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Abstract— We consider the problem of estimating the oc-
cupancy level in buildings using indirect information such as
CO2 concentrations and ventilation levels. We assume that one
of the rooms is temporarily equipped with a device measuring
the occupancy. Using the collected data, we identify a gray-box
model whose parameters carry information about the structural
characteristics of the room. Exploiting the knowledge of the
same type of structural characteristics of the other rooms in
the building, we adjust the gray-box model to capture the CO2

dynamics of the other rooms. Then the occupancy estimators
are designed using a regularized deconvolution approach which
aims at estimating the occupancy pattern that best explains
the observed CO2 dynamics. We evaluate the proposed scheme
through extensive simulation using a commercial software tool,
IDA-ICE, for dynamic building simulation.

Index Terms— Occupancy estimation, Maximum Likelihood,
CO2 dynamics, inference, building automation

I. INTRODUCTION

The estimation of occupancy levels in buildings has im-
portant implications in efficient control of Heating, Venting
and Air Conditioning (HVAC) systems [1], [2], [3], [4], [5],
[6]. Instrumenting buildings with dedicated hardware such
as cameras may raise privacy concerns and be economically
disadvantageous, in particular when this requires retrofitting
old structures. On the other hand, there is an increasing
interest in understanding the effectiveness of estimating
occupancy using non-dedicated information sources, such as
CO2 concentration and air inlet actuation levels.

There are two main strategies to estimate occupancy in
buildings. The first utilizes direct occupancy measurements
collected by people-counting devices (see [7], [8]). The
second strategy exploits non-dedicated sensor and devices,
and typically estimate the occupancy levels by inverting the
CO2 dynamics. The model relating the CO2 concentration
with occupancy can be derived either using physics-based
concepts (e.g., mass-balance equations) or by employing
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data-based modeling techniques. As for the physics-based
CO2 models, assuming well-mixed air in the room, authors
in [9] derived a bilinear model which has similarities with
the model presented in this paper. Still assuming well-mixed
air, [10], [11] and [4] make use of mass-balance equations
and linear models for the CO2 dynamics. More detailed
models are considered in [12]. Regarding data-based mod-
eling techniques, [13] uses methods of moments, while [14]
proposes both linear parametric and nonparametric identified
models, from which estimators based on deconvolution are
designed. A novel approach is proposed in [15], where, using
blind system identification techniques [16], no training sets
including occupancy measurements are required. Other types
of estimators use black box models identified using, e.g.,
neural networks or hidden Markov models, and potentially
including several sources of information (e.g., temperature,
humidity, door and light status, electricity consumption pat-
terns) [17], [18], [19], [20], [21], [22]. This literature focuses
on occupancy estimation in single rooms. Besides a few
studies dealing with modeling and estimation of occupancy
movements across buildings (see e.g., [23], [17]), the multi-
room case has not received as much attention as the single-
room case.

In this paper we take an important step towards the
extension of single-room occupancy estimators to the multi-
room case. Our fundamental question is whether the infor-
mation on the CO2 dynamics gathered in one room can be
exploited to design occupancy estimators for other rooms
of the same building. To answer such a question, we assume
that one room of the building is temporarily equipped with an
occupancy measurement device. We use the data collected by
this device, together with CO2 concentration and ventilation
data, to identify a nonlinear gray-box model via Maximum
Likelihood (ML) [24]. The structure of the gray-box model is
derived from first principles [25] and permits to define a one-
to-one correspondence between the model parameter vector
and the physical parameters characterizing the room (i.e.,
room volume and size of the ventilation system). Exploiting
this correspondence, we adapt the gray-box model to the
characteristics of the other rooms, and we design an occu-
pancy estimation based on regularized environmental signal
deconvolution, similarly to the strategy proposed in [14]. The
role of regularization here is to promote piecewise constant
occupancy patterns.

We evaluate the proposed estimation scheme simulating,
via the commercial software IDA-ICE [26], a building on
the KTH campus. The generated data are validated by
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comparison with a dataset available in [27].
The paper is structured as follows: in Section II we derive

and identify the physics-based gray-box model which models
the CO2 dynamics. In Section III we introduce the occupancy
estimator based on the identified model. In Section IV we
present the problem of extending the occupancy estimator to
the multi-room case. In Section V we report our experiments.
We eventually end the paper with some conclusions.

II. MODELING AND IDENTIFICATION OF THE CO2

DYNAMICS

A. A physics-based model

Assuming well-mixed air (see [25]), the CO2 concentra-
tion of room j, denoted by cj(t), can be modeled from mass-
conservation considerations as

vj
dcj(t)

dt
=
(
Q̇vent,sup
j + Q̇leak,in

j

)
c

−
(
Q̇vent,exh
j + Q̇leak,out

j

)
cj(t) + g oj(t). (1)

In (1) vj is the volume of the room; c is the outdoor air
CO2 concentration, which we assume constant and equal
to 420 ppm; Q̇vent,sup

j and Q̇vent,exh
j are supply and exhaust

mechanical ventilation rates; Q̇leak,in
j and Q̇leak,out

j are the
inflow and outflow air leakages through doors and windows.
The term g oj(t) models the occupants CO2 generation in
the room, where g is the CO2 generation rate per person
and oj(t) is the number of occupants at time t. In the
case of balanced ventilation it is reasonable to assume that
Q̇vent,sup
j ≈ Q̇vent

j ≈ Q̇vent,exh
j and that Q̇leak,in

j ≈ Q̇leak ≈
Q̇leak,out
j . Assuming balanced ventilation, dynamics (1) can

be simplified to

dcj(t)

dt
=
Q̇vent
j

vj

(
c− cj(t)

)
+
Q̇leak

vj

(
c− cj(t)

)
+
g

vj
oj(t). (2)

We also consider the case for which the ventilation system
keeps a constant ventilation flow in the considered zones,
and that this flow can be increased, if the indoor CO2

concentration is above a certain threshold, by means of an
opportune control signal uj(t). Under these assumptions, (2)
can be rewritten as

dcj(t)

dt
=
Q̇vent,min
j + (Q̇vent,max

j − Q̇vent,min
j )uj(t)

vj

(
c− cj(t)

)
+
Q̇leak

vj

(
c− cj(t)

)
+

g

vj
oj(t), (3)

where Q̇vent,max
j and Q̇vent,min

j are the maximum and mini-
mum airflow through the ventilation system. Since Q̇vent,min

j

does not depend on the ventilation control signal uj(t), we
rewrite (3) as

dcj(t)

dt
=
Q̇u
juj(t)

vj

(
c− cj(t)

)
+
Q̇c
j

vj

(
c− cj(t)

)
+
g

vj
oj(t), (4)

with Q̇u
j = Q̇vent,max

j − Q̇vent,min
j and Q̇c

j = Q̇vent,min
j + Q̇leak.

We discretize the continuous-time model (4) using the
backward Euler discretization1, so we obtain

cj(k)− cj(k − 1)

T
=

(
Q̇u
juj(k) + Q̇c

j

)
vj

(
c−cj(k)

)
+
g

vj
oj(k),

(5)
where T is the sampling time. We define cj(k) := cj(k)− c
and the parameter vector θTj :=

[
θ′j θ

′′
j θ
′′′
j

]
, where

θ′j :=
vj

vj + TQ̇u
j

, θ′′j :=
Tg

vj + TQ̇u
j

, θ′′′j :=
TQ̇c

j

vj + TQ̇u
j

. (6)

We assume that the measurements of cj(k) are corrupted
by additive noise. Then, the measured CO2 concentration,
denoted by yj(k), can be expressed through the measurement
model yj(k) = cj(k) + ej(k), where ej(k) is the measure-
ment noise, assumed white and Gaussian. The overall model
for the CO2 dynamics can be rewritten as the nonlinear
Output Error (OE) systemcj(k)=

θ′j
1 + θ′′′j uj(k)

cj(k − 1)+
θ′′j

1 + θ′′′j uj(k)
oj(k)

yj(k)=cj(k) + ej(k).

(7)

We remark that (7) is a simplified model that does not
account for changes on the parameters due to human ac-
tivities (e.g., opening doors or windows) and the operational
status of the HVAC system (e.g., Variable Air Volume (VAV)
systems that enter or leave economic cycles). Due to space
constraints we do not analyze here the influence of these non
idealities on the estimation scheme and consider this issue
as a future work.

B. Identification of the gray-box model
In this section we describe a procedure for identifying the

parameter vector θj characterizing the model (7). Here we
assume that we have collected the dataset of information
from room j, say

Dj := {yj(k), uj(k), oj(k)}k∈Kj
, (8)

containing recorded occupancy levels plus environmental
information from the building supervisory control and data
acquisition (SCADA) system for a set of time indexes Kj .

To use model (7) with the purpose of inferring oj(k) we
estimate its unknown parameters θj exploiting the knowl-
edge on Dj . To this aim we introduce the auxiliary notation

aj(k) :=
θ′j

1 + θ′′′j uj(k)
, bj(k) :=

θ′′j
1 + θ′′′j uj(k)

, (9)

so that (7) becomes

cj(k) = aj(k)cj(k − 1) + bj(k)oj(k). (10)

Expanding recursively (10) back in time, and defining

c̃j(k) := cj(k)− cj(0)

k−1∏
τ=0

aj(k − τ), (11)

1This choice is motivated by the fact that the backward Euler discretiza-
tion led to better identification and estimation performance than the forward
Euler discretization.
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Bj(k, k − h) := bj(k − h)

h−1∏
τ=0

aj(k − τ) (12)

(with the convention that
∏−1
τ=0 ? = 1 for every possible ?),

it follows thatc̃j(1)
...

c̃j(k)

 =

Bj(1, 1) 0
...

. . .
Bj(k, 1) · · · Bj(k, k)


oj(1)

...
oj(k)

 . (13)

Given uj(1), . . . , uj(k), oj(1), . . . , oj(k) and our Gaussian
assumptions on the noise ej(k) in (7), we have that

ĉj (k;θj) := yj(0)

k−1∏
τ=0

aj(k − τ)

+
[
Bj(k, 1) · · · Bj(k, k)

] oj(1)
...

oj(k)

 , (14)

is the Minimum Variance Unbiased (MVU) estimator of
cj(k) for a given parameter guess θj . This estimator can
be used for defining the ML estimator for the parameters θj
given the dataset Dj , say θ̂j , that is obtained solving

θ̂j := arg min
θ̃j∈R3

∑
k∈Kj

(
yj(k)− ĉj

(
k; θ̃j

))2
. (15)

Even if problem (15) is nonlinear, it involves only three de-
cision variables and can be efficiently solved using standard
interior point methods [28].

III. ESTIMATING OCCUPANCY LEVELS BY REGULARIZED
DECONVOLUTION

In this section we revise the occupancy estimation ap-
proach proposed in [14], and propose some modifications
so to adjust it to the novel nonlinear gray-box model (7).
We assume that we have the estimate θ̂j of the parameters
of room j, that for each time instant k we have access to
yj(k), yj(k − 1), and uj(k), and that we want to estimate
oj(k) (assumed unavailable) from this information.

From the assumption of Gaussianity of the measurement
noise ej(k) in (7), the best unbiased estimator of oj(k)
corresponds to a Least Squares (LS) estimator. However,
since we know that candidate occupancy patterns are piece-
wise constant, more effective estimators can be obtained by
applying regularized estimators. Let

ỹj(k) := yj(k)− yj(0)

k−1∏
τ=0

aj(k − τ), (16)

ỹj :=

ỹj(1)
...

ỹj(k)

, oj :=

oj(1)
...

oj(k)

, Bj :=

[
Bj(h, τ)

]
.

Furthermore, let the discrete derivative of oj(k) be

∆oj(τ) := oj(τ)− oj(τ − 1), τ = 1, . . . , k − 1,

∆oj :=
[
∆oj(1), . . . ,∆oj(k − 1)

]
.

[14] proposes to estimate occupancy levels as

ôj =

⌊
arg min

õj∈Rk
+

‖ỹj −Bj õj‖22 + λj
∥∥∆õj

∥∥
1

⌉
, (17)

where the vector-wise rounding operator b·e is used to obtain
integer solutions. This estimator2 is composed of a LS-type
penalty favoring adherence to data, and a `1 penalty favoring
guesses for which the occupancy is piecewise constant.
The parameter λj trades-off between the two components
(see [14] for further details).

It is straightforward to modify (17) to obtain an online
estimator which considers only a fixed-length (say, N ) data
window of the past. At each time instant, the estimator is
run by constructing the vectors ỹj and oj using the latest
N data of the past. The length N is chosen so that the
computational complexity is low enough to allow a real-time
solution of (17) and so that the discarded information does
not influence significantly the outcomes of the estimator. A
reasonable choice for tuning λj in (17) is to use the value λ̂j
that leads to the best estimation performance on the dataset
used for training the parameters θ̂j in Section II-B. The
performance index can be chosen as ‖oj − ôj(λj)‖2 , where
oj is constructed from the dataset (8) and ôj(λj) is the
occupancy pattern obtained using λj in the estimator (17).

IV. FROM SINGLE-ROOM TO MULTI-ROOMS ESTIMATORS

In this section we extend estimator (17) so that it can
be applied to a generic room that has never been instru-
mented with occupancy sensors. This extension exploits the
information on the CO2 dynamics obtained in Section II-B,
i.e., for that room of the same building which has instead
been temporarily instrumented with occupancy sensors. We
assume that the sampling time T and the volume vj are
known for all the rooms of interest3.

Assume that every single room is instrumented with
sensors measuring CO2 and HVAC actuation levels (which
are generally available in standard HVAC systems). We also
assume that room j = 0 is the one that has been instrumented
with occupancy sensors for a short period. For this room the
dataset D0 defined in (8) is available and thus it is possible to
first identify the CO2 dynamics of the room by estimating the
unknown parameters θ0 through (15), and second estimate
the occupancy levels invoking (17).

However, the rooms j 6= 0 are without occupancy mea-
surements, i.e., they lack of training sets; for these rooms the
identification strategy (15) cannot be used to find the CO2

dynamics. Call these rooms untrained rooms. The question is
then: how could estimator (17) be extended to these untrained
rooms?

To answer this question we notice that to implement (17)
one needs to know the CO2 dynamics of the room (7) or,
alternatively, θj and the regularization parameter λj . Finding

2Problem (17) is usually called fused-lasso. More elaborated theoretical
analysis on the performance of these estimators can be found in [29]
and [30].

3Here T is assumed to be 5 minutes for all the rooms.
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the variables θj for a room, in turn, requires either a training
set Dj or the knowledge of

(
Q̇c
j , Q̇

u
j , g
)

, since there is a one-

to-one correspondence between θj and
(
Q̇c
j , Q̇

u
j , g
)

. Since
for the rooms j 6= 0 the set Dj is not available, we need to
infer the triplet

(
Q̇c
j , Q̇

u
j , g
)

and the regularization parameter
λj from the training room and other available information.

A. Estimating
(
Q̇u
j , Q̇

c
j , g
)

We assume that

Q̇vent,max
j

Q̇vent,max
0

=
Mj

M0

Q̇vent,min
j

Q̇vent,min
0

=
Mj

M0
∀j 6= 0, (18)

where Mj and M0 are parameters proportional to the ven-
tilation inlet area serving rooms j and 0, respectively. We
notice that Mj and M0 can be obtained easily by physical
inspection of these two rooms. According to assumption (18),
the maximum and minimum ventilation air flows are propor-
tional to the total inlet areas. However, this assumption is
made for the purpose of this paper and might not be always
applicable, since the design of the ventilation system also
depends on the room usage. We study the implications of
assumption (18) through a simulated example in Section V.

Assume furthermore that the value of Q̇leak is negligible
compared to Q̇vent,min

j , so that Q̇c
j ≈ Q̇

vent,min
j . We can write

Q̇u
j = MjQ̇

u Q̇c
j = MjQ̇

c ∀j 6= 0, (19)

where Q̇u and Q̇c are constant values. Based on (19), we
can re-adapt the gray-box model of the training room 0
to the characteristics of every other room j 6= 0. In other
words, we can start by estimating θ̂0 through the single-room
estimator (17), i.e., find the triplet

(
Q̇c

0, Q̇
u
0, g
)

. After this,
one can use the information on Mj and vj together with (6)
to find θ̂j for all j 6= 0, i.e., the model for the CO2 dynamics
for every untrained room j 6= 0. It is straightforward to
estimate the occupancy levels in untrained rooms j using (17)
with the opportune parameters.

B. Estimating λj

The regularization parameter λj is connected to the usage
and structural characteristics of the room j. For instance,
rooms for which people enter and exit frequently would
require a small λj (and vice versa). The problem of gen-
eralizing λj to untrained rooms thus cannot be answered
without additional assumptions on the usage of the room,
and is at the best of our knowledge an open problem. In the
following we analyze two different cases, corresponding to
two specific hypotheses on the usage patterns in buildings:

1) Assuming the same usage pattern for all the rooms:
this corresponds to assume λj = λ for all j. In this case λ
should be estimated by coupling the tuning procedures de-
scribed in Section III by finding the best λ̂ in the occupancy
estimator for the training room.

2) Assuming the usage patterns to depend on the size of
the room: this corresponds to assume λj = λvj , i.e., the
usage pattern depends linearly on the size (for simplicity, the
volume, assuming that the ceilings heights are equal among
different rooms). This simple assumption leads to the strategy

λj
λ0

=
vj
v0
, (20)

where λ0 is obtained by solving the tuning problem in Sec-
tion III for the training room. Once λ0 has been found,
generalizing to other untrained rooms is immediate, as soon
as one knows the ratio of the room volumes vj/v0.

V. ASSESSING THE EXTENDED OCCUPANCY ESTIMATORS

We evaluate the effectiveness of our derivations through a
building simulations tool and the following experiments.

A. Simulation software environment

Simulations have been performed using IDA-ICE 4.6, a
commercial program for dynamic simulations of energy and
comfort in buildings [26]. The program features equation-
based modeling (NMF-language [31], [32] or Modelica
language [33]) and is equipped with a variable time step
differential-algebraic solver [34].

B. Geometry of the simulated building

The simulated indoor environment in Figure 1 represents
the ground floor of a seven-storey building in the KTH main
campus in Stockholm. The rooms considered for our simu-
lations are the labeled ones, and have different dimensions
and uses. The rooms are equipped with VAV ventilation units
with mechanical ventilation airflow uj(k) varying with the
current CO2 concentration in the room. In all the rooms the
ventilation is provided by a central fan active between 8:00
and 18:00. Room dimensions, reported in Table I, range
from the 40 m2 of a small workshop (A:231) to the 130
m2 of a lecturing room (A:213). The rooms have different
usage patterns, as reflected in the specific ventilation flows in
the rooms. For instance, the project room (A:235) has more
regular occupancy patterns than the conference hall (B:213),
where periods of zero and high occupancies are alternated.

Fig. 1. Floor plan modeled in IDA-ICE.

C. Simulation setup

Room environment simulations were carried out for a
period of two weeks between July 13 and July 26 in 2014.
The climate file used to drive IDA-ICE was a weather file
for the Bromma airport in Stockholm.
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Room Room size Min air flow Max air flow
name [m2] [l/(s m2)] [l/(s m2)]
A:235 125 0.6 2.16
A:225 81 0.93 3.34
A:213 130 0.58 2.1
B:213 96 1.05 13.13

TABLE I
ROOM FOOTPRINT, MINIMUM AND MAXIMUM ROOM MECHANICAL

VENTILATION AIR FLOWS PER UNIT AREA. AIR FLOWS PER UNIT AREA

ARE INDICATIVE OF THE NEED FOR VENTILATION AND THE LEVEL OF

ACTIVITY IN THE ROOM.

Air infiltrates through the windows and doors depending
on the external wind speed and the air leakage area; Table II
gathers the main infiltration parameters used in the simula-
tions. The air tightness of the building is assumed to be 0.5
Air Changes per Hour (ACH) at 50 Pa.

Room Windows surface Air leakage area
name [m2] [m2]
A:235 10.6 0.015
A:225 2.3 0.008
A:213 3.4 0.014
B:213 0 0.009

TABLE II
TOTAL EXTERNAL WINDOWS AREA AND AIR LEAKAGE AREA IN THE

ROOMS.

Each room has a different profile for the occupants; the
level of activity of the occupants was set to 1.8 Metabolic
Equivalent of Task (MET), corresponding to a light physical
activity, such as typical office working conditions; CO2

emissions per person (parameter g), which is proportional
to the activity, resulted in 15.4 mgCO2/s, corresponding to
8 · 10−6 m3

CO2
/s.

D. Validation of the data generation mechanism

To assess the accuracy of the IDA-ICE physical model
with respect to the real room dynamics, we compare mea-
sured and simulated CO2 data in Figure 2, under the same
conditions of occupancy and ventilation levels [35]. The real
data are collected from the laboratory room A:225 [27] with
a sampling time of T = 1 minute. The two sets of measured
and simulated data show that the physical model is capable
to capture the main CO2 dynamics. The mismatch between
the two curves is attributed to events whose effect, though
minor, is not simple to account for; examples of such events
are doors kept open and non-logged window openings.

E. Assessing the single-room occupancy estimation algo-
rithm

Here we compare the predictive capabilities of the single-
room model (7) against numerical representations of the
rooms. This assessment is performed to check out whether
the proposed model reproduces the internal and not accessi-
ble CO2 model of IDA-ICE. To this aim we:
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Fig. 2. Validation of the IDA-ICE model. CO2 levels from room
measurements and from simulation are compared, from [35].

1) collect the dataset Dj = {cj(k)uj(k), oj(k)}k∈Kj
for

each room from the virtual building simulated with
IDA-ICE;

2) add to cj(k) some artificial white Gaussian noise
(whose variance is estimated from the real data used
in SectionV-D and is equal to 35) and build the dataset

Dj := {yj(k), uj(k), oj(k)}k∈Kj
; (21)

3) identify the model, i.e., estimate the unknown part of
θ through the ML strategy discussed in Section II-
B. This step corresponds to estimate the parameters θ̂
solving (15) and thus to obtain both the CO2 estimator
ŷj

(
k; θ̂

)
through (14) and the occupancy estimator

ôj(k) through (17);
In Figure 3 the CO2 simulated by the estimated model is
validated and compared to the generated one by IDA-ICE,
where the main focus of the validation is on the simulation.
It is possible to see that the proposed model is able to
reproduce the CO2 generated by IDA-ICE. Realizations of
the true occupancy and the estimated one for the same room
is depicted in Figure 4. From Figure 4 it can be seen that
the proposed occupancy estimator for a single-room model
can give accurate results in reproducing the true occupancy.
To quantitatively evaluate the estimation capabilities of the
estimators, Table III provides some performance indexes for
all rooms4. The Mean Square Error (MSE) of the estimations
is small for all rooms and the algorithm has good detection
of occupied rooms (small FNs).

Room MSE Accuracy FP FN

A:213 0.125 0.496 0.144 0.022
A:225 0.247 0.563 0.280 0.000
A:235 0.109 0.636 0.063 0.011
B:213 0.075 0.750 0.047 0.021

TABLE III
SUMMARY OF THE PERFORMANCE INDEXES OF THE COMPLETE

SINGLE-ROOM ESTIMATORS.

4For description of the performance indexes see [14].
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Fig. 3. Validation of model (7) against IDA-ICE for room A:225.
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Fig. 4. Realizations of the true and estimated occupancy through the
single-room estimator (17) for room A:213.

F. Assessing the multi-room occupancy estimation algorithm

To evaluate the effectiveness of the proposed multi-room
occupancy estimator we collect data from IDA-ICE for all
the rooms mentioned in Table I and we apply the occupancy
estimation algorithm of Section IV.

In Figure 5 we provide the estimation results in one of the
untrained rooms. It can be seen that the estimator is able to
estimate the number of occupiers with fairly good precision,
even though not as well as the single-room estimator. To have
a better evaluation of the estimation performance, Table IV
reports the achieved performance indexes for every untrained
room, assumed to have all the same usage pattern (so that
the λ obtained during the training step can be used for
every room). The suggested multi-room estimator tends to
have good detection abilities, even if suffering a slight
performance degradation compared to the single-room case.
This can be considered as a consequence of the assumptions
made in (18), which do not hold for this simulation example
(see Table I).
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Fig. 5. Realizations of the true and estimated occupancy through the multi-
room estimator for the untrained room A:213 when the model is trained on
room A:225.

trained r. untrained r. MSE accuracy FP FN

A:225 A:235 0.179 0.413 0.364 0.001
A:225 A:213 0.232 0.276 0.399 0.000
A:225 B:213 0.104 0.489 0.062 0.012

TABLE IV
SUMMARY OF THE PERFORMANCE INDEXES OF THE COMPLETE

ESTIMATORS .

VI. CONCLUSIONS

In this paper we have studied the problem of estimating the
occupancy levels in buildings using available environmental
and actuation signals. Our proposed method is centered on
the CO2 dynamics which, starting from first principles, are
modeled using a nonlinear gray-box model. The parameters
of this model are identified on one of the rooms using a
Maximum Likelihood (ML) approach. The resulting model
is utilized to construct an occupancy estimator based on
regularized deconvolution; this estimator is then adapted to
other rooms of the building by exploiting the knowledge of
the characteristics of the rooms and their relation with the
room where the model is first identified. We have built a
simulated environment where we have tested the estimation
scheme, showing the effectiveness of the proposed scheme.

A natural extension of the current work is the application
of blind system identification techniques to the proposed
scheme, so to remove the need of a training phase. More
extensions may consider improving the estimations by using
the knowledge of interconnection of the rooms and the
locations of exits and entrances.
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APPENDIX I
NOTATION

parameter description unit

j ∈ N+ room index adim.
t ∈ R time index (continuous) adim.
k ∈ N+ time index (discrete) adim.
oj(k) occupancy at time k in room j adim.
g CO2 generation rate per person

(assumed constant and known)
m3

CO2
/ s

cj(k) CO2 concentration level at time k
in room j

ppm

c CO2 concentration level of the air
injected by the ventilation system
(assumed constant and known)

ppm

cj(k) :=
cj(k)− c

normalized CO2 concentration
level at time k in room j

ppm

yj(k) noisy measurement of cj(k) ppm
uj(k) ∈ [0, 1] actuation levels of the ventilation

system at time k in room j
adim., %

Q̇max
j nominal maximum airflow of the

ventilation system for room j
m3 / s

Q̇min
j nominal minimum airflow of the

ventilation system for room j
m3 / s

Q̇leak leaking air flow (e.g., from win-
dows and doors; assumed constant
for each room)

m3 / s

vj volume of room j m3

TABLE V
SUMMARY OF THE MOST IMPORTANT PARAMETERS.
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