appliance which must be
finished before the appliance with i index can start running.
To make sure that the energy phases are un-interruptible the
following constraint is imposed.

xijak ≤ 1− sijak ∀i, j, k
xijak−1 − x

ija
k ≤ sijak ∀i, j, ∀k = 2, . . . ,m

sijak−1 ≤ sijak ∀i, j, ∀k = 2, . . . ,m.

(6)

To count the number of time slots spent between the energy
phases in an appliance and impose lower and upper limits
on this number, the constraints

tijak = s
i(j−1)a
k − (xijak + sijak )∀i, j, ∀k = 2, . . . , ni, (7)

Dija ≤
T∑

k=1

tijak ≤ Dija
,∀i, ∀j = 2, . . . , ni, (8)

are considered, where Dija and D
ija

are between-phase de-
lay lower and upper bounds, respectively. Finally, to meet the
household preferences and finishing a particular appliance
within a specified time interval, the constraint

xijak ≤ TP ia
k ∀i, j, k, (9)

is enforced, where TP ia
k is the time preference interval.

To include an EES the following set of constraints is
defined [14]. The ESS dynamics are modeled as follows:

bsk = αbsk−1 + ηcb
c
k−1 − ηdbdk−1, ∀k = 2, . . . , T, (10)

where α is a constant energy degradation in each sampling
interval, bsk is the energy level at time slot k and ηc and ηd

are efficiencies accounting for the losses during charging and
discharging. The power exchanged with the EES during time
slot k is denoted by bck (or bdk) when the EES is charging (or
discharging). The following limits on the energy level and
the power exchanged with the ESS are enforced:

bs ≤ bsk ≤ b
s
, ∀k, (11)

where bs and b
s

denote the lower and the upper bounds
respectively, and

0 ≤ bck ≤ b
c

kx
c
k , 0 ≤ bdk ≤ b

d

kx
d
k, ∀k, (12)

where the binary decision variables xck and xdk indicate
whether the EES is charging or discharging in time slot k,
respectively. The bounds on the power exchanged with the
ESS are b

c

k and b
d

k for charging and discharging respectively.
Further, the constraint

xck + xdk ≤ 1, ∀k, (13)

has to be satisfied to rule out the simultaneous charging and
discharging during the same time slot. To take the state of
health of EES into account, the total number of charging
and discharging cycles during a day must be limited to a
determined number N c, and the constraints

xck − xck−1 ≤ ctk, ∀k = 2, . . . ,m
xdk − xdk−1 ≤ dtk, ∀k = 2, . . . ,m
m∑
i=1

ctk + dtk ≤ N c ,
(14)

are imposed, where the auxiliary binary decision variables ctk
and dtk determine the transition time slots to start charging
and discharging, respectively. Finally, it is reasonable to
assume that the initial and the final energy levels (bs0 and bsT
respectively) in the EES are the same, since the final energy
level is also the initial condition for the next day scheduling.
Hence, the following equality constraint on the initial and
final SOC is enforced

bs0 = bsT . (15)

B. Centralized problem

The centralized scheduling problem for a network of
apartments with a shared ESS is formulated as the following
MILP:

min
T∑

k=1

ckp
grid
k

s.t. constraints (1)− (15)
N∑

a=1

Na∑
i=1

ni∑
j=1

pijak + bck − bdk = pgrid
k

pgrid
k
≤ pgrid

k ≤ pgrid
k .

(16)

When the number of smart appliances increases, solving
the centralized problem can be computationally prohibitive.
Thus, we proposed the following distributed algorithm.

C. Description of the distributed algorithm

Here we describe the proposed distributed algorithm. The
algorithm comprises an initialization step, and the definition
of MILP problems at the apartment and aggregator levels.

Parameters and variables involved in the algorithm:
Table I reports all the other parameters and variables defined
in the algorithm.

TABLE I: Parameters and variables involved in the algorithm
l iteration number within current time step
N number of apartments/single-family houses
Na number of appliances of apartment a
pgrid,l total exchanged power with the grid at iteration l
pija,l power feeding into the apartment a (per appliance and

per energy phase) at iteration l
β penalty on the unsatisfied share of energy shift re-

quired by the Aggregator
γ reward on the redistributed part of unsatisfied energy

shift
pgrid,
pgrid

lower and upper bounds on the power exchanged with
the grid

papp,l aggregated demand at iteration l
Eapp total energy requirements
GTOT,l total profit due to the ESS at iteration l

at the end of the horizon
Ga,l profit per apartment at iteration l
∆pAGG,l energy shift required by the Aggregator at iteration l
δpa,l accepted energy shift by apartment a at iteration l
p̃a,l unsatisfied share of energy shift by apartment a at

iteration l
δp+a,l,
δp−a,l

redistributed energy shift by apartment a at iteration l

("+" for energy increase and "-" for energy decrease)
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Initialization: The following problem is solved for each
apartment a, ∀a = 1, . . . , N :

min
T∑

k=1

ck

(
Na∑
i=1

ni∑
j=1

pija,0k

)
s.t. constraints (1)− (9).

(17)

The aggregated demand profile, resulting from solving Prob-
lem (17) for each apartment, represents the solution of the
centralized problem (16) without considering any shared
ESS, which is fully separable in that case. The sum of the
optimal values for each apartment is an upper bound on the
optimal solution of the problem (16) with a shared ESS. This

sum is computed as GTOT,0 =
T∑

k=1

ck

(
N∑

a=1

Na∑
i=1

ni∑
j=1

pija,0k

)
.

The following problem is solved for initializing the aggre-
gator:

min
∑

k ckp
grid,0
k

s.t. constraints (10)− (15)
papp,0
k + bck − bdk = pgrid,0

k

pgrid
k
≤ pgrid,0

k ≤ pgrid
k

T∑
k=1

papp,0
k = Eapp.

(18)

The aggregated energy profile computed through Prob-
lem (18) is the best possible since it accounts only the total
energy required to run all the appliances in the network
of apartments, without considering user preferences and
technical constraints on the energy assignment. Thus the
optimal value of Problem (18) is a lower bound on the
optimal solution of the problem (16) with a shared ESS. Once
all the apartment solve the corresponding Problem (17), they
send the computed optimal energy profile to the aggregator,
which calculates the difference between the aggregated en-
ergy profiles obtained at apartment and aggregator levels as
follows:

∆pAGG,0
k = papp,0

k −

 N∑
a=1

Na∑
i=1

ni∑
j=1

pija,0k

 .

This difference is sent to the apartments as shift request sig-
nal and the algorithm proceeds according the steps described
in Algorithm 1.

Before describing the iterations of the proposed distributed
algorithm, we formulate the problems to be solved at apart-
ment and aggregator levels, to be done after initialization.

Problem at apartment level: The problem at apartment
level a at iteration l is formulated as follows:

min
T∑

k=1

ck

(
Na∑
i=1

ni∑
j=1

pija,lk + βp̃a,l
k

)
s.t. constraints (1)− (9)

ni∑
j=1

pij,lk =
ni∑
j=1

pij,l−1
k + δpa,l

k

|∆pAGG,l
k

N | − p̃a,l
k ≤ |δp

a,l
k | ≤ |

∆pAGG,l
k

N |

(19)

where the decision variable δpa,l
k models the differences in

the energy profile between two consecutive iterations. The

variable δpa,l
k has the same sign of ∆pAGG,l

k , which is the
energy shift request signal sent by the aggregator at iteration
l. Notice that the unmet share of the energy shift requested
by the aggregator at time slot k, p̃a,l

k , is penalized in the
objective function with a factor greater than energy prices
by at least 2 order of magnitude. Unmet energy shift can be
needed mainly to avoid constraint violation in Problem (19).

Problem at aggregator level: The problem at aggregator
level at iteration l is formulated as follows:

min
∑

k ckp
grid,l
k

s.t. constraints (10)− (15)
papp,l
k + bck − bdk = pgrid,l

k

papp,l
k =

N∑
a=1

Na∑
i=1

ni∑
j=1

pija,lk

pgrid
k
≤ pgrid,l

k ≤ pgrid
k .

(20)

The shift request signal at iteration l is computed as follows:

∆pAGG,l
k = papp,0

k −

 N∑
a=1

Na∑
i=1

ni∑
j=1

pija,lk


Computation of cost benefits due to ESS: The overall

profit at the end of the scheduling horizon at each iteration
l is: GTOT,l = GTOT,0 −

∑
k ckp

grid,l
k . The cost benefits

are equally shared among the apartments, however a penalty
is assigned to the unmet energy shift requested by the
aggregator. The profit at apartment level a at iteration l is
then computed as: Ga,l = max(GTOT,l

N −
∑

k ckp̃
a,l
k , 0).

Steps of the distributed algorithm : The steps of the
proposed algorithm are detailed in 1.

Algorithm 1 Distributed algorithm

1: Initialization and computation of ∆pAGG,0
k , ∀k

2: for l = 1, 2, . . . ,MaxIteration do
3: each apartment solves Problem (19)
4: each apartment sends to aggregator the computed

power profiles
5: aggregator solves Problem (20)
6: aggregator computes GTOT,l

7: each apartment a computes Ga,l

8: if Ga,l < Ga,l−1, apartment a accepts the energy
profile, otherwise pija,lk = pija,l−1

k , ∀i, j, k
9: if all apartments accept, stop, otherwise compute

∆pAGG,l
k and repeat

Redistribution strategy: An improvement in the solution
obtained by Algorithm 1 at each iteration can be achieved
by trying to redistribute the unmet energy shift request from
the Aggregator among the apartments. Hence, the profiles
of the total positive and negative unmet energy per time

slot are computed respectively as p̃+,l
k =

N∑
a=1

p̃+a,l
k and

p̃−,lk =
N∑

a=1
p̃−a,l
k . An additional step is to be included in

Algorithm 1 between step 3 and 4. The redistribution is
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achieved by solving the following problem starting from the
apartment level 1:

min
T∑

k=1

ck

(
Na∑
i=1

ni∑
j=1

pija,lk − γ(δp+a,l
k + δp−a,l

k )

)
s.t. constraints (1)− (9)

ni∑
j=1

pija,lk =
ni∑
j=1

p̄ija,lk + δp+a,l
k − δp−a,l

k

0 ≤ δp+a,l
k ≤ p̃+,l

k

0 ≤ δp−a,l
k ≤ p̃−,lk .

(21)

where
ni∑
j=1

p̄ija,lk is the energy per time slot computed at

iteration l at step 3. The total unmet energy per time slot
is then updated by subtracting δp+a,l

k and δp−a,l
k from p̃+,l

k

and p̃−,lk respectively. Problem (21) is solved then for the
next apartments until either there is still unmet energy shift
or all the apartments have been asked for redistribution.

Properties of the distributed algorithm: Algorithm 1
has the following desirable properties:

• feasibility of the solution: at the initialization step,
bounds on the optimal value of Problem (16) are
computed. Clearly, the optimal schedules computed at
the initialization step are not feasible solutions of the
centralized problem. After the initialization, during each
iteration of Algorithm 1, feasible solutions are obtained:
this is guaranteed by the procedure defined by the algo-
rithm. Effectively, during a generic iteration, the energy
profiles sent by the apartments and included in (20)
as given aggregated load satisfying all the appliances
constraints and user preferences, as defined by Prob-
lem (19); on the other hand, the ESS schedule computed
by solving (20) fulfills all the technical and operational
constraints concerning the ESS and the interaction with
the distribution grid. Every time the energy profiles at
apartment level are computed based on energy shift
requests from the aggregator, an updated ESS schedule
is computed based on the resulting aggregated energy
profile. By doing so, the solution computed at each
iteration satisfies all the constraints formulated in the
centralized problem (16);

• suboptimality of the solution: as mentioned above,
at the initialization step a lower and an upper bound
on the optimal value of Problem (16) are computed.
Subsequently, at each iteration of Algorithm 1, the
solution steps towards the optimal solution of the cen-
tralized problem. This is ensured by two aspects of
the procedure: i) an apartment accepts an update on
it energy use profile only if its local objective function,
which includes also ESS-related benefits, decreases; ii)
the ESS schedule has to account for the energy profiles
computed at the apartment level, which certainly leads
to a value of the objective function at the aggregator
level greater than the one computed at the initialization
step. However, the algorithm provides a suboptimal
solution since there are no guarantees that the optimal

solution is reached when the algorithm terminates;
• fair allocation of profits: the ESS-related profits at

the end of the scheduling horizon are equally divided
among the apartments, so are the energy shift requests.
Further, an incentive mechanism is considered: users
are penalized for the unmet energy shift request and
rewarded for taking on a share of the total unmet energy
shift requested by the aggregator. We will include a
mathematical proof of this third property in an extended
version of this study.

We remark that infeasibility can occur at aggregator level
during a generic iteration. This can be prevented by modify-
ing Problem (20) and replacing the constraint on papp,l

k with
the following constraint:

pa,l
k −∆pAGG,l

k ≤ papp,l
k ≤ pa,l

k + ∆pAGG,l
k ,

where pa,l
k =

N∑
a=1

Na∑
i=1

ni∑
j=1

pija,lk and ∆pAGG,l
k is opportunely

weighted in the objective function.

IV. MOTIVATION EXAMPLE AND PRELIMINARY RESULTS

Scheduling problem for a network of apartments, which
are sharing an ESS, is formulated in the (16). From (16)
One may notice that pgrid

k (which is the power exchange
with the grid at PCC) is simply the power consumption of
the apartments plus power exchange(charging/discharging)
whit the ESS. In the real power network, the pgrid

k is limited
within upper and lower limits, to protect the network from
overload. In this problem, aggregators goal is to minimize
the electricity consumption cost for whole the system, and in
the most optimistic case the SHAs in the apartments will be
scheduled (while satisfying their constraints) when the price
of electricity is minimum. Also, ESS will charge when the
price is low and discharge when the price is high, to make the
most possible profit out of the grid. This optimistic case will
result in the optimal solution for the problem as far as the
pgrid
k is within the power limitation bound for all the times

during the day, and in this case we can say that scheduling of
appliances in the apartments could be done separately from
the ESS scheduling (the scheduling is decoupled). This is not
always the case, and by scheduling of the SHAs and charging
of the ESS to be happened at the same time (when the price
of electricity is low), the pgrid

k violates the power limitations
at some points during the day. In this case, the overload
should be shifted to the other times by the aggregator, in
which either users should change their desired scheduling
or the ESS scheduling should change. In this sense, SHAs
and ESS scheduling are coupled with each other and the
optimization algorithm in the aggregator level should find
an optimal solution, by joint scheduling of SHAs and ESS.

Motivation example: In this example, apartments A and
B (number of apatments in Fig. 1 is two) share an ESS,
and whole the system is connected to the grid at PCC. The
scheduling of the shared storage, and also appliances in these
apartments are shown in Fig. 2, for two different cases,i) the
boundaries on power exchange with the grid at PCC are not
limiting (in the left side of the figure), and ii) the power
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Fig. 2. Scheduling of appliances (in the apartments A and B) and the
shared ESS in two different cases, i) the boundaries on power exchange
with the grid at PCC are not limiting (in the left side), and ii) the power
exchange at PCC is more limited (in the right side).

exchange at PCC is limited in a narrow bound (in the right
side). As it is shown in the left side of this figure, by having
an upper limitation on the pgrid

k to be high enough (in this
case 10kW), the schedulung of SHAs in the both apartments
A and B and also ESS charging will be scheduled when the
electricity price has the lowest value (between 3:00 and 5:00
am). Therefore, in this case the ESS charging and the SHAs
can be scheduled in a decoupled fashion, and the maximum
total power exchange (9kW between 3:00 and 5:00 am) will
not violate the power limitation. SHAs and ESS scheduling,
and the total power consumption are illustrated in the parts
(b), (c), and (d),respectively.

On the other hand, in the case that the power exchange
limitation (6kW) is lower enough, aggregator cannot keep the
same scheduling for SHA and ESS, otherwise a deviation
from power limitation will happen at PCC (between 3:00
and 5:00 am). In this case, aggregator should manage for
overload shifting from 3:00-5:00 am to another times of
the day, either through negotiation with the apartments to
shift their SHAs and incentivise them with monetary profit,
or by re-scheduling the ESS charging/discharging. In the
first solution scenario, shifting the SHAs consumption from
the lowest price time period (3:00-5:00 am) to the other
low price period (16:00-21:00), will cause a small increase
in electricity bill. This is because of the small difference

between the electricity price in these two period. In the
second solution scenario, if the ESS-charging happens to
shift from 3:00-5:00 am time duration, it will not be able
to discharge in 5:00-7:00 am, and will cause a big effect
on profit making. Thats because of the difference between
the electricity price in these two period, which is noticeable.
Thus, the first solution scenario for this coupled case is more
money affordable, and parts (f ) and (g) of the figure show
the proper scheduling of the SHAs and ESS. This scenario
causes no violation from the power limitation (see parts (h)).
Therefore, it is necessary for aggregator to apply an optimal
operation strategy, through coordinating with apartments, to
schedule the SHAs and the ESS, and deal with the coupling
cases. In addition, by applying a centralized approach, the
calculation time would not be reasonable when the number
of apartments increases. Therefore, essence of having a
distributed scheduling approach is obvious.

Preliminary results: In order to evaluate the proposed
distributed framework, we present preliminary results ob-
tained by applying the Algorithm 1 to a microgrid system
comprising 4 active apartments with 3 smart appliances each:
a dishwasher, a washing machine and a dryer. We consider
a piecewise constant electricity tariff signal extracted from
Nordpool website. We include in the numerical evaluation the
hourly energy use due to sources of electricity consumption
other than household appliances.

The shared ESS has the following technical features:

• Storage capacity: 20000Wh
• Maximum power exchange: 8000W
• Maximum Depth Of Discharge(DOD): 30%
• Stored energy degradation (α): negligible
• Charging and discharging efficiency: 90%
• Maximum charging and discharging cycles: 5 (per day).

We then apply both Problem (16) and Algorithm 1 to the
system under consideration and compute the corresponding
schedules of the appliances, the shared ESS and the interac-
tion with the grid. Figure 3 depicts the comparison between
the solution computed by solving the centralized problem and
the solutions obtained by the proposed distributed algorithm
at iteration 1 and 6, which is the last iteration in this
particular case study. We can notice that, as Algorithm 1
(the distributed approach) is iterated, the solutions get closer
to the optimal one (the solution resulting from solving the
centralized problem). The total electricity cost of the optimal
solution is 1.200 USD while the electricity cost resulting
from the final iteration of Algorithm 1 is 1.215 USD, hence
only 1.3% higher. On the other hand, the computational
time of the centralized problem (16) was 745 sec while
the proposed distributed algorithm computes the solution in
7.29 sec, hence the computational time has decreased by two
orders of magnitude. The MILP problems were solved using
CPLEX with the YALMIP MATLAB interface [18].

Further studies will focus on conducting extensive sim-
ulations and investigate the potential improvements in the
algorithm performance brought by the redistribution strategy
described in Section III.
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Fig. 3. Comparison between the optimal solution of the centralized
problem (16) and the solution computed by Algorithm 1 at iterations 1
and 6 (the last iteration).

V. CONCLUSION AND FUTURE STUDIES

Over the last decade, storage devices have become one
of the important components in smart grid for peak demand
shaving, voltage imbalances mitigation, and consumers′ elec-
tricity bill reduction. Due to the high cost of ESSs, it could
be convenient to consumers to deploy and share them in a
cooperative manner. In this work we propose an iterative
distributed approach to solve the problem of coordinating a
set of smart appliances located in a network of apartments
sharing an ESS such that each household can profit from the
use of the ESS while technical and operational constraints,
as well as user preferences, are satisfied. The problem of
coordinating the shared resources among the consumers is
complicated by a fairness requirement, i.e., storage will
equally benefit consumers according to their flexible loads.
The novel distributed scheduling algorithm proposed in this
paper has the following properties i) provides a feasible solu-
tion to the centralized scheduling problem; ii) allocates fairly
ESS-related profits among the users; iii) requires limited
messages to be exchanged between each consumer and the
aggregator, and no message passing among the consumers,
to keep consumers’ privacy, and (iii) is suitable for online
optimization-based control scheme, such as MPC. Numerical
results show that the computed solution is close to the opti-
mal one computed by a centralized problem. Although home
appliances and EESs are considered in this work, we point
out that the proposed framework can be also extended to
scenarios considering different uncertainty sources, different
storage technologies and generic programmable electrical
loads, as well as different optimization criteria.

As a future study, uncertainties on such a huge load
shifting by using automation system in a large number of
apartments (which causes the real-time tariff to vary from
the day-ahead one) will be taken into account.
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