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Abstract: The control configuration problem is discussed. A new algorithm is
outlined which gives suggestion on feedback and feedforward control structure
given a SISO control loop and some extra measurements. The algorithm is based
on simple experiments and leads to a model of the process as a directed graph.
The method is illustrated on a few common industrial control problems. Copyright
c& 2000 IFAC

1. INTRODUCTION

Autonomy in process control systems is increas-
ing in importance as a result of growing com-
plexity [1, 2]. The configuration of the con-
trollers is crucial, although today it is often
not considered as a variable when process de-
signs are updated. Control structures in indus-
try have traditionally evolved through years of
experience. Rapid development of sensor and
computer technology has, however, given new
possibilities to make major structural changes
in many process designs. This has led to an in-
creasing need for automatic or semi-automatic
control structure design tools. Finding a suit-
able structure or choosing between different
structures are in general difficult problems.
Even though these problems can be regarded
as multivariable control problems, little of the
activity in multivariable control the last three
decades has been devoted to these issues [9, 11].
The main contribution of this paper is an al-
gorithm for control structure design. The algo-

rithm consists of a sequence of experiments that
lead to a structural model of the plant, which
automatically suggests a control configuration.
No prior information about the process dynam-
ics is needed. The particular setup is discussed
when a SISO control loop is given and a num-
ber of extra measurements are available. It is
shown that a graph is a natural model for such a
system. The graph tells the role each measure-
ment should play in the controller. The problem
statement includes many interesting industrial
cases. Some of them are discussed as examples
in the paper and it is shown that in these cases
the algorithm leads to the same control struc-
ture as the ones used in practice. Graph theory
is used in various areas in control engineer-
ing. Directed graphs have, for example, been
used in the study of large scale systems and
decentralized control problems since the early
seventies [8, 10]. The modeling we study here is
also related to qualitative reasoning [3, 6], as we
are not primarily concerned about detailed dy-
namical models but more qualitative properties



such as causality. Supervision of process control
systems is an example of an area where causal
reasoning has been investigated [7].
The outline of the paper is as follows. The
definition of a process graph is given in Sec-
tion 2 together with some other preliminaries.
Section 3 presents an algorithm for identifying
a process graph from transient response exper-
iments. Control structure design is discussed in
Section 4, where design rules based on the pro-
cess graph are given. Section 5 lists some com-
mon industrial control configurations and how
these are detected by the algorithm proposed in
the paper. Some extensions and future work are
discussed in Section 6. An early version of this
paper is available as [5].

2. PROCESS GRAPH

Consider a multivariable control system with
control signals u1, . . . , um, measured signals
y1, . . . , yp, and reference signals r1 , . . . , rq, where
m ≥ 1 and p ≥ q ≥ 1. Each reference signal
rk is associated to the measured signal yk. The
control objective is loosely defined as to keep
yk as close to rk as possible regardless of ex-
ternal disturbances, changing operating condi-
tions, cross-couplings, unmodeled dynamics etc.
We are interested in how to choose a good
control configuration to solve this problem, but
we will not discuss particular choices of control
parameters. In particular, we will suggest how
to use yq+1, . . . , yp to improve closed-loop perfor-
mance.

It is illustrative for our purposes to model the
process as a directed graph, where each vertex
represents either a control signal or a measured
signal, and each edge a dynamical connection.

Definition 1. (Process graph). A process graph
G is a directed graph G = (V , E, W), where the
sets V = {u1 . . . , um, y1, . . . , yp} and E ⊂ V �
V are vertices and edges, respectively, and the
weight function W : E → D = (0,∞) associates
a time to each edge.

The interpretation is that for all e ∈ E, the
weight W(e) represents the time delay between
the two dynamically coupled signals connected
by e. We could also allow more general dynamics
imposed by D. For instance, letting D be the
set of all first-order transfer functions with time
delay. However, the control structure algorithm
requires only information on causality, and not
on any true dynamical properties of the plant.
The time delay of a response can be interpreted
as the settling time for a system with more
general dynamics.

u1
y1

y2 y3 y4 y5

y6

Fig. 1. Water tank system with measured sig-
nals y1, . . . , y6 and one control signal u1.
The objective is to control y1.
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Fig. 2. Process graph that represents the tank
system in Figure 1.

Example 1. (Water tank system). Consider the
water tank system in Figure 1, which consists
of five tanks and a pump. The control objective
is to keep the level y1 close to the set-point r1.
The control signal u1 is the input to the pump.
The measurements y2, . . . , y5 are levels, while
y6 is a flow. We may approximate the dynamics
from the pump, the pipes, the tanks etc., by time
delays. The process graph G = (V , E, W) for
this model is shown in Figure 2. Hence,

V = {u1, y1, , . . . , y6}
E = {(u1, y2), (u1, y4), (y2, y1), (y3, y1), (y6, y3)}.
The weighting function W assigns a positive
scalar to each edge (but is for simplicity sup-
pressed in the figure).

Introduce succ(⋅) and pre(⋅), which map subsets
of V to subsets of V , as

succ(U ) := {v ∈ V : ∃(w, v) ∈ E, w ∈ U}
pre(U ) := {v ∈ V : ∃(v, w) ∈ E, w ∈ U}.

They hence denote the successors and the pre-
decessors, respectively, for a set of vertices. De-
fine succk(⋅) iteratively as succ0(U ) = U and
succk(U ) = succ

(
succk−1(U )) for k ≥ 1. The

map prek(⋅) is defined similarly. A path in a
process graph is a sequence P = 〈v1, . . . , vk〉,
vi ∈ V and k > 1, such that vi ∈ succ(vi−1)
for all i = 2, . . . , k. The weight of P is defined as
W(P) = ∑k−1

i=1 W(vi, vi+1) (with abuse of nota-
tion). A process graph has a cycle, if there exists
v ∈ V and k ≥ 1 such that v ∈ succk(v). It is
acyclic if there is no cycle. A process graph has
a parallel path, if there exists two non-identical
sequences 〈v1, . . . , vk〉 and 〈w1, . . . , wQ〉, k, Q ≥ 1,
such that vi ∈ succ(vi−1), wi ∈ succ(wi−1), v1 =



w1, and vk = wQ. A vertex w is reachable from
v if there exists a path from v to w. Otherwise,
the vertex is unreachable.

Example 1. (Cont’d). The paths for the water
tank process graph in Figure 2 include 〈u1, y4〉,
〈u1, y2, y1〉, and 〈y6, y3, y1〉. It has no cycles or
parallel paths. The vertices y1, y2, and y4 are
reachable from u1, while y5 is unreachable.

3. PROCESS GRAPH IDENTIFICATION

In this section an algorithm is derived to iden-
tify a process graph through a number of exper-
iments. The obtained process graph is then used
in the next section to derive a control structure.
The process graph identification will in general
not give full information about the system, in
the sense that the true process graph will not
necessarily be obtained. However, the intention
is that after a number of experiments, the graph
should be sufficiently accurate to suggest a suit-
able control structure.

Transient response experiments are performed
in order to obtain the process graph of the sys-
tem. In the paper we consider step experiments,
but other excitation signals, such as pulses, may
be preferable in some cases. The experiments
are done in open loop. We define a v experi-
ment as a step change in v ∈ V , such that all
w ∈ pre(v) are unaffected. The step is assumed
to be induced by an actuator not modeled by the
process graph. It is hence assumed that each
measurement can be perturbed by an external
variable. The perturbation may, for instance,
be caused by manually opening and closing a
valve. For the tank system in Figure 1, a y2

experiment may be done by externally adding
some water to Tank 2.

We assume that it is possible to measure the
response time Tv(w) ∈ [0,∞] from a step exper-
iment in v ∈ V to a signal w ∈ V \ {v}. The
response times are collected as Tv = {Tv(w) :
w ∈ V \ {v}}. We define Gv = (V , Ev, Wv)
as the process graph with vertices V , edges
Ev = {(v, w) : Tv(w) < ∞}, and weight function
Wv(v, w) = Tv(w) for (v, w) ∈ Ev. Hence, Gv

is a tree with root v and depth one. The dis-
tance graphGdist = (V , Edist, Wdist) is a process
graph, computed from {Gv : v ∈ V}, such that
Edist = {(v, w) : ∃v, w ∈ V , (v, w) ∈ Ev} and for
(v, w) ∈ Edist, Wdist(v, w) = Wv(v, w). An process
graph estimate Ĝ of the underlying graph G
can be derived from Gdist. The process graph
identification is summarized in the following
algorithm.

for v ∈ V do
Perform v experiment
Measure Tv

Compute Gv

od
Compute Gdist

Compute Ĝ

Let ShortestPath(G, v, w) denote the path with
smallest weight between v, w ∈ V . Then, Ĝ is
computed from Gdist by the following procedure.

Compute Ĝ = (V , Ê, Ŵ)
Ê := ∅
for v ∈ V do

for w ∈ V \ {v} do
P := ShortestPath(Gdist, v, w)
if P �= ∅

then if Wdist(P) > Wdist(v, w)
then Ê := Ê ∪ {(v, w)}

Ŵ(v, w) := Wdist(v, w)
else Edist := Edist \ {(v, w)}

od
od

The shortest path can easily be derived using
Dijkstra’s algorithm [4]. Under the assumption
that G has no parallel paths or self-loops, the
presented algorithm gives Ĝ = G. We illustrate
the algorithm on the water tank system. The
weightings are not given in order to simplify
the presentation.

Example 1. (Cont’d). Consider the water tank
system again. The process graph identification
algorithm leads to the process graphs

{
Gv : v ∈

{u1, y1, . . . , y6}
}

shown as the first five graphs
in Figure 3. These graphs result in the distance
graph Gdist depicted as the graph in the lower
right corner in Figure 3. Using Compute Ĝ, we
finally end up with a graph identical to the
original graph G in Figure 2.

4. CONTROL STRUCTURE DESIGN

From the process graph it is possible to draw
conclusions about a suitable control configu-
ration. We discuss next how feedforward and
cascade control structures are suggested by the
process graph. Now on we focus on the case with
a single scalar control loop with a few extra
measurements, i.e., m = q = 1 and p > 1.
Then, V = {u1, y1, . . . , yp}. We assume that y1

is reachable from u1. We also assume that G
is acyclic and has no parallel paths. Decompose
V \ {u1, y1} into four disjoint sets:

V = {u1, y1} ∪ Vrr ∪ Vru ∪ Vur ∪ Vuu,

where
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Fig. 3. Process graph identification for the water
tank system.

Vrr := {v ∈ V : v is reachable from u1,
y1 is reachable from v}

Vru := {v ∈ V : v is reachable from u1,
y1 is unreachable from v}

Vur := {v ∈ V : v is unreachable from u1,
y1 is reachable from v}

Vuu := {v ∈ V : v is unreachable from u1,
y1 is unreachable from v}.

Breaking up V like this is, of course, closely
related to Kalman decomposition, see [5]. It is
easy to compute Vrr, Vru, Vur, and Vuu from G
(and the corresponding estimates from Ĝ).

Example 1. (Cont’d). The process graph for the
water tank system in Figure 2 has the reacha-
bility structure given by Vrr = {y2}, Vru = {y4},
Vur = {y3, y6}, and Vuu = {y5}.

The process graph with V = {u1, y1, y2} and
E = {(u1, y1), (y2, y1)} is a feedforward proto-
type. Here Vur = {y2} and Vrr = Vru = Vuu = ∅.
The measured variable y2 affects the controlled
variable y1. The signal y2 may be a measurable
disturbance or a variable that is related to a
disturbance. The feedforward of the signal may
improve the attenuation of this particular dis-
turbance in the control loop.

A process graph prototype for cascade con-
trol is given by V = {u1, y1, y2} and E =
{(u1, y2), (y2, y1)}. Here Vrr = {y2} and Vur =
Vru = Vuu = ∅. In this case the measured signal

y2 is responding to control actions faster than
y1. Therefore, it may be suitable to introduce
an inner control loop based on tight control of
y2. Cascade control improves the performance
considerably if there is an unmeasurable dis-
turbance entering the system prior to y2 and
the y1 response is much slower than the y2
response. If there is only one vertex in the path
between u1 and y1 that is used for feedback,
then cascade control is the commonly used term
for this control structure. When there are two or
more measurements fed back to the controller,
we simply say feedback control. This case corre-
sponds to a control law based on (partial) state
feedback.

By generalizing the conclusions from the previ-
ous three-vertex prototype graphs, we get the
following control structure design rules based
on the partition V = {u1, y1} ∪ Vrr ∪ Vru ∪ Vur ∪
Vuu:

• Measurements in Vrr may be used for feed-
back (cascade) control;

• Measurements in Vur may be used for feed-
forward control; and

• Measurements in Vru and Vuu should not
be used for control of y1.

There exist exceptions from these design rules.
For example, there are cases when a measure-
ment in Vru is useful for feedback; for example,
a sensor may have individual states from which
y1 is unreachable, but still these states reflect
unmeasurable states in the process, which are
useful for control of y1. Another example when
the rules should not be strictly followed is if
there are redundant measurements or measure-
ments related by fast dynamics; then it might
be sufficient to use only one of them. Further
practical considerations are discussed in [5].

Example 1. (Cont’d). Assume that the present
control structure for the water tank problem
is a SISO control loop consisting of u1 and
y1. The question is if the control performance
can be enhanced by using the measurements
y2, . . . , y6. The process graph identification in
Section 3 gave the final graph Ĝ = G in
Figure 2 with Vrr = {y2}, Vru = {y4}, Vur =
{y3, y6}, and Vuu = {y5}. Following the control
structure design rule, we have that y2 may
be used for feedback control, while y3 and y6

may be used for feedforward control. The other
measurements should be neglected. This control
structure is natural for the water tank system.
The feedback control may be particular useful
if there are unmodeled disturbances entering
Tank 2. If y6 is the only disturbance entering
Tank 3 and if an accurate model of that tank is
available, it is sufficient to feedforward only y6.
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Fig. 4. Control of a heat exchanger. Top diagram
shows the original control loop, the middle
shows the process graph, and the bottom
diagram shows the modified control struc-
ture.

There are other cases when it is preferable to
feedforward y3 instead.

5. INDUSTRIAL EXAMPLES

In this section we illustrate the control struc-
ture design on three control problems that are
common in process industry.

Example 2. (Control of heat exchanger). A pro-
cess diagram for the control of a heat exchanger
is shown in the top diagram of Figure 4. The
control objective is to control the temperature
on the secondary side (y1) using the inlet valve
on the primary side (u1). There are often two
additional measurement signals available: the
flow on the primary side (y2) and the flow on the
secondary side (y3). Following the algorithms
in Section 3, it is easy to see that from steps
experiments in u1, y2, and y3, the resulting
process graph is as given by the middle graph
in Figure 4. For example, a change in u1 results
in a response in y2, but not in y3. The process
graph suggests that the flow on the primary side
should be used in feedback (cascade) and the
flow on the secondary side in feedforward. The
configuration is shown in the bottom diagram in
the figure. This is the control configuration often
used in practice for control of a heat exchanger.

Example 3. (Concentration control). A process
diagram for a concentration control loop is
shown in Figure 5. The control objective is to
control the concentration of the blend (y1) using
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Fig. 5. Concentration control. Top diagram
shows the original control loop, the middle
shows the process graph, and the bottom
diagram shows the modified control struc-
ture.

the control valve on one of the two tubes (u1).
There is one additional measurement signal,
the concentration of the media in the other tube
(y2). Process graph identification gives the mid-
dle graph in the figure. A change in u1 will not
result in any response in y2, but a change in y2

will result in a response in y1. The design rules
suggest that y2 should be used in a feedforward
connection, as shown in Figure 5. This is, of
course, the natural configuration for this control
problem.

Example 4. (Drum level control). Level control
of a drum boiler is illustrated by the process
diagram in Figure 6. The control objective is
to control the level in the drum (y1) using the
feed-water valve (u1). There are two additional
measurement signals, the feed-water flow (y2)
and the steam flow from the drum (y3). The
process graph is the same as for the heat ex-
changer problem, as illustrated by the middle
diagram in Figure 6. A change in u1 results
in responses in y1 and y2, but not in y3. This
together with experiments in y2 and y3 (and
possibly in y1) gives the process graph in the
figure. The control structure design rules give
that the feed-water flow y2 should be used in
feedback (cascade) and the steam flow y3 should
be used in feedforward, as given by the bottom
diagram in Figure 6 showing one of the stan-
dard configurations for drum level control.
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Fig. 6. Drum level control. Top diagram shows
the original control loop, the middle shows
the process graph, and the bottom diagram
shows the modified control structure.

6. CONCLUSIONS

A control structure design algorithm was pre-
sented. No prior information about the plant
dynamics was required, but a process graph
model was obtained through a number of simple
step experiments. The process graph illustrated
the causal relations in the process and automat-
ically suggested a control structure. The process
graph might also be a pedagogical instrument to
present control structures for process operators.
In the generic algorithm presented here, exper-
iments are done for all vertices in the graph
except for the controlled process output. The
algorithm can easily be modified in order to
limit the number of performed experiments.

An application of the control structure algo-
rithm is in plant monitoring, where the ideas
developed here can be used to online bring at-
tention to unnecessary deterioration of plant
performance caused by structural problems.
For example, possible reduction of disturbances
through feedforward may be found this way.
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