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Abstract— In this paper a hierarchical distributed model
predictive control scheme is proposed for heating, ventilation
and air-conditioning (HVAC) systems in buildings. The building
consists in multiple connected rooms and zones. The control
objective is to keep the temperature of each room and zone
at a given comfortable level with minimal energy consumption.
This control scheme is divided into two levels. The upper level
controller collects temperature and predictive information of
all rooms and zones to generate reference trajectories while
a lower level controller only uses local information to track
the reference and optimize energy efficiency and thermal com-
fort. By using a contraction property of building’s dynamics,
recursive feasibility of the proposed algorithm is guaranteed.
Simulation results are given to show the performance of our
proposed control strategy.

I. INTRODUCTION

From the United Nations environment programme report
[10], buildings account for 40 percent of energy consumption
and resources and one third of greenhouse gas emissions. In
Singapore, 30 percent of energy is consumed by buildings
while air-conditioning systems are responsible for more than
half of the total energy consumed by buildings [2]. Therefore
it is attractive to reduce the energy cost of buildings and
one of the most promising directions is to optimize the
energy efficiency of heating, ventilation and air conditioning
systems.

Model Predictive Control (MPC) is one of the most
popular methods used to optimize the energy efficiency of
HVAC systems. The main idea of this method is to obtain a
control sequence at each time step by solving a finite horizon
optimal control problem, which is formulated with system
dynamics and current measurement. Only the first part of the
control sequence will be implemented and the optimization
problem will be formulated and solved again when the
next measurement comes. Compared with traditional control
strategies, MPC is superior due to its optimal nature and
the ability to handle input and output constraints. Therefore,
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in recent years, a lot of researchers have proposed MPC
algorithms to increase energy efficiency of HVAC systems,
see, e.g. [7], [15], [21], [20] and so on.

Though MPC usually has a better performance than other
control strategies, the size of optimization problem grows
rapidly when the dimension of system becomes large. Es-
pecially, when MPC algorithm is applied to control HVAC
systems in buildings, due to the large numbers of rooms and
zones, it will become impractical to implement a centralized
MPC algorithm since the optimal control problem may not
be solved in reasonable time and the control system may
become difficult to maintain.

Motivated by the above issues, several distributed algo-
rithms were proposed recently to attenuate the online compu-
tational burden. In [16], a nonlinear optimal control problem
is formulated and solved through tailed sequential quadratic
programming. Then the subproblem is decomposed further
by subgradient method. Local controller approaches the op-
timal solution by repeatedly negotiating with its neighbours
in every sample period. Another distributed MPC algorithm
is proposed in [18]. Compared with the iterative approach
in [16], the algorithm in [18] only requires controller to
exchange the predicted output with its neighbours for once in
each sample period. However, this algorithm can obtain only
Nash equilibrium, which may not be the optimal solution.
Unlike aforementioned two works where the optimization
problems are formulated and solved online, in [9], explicit
solutions of the optimal control problems are provided in an
off-line manner by using Karush-Kuhn-Tucker conditions so
that the online computational burden is reduced significantly.
However, the prediction horizon is only one step in this
algorithm and it may lead to inefficient operation. More
recently, inspired by algorithms in [22] and so on, authors
of [8] proposed a consensus-based strategy to coordinate
and control heating energy distribution with guaranteed
convergence. However, efficiency of this algorithm is not
considered.

In this paper, a hierarchical distributed MPC algorithm is
proposed to regulate the temperature of buildings. This con-
trol scheme is divided into two levels. The upper level con-
troller collects global measurement information, formulates
and solves a centralized optimization problem to generate
reference temperature trajectories for lower level controllers.
The lower level controllers only use local information to
track the reference trajectories given by the upper level
controller by solving local optimal control problems. Since
the centralized optimization problem cannot be solved effi-
ciently, the upper level controller works with a long sampling
period while the lower level controllers update more fre-
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quently because local problems can be solved fast. Compared
with [16], this algorithm does not require exchanging infor-
mation among subsystems in each sampling period so that
communication requirements are reduced. Besides, compared
with [8], the performance index is explicitly considered in
the problem formulation. Furthermore, based on contraction
property [14] and some other mild assumptions, the recursive
feasibility of this algorithm, which is usually missed in the
literature, is guaranteed.

The paper is organized as follows. Section II introduces
a control-oriented model of HVAC systems considered in
this paper. Section III outlines the proposed hierarchical
distributed MPC control algorithm as well as the recursive
feasibility analysis. Numerical examples and some discus-
sions are given in Section IV. Finally, conclusions are drawn
in Section V.

II. SYSTEM MODEL

In this section, a simplified HVAC system structure will be
introduced and a control-oriented model will be established.

Due to the complex nature of air flow and heat transfer
process, HVAC systems are usually modelled as time-varying
nonlinear partial differential equations, which are not suitable
for control and optimization. Therefore similar to [6], [15]
and [25], the following assumptions are made to simplify the
modelling.
• The air in each room and outdoor environment is well

mixed immediately so that the temperature distributions
are uniform.

• The heat capacity of air is assumed to be constant.
An undirected graph is used to describe the communica-

tion topology among rooms. An undirected graph is defined
as a set G = {V, E} where V is the set of all nodes and
E ⊆ V × V is the set of all edges. We treat room i as the
node i in graph G. If room i and j are adjacent, edge (i, j)
is in E . The set of all neighbors of room i is defined as
Ni = {j ∈ V|(i, j) ∈ E}.

The indoor temperature dynamics for one single room is
considered as a Resistive-Capacitive (RC) system [5] and
temperature of the whole building is considered as a network
of RC systems. Each node in this network is a room and its
state represents temperature. The thermal dynamic model of
room i is given by the following equation:

CiṪi = uicp(Ts−Ti)+
∑
j∈Ni

Tj − Ti
Rij

+
Toa − Ti
Rioa

+P id, (1)

where Ci is the lumped mass of room i, Ti is the temperature
of air in room i. ui represents the mass flow rate of air enter-
ing room i, which is the control input. cp = 1012(J/kg×K)
is the heat capacity of room air, Ts is the temperature of the
supply air. Rij = Rji denotes thermal resistances between
room i and its neighbour j while Rioa models thermal
resistance between room i and the outside environment. Toa
is environment temperature and unmeasured disturbances in
room i such as occupancy, usage of electronic devices and
so on are collected in P id. The prediction of Toa, which

is denoted as T̃oa, can be obtained from weather forecast
station and the prediction of P id, which is denoted as P̃ id
can be learned from historical data and schedule. In the
following of this paper, we assume that prediction errors are
zero since the main purpose of this paper is to introduce
the hierarchical distributed structure and the compensation
of bounded disturbances has been discussed in many other
works [17].

The system states and control inputs are also subject to the
following constraints: 1) Ti ∈ [T , T̄ ] = [20, 24]◦C. 2) ui ∈
[ṁ, ¯̇m] = [0.005, 5]kg/s. The maximal mass flow rate is
limited by the power of fans and the size of VAV boxes while
the minimal mass flow rate is used to guarantee ventilation
requirement.

The objective of this paper is to design a distributed control
law to maintain temperature Ti within a comfortable region
while minimizing energy consumption.

III. CONTROLLER DESIGN

In this section, the proposed control algorithm will be
stated. Firstly, contraction property of nonlinear systems will
be introduced and some lemmas based on this property
will be given. After that, the optimization problem will be
formulated and feasibility issue of the algorithm will be
analysed.

A. Contraction property

In some existing works [16] [18], the recursive feasibility
issue is not studied while in some other works [4] [11],
the conditions to guarantee recursive feasibility are rather
conservative and not practical because they are derived by
using Lipschitz continuity. In this paper, instead of using
Lipschitz condition, a novel distributed MPC algorithm is
designed based on contraction property proposed in [13]. It
is noted that contraction theory has been extended to process
control [14], distributed systems [12] and more recently,
contraction theory has also been developed for the study of
networked systems [23], observer and Kalman filter design
[1] [3] and so on.

Contraction property is given in the following definition.
Definition 3.1: Consider a subsystem Si : ẋi =

fi(xi, x−i, ui, di) where xi is the state, −i denotes {j|j ∈
Ni}, ui is the control input and di is the disturbance. If there
exist positive matrix Mi and positive number βi such that

∂fi
∂xi

T

Mi +Mi
∂fi
∂xi
≤ −βiMi

then subsystem Si is contractive.
Then we have the following proposition.
Proposition 3.1: Subsystem (1) is contractive.

Proof: By choosing Mi = 1 and noticing that ui ≥ ṁ,
it can be calculated that

∂fi
∂xi

T

Mi +Mi
∂fi
∂xi

= −2(uicp +
∑
j∈Ni

1

Rij
+

1

Rioa
)/Ci

≤ −2(ṁcp +
∑
j∈Ni

1

Rij
+

1

Rioa
)/Ci
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which completes the proof.
Lipschitz continuity is also required in the design proce-

dure.
Assumption 3.1: fi satisfies that

‖fi(xi, x−i, ui)− fi(xi, x′−i, ui)‖ ≤
∑
j∈Ni

Lij‖xj − x′j‖

Clearly, subsystem (1) satisfies the above assumption with
Lij = 1

Rij
.

When MPC algorithm is used, the predicted trajectory and
the real one are usually not the same due to uncertainties.
Based on the above two properties, we introduce the follow-
ing lemma to estimate the discrepancy. This lemma is an
extension of Theorem 5 in [24] to the case with disturbance.

Lemma 3.1: Consider two systems ẋ0 = f(x0, 0, t) and
ẋ1 = f(x1, w, t), where w is a bounded disturbance.
Suppose that ∂f

∂x

T
M + M ∂f

∂x ≤ −βM holds for some
positive number β and positive definite matrix M in some
region C where the two systems evolve. Then V (t) ≤
2Ldλmax(M

1
2 )

βλmin(M
1
2 )

+ (V (0)− 2Ldλmax(M
1
2 )

βλmin(M
1
2 )

)e−
1
2βt where V (t) =

‖x0(t) − x1(t)‖M , L is a positive constant satisfies that
‖f(x, y, z)− f(x, y′, z)‖ ≤ L‖y − y′‖, d = supw ‖w‖M .

Proof: Similar to the proof of Theorem 5 in [24], pick
γ(r) = x0(0) + r(x1(0) − x0(0)). Consider an auxiliary
trajectory ẋr = f(xr, rw, t) which starts from xr(0) =
γ(r), r ∈ [0, 1]. Define p(t, r) = ∂xr

∂r (t, r). Then it follows
that ∂p

∂t (t, r) = ∂
∂t (

∂xr

∂r ) = ∂
∂r (∂xr

∂t ) = ∂
∂rf(xr, rw, t) =

∂f
∂xr

p+ ∂f
∂rww.

Consider Φ(t, r) = p(t, r)TMp(t, r). Then by the
contraction property we have ∂

∂tΦ(t, r) ≤ −βΦ(t, r) +

2
√

Φ(t, r)Ldλmax(M
1
2 )

λmin(M
1
2 )

. Note that
√

Φ(0, r) = V (0) and it

follows from comparison principle that√
Φ(t, r) ≤ µ+ (V (0)− µ)e−

1
2βt, (2)

where µ = 2Ldλmax(M
1
2 )

βλmin(M
1
2 )

, ∀x ∈ C, t ≥ 0, and ∀r ∈ [0, 1].

According to the fundamental theorem of calculus one can
write that x1(t) − x0(t) =

∫ 1

0
p(t, r)dr and by inequality

(2), V (t) ≤
∫ 1

0
‖p(t, r)‖Mdr = 2Ldλmax(M

1
2 )

βλmin(M
1
2 )

+ (V (0) −
2Ldλmax(M

1
2 )

βλmin(M
1
2 )

)e−
1
2βt.

B. Hierarchical distributed MPC

Because of the high computational complexity of the
centralized MPC, it is not practical to apply it in real
application when the dimension of the system becomes high.
Distributed MPC, which decomposes the centralized opti-
mization problem to a group of small ones, makes it possible
to be used for large scale dynamically coupled systems.
However, purely distributed MPC algorithms are usually
difficult to have convergence and feasibility guarantees [18]
or those conditions are very conservative for application
[4] [11] especially when the system is nonlinear. In this
work we combine the distributed and centralized structure
together to design a hierarchical control scheme to balance
the computational complexity and the conservativeness.

Room1

Room2

Room3

LMPC2UMPC

LMPC1

LMPC3

T1

T2

T3

u1

T1

u2

T2

T3

u3

R1

R2

R3

Fig. 1. Control scheme

The control structure is divided into two layers. The
upper layer solves a global optimal control problem with
long prediction horizon by collecting information from all
subsystems to generate reference temperature trajectories for
lower layer controllers. The lower layer controllers solve
local optimal control problems with short prediction horizon
by only using its local information. Both layers work in a re-
ceding horizon manner but the sampling period of the upper
layer is much larger than that of the lower layer. Therefore,
though the upper layer controller solves a global optimization
problem, the computational burden is acceptable.

To facilitate the description of the proposed algorithm, the
notation ·u will be used for upper layer MPC while ·l will be
used for lower layer MPC. We shall abbreviate upper layer
MPC controller to UMPC while the lower layer one of room
i will be called LMPCi for short. tuk denotes the sampling
time instant of the UMPC while tlk denotes that of the lower
layer MPCs; define c(k, p) = k(M + 1) + p where M is
a positive integer corresponding to the number of sampling
instants of LMPC between two sampling instants of UMPC;
tuk = tlc(k,0); δ

u , tuk+1 − tuk and δl , tlk+1 − tlk represent
sampling period of the UMPC and LMPC respectively; δu =
(M + 1)δl; Tu denotes the prediction horizon of the UMPC
and T l denotes that of LMPC which satisfies that Tu ≥
T l + δu. The control scheme is illustrated in Fig. 1.

The hierarchical distributed MPC algorithm is summarized
below:

1) At sampling time instant tuk , UMPC receives tempera-
ture measurement T (tuk) = [T1(tuk), . . . , TN (tuk)]T .

2) UMPC computes the optimal control input
u0(s; tuk) = [u01(s; tuk), . . . , u0N (s; tuk)]T , s ∈ [tuk , t

u
k + Tu]

and corresponding temperature trajectory T 0(s; tuk) =
[T 0

1 (s; tuk), . . . , T 0
N (s; tuk)]T , s ∈ [tuk , t

u
k + Tu]. T 0

i (s; tuk) is
transmitted to LMPCi and its neighbours.

3) At sampling time instant tlc(k,p), LMPCi receives local
temperature measurement Ti(tlc(k,p)) and computes the opti-
mal control input u∗i (s; t

l
c(k,p)), s ∈ [tlc(k,p), t

l
c(k,p) + T l].
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4) Apply u∗i (s; t
l
c(k,p)), s ∈ [tlc(k,p), t

l
c(k,p) + δl].

5) If 0 ≤ p < M , p = p+ 1 and go to 3); else k = k+ 1,
p = 0 and go to 1).
u0(s; tuk), s ∈ [tuk , t

u
k + Tu] is the optimal solution of the

following optimization problem:

min
û(·)

Ju(Tu(tuk), û(·))

subject to

Ci
˙̂
Tui (s) = ûi(s)cp(Ts−T̂ui (s))+

∑
j∈Ni

(T̂uj (s)−T̂ui (s))

Rij

+(T̃oa(s)− T̂ui (s))/Rioa + P̃ id(s),

ûi(s) ∈ [ṁ, ¯̇m],

T̂ui (s) ∈ [T , T̄ ],

T̂u(tuk) = T (tuk),

s ∈ [tuk , t
u
k + Tu], i = 1, . . . , N

where Ju represents performance index which will be opti-
mized by UMPC.

Denote r(s; tk) = ci
βi

(1 − e−
1
2βi(s−tk)). After

obtaining temperature trajectory T 0(s; tuk) =
[T 0

1 (s; tuk), . . . , T 0
N (s; tuk)]T , s ∈ [tuk , t

u
k + Tu],

u∗i (s; t
l
c(k,p)), s ∈ [tlc(k,p), t

l
c(k,p) + T l] is computed

by solving the following optimization problem:

min
ûi(·)

J li (T
l
i (t

l
c(k,p)), ûi(·))

subject to

Ci
˙̂
T li (s) = ûi(s)cp(Ts − T̂ li (s))

+
∑
j∈Ni

(T 0
j (s; tk)− T̂ li (s))/Rij

+
(T̃oa(s)−T̂ li (s))

Rioa
+P̃ id(s), (3)

|T̂ li (s)− T 0
i (s; tk)| ≤ li − r(s; tlc(k,p)), (4)

ûi(s) ∈ [ṁ, ¯̇m],

T̂ li (t
l
c(k,p)) = Ti(t

l
c(k,p)),

s ∈ [tlc(k,p), t
l
c(k,p) + T l]

where J li is the performance index which will be optimized
by LMPCi, βi = 2

Ci
(ṁcp +

∑
j∈Ni

1
Rij

+ 1
Ri

oa
), ci =

2
∑
j∈Ni

lj
CiRij

and li is a parameter to be chosen by design-
er. Denote the optimal control input of the above problem
as u∗i (s; t

l
c(k,p)) and the corresponding optimal temperature

trajectory as T ∗i (s; tlc(k,p)).
The purpose of constraint (4) is to guarantee that the

real temperature trajectory will not be far away from the
reference. Therefore (3) is a reasonable approximate model
of subsystem i.

Now we give the following proposition to ensure the
recursive feasibility of the proposed hierarchical distributed
MPC algorithm.

Proposition 3.2: Consider a group of interconnected
rooms with thermal dynamics described by (1). If the opti-
mization problems of the UMPC formulated at tuk is feasible

and ci
βi
≤ li, then problems for LMPCi formulated at

tk(M+1)+p, 0 ≤ p < M are feasible.
Proof: Since UMPC is feasible, for any tuk , T 0(s; tuk)

and u0(s; tuk) are available. Clearly, when p = 0, subprolems
formulated at tlc(k,0) are feasible since u0i (s; tk), s ∈ [tk, tk+

T l] is a feasible solution for each LMPCi. Now suppose that
subproblem of LMPCi formulated at p ≥ 0 has optimal
solution u∗i (s; t

l
c(k,p)), i = 1, . . . , N . We will show that

subproblem formulated at p+1 has a feasible solution given
by

ũi(s; t
l
c(k,p+1)) =


u∗i (s; t

l
c(k,p)),

s ∈ [tlc(k,p+1), t
l
c(k,p) + T l]

u0i (s; tk),

s ∈ [tlc(k,p) + T l, tlc(k,p+1) + T l]

According to the definition of u∗i and u0i , it is obvious that
ũi ∈ [ṁ, ¯̇m]. Then we will show that x̃(s; tlc(k,p+1)) given
by

Ci
˙̃Ti(s; t

l
c(k,p+1)) = ũi(s; t

l
c(k,p+1))cp(Ts−T̃i(s; t

l
c(k,p+1)))

+
∑
j∈Ni

T 0
j (s; tk)− T̃i(s; tlc(k,p+1))

Rij

+
T̃oa(s)− T̃i(s; tlc(k,p+1))

Rioa
+ P̃ id(s)

with initial condtion T̃i(t
l
c(k,p+1); t

l
c(k,p+1)) = Ti(t

l
c(k,p+1))

satisfies constraints (4).
Based on Lemma 3.1 and (4), it can be proved that |Ti(s)−

T 0
i (s; tk)| ≤ li. The proof will be omitted here due to limited

space. Then by considering w(s) = T−i(s)−T 0
−i(s; tk) and

some simple calculations we get |T̃i(tlc(k,p+1); t
l
c(k,p+1)) −

T ∗i (tlc(k,p+1); t
l
c(k,p))| ≤

ci
βi

(1− e− 1
2 βiδ

l) and it leads to

|T̃i(s; tlc(k,p+1))− T
∗
i (s; tlc(k,p))|

≤ ci
βi

(1− e− 1
2βiδ

l

)e−
1
2βi(s−tlc(k,p+1)), (5)

where s ∈ [tlc(k,p+1), t
l
c(k,p) + T l]. On the other hand,

by constraint (4), |T ∗i (s; tlc(k,p)) − T 0
i (s; tk)| ≤ li −

r(s; tlc(k,p)). Combining the above inequalities results in
|T̃i(s; tlc(k,p+1)) − T 0

i (s; tk)| ≤ li − r(s; tlc(k,p+1)), s ∈
[tlc(k,p+1), t

l
c(k,p) + T l]. When s ∈ [tlc(k,p) + T l, tlc(k,p+1) +

T l], we check |T̃i(s; tlc(k,p+1)) − T 0
i (s; tk)| directly.

Note that |T̃i(tlc(k,p) + T l; tlc(k,p+1)) − T 0
i (tlc(k,p) +

T l; tk)| ≤ li − r(tlc(k,p) + T l; tlc(k,p)). Then by Lem-
ma 3.1 |T̃i(s; tlc(k,p+1)) − T 0

i (s; tk)| ≤ (li − r(tlc(k,p) +

T l; tlc(k,p)))e
− 1

2βi(s−tlc(k,p)−T
l) ≤ li − r(s; tlc(k,p+1)). This

proves that constraint (4) is satisfied.

IV. SIMULATION AND DISCUSSION

In this section, a six-room model is used to
simulate the temperature response under the proposed
hierarchical distributed MPC algorithm. The six
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Fig. 2. Environment temperature

rooms are connected and the undirected graph
is G = {V, E} where V = {1, 2, 3, 4, 5, 6} and
E = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)}. System
parameters are given: Ci = 9.163 × 103kg/K, Ts = 16◦C,
Rij = 4K/kW, Rioa = 57K/kW. The design parameter li is
chosen as 2. Prediction horizon of UMPC is 24 hours while
that of LMPCi is 2 hours. Sampling periods of UMPC
and LMPCi are 1 hour and 15 minutes respectively. The
objective function of UMPC is defined as

Ju(T (tuk), û(·; tuk))

=

∫ tuk+T
u

tuk

(0.01‖T̂u(s; tuk)− Td‖2 + 100‖û(s; tk)‖2)ds

and the objective function of LMPCi is defined as

J li (Ti(t
l
c(k,p)), ûi(·; t

l
c(k,p)))

=

∫ tuk+T
l

tuk

(c1‖T̂ li (s; tlc(k,p))− Td‖
2 + ‖û(s; tk)‖2

+c2‖T̂ li (s; tlc(k,p))− T
0
i (s; tuk)‖2)ds

where Td is the desired temperature which is set as 21◦C.
Note that different types of objective functions are used in
two layers. In particular, the upper layer mainly considers
energy efficiency since it has a long prediction horizon while
the lower layer can balance energy efficiency and thermal
comfort by tuning c1 and c2.

The simulation starts from 0:00 am to 23:59 pm. The envi-
ronment temperature information in two days is downloaded
from a local weather station and the temperature profile is
plotted in Fig. 2

In Fig. 3 thermal load profile Pd in two days is depicted.
Here we assume that from 6:00 to 19:00 rooms are occupied
so the thermal load is relatively higher while the rest time of
the day rooms are empty thus the thermal load is set to the
minimum caused by electronic devices. The thermal load for
each room i is set as P id = (1 + (i − 1)/10)Pd. The initial
room temperature is set as [21 21 21 21 21 21]◦C. We also
set c1 = c2 = 0.1.

In the simulation, we compare the temperature responses
under the proposed hierarchical distributed MPC and a

time(h)
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Fig. 3. Thermal load

decentralized PI control scheme with ui = (Ti − Td) +
10−4

∫
(Ti − Td). Note that the temperature constraint Ti ∈

[20, 24]◦C is satisfied in all examples. The proposed algo-
rithm are coded in Matlabr and run on a PC with Intel Core
Duo i5-2400 CPU 3.10GHz. The optimization problems are
described by using ICLOCS [19] and solved by IPOPT [26].
The average time to solve a subproblem is 6.8 seconds.

In Fig. 4, temperature response and control input under
the proposed algorithm are depicted. Temperature response
and manipulated input under a decentralized PI control are
shown in Fig. 5. The proposed algorithm starts to cool down
room temperature before 4:00 while the decentralized PI
keeps almost inactive. Between 5:00 and 6:00, the proposed
algorithm exhibits a precooling effect which saves energy
because of lower environment temperature and thermal load
which leads to cheaper cooling. After 18:00, due to the
predictive information, the proposed algorithm can avoid
overcooling such that the room temperature will not be
too low because of the lower environment temperature and
thermal load. On the other hand, the decentralized PI con-
troller continues to cool down room temperature and leads
to some negative overshoot. It can also be observed that
the proposed algorithm balances the tracking performance
and energy saving. It does not track the desired temperature
as well as the decentralized PI controller. Therefore the
proposed algorithm saves more energy with some loss of
tracking performance. However, it should be noticed that the
temperature is still in the comfort zone so that the thermal
comfort is not affected.

We also compare the energy cost defined as Jenergy =∫ T l

0
‖u(s)‖2ds for the two examples. In the two examples,

the value of Jenergy are 3.24× 104 and 5.98× 104 respec-
tively. Clearly, in the first example, controllers consume less
energy because of the optimal nature of MPC. Strategy in the
second example consumes more energy though it has better
tracking performance.

V. CONCLUSION

In this paper, a hierarchical distributed MPC strategy
is proposed for building temperature regulation problem.
This control structure is divided into two levels. The upper
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Fig. 4. Temperature response and control input under the proposed
algorithm
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Fig. 5. Temperature response and control input under decentralized PI
algorithm

level is a centralized coordinator, which can collect global
information and solve an optimal control problem to generate
reference signal, which will be tracked by lower layer
controllers. The reference signal is also used to decouple the
interconnected system. The lower level controllers only use
local information to formulate and solve local optimization
problems to track the reference trajectories while optimize
energy efficiency. Different objective functions can be used
in the two levels. Numerical examples are given to illustrate
the performance of the proposed control scheme.
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