
Resource-Constrained Multi-Agent Control Systems:
Dynamic Event-triggering, Input Saturation,

and Connectivity Preservation

XINLEI YI

Licentiate Thesis
Stockholm, Sweden 2017

TRITA-EE 2017:151
ISSN 1653-5146
ISBN 978-91-7729-579-2

KTH Royal Institute of Technology
School of Electrical Engineering

Department of Automatic Control
SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillstånd av Kungliga Tekniska högskolan framlägges
till offentlig granskning för avläggande av teknologie licentiatesexamen i elektro- och
systemteknik tisdag den 21 november 2017 klockan 10.00 i sal V3 på plan 5, Teknikringen
72, KTH Campus, Stockholm.

c© Xinlei Yi, November 2017.

Tryck: Universitetsservice US AB

Abstract

A multi-agent system consists of multiple agents cooperating to achieve a common
objective through local interactions. An important problem is how to reduce the amount
of information exchanged, since agents in practice only have limited energy and commu-
nication resources. In this thesis, we propose dynamic event-triggered control strategies
to solve consensus and formation problems for multi-agent systems under such resource
constraints.

In the first part, we propose dynamic event-triggered control strategies to solve the
average consensus problem for first-order continuous-time multi-agent systems. It is
proven that the state of each agent converges exponentially to the average of all agents’
initial states under the proposed triggering laws if and only if the underlying undirected
graph is connected. In the second part, we study the consensus problem with input
saturation over directed graphs. It is shown that the underlying directed graph having
a directed spanning tree is a necessary and sufficient condition for achieving consensus.
Moreover, in order to reduce the overall need of communication and system updates, we
propose an event-triggered control strategy to solve this problem. It is shown that consensus
is achieved, again, if and only if the underlying directed graph has a directed spanning tree.
In the third part, dynamic event-triggered formation control with connectivity preservation
is investigated. Single and double integrator dynamics are considered. All agents are
shown to converge to the formation exponentially with connectivity preservation. The
effectiveness of the theoretical results in the thesis is verified by several numerical
examples.

Sammanfattning

Ett fleragentsystem består av en uppsättning agenter som samarbetar för att uppnå
ett gemensamt mål via lokala interaktioner. Ett viktigt problem är att reducera mängden
information som behöver utbytas, eftersom agenterna vid praktiska tillämpningar har
begränsade energi- och kommunikationsresurser. I den här avhandlingen föreslås dy-
namiska reglerstrategier för att lösa konsensus- och formationsproblem för fleragentsystem
under sådana bivillkor.

I den första delen föreslås dynamiska reglerstrategier för att lösa konsensusproblemet
för första ordningens fleragentsystem i kontinuerlig tid. Vi bevisar att tillståndet hos
varje agent konvergerar exponentiellt mot medelvärdet av alla agenters initialtillstånd
om, och endast om, den underliggande grafen är sammanhängande. I den andra delen
studeras konsensusproblemet med insignalsbegränsningar över riktade grafer. Vi visar att
ett nödvändigt och tillräckligt villkor för att uppnå konsensus är att den underliggande
riktade grafen spänns upp av ett träd. För att reducera behovet av att kommunicera och
överföra systemuppdateringar föreslås en reglerstrategi baserad på händelsestyrd reglering.
Vi bevisar återigen att konsensus uppnås om, och endast om, den underliggande riktade
grafen spänns upp av ett träd. I den tredje delen behandlas dynamisk händelsestyrd
formationsreglering med bivillkor på konnektiviteten mellan agenterna. Enkel- och dubbe-
lintegratordynamik behandlas. Vi bevisar att alla agenter konvergerar till formationen
exponentiellt, och att agenterna förblir sammankoppade. De teoretiska resultaten som
härleds i avhandlingen verifieras med hjälp av numeriska exempel.

Acknowledgments

I would like to express my deepest gratitude to my supervisor Professor Karl Henrik
Johansson for providing me the opportunity to study at KTH and the freedom to explore
any questions that I am interested in. He gives me insightful guidance when I am lost; he
provides me invaluable support when I meet problems; he gives me warm encouragement
when I have achievements no matter how small they are. It is really a great pleasure to
work with him and he is the perfect supervisor in my mind.

I wish to express my sincere gratitude to my co-supervisors Professor John S. Baras
for offering the inspiration and guidance to me, and Professor Dimos V. Dimarogonas for
giving me detailed support in research. I am grateful to my former supervisors Professor
Tianping Chen and Professor Wenlian Lu at Fudan University, for introducing me the
wonders of networked world and giving me constant support. I also would like to thank
Professor Lihua Xie from Nanyang Technological University for being the opponent and
Professor Mikael Johansson for being the advance reviewer.

Heartfelt thanks to my collaborators Kun Liu, Jieqiang Wei, Junfeng Wu and Tao Yang,
for the fruitful discussions with them and their careful attention to our work. Special thanks
to Matin Jafarian, Jieqiang Wei, and Tao Yang for proof reading this thesis, and Robert
Mattila for translating the abstract into swedish.

I would also express my appreciation to all my colleagues (current and former) at the
Automatic Control department for creating a friendly eventment and an active working
atmosphere, and for their continuous support for everything that I needed. Especially,
I thank Antonio Adaldo, José Mairton Barros da Silva Júnior, Dimitris Boskos, Jianqi
Chen, Wei Chen, Rong Du, Mengyuan Fang, Yulong Gao, Meng Guo, Takuya Iwaki,
Xiaolin Jiang, Adam Molin, Nekouei Ehsan, Alexandros Nilou, Vahan Petrosyan, Takashi
Tanaka, Yuchi Wu, Pian Yu, Han Zhang, Silun Zhang, Di Zhao, Zhenhua Zou for
interesting discussions and supportive comments. I also want to thank the administrators
in our department Silvia Cardenas Svensson, Hanna Holmqvist, Anneli Ström, Felicia
Gustafsson, Karin Karlsson Eklund for their assistance and support.

Last, but not least, I would like to thank my family and friends for their unconditional
love and constant support.

Xinlei Yi
Stockholm, August 2017

Contents

Abstract iii

Sammanfattning v

Acknowledgments vii

Contents ix

Notations xi

1 Introduction 1
1.1 Motivating examples . 1
1.2 Resource constraints . 5
1.3 Mathematical modelling . 7
1.4 Problem formulation . 11
1.5 Related work . 13
1.6 Thesis outline and contributions . 16

2 Algebraic graph theory 19
2.1 Directed graphs . 19
2.2 Undirected graphs . 22

3 Dynamic event-triggered control of multi-agent systems 25
3.1 Problem formulation . 26
3.2 Dynamic triggering laws . 27
3.3 Self-triggered algorithm . 36
3.4 Simulations . 41
3.5 Summary . 42

4 Multi-agent systems with input saturation 49
4.1 Problem formulation . 50
4.2 Consensus . 51
4.3 Event-triggered control . 52

ix

x Contents

4.4 Self-triggered algorithm . 53
4.5 Simulations . 55
4.6 Summary . 55
4.7 Appendices . 55

5 Event-triggered formation control with connectivity preservation 71
5.1 Formation control problem . 71
5.2 Single integrators . 72
5.3 Double integrators . 85
5.4 Simulations . 98
5.5 Summary . 102

6 Conclusions and future research 105
6.1 Conclusions . 105
6.2 Future research directions . 107

Bibliography 109

Notations

Graph theory
G undirected graph or directed graph
V vertex set
E edge set; when necessary, also denoted by E(G)
A adjacency matrix
n number of agents
I index set {1, . . . , n}
vi i-th vertex
Ni in-neighbors of agent i in a directed graph or neighbors of agent i in an

undirected graph
L (weighted) Laplacian matrix
B(G) incidence matrix of G
SCC strongly connected component of a directed graph
SCCm m-th strongly connected component of a directed graph
CC connected component of an undirected graph
CCm m-th connected component of an undirected graph

Linear algebra
Rp real Euclidean space of dimension p or the p-dimensional vector space
Rn×m n-by-m real matrix space
‖ · ‖ Euclidean norm for vectors or the induced 2-norm for matrices
1n column one vector of dimension n
In n dimensional identity matrix
ρ(M) spectral radius of matrix M
ρ2(M) minimum positive eigenvalue of matrix M; M has positive eigenvalues
A> transpose of matrix A
rank(A) rank of matrix A
det(M) determinant of square matrix M

xi

xii Notations

M > N M − N is positive definite
M ≥ N M − N is positive semi-definite
A ⊗ B Kronecker product of matrices A and B
Diag(x) diagonal matrix with the vector x on its diagonal
cl(x) l-th component of vector x
x⊥y vector x is orthogonal to y, i.e., x>y = 0
∅ empty set
|S | cardinality of set S

Other
a := b denote b as a
a⇔ b a and b are equivalent
a⇒ b a implies b

Chapter 1

Introduction

A multi-agent system is composed of multiple agents cooperating to achieve a common
objective through local interactions. Interactions are local in the sense that an agent can
only interact with a subset of agents. Multi-agent systems have been extensively studied in
various disciplines over the past decades and they have broad applications in many areas,
for instance, surveillance [1]; monitoring [2]; distributed data mining [3]; learning [4];
software engineering [5]; power grid [6]; transportation [7]; and logistics [8]. A specific
class of applications is the cooperation of a group of manned or unmanned vehicles, such as
satellite formation flying, heavy-duty vehicle platooning, and autonomous surface vehicle
tracking. This kind of applications concerns the problem of vehicle formation control, i.e.,
making the vehicles move to a desired geometric shape. A vehicle can be represented
by an agent and the interactions among vehicles can then be described as the underlying
graph of a multi-agent system. In order to describe these applications more precisely, the
multi-agent system model needs to take into account realistic constraints, such as energy,
communication, sensing, and control constraints. So it is important to mathematically
model resource-constrained multi-agent systems and to properly design their control such
that a common objective is achieved while resource constraints are satisfied.

The rest of this chapter is organized as follows. Section 1.1 shows some applications
that have motivated the work presented in this thesis. Section 1.2 briefly discusses resources
constraints in multi-agent control systems. Section 1.3 mathematically models resource-
constrained multi-agent control systems. Section 1.4 presents the problems studied in the
thesis. Section 1.5 reviews some related literature. Section 1.6 gives the outline of the thesis
and discusses the contributions of the author.

1.1 Motivating examples

In this section, we will briefly introduce multi-agent control systems and present some
motivating examples.

A multi-agent control system consists of n agents and each agent has its own dynamics
and control input. The interactions among agents is described by a directed graph G =

(V,E) with the set of vertices (or nodes) V = {v1, . . . , vn} and the set of edges (links)

1

2 Introduction

v1 v2

v3v4

Figure 1.1: A multi-agent system with four agents.

E ⊆ V ×V. Figure 1.1 shows an example with four agents. Let I = {1, . . . , n} denote the
index set and xi ∈ R

p the state of agent i. The state of an agent might represent physical
variables such as attitude, position, temperature, or voltage. The dynamics of each agent is
modelled as

ẋi = fi(xi, ui), i ∈ I, (1.1)

where fi(·) is a function and ui the control input. The agents are supposed to have a common
objective. In order to achieve it, every agent shares state information with its neighbors and
determines the proper control input

ui = gi(xi, {x j} j∈Ni), i ∈ I, (1.2)

where gi(·) is a control law and Ni = { j ∈ I : (v j, vi) ∈ E} is the neighbors of agent i.
In this following, we will introduce three examples of multi-agent control systems.

Satellite formation flying

Multiple satellites may work together to accomplish the objective of one larger, usually
more expensive, satellite. This is known as satellite formation flying. It reduces cost and
adds flexibility to space programs [9]. More specifically, the benefits of satellite formation
flying include simpler designs, faster build times, cheaper replacement creating higher
redundancy, unprecedented high resolution, and the ability to view research targets from
multiple angles or at multiple times. Figure 1.2 shows the PRISMA formation flying
mission [10]. PRISMA was a Swedish-led technology mission to demonstrate formation
flying and rendezvous technologies. The mission consisted of two spacecraft, one advanced
and highly maneuverable one, called MAIN, and a smaller one without a maneuvering
capability, called TARGET. The latter one simply followed the trajectory into which it was
injected by the launch system. MAIN had full translational capability, and performed a
series of maneuvers around TARGET, on both close and long range approach, using the
different sensors provided [11].

The satellite formation control problem is a resource-constrained two-agent system.
There are several constraints in this system, but here we only discuss two of them.

1.1. Motivating examples 3

Figure 1.2: Artist’s view of the PRISMA formation flying mission [10].

The first one is energy constraints. MAIN has six thrusters arranged to provide torque-
free translational capability in all directions. Thus, the control energy is limited and the
control input of MAIN should be optimized such that the energy consumed to perform the
maneuvers is saved. The second constraint is communication constraint. Although there
are two deployable solar panels to power MAIN and there is one body-mounted solar
panel to power TARGET, the energy, for instance to be used for communication is limited.
Thus, the communication between the ground, MAIN, and TRAGET should be reduced
to save power energy. One way to partially overcome these two constraints is by using
event-triggered control strategies, as discussed in this thesis.

Heavy-duty vehicle platooning

The formation of a group of heavy-duty vehicles at close intervehicular distances, similar
to cyclists in a race, reduces fuel consumption thanks to reduced air resistance. This is a
platoon. A vehicle platoon with three vehicles is shown in Figure 1.3. In [12], the authors
present an architecture for heavy-duty vehicle platooning to improve the efficiency of the
current freight transportation system and experimental results show a significant decrease
in fuel and energy consumption.

Vehicle platooning is a formation control problem with input saturation. The desired
formation is a line graph. The input saturation follows from that the vehicles have
limitations such as maximum acceleration and deceleration. Moreover, continuous com-
munication among vehicles is impossible. One way to model such a system is using event-

4 Introduction

Figure 1.3: A platoon of heavy-duty vehicles. Source: https://www.scania.com.

Figure 1.4: Experiments done in Brunnsviken northwest of KTH campus.

triggered multi-agent systems with input saturation.

Autonomous surface vehicle tracking

Autonomous surface vehicles are robotic vehicles that sit on the sea surface and are
used for target tracking, environmental sampling, hydrographic or oceanographic surveys,
water surface cleaning, etc. One specific example of autonomous surface vehicle tracking
is collaborative tracking of fish [13], see Figure 1.4. The autonomous surface vehicles
measure the location of the underwater target (the fish) by using sonar. The vehicles create
a formation around the target.

Fish tracking is a formation control problem of a resource-constrained multi-agent

1.2. Resource constraints 5

system. There are several constraints in this system. The first one is that each vehicle
is with limited energy since it is battery-powered. Motion and communication consume
energy, so it is important to design a proper control law. The second constraint is that the
transceiver in each vehicle is simple and have limited communication range. However, the
relative distance between any two vehicles may change during operation, in such a way so
that the connectivity of the underlying interaction graph cannot be guaranteed. One way to
handle these constraints is to consider event-triggered formation control with connectivity
preservation using relative positions.

1.2 Resource constraints

A multi-agent control system should be capable of solving missions that are difficult
or impossible for an individual agent. Each agent cooperates with other agents and
coordinates its action according to the information it gathers. The agent should be able
to compute, communicate, sense, and control. Resource constraints are essential for
the control design of multi-agent systems as a constrained system can have completely
different behavior compared to the unconstrained one. In this section, we will summarize
the essential constraints: energy, communication, sensing, and control constraints. For
many multi-agent control systems computation constraints are not critical given the
development of embedded hardware and software, so we will not discuss them further.

1.2.1 Energy constraints

Multi-agent systems are almost always energy constrained, because agents are usually
powered by batteries and battery sizes are limited. For example, for the above autonomous
surface vehicle, the size constraint of the vehicles limits the size of its battery and therefore
the amount of energy available. For most systems, motion and then communication
consume most energy. The motion of an agent is determined by the control input while
the communication among agents is realized by wireless transceivers. Thus control and
communication resources are limited, and their use should be reduced as much as possible.

Figure 1.5 shows the typical power consumption of a wireless sensor, which is
representative for a sensing and communication device on an agent. From this figure, we
see that broadcasting, receiving, and listening consume most energy. Thus, in order to save
energy, the use of broadcasting, receiving, and listening should be avoided as much as
possible. Note that the CPU computations use less energy. Energy used for mobility is of
course not included in the figure.

1.2.2 Communication constraints

Communication has a great impact on the performance of multi-agent control systems.
Individual agents coordinate their actions through message exchanges. One common way
in which agents exchange information with other agents is through a digital communication
network. Specifically, an agent broadcasts its message at a given instant to other agents,
who need to be listening. There are several communication constraints. The first one is that

6 Introduction

Broadcasting Receiving Listening CPU Sensing Sleeping

Figure 1.5: Typical power consumption of a wireless sensor [14].

communication equipments have limitations in terms of range, resolution, accuracy, and
sensitivity. In this thesis, we consider communication range limitations. The upper bound
on the range can often be considered to be fixed, and if the distance between the agents
exceed the bound, information cannot be shared among the agents. Hence, only agents
within a limited range of each other can exchange information directly. However, agents
are often mobile, so the relative distance between any two agents changes over time. Thus,
the interactions among agents change and the connectivity of the underlying graph cannot
be guaranteed in general.

Another constraint is on the communication channel capacity. Communication is done
using radio over a shared channel. The performance of the radio channel is closely related
to quantization errors, time delays, bandwidth constraints, data rate constraints, data packet
dropouts, and noise. Multiple users of the same channel may cause interference. Frequent
use of the communication channel can thus result in time delays or dropouts.

1.2.3 Sensing constraints

Sensing constraints affect the performance of multi-agent control systems. An alterna-
tive of using communication to exchange information is active sensing. For instance,
autonomous surface vehicles can have sensors to measure the relative distances to other
vehicles even if they cannot sense their absolute positions. Sensing can be done by sensors.
Similar to communication constraints, there are sensing constraints: sensing cannot be
done continuously; energy assigned for sensing is limited; every sensor has limitations
in terms of range, resolution, accuracy, sensitivity, etc.

1.3. Mathematical modelling 7

1.2.4 Control constraints

Control and actuator constraints have a vital impact on the closed-loop performance of
multi-agent systems. In additional to energy constraints, there are mainly two other control
constraints. The first one is that actuators cannot be updated continuously. It is sometimes
beneficial for the actuator if the updating frequency is decreased as small as possible. The
other constraint is that, in almost all physical applications, actuators have bounded input
and output. For instance, vehicles have limitations on mobility, i.e., maximal allowable
speed and acceleration. Thus the control input cannot be arbitrary.

1.3 Mathematical modelling

In this section, we will illustrate how to mathematically model multi-agent systems under
above resource constraints.

1.3.1 Multi-agent systems under communication constraints

This thesis focus on a special class of multi-agent control systems (1.1)–(1.2). Consider
the systems given by integral dynamics

ẋi(t) =ui(t), i ∈ I, t ≥ t0, (1.3)

ui(t) = −
∑
j∈I

Li jx j(t), (1.4)

where t0 is a common initial time and Li j is the element of the Laplacian matrix of the
underlying graph G. Such a system with two agents is illustrated by Figure 1.6. Each agent
has a sensor component to measure and broadcast its state information, and to listen to
and receive its neighbor’s state information. Each agent also has a control component to
generate the control input based on the information it receives from the sensor.

To implement the control (1.4), continuous-time state information from neighbors is
needed. In other words, each agent i has to continuously broadcast its own state xi(t), and
continuously listen to and receive its neighbors’ states x j(t), j ∈ Ni. Moreover, each agent i
has to continuously update its control input ui(t) =

∑
j∈I Li jx j(t). It is impractical to require

continuous communication and updating of control input in most real applications.
Reducing the frequency of information exchange among agents is essential to avoid

continuous communication and control. In order to realize this, we introduce a model
where each agent i ∈ I prefers to only broadcast its state at discrete time instants
{ti

1, t
i
2, . . . }. In this case, the state information received by agent i is {x j(t

j
k), j ∈ Ni}

∞
k=1.

In other words, at any time instant t, agent i knows x j(t
j
k j(t)

), j ∈ Ni, where t j
k j(t)

=

max{t j
k : t j

k ≤ t} is the latest broadcasting time of agent j. Then, the control input is

ui(t) = −
∑
j∈I

Li jx j(t
j
k j(t)

). (1.5)

8 Introduction

Agent 𝑖𝑖

 𝑥𝑥𝑗𝑗(𝑡𝑡)

 𝑥𝑥𝑖𝑖(𝑡𝑡)
 Channel

Control

Sensor Sensor

Control

Agent 𝑗𝑗

 𝑥𝑥𝑖𝑖(𝑡𝑡)

 𝑥𝑥𝑖𝑖(𝑡𝑡)

 𝑥𝑥𝑗𝑗(𝑡𝑡)

 𝑥𝑥𝑗𝑗(𝑡𝑡)
 𝑥𝑥𝑖𝑖(𝑡𝑡)

 𝑥𝑥𝑗𝑗(𝑡𝑡)

Figure 1.6: Illustration of how agents communicate when the control input has the form
(1.4).

Agent 𝑖𝑖

 𝑥𝑥�𝑗𝑗(𝑡𝑡)

 𝑥𝑥�𝑖𝑖(𝑡𝑡)
 Channel

Control

Sensor Sensor

Control

Agent 𝑗𝑗

 𝑥𝑥�𝑖𝑖(𝑡𝑡)

 𝑥𝑥�𝑖𝑖(𝑡𝑡)

 𝑥𝑥�𝑗𝑗(𝑡𝑡)

 𝑥𝑥�𝑗𝑗(𝑡𝑡)
 𝑥𝑥�𝑖𝑖(𝑡𝑡)

 𝑥𝑥�𝑗𝑗(𝑡𝑡)

Figure 1.7: Illustration of how agents communicate when the control input has the form
(1.5).

For simplicity, let x̂i(t) = xi(ti
ki(t)

). Figure 1.7 shows that agent i broadcasts its state

xi(ti
k) at time instants {ti

k}
∞
k=1 and receives its neighbors’ states {x j(t

j
k), j ∈ Ni} at time

instants {t j
k, j ∈ Ni}

∞
k=1. By comparing Figures 1.6 and 1.7, we note that in the later every

agent does not need to continuously broadcast or receive state information. An essential
question is now how to determine the communication instances {ti

k, i ∈ I}∞k=1 such that
desired properties are maintained. In the literature, researchers often consider three kinds of
approaches: time-triggered, event-triggered, and self-triggered communication. We discuss
each one of them next.

Time-triggered communication

The traditional way for agents to share information is to communicate equidistantly
(periodically), i.e.,

ti
1 = t0, ti

k+1 = ti
k + T, i ∈ I,

where T > 0 is the sampling period. This is called time-triggered approach or periodic
sampling. Note that the triggering sequence is equal for each agent. A nice feature of this
approach is that analysis and design becomes rather straightforward and the vast literature
on sample-data control can be used [15]. Drawbacks are that agents need to take action in

1.3. Mathematical modelling 9

a synchronous manner (which is often hard to implement) and it is not energy-efficient to
communicate even if the state has not changed at all, for instance.

Event-triggered communication

To make the sampling period T adaptive, we can let communication occur only when a
predefined condition is satisfied. This is called event-triggered. Triggering times {ti

1, t
i
2, . . . }

is in this case different for different agents. We call {ti
k+1 − ti

k}
∞
k=1 the inter-event times of

agent i. The advantages of event-triggered approaches are that they can be implemented in
a distributed way and can even give better performance than periodic sampling. However,
the design and analysis is less developed.

One common form of event-triggered communication is to use a triggering law defined
by

ti
1 = t0, ti

k+1 = min
{
t : Fi

(
xi(t), x̂i(t),

{
x j(t), x̂ j(t)

}
j∈Ni

)
≥ 0, t ≥ ti

k

}
, i ∈ I, (1.6)

where Fi(·) is a function to be designed. We call (1.6) a static triggering law since it does
not involve any extra dynamic variables. There are two well known ways to define the
function Fi(·). The first one was introduced in [16]:

Fi(·) = (x̂i(t) − xi(t))2 −
σia(1 − a|Ni|)

|Ni|

(n∑
j=1

(x j(t) − xi(t))
)2
, (1.7)

and the second one in [17]:

Fi(·) = (x̂i(t) − xi(t))2 −
σia(1 − a|Ni|)

|Ni|

(n∑
j=1

(x̂ j(t) − x̂i(t))
)2
, (1.8)

where 0 < σi < 1 and 0 < a < 1
|Ni |

are design parameters. It is straightforward to see
that the function Fi(·) in (1.7) or (1.8) does not involve any extra dynamic variables but the
agent state variables xi(t), x̂i(t) and x j(t), j ∈ Ni.

Another common form of event-triggered communication is

ti
1 = t0, ti

k+1 = min
{
t : Fi

(
xi(t), x̂i(t),

{
x j(t), x̂ j(t)

}
j∈Ni

)
≥ ηi(t), t ≥ ti

k

}
, i ∈ I, (1.9)

where ηi(t) is an internal dynamic variable to be defined. We call (1.9) a dynamic triggering
law since it involves an extra dynamic variable. One well known dynamic triggering law
introduced in [18] is

ti
1 = t0, ti

k+1 = min
{
t : |x̂i(t) − xi(t)| ≥ c0 + c1e−αt, t ≥ ti

k

}
, i ∈ I, (1.10)

where constants c0 ≥ 0, c1 ≥ 0, c0 +c1 > 0, and 0 < α < ρ2(L). Here ρ2(L) is the minimum
positive eigenvalue of the Laplacian matrix L of the undirected underlying graph G.

A key challenge in event-triggered multi-agent control systems is to exclude Zeno
behavior when designing the triggering laws. Zeno is the behavior that there are infinite
number of triggers in a finite time interval [19], i.e., that for some i

lim
k→+∞

ti
k < ∞. (1.11)

10 Introduction

Self-triggered communication

For event-triggered communication, each agent needs to continuously monitor the trig-
gering laws. However, an agent i could instead at its current triggering time ti

k predict
its next triggering time ti

k+1 and broadcast it to its neighbors. In this case, agent i only
needs to listen and receive information at {t j

k}
∞
k=1, j ∈ Ni since it knows when these time

instances will happen in advance. Each agent broadcasts at its own triggering times, and
listen to incoming information from its neighbors at their triggering times. This is called
self-triggered. It should be highlighted that it is at the current triggering time instant that
next triggering time is determined.

One common form of self-triggered communication is to use a triggering law defined
by

ti
1 = t0, ti

k+1 = min
{
t : Gi

(
t, xi(ti

k), ti
k,

{
t j
k j(ti

k)
, t j

k j(ti
k)+1

, x j(t
j
k j(ti

k)
)
}

j∈Ni

)
= 0, t ≥ ti

k

}
, i ∈ I,

(1.12)

where Gi(·) is a function to be designed. It can often be chosen related to the function Fi(·)
in the event-triggered communication.

1.3.2 Multi-agent systems under sensing constraints

When computing control input (1.4) or (1.5), absolute state information seems to be
needed. In some real applications, accurate absolute state information is not available, but
relative state information is . We modify the control input (1.4) and (1.5) as

ui(t) = −
∑
j∈I

Li j(x j(t) − xi(t)), (1.13)

and

ui(t) = −
∑
j∈I

Li j(x j(ti
k) − xi(ti

k)), t ∈ [ti
k, t

i
k+1), (1.14)

respectively. Figure 1.8 (a) shows that each agent continuously sense the relative state
information between itself and its neighbors and use such information to generate its
control input; Figure 1.8 (b) shows a similar process except that each agent only senses
the relative state information at discrete time instants {ti

1, t
i
2, . . . }.

Now, let us compare (1.4) and (1.13). From the property of Laplacian matrices, we
know that

∑
j∈I Li j = 0. Thus −

∑
j∈I Li jx j(t) = −

∑
j∈I Li j(x j(t) − xi(t)). This is to say that

the control input (1.4) is same as the control input (1.13). The only difference between (1.4)
and (1.13) is that the former seems to use absolute information and the later uses relative
information.

Similarly, let us compare (1.5) and (1.14). The control input (1.14) is constant during
each interval [ti

k, t
i
k+1). In other words, the control input (1.14) of each agent is not affected

by its neighbors during [ti
k, t

i
k+1). On the contrary, the control input (1.5) is not necessarily

1.4. Problem formulation 11

Agent 𝑖𝑖

Control

Sensor
 𝑥𝑥𝑗𝑗(𝑡𝑡)-𝑥𝑥𝑖𝑖(𝑡𝑡)

 𝑥𝑥𝑗𝑗(𝑡𝑡)-𝑥𝑥𝑖𝑖(𝑡𝑡)

(a)

Agent 𝑖𝑖

Control

Sensor
 𝑥𝑥𝑗𝑗�𝑡𝑡𝑘𝑘𝑖𝑖 �-𝑥𝑥𝑖𝑖�𝑡𝑡𝑘𝑘𝑖𝑖 �

 𝑥𝑥𝑗𝑗�𝑡𝑡𝑘𝑘𝑖𝑖 �-𝑥𝑥𝑖𝑖�𝑡𝑡𝑘𝑘𝑖𝑖 �

(b)

Figure 1.8: Illustration of how one agent gather information. (a) The case that the control
input has the form (1.13). (b) The case that the control input has the form (1.14).

a constant during [ti
k, t

i
k+1) since x j(t

j
k j(t)

) normally is not a constant for all t ∈ [ti
k, t

i
k+1).

In other words, the control input (1.5) of each agent is affected by its neighbors during
each interval [ti

k, t
i
k+1). Another difference between (1.14) and (1.5) is that the (weighted)

summation of the control input (1.5) is zero, which does not present in (1.14).

1.3.3 Multi-agent systems under control constraints

The considered control constraints correspond to the following multi-agent system with
input saturation

ẋi(t) = sath(ui(t)), i ∈ I, t ≥ t0, (1.15)

where sath(·) is the saturation function defined (with slight abuse of notation) as

sath(s) = [sath(s1), . . . , sath(sp)]>, (1.16)

where s = [s1, . . . , sp]> ∈ Rp with p > 0 and

sath(si) =

h, if si ≥ h
si, if |si| < h
−h, if si ≤ −h,

with h a positive constant referred to as the saturation level. A multi-agent system described
by (1.15) and (1.4) is illustrated in Figure 1.9.

1.4 Problem formulation

In this thesis, we solve consensus and formation problems for resource-constrained multi-
agent control systems using dynamic event-triggered control strategies. Each problem is
specified below

12 Introduction

Agent 𝑖𝑖

 𝑥𝑥𝑗𝑗(𝑡𝑡)

 𝑥𝑥𝑖𝑖(𝑡𝑡)
 Channel

Control

Sensor Sensor

Control

Agent 𝑗𝑗

 𝑥𝑥𝑖𝑖(𝑡𝑡)

 𝑥𝑥𝑖𝑖(𝑡𝑡)

 𝑥𝑥𝑗𝑗(𝑡𝑡)

 𝑥𝑥𝑗𝑗(𝑡𝑡)
 𝑥𝑥𝑖𝑖(𝑡𝑡)

 𝑥𝑥𝑗𝑗(𝑡𝑡)

𝑢𝑢𝑖𝑖(𝑡𝑡)

𝑢𝑢𝑗𝑗(𝑡𝑡)

Figure 1.9: Illustration of how one agent communicates with another agent when the
control input has the form (1.4). And the control signal is saturated before it is transmitted
to the actuator.

Dynamic event-triggered control of multi-agent systems

We first consider multi-agent system (1.3) with event-triggered control input (1.5) over
undirected graphs. The problem to solve is to (distributively) determine the triggering
times such that average consensus is reached, while continuous exchange of information,
continuous update of actuators, and Zeno behavior are avoided.

Multi-agent systems with input saturations

The second problem to study is on the multi-agent system with input saturation (1.15) over
directed graphs. Here we consider the problem to find sufficient and necessary connectivity
conditions to guarantee that consensus is reached. Again, under the assumption that there
are no continuous communication or system updates.

Event-triggered formation control connectivity preservation

The third problem to investigate is on both first-order multi-agent system (1.3) and second-
order ẋi(t) = ri(t),

ṙi(t) = ui(t), i ∈ I, t ≥ t0.

We assume all agents have the communication radius ∆ > 0. The problem to solve is to
propose distributed event-triggered control together with triggering laws such that a desired
formation is achieved while connectivity is preserved.

1.5. Related work 13

Table 1.1: Formation control principles [20].

Position-based Displacement-based Distance-based

Sensors Positions Relative positions Relative positions

Controls Positions Relative positions Inter-agent
distances

Coordinates Global coordinate
system

Orientation aligned lo-
cal coordinate systems

Local coordinate
systems

Interactions Usually not
required

Existence of a spanning
tree

Rigidity or persis-
tence

1.5 Related work

In this section, we review the literature about formation control, consensus control,
connectivity preservation, saturation constraints, and event- and self-triggered control of
multi-agent systems.

1.5.1 Formation control

Generally speaking, formation control for a multi-agent system is about making the agents
move to a desired geometric shape. In the survey paper [20], the authors categorize the
existing results on formation control into position-, displacement-, and distance-based
control according to types of sensed and controlled variables. In position-based control,
agents sense their own positions with respect to a global coordinate system. They actively
control their own positions to achieve the desired formation, which is prescribed by
desired positions with respect to the global coordinate system. This kind of work is
found in [21–24]. In displacement-based control, agents actively control displacements
of their neighboring agents to achieve the desired formation, which is specified by the
desired displacements with respect to a global coordinate system under the assumption
that each agent is able to sense relative positions to its neighboring agents with respect
to the global coordinate system. This implies that the agents need to know the orientation
of the global coordinate system. However, the agents require neither knowledge on the
global coordinate system itself nor their positions with respect to the coordinate system.
This kind of work is found in [25–29]. In distance-based control, inter-agent distances are
actively controlled to achieve the desired formation, which is given by the desired inter-
agent distances. Individual agents are assumed to be able to sense relative positions to their
neighboring agents with respect to their own local coordinate systems. The orientations of
local coordinate systems are not necessarily aligned with each other. This kind of work is
found in [30–33].

In [20], the authors summarize these formation control principles as in Table 1.1.

14 Introduction

1.5.2 Consensus

The consensus problem has a long history in computer science, particular in distributed
computing [34]. For multi-agent control systems, consensus means that the group of agents
reach an agreement upon a certain quantity of interest that may depend on the initial states
of all agents. In the study of complex networks, the synchronization has sometime a similar
meaning as consensus.

There is a huge amount of research work on consensus or synchronization in the
past decades. Here we only recall some of them. In [35–39], the authors introduce a
theoretical framework for analysis of consensus for first-order linear multi-agent systems
with an emphasis on the role of directed information flow, robustness to changes in
network topology due to link/node failures, time-delays, and performance guarantees.
One fundamental result is that the performance of the consensus protocol is determined
by the algebraic connectivity. Consensus is achieved if and only if the underlying
fixed undirected graph is connected or directed graph has a directed spanning tree
[35–37]. In [40], the authors study general linear multi-agent systems with directed
communication graphs. Similar work can be found in earlier papers [41, 42], in which the
authors present a framework for analyzing synchronization of linearly coupled ordinary
differential equations. In [43], the authors use a high-gain methodology to construct linear
decentralized consensus controllers for general linear multi-agent systems with time-
invariant and time-varying topologies. In [44], the authors consider consensus for first-
order multi-agent systems with stochastically switching topologies modeled as a stochastic
process. In [45], the authors study asynchronous consensus problems for continuous-time
multi-agent systems with discontinuous information transmission. In [46], the authors
investigate the joint effect of agent dynamics, network topologies and communication data
rate on the consensus problem. In [47], the authors consider nonlinear consensus protocols.

1.5.3 Connectivity preservation

In the study of distributed coordination, such as consensus and formation control, one
vital assumption is that the associated communication graph is connected or has a directed
spanning tree, at least in some average sense. However, in realistic applications, it is
difficult to guarantee this assumption. For example, in mobile robot networks with limited
communication range, connectivity of the initial deployment of the robots do not guarantee
connectivity in the future.

Motivated by this, many researchers have studied connectivity preservation for multi-
agent systems. In particular, the control should ensure that the associated communication
graph remains connected during the evolution of the system. For instance, in [48],
the authors present a geometric analysis of wireless connectivity in vehicle networks.
In [49], the authors present a decentralized control strategy that drives a system of
multiple nonholonomic kinematic unicycles to agreement and maintains at the same time
the connectivity properties of the initially formed communication graph. In [25], the
authors design nonlinear control input based on an edge-tension function to solve the
formation control problem while ensuring connectedness. In [50], the authors propose

1.5. Related work 15

a centralized feedback control framework based on artificial potential fields to maintain
graph connectivity. In [51], the authors introduce a general class of distributed potential
functions guaranteeing connectivity for single-integrator agents. In [52], based on the
navigation function formalism, the authors develop a decentralized controller to enable a
group of agents to achieve a desired global configuration while maintaining global network
connectivity. In [53], the authors provide a decentralized robust control approach, which
guarantees that connectivity is maintained when certain bounded input terms are added to
the control law.

1.5.4 Saturation constraints

Physical systems are subject to saturation constraints, for examples vehicles have limi-
tations on maximal allowable speed and acceleration. A common saturation constraint is
on the actuator, i.e., input saturation. Another example saturation is due to limited sensor
capacity. Saturations lead to nonlinearities in the closed-loop dynamics. Thus the behavior
of each agent is affected and special attention needs to be taken in order to understand
the influence on the system . For example, [54] studies global consensus for discrete-time
multi-agent systems with input saturation constraints; [55] considers a leader-following
consensus problem for continuous-time multi-agent systems subject to input saturations;
both [56] and [57] investigate necessary and sufficient initial conditions for achieving
consensus in the presence of output (sensor) saturations; [58] shows that the distributed
consensus protocol asymptotically leads to consensus, for multi-agent systems with input
saturations and directed topologies and [59] achieves the same result under a more general
problem settings.

1.5.5 Event-triggered control of multi-agent systems

Continuous communication cannot usually be implemented in multi-agent systems, since
the interactions among agents are typically realized over a digital communication channel
with limited capacity. Moreover, in order to simplify and reduce communication, the
information exchange should be kept as small as possible. In order to realize this, event-
triggered control is introduced in [60–63]. Instead of using the continuous state, the
event-triggered control is piecewise constant between any two consecutive triggering
times. Many researchers study event-triggered control for multi-agent systems recently
[16–18, 64–75]

1.5.6 Self-triggered control of multi-agent systems

To overcome some drawbacks of event-triggered control, for example, continuous moni-
toring of the triggering laws, self-triggered are proposed for single-agent systems [76–78].
Many researchers investigate self-triggered control for multi-agent systems [16, 65, 66, 70,
72,73]. For self-triggered single-agent systems the next triggering time is determined at the
previous triggering instance. However, self-triggered approaches for multi-agent systems
mentioned above are not in accordance with this. Although continuous broadcasting,

16 Introduction

receiving, and sensing are avoided, continuous listening is still needed since the triggering
times are determined during runtime and not known in advance. To overcome this
disadvantage, some researchers introduce local clock variables to design the self-triggered
policy [79], others combine event-triggered control with periodic sampling [80–83], and
some present cloud-supported control algorithm [84–86].

1.6 Thesis outline and contributions

The rest of the thesis is organized as follows.

Chapter 2: Algebraic graph theory

In Chapter 2, we review the key definitions and results from algebraic graph theory that
will be used in this thesis.

Chapter 3: Dynamic event-triggered control of multi-agent systems

In Chapter 3, we propose dynamic event-triggered approaches to solve the average con-
sensus problem for first-order continuous-time multi-agent systems over undirected graphs.
More specifically, two distributed dynamic triggering laws and one self-triggered algorithm
are proposed to determine the triggering times. Compared with existing triggering laws, the
proposed triggering laws involve internal dynamic variables which play an essential role
to guarantee that the triggering time sequence does not exhibit Zeno behavior. Moreover,
our dynamic triggering laws include some existing triggering laws as special cases. More
importantly, continuous listening is avoided in our proposed self-triggered algorithm.
The main idea is that each agent predicts its next triggering time and broadcasts it to
its neighbors at the current triggering time. Thus each agent only needs to sense and
broadcast at its triggering times, and to listen to and receive incoming information from
its neighbors at their triggering times. It is proven that the proposed laws make the state of
each agent converge exponentially to the average of the agents’ initial states if and only if
the underlying graph is connected.

The covered material is based on the following contributions.

• X. Yi, K. Liu, D. V. Dimarogonas and K. H. Johansson, “Distributed dynamic event-
triggered control for multi-agent systems,” in IEEE Conference on Decision and
Control, 2017.

• X. Yi, K. Liu, D. V. Dimarogonas and K. H. Johansson, “Dynamic event-triggered
and self-triggered control for multi-agent systems,” in Preparation.

Chapter 4: Multi-agent systems with input saturation

In Chapter 4, we consider the consensus problem for multi-agent systems with input
saturation over directed graphs. It is shown that the underlying directed graph having
a directed spanning tree is a necessary and sufficient condition for consensus; thus,

1.6. Thesis outline and contributions 17

this condition for consensus without input saturation extends to the case with saturation
constraints. Moreover, in order to reduce the overall need of communication and system
updates, we then consider event-triggered control and propose a dynamic triggering law.
Furthermore, in order to avoid continuous listening, we also propose a self-triggered
algorithm. It is shown that Zeno behavior is excluded for these systems and that consensus
is achieved, again, if and only if the underlying directed graph has a directed spanning tree.

The covered material is based on the following contribution.

• X. Yi, T. Yang, J. Wu, and K. H. Johansson, “Distributed event-triggered control
for global consensus of multi-agent systems with input saturation,” Submitted to
Automatica.

Chapter 5: Event-triggered formation control with connectivity preservation

In Chapter 5, event-triggered and self-triggered control algorithms are proposed to
establish pre-specified formations under connectivity preservation. Each agent only needs
to update its control input by sensing the relative state to its neighbors and to broadcast
its triggering information at its own triggering times. The agents listen to and receive
neighbors’ triggering information at their triggering times. Two types of system dynamics,
single integrators and double integrators, are considered. It is shown that all agents
converge to the pre-specified formation exponentially with connectivity preservation and
exclusion of Zeno behavior.

The covered material is based on the following contributions.

• X. Yi, J. Wei, D. V. Dimarogonas, and K. H. Johansson, “Formation control for
multi-agent systems with connectivity preservation and event-triggered controllers,”
in IFAC World Congress, 2017.

• X. Yi, J. Wei, D. V. Dimarogonas, and K. H. Johansson, “Event-triggered formation
control of multi-agent systems with connectivity preservation,” in Preparation.

Chapter 6: Conclusions and future research

In Chapter 6, we present a summary of the results, and discuss directions for future
research.

Contributions not covered in the thesis

The following publications by the author are not covered in the thesis, but contain related
material:

• X. Yi, T. Yang, J. Wu, and K. H. Johansson, “Event-triggered control for multi-agent
systems with output saturation,” in Chinese Control Conference, 2017.

• J. Wei, X. Yi, H. Sandberg, and K. H. Johansson, “Nonlinear consensus protocols
with applications to quantized systems,” in IFAC World Congress, 2017.

18 Introduction

• J. Wei, X. Yi, H. Sandberg, and K. H. Johansson, “Nonlinear consensus protocols
with applications to quantized communication and actuation,” Submitted to IEEE
Transactions on Control of Network Systems.

• X. Yi, J. Wei, and K. H. Johansson, “Self-triggered control for multi-agent systems
with quantized communication or sensing,” in IEEE Conference on Decision and
Control, 2016.

Contribution by the Author

The order of authors reflects their contribution to each paper. The first author has the most
important contribution. In all the listed publications, all the authors were actively involved
in formulating the problems, developing the solutions, evaluating the results, and writing
the paper.

Chapter 2

Algebraic graph theory

In this chapter, the key definitions and results from algebraic graph theory are reviewed.
See [87] for more detailed definitions.

2.1 Directed graphs

Let G = (V,E, A) denote a weighted directed graph (digraph) associated with a multi-
agent system, where the set of vertices (or nodes)V = {v1, . . . , vn}, the set of edges1 (links)
E ⊆ V × V, and the weighted adjacency matrix A = (ai j) with nonnegative elements ai j.
An edge of G is denoted by (vi, v j) ∈ E if there is a directed link from agent i to agent j
with weight a ji > 0, i.e., agent i can send information to agent j. The adjacency elements
associated with the edges of the graph are positive, i.e., (vi, v j) ∈ E if and only if a ji > 0. It

is assumed that aii = 0, ∀i ∈ I. The in-degree of agent i is defined as degin
i =

n∑
j=1

ai j. The

degree matrix of G is defined as Deg = Diag([degin
1 , . . . , degin

n]). The (weighted) Laplacian
matrix associated with G is defined as L = Deg − A. Let Ni = { j ∈ I | ai j > 0} denotes
the in-neighbors of agent i. A directed path from vi to v j is a directed subgraph of G with
distinct vertices vi, vi1 , . . . , vik , v j and edges (vi, vi1), (vi1 , vi2), . . . , (vik−1 , vik), (vik , v j).

Definition 2.1. A digraph G is strongly connected if for any two distinct vertices vi and v j,
there exits a directed path from vi to v j.

G is strongly connected is equivalent to L is irreducible. Strong connectivity requires
that any vertex is accessible to all other vertices, while the following weaker connectivity
condition only requires that one vertex can access all other vertices.

Definition 2.2. A digraph G has a directed spanning tree if there exists one vertex such
that there exits a directed path from this vertex to any other vertex.

By Perron-Frobenius Theorem [88], we have the following result (see [42] or [89] for
a proof).

1We sometimes use E(G) to highlight that this is the edge set of G.

19

20 Algebraic graph theory

Lemma 2.1. If L is the Laplacian matrix associated with a digraph G that has a directed
spanning tree, then rank(L) = n − 1, and zero is an algebraically simple eigenvalue of L,
and there is a nonnegative vector ξ = [ξ1, . . . , ξn]> such that ξ>L = 0 and

∑n
i=1 ξi = 1.

Moreover, if G is strongly connected, then ξi > 0, ∀i ∈ I.

The following result from [72] is also useful for our analysis.

Lemma 2.2. Suppose that L is the Laplacian matrix associated with a digraph G that is
strongly connected and ξ is the vector defined in Lemma 2.1. Let Ξ = Diag(ξ), U = Ξ−ξξ>,
and R = 1

2 (ΞL + L>Ξ). Then R = 1
2 (UL + L>U) and

U ≥
ρ2(U)
ρ(L>L)

L>L ≥ 0 and R ≥
ρ2(R)
ρ(U)

U ≥ 0. (2.1)

By proper row and column permutations, any Laplacian matrix L can be written in
Perron-Frobenius form (see Definition 2.3 in [90]):

L =

L1,1 L1,2 · · · L1,M

0 L2,2 · · · L2,M

...
...

. . .
...

0 0 · · · LM,M

, (2.2)

where Lm,m is a nm-by-nm matrix and is associated with the m-th strongly connected
component (SCC) of G, denoted by SCCm, m = 1, . . . ,M. Hence, a digraph G is strongly
connected if and only if M = 1. In the following, without loss of generality, we assume
that L has the form (2.2).

SCCm is called closed if and only if there are no edges from vertices outside SCCm to
vertices inside SCCm, i.e., Lm,q = 0, ∀q > m. The following result, which follows from
Lemma 1 in [91], gives an equivalent description of a digraph that has a directed spanning
tree.

Lemma 2.3. The digraph G contains a directed spanning tree if and only if for each
m = 1, . . . ,M − 1, SCCm is not closed.

Let us illustrate this construction with an example.

Example 2.1. Figure 2.1 shows a digraph of 7 vertices having multiple directed spanning
trees. For example, one of the directed spanning tree is described by edges (v7, v5), (v5, v6), (v6, v3), (v3, v4), (v4, v2), (v2, v1).
The graph can be divided into two strongly connected components, as indicated in the

2.1. Directed graphs 21

v1 v2

v3v4

v5

v6

v7

3.2

1.5

4.1

4.9

2.6
2.7

4.4

5.8

6.3

5.3

1.6 5.4

2.6

8.7

SCC1

SCC2

Figure 2.1: An example of a digraph which contains directed spanning trees. The subgraph
in the dashed lines is the first strongly connected component, and the subgraph in the dotted
lines is the second strongly connected component

figure. The corresponding Laplacian matrix

L =

12.2 −3.2 0 −4.1 −4.9 0 0
−1.5 9.5 0 −2.6 0 0 −5.4

0 −2.7 10.1 −5.8 0 −1.6 0
0 0 −4.4 10.7 −6.3 0 0
0 0 0 0 2.6 0 −2.6
0 0 0 0 −5.3 5.3 0
0 0 0 0 −8.7 −7 15.7

,

has the form (2.2).

For SCCm with m < M, define an auxiliary matrix L̃m,m = [L̃m,m
i j]nm

i, j=1 as

L̃m,m
i j =

Lm,m
i j i , j,
−

∑nm
r=1,r,i Lm,m

ir i = j.

22 Algebraic graph theory

Example 2.2. In Example 2.1,

L̃1,1 =

7.3 −3.2 0 −4.1
−1.5 4.1 0 −2.6

0 −2.7 8.5 −5.8
0 0 −4.4 4.4

 .
Similar to Lemma 2.2, we have the following lemma.

Lemma 2.4. Let ξm = [ξm
1 , . . . , ξ

m
nm

]> be the positive left eigenvector of the irreducible
L̃m,m corresponding to the eigenvalue zero and the sum of its components is 1. Denote
Ξm = Diag(ξm), Qm = 1

2 [ΞmLm,m + (ΞmLm,m)>], m = 1, . . . ,M, and UM = ΞM − ξM(ξM)>.
Then

Qm > 0, m = 1, . . . ,M − 1, QM ≥ 0, UM ≥ 0, and QM ≥
ρ2(QM)
ρ(UM)

UM . (2.3)

Proof. For the proof of Qm > 0 for all m < M, see Lemma 3.1 in [92].
QM ≥ 0 is straightforward since we can regard QM as the Laplacian matrix of a connected
undirected graph.
UM ≥ 0 is also straightforward since we can regard UM as the Laplacian matrix of a
complete graph.
The idea of the proof of QM ≥

ρ2(QM)
ρ(UM) UM follows a similar trend as the proof of (2.1), and

it can be found in [72]. We thus omit the proof here. �

Let ne denotes the number of edges in G, i.e., ne = |E(G)| and label the edges in G
as e1, . . . , ene . Define W = Diag([ω(e1), · · · , ω(ene)]), where ω(ek) = ai j with ek being the
label of edge (vi, v j).

Definition 2.3. The n-by-ne incidence matrix B(G) = (Bi j) is defined as

Bi j =

−1 if vertex vi is the tail of edge e j,

1 if vertex vi is the head of edge e j,

0 otherwise.

2.2 Undirected graphs

A digraph G = (V,E, A) is undirected if A = A>. In an undirected graph, a path of length k
between vertex vi and vertex v j is a subgraph with distinct vertices vi0 = vi, . . . , vik = v j ∈ V

and edges (vi j , vi j+1) ∈ E, j = 0, . . . , k − 1.

Definition 2.4. An undirected graph is connected if there exists at least one path between
any two vertices. And an undirected graph is complete if any two distinct vertices are
connected by an edge.

2.2. Undirected graphs 23

Similar to the definition of SCC in digraphs, by proper row and column permutations,
we can rewrite any Laplacian matrix L associated with undirected graphs in the following
form

L =

L1,1 0 · · · 0
0 L2,2 · · · 0
...

...
. . .

...

0 0 · · · LM,M

, (2.4)

where Lm,m is a nm-by-nm matrix and is associated with the m-th connected component
(CC) of G, denoted by CCm, m = 1, . . . ,M. Hence, a disconnected graph has more than
one CC and Lm,m is the Laplacian matrix of CCm.

Obviously, there is a one-to-one correspondence between a graph and its adjacency
matrix or its Laplacian matrix. If we let Kn = In −

1
n 1n1>n , then we can treat Kn as the

Laplacian matrix of a complete graph with n vertices and edge weight 1
n .

For a connected graph we have the following well known results.

Lemma 2.5. ([93]) If an undirected graph G is connected, then its Laplacian matrix L
is positive semi-definite, i.e., z>Lz ≥ 0 for any z ∈ Rn. Moreover, z>Lz = 0 if and only if
z = a1n for some a ∈ R.

For undirected graphs, the incidence matrix can be defined after arbitrarily assigning a
direction to each edge. The following results are also useful for our analysis.

Lemma 2.6. ([87]) For any undirected graph G, B(G)B(G)> is independent of the labels
and orientations given to G, and B(G)WB(G)> = L.

Example 2.3. Figure 2.2 (a) shows an undirected graph G and Figure 2.2 (b) shows an
example of assigning a direction to each edge of G. Then

L =

3.4 −3.4 0 0
−3.4 9.8 −2.1 −4.3

0 −2.1 3.2 −1.1
0 −4.3 −1.1 5.4

 , B(G) =

−1 0 0 0 1

1 −1 −1 0 0
0 1 0 −1 0
0 0 1 1 −1

 ,

W =

3.4 0 0 0 0
0 2.1 0 0 0
0 0 1.1 0 0
0 0 0 1 0
0 0 0 0 4.3

.

And one can easily verify that B(G)WB(G)> = L.

24 Algebraic graph theory

v1 v2

v3v4

3.4

2.11.1

1

4.3

(a)

v1 v2

v3v4

e1

e2e3

e4

e5

(b)

Figure 2.2: (a) An example of an undirected graph G. (b) An example of assigning a
direction to each edge of G.

Lemma 2.7. Assume G is undirected and connected, then KnL = L, ρ2(B(G)B(G)>) > 0,
ρ(Kn) = 1 and

0 ≤ ρ2(B(G)B(G)>)Kn ≤ B(G)B(G)>, 0 ≤ ρ2(L)Kn ≤ L. (2.5)

Proof. KnL = L is straightforward. ρ2(B(G)B(G)>) > 0 is also straightforward since G is
connected.
From Geršgorin Disc Theorem [88], we know that ρ(Kn) ≤ 1. From det(Kn − In) = 0, we
know that 1 is an eigenvalue of Kn. Thus ρ(Kn) = 1.
The proof of the rest results is similar to the proof of Lemma 2.4. We thus omit the proof
here. �

Chapter 3

Dynamic event-triggered control of
multi-agent systems

In this chapter, we consider the average consensus problem for the first-order continuous-
time multi-agent systems over undirected graphs. In order to avoid continuous communica-
tion between agents and system updates, we use event-triggered control input. We propose
two distributed dynamic triggering laws and one self-triggered algorithm to design the
triggering times. The idea behind these approaches will also play an important role in the
following chapters.

In [94], by introducing an internal dynamic variable, a new class of event-triggered
mechanisms is presented and it is extended to discrete-time setting in [95]. The idea of
using internal dynamic variables in event-triggered and self-triggered control can also
be found in [79, 83, 96–98]. In this chapter, we modify the dynamic event triggering
mechanism in [94] and extend it to multi-agent systems in a distributed manner. We
propose two dynamic triggering laws which are distributed in the sense that they do not
require any a priori knowledge of global network parameters, and we prove that our
proposed dynamic triggering laws yield consensus exponentially fast, and we show that
they are free from Zeno behavior. We show also that the triggering laws in [16–18] are
special cases of our dynamic triggering laws. The main disadvantage of our dynamic
triggering laws is that continuous sensing and listening are still needed. To overcome this,
we then propose one self-triggered algorithm. The idea of avoiding continuous sensing
in our presented self-triggered algorithm is by simple calculation since the control input
is piece-wise constant. The main idea of avoiding continuous listening is that each agent
predicts (determines) its next triggering time and broadcasts it to its neighbors at the current
triggering time. Thus each agent knows its neighbors’ next triggering time in advance. As
a result, each agent only needs to sense its state information and broadcast its triggering
information at its triggering times, and to listen to and receive incoming information
from its neighbors at their triggering times. This is to say that, in terms of avoiding
continuous listening, our self-triggered algorithm improves the self-triggered algorithms
in [16, 65, 66, 70, 72] and other papers using a similar approach. Although continuous
sensing, broadcasting, listening, and receiving are also avoided in [80–83] by combining

25

26 Dynamic event-triggered control of multi-agent systems

event-triggered control with periodic sampling, periodic sensing and listening are still
needed. Moreover, it is not clear how to show that the average inter-event time is strictly
larger than the required sampling period in theory. The presented self-triggered algorithm
is reminiscent of the event-triggered cloud access in [84–86]. The main difference between
this paper and the cloud access mentioned above is that we do not need the cloud to store
data. Moreover, we use different technical methods.

The rest of this chapter is organized as follows. Section 3.1 reviews the average
consensus problem for the first-order continuous-time multi-agent systems with event-
triggered control input. Section 3.2 presents two distributed dynamic triggering laws to
determine triggering times such that the average consensus is achieved exponentially. A
self-triggered algorithm to solve the aforementioned problem is presented in Section 3.3.
Simulations are given in Section 3.4. Finally, the chapter is concluded in Section 3.5.

3.1 Problem formulation

We consider a set of n agents modelled as single integrators

ẋi(t) = ui(t), i ∈ I, t ≥ 0, (3.1)

where xi(t) ∈ R is the state and ui(t) ∈ R is the control input.

Remark 3.1. For the ease of presentation, we study the case where all the agents have
scalar states, i.e., xi ∈ R. However, the analysis in this chapter is also valid for the cases
where the agents have vector-valued states, i.e., xi ∈ R

p.

Definition 3.1. The average consensus for the multi-agent system (3.1) is achieved if
limt→∞ xi(t) = 1

n
∑n

j=1 x j(0), ∀i ∈ I.

The classic distributed consensus protocol is given by [38, 39],

ui(t) = −

n∑
j=1

Li jx j(t),

where Li j is the element of the Laplacian matrix L. In this chapter, we assume that the
underlying graph G is undirected.

To implement the above consensus protocol, a continuous exchange of information
among agents and a continuous update of actuators are needed. However, it is often
impractical to require continuous communication and update in real applications.

Inspired by the idea of event-triggered control for multi-agent systems [16], we use the
following event-triggered control input

ui(t) = −

n∑
j=1

Li jx j(t
j
k j(t)

). (3.2)

Note that the event-triggered control input (3.2) only updates at the triggering times and it
remains constant between any two consecutive triggering times.
Our goal in this chapter is to solve the following problem.

3.2. Dynamic triggering laws 27

Problem 3.1. Propose methods to determine the triggering times such that average
consensus is reached, while continuous exchange of information, continuous update of
actuators, and Zeno behavior are avoided.

For simplicity, let x(t) = [x1(t), . . . , xn(t)]>, x̂i(t) = xi(ti
ki(t)

), x̂(t) = [x̂1(t), . . . , x̂n(t)]>,
ei(t) = x̂i(t) − xi(t), and e(t) = [e1(t), · · · , en(t)]> = x̂(t) − x(t). Then we can rewrite the
multi-agent system with agent dynamics as in (3.1) and event-triggered control input as in
(3.2) in the following stack vector form:

ẋ(t) = −Lx̂(t) = −L(x(t) + e(t)).

3.2 Dynamic triggering laws

In this section, we propose two distributed dynamic triggering laws to design the triggering
times such that the average consensus can be achieved.

3.2.1 Continuous approach

We first show that the average state in (3.1) is constant.

Lemma 3.1. Consider the multi-agent system (3.1)–(3.2), and assume that the underlying
graph G is undirected. The average of all agents’ states x̄(t) = 1

n
∑n

i=1 xi(t) is constant, i.e.,
x̄(t) = x̄(0), ∀t ≥ 0.

Proof. It follows from (3.1) and (3.2) that the time derivative of the average value is given
by

˙̄x(t) =
1
n

n∑
i=1

ẋi(t) = −
1
n

n∑
i=1

n∑
j=1

Li jx j(t
j
k j(t)

) = −
1
n

n∑
j=1

x j(t
j
k j(t)

)
n∑

i=1

Li j = 0.

Thus x̄(t) is constant. �

Now, consider a Lyapunov candidate as follows

V(x(t)) =
1
2

x>(t)Knx(t) =
1
2

x>(t)[In −
1
n

1n1>n]x(t)

=
1
2

n∑
i=1

x2
i (t) −

n
2

x̄2(0) =
1
2

n∑
i=1

[xi(t) − x̄(0)]2. (3.3)

Then the derivative of V(x(t)) along the trajectories of the multi-agent system (3.1)–(3.2)
satisfies

V̇(x(t)) =

n∑
i=1

[xi(t) − x̄(0)]ẋi(t) =

n∑
i=1

xi(t)ẋi(t) − x̄(0)
n∑

i=1

ẋi(t) =

n∑
i=1

xi(t)ẋi(t)

28 Dynamic event-triggered control of multi-agent systems

=

n∑
i=1

xi(t)
n∑

j=1

(−Li jx j(t
j
k j(t)

)) = −

n∑
i=1

xi(t)
n∑

j=1

Li j(x j(t) + e j(t))

∗
= −

n∑
i=1

qi(t) −
n∑

i=1

n∑
j=1

xi(t)Li je j(t) = −

n∑
i=1

qi(t) −
n∑

i=1

n∑
j=1

ei(t)Li jx j(t)

= −

n∑
i=1

qi(t) −
n∑

i=1

n∑
j=1, j,i

ei(t)Li j(x j(t) − xi(t))

≤ −

n∑
i=1

qi(t) −
n∑

i=1

n∑
j=1, j,i

Li je2
i (t) −

n∑
i=1

n∑
j=1, j,i

Li j
1
4

(x j(t) − xi(t))2

= −

n∑
i=1

qi(t) +

n∑
i=1

Liie2
i (t) −

n∑
i=1

n∑
j=1

1
4

Li j(x j(t) − xi(t))2

∗
= −

n∑
i=1

1
2

qi(t) +

n∑
i=1

Liie2
i (t), (3.4)

where

qi(t) = −
1
2

n∑
j=1

Li j(x j(t) − xi(t))2 ≥ 0, (3.5)

and the equalities denoted by ∗= hold since

n∑
i=1

qi(t) = −

n∑
i=1

1
2

n∑
j=1

Li j(x j(t) − xi(t))2 =

n∑
i=1

n∑
j=1

xi(t)Li jx j(t) = x>(t)Lx(t),

and the inequality holds since ab ≤ a2 + 1
4 b2.

Similar to [16] and [65], the following law can be used to determine the triggering
times:

ti
1 = 0, ti

k+1 = min
{
t : Liie2

i (t) −
σi

2
qi(t) ≥ 0, t ≥ ti

k

}
, k = 1, 2, . . . (3.6)

with σi ∈ (0, 1). From the way to determine the triggering times by (3.6), we have

Liie2
i (t) ≤

σi

2
qi(t), ∀t ≥ 0. (3.7)

Then, from (3.4) and (3.7), we have

V̇(x(t)) ≤ −
n∑

i=1

1
2

qi(t) +

n∑
i=1

Liie2
i (t) ≤ −

1
2

(1 − σmax)
n∑

i=1

qi(t) = −
1
2

(1 − σmax)x>(t)Lx(t)

≤ −
1
2

(1 − σmax)ρ2(L)x>(t)Knx(t) = −(1 − σmax)ρ2(L)V(x(t)), (3.8)

3.2. Dynamic triggering laws 29

where σmax = max{σ1, . . . , σn} < 1 and the last inequality holds due to (2.5). Then

V(x(t)) ≤ V(x(0))e−(1−σmax)ρ2(L)t. (3.9)

This implies that system (3.1)–(3.2) reaches average consensus exponentially if the
underlying graph G is connected.

Remark 3.2. (3.6) is a static triggering law since it does not involve any extra dynamic
variables but the agent state variables xi(t), x̂i(t) and x j(t), j ∈ Ni. The static triggering
law (3.6) is distributed since each agent’s control action only depends on its own state
information and its neighbors’ state information, without any a prior knowledge of any
global parameters, such as the eigenvalues of the Laplacian matrix.

Remark 3.3. If we consider the same graph as in [16], i.e., ai j = 1 if (vi, v j) ∈ E, then
Lii = |Ni|. Since a(1−a|Ni|) ≤ 1

4|Ni |
and (

∑n
j=1(x j(t)− xi(t)))2 ≤ 2|Ni|

∑n
j=1(x j(t)− xi(t))2, we

have σia(1−a|Ni |)
|Ni |

(
∑n

j=1(x j(t) − xi(t)))2 ≤
σi

2|Ni |
qi(t). In other words, the distributed triggering

law (10) in [16] is a special case of the static triggering law (3.6).

The main purpose of using event-triggered control is to reduce the overall need of
actuation updates and communication between agents, so it is essential to exclude Zeno
behavior. However, as stated in [16], Zeno behavior may not be excluded under (3.6). In
order to explicitly exclude Zeno behavior, in the following we propose a dynamic triggering
law to determine the triggering times.

Inspired by [94], we propose the following internal dynamic variable ηi to agent i:

η̇i(t) = −βiηi(t) − δi(Liie2
i (t) −

σi

2
qi(t)), i ∈ I, (3.10)

where ηi(0) > 0, βi > 0, δi ∈ [0, 1], and σi ∈ [0, 1) are design parameters and can be
arbitrarily chosen in the given intervals. These dynamic variables are correlated in the
triggering law, as defined in our first main result.

Theorem 3.1. Consider the multi-agent system (3.1)–(3.2). Suppose that the underlying
graph G is undirected. Given θi > 1−δi

βi
and the first triggering time ti

1 = 0, agent i
determines the triggering times {ti

k}
∞
k=2 by

ti
k+1 = min

{
t : θi(Liie2

i (t) −
σi

2
qi(t)) ≥ ηi(t), t ≥ ti

k

}
, (3.11)

with qi(t) defined in (3.5) and ηi(t) defined in (3.10). Then, (i) average consensus is
achieved exponentially if and only if G is connected; and (ii) there is no Zeno behavior.

Proof. (i) The necessity is straightforward and we only prove sufficiency here. From the
way to determine the triggering times by (3.11), we have

θi(Liie2
i (t) −

σi

2
qi(t)) ≤ ηi(t), ∀t ≥ 0. (3.12)

30 Dynamic event-triggered control of multi-agent systems

From (3.10) and (3.12), we have

η̇i(t) ≥ −βiηi(t) −
δi

θi
ηi(t), ∀t ≥ 0.

Thus

ηi(t) ≥ ηi(0)e−(βi+
δi
θi

)t
> 0, ∀t ≥ 0. (3.13)

Consider a Lyapunov candidate as follows

W(x(t), η(t)) = V(x(t)) +

n∑
i=1

ηi(t), (3.14)

where η(t) = [η1(t), . . . , ηn(t)]>. Then the derivative of W(x(t), η(t)) along the trajectories
of the multi-agent system (3.1)–(3.2) and system (3.10) satisfies

Ẇ(x(t), η(t)) =V̇(x(t)) +

n∑
i=1

η̇i(t)

≤ −

n∑
i=1

1
2

qi(t) +

n∑
i=1

Liie2
i (t) −

n∑
i=1

βiηi(t) +

n∑
i=1

δi(
σi

2
qi(t) − Liie2

i (t))

= −

n∑
i=1

1
2

(1 − σi)qi(t) −
n∑

i=1

βiηi(t) +

n∑
i=1

(δi − 1)(
σi

2
qi(t) − Liie2

i (t))

≤ −

n∑
i=1

1
2

(1 − σi)qi(t) −
n∑

i=1

βiηi(t) +

n∑
i=1

1 − δi

θi
ηi(t)

= −

n∑
i=1

1
2

(1 − σi)qi(t) −
n∑

i=1

(
βi −

1 − δi

θi

)
ηi(t)

≤ − (1 − σmax)
n∑

i=1

1
2

qi(t) − kd

n∑
i=1

ηi(t)

≤ − (1 − σmax)ρ2(L)V(x(t)) − kd

n∑
i=1

ηi(t)

≤ − kWW(x(t), η(t)),

where kd = mini

{
βi −

1−δi
θi

}
> 0 and kW = min

{
(1 − σmax)ρ2(L), kd

}
> 0. Then

V(x(t)) ≤ W(x(t), η(t)) ≤ W(x(0), η(0))e−kW t, ∀t ≥ 0. (3.15)

This implies that system (3.1)–(3.2) reaches average consensus exponentially.
(ii) Next, we prove that there is no Zeno behavior by contradiction. Suppose there exists
Zeno behavior. Then there exists an agent i, such that limk→+∞ ti

k = T0 where T0 is a
positive constant.

3.2. Dynamic triggering laws 31

Whether G is connected or not, from the proof in (i) we know that all the agents in the
same CC reach consensus and there is a result similar to (3.15). Thus, we know that there
exists a positive constant M0 > 0 such that |xi(t)| ≤ M0 for all t ≥ 0 and i = 1, . . . , n. Then,
we have

|ui(t)| ≤ 2M0Lii, ∀t ≥ 0.

Let ε0 =

√
ηi(0)

4
√
θiL3

ii M0
e−

1
2 (βi+

δi
θi

)T0 > 0. Then from the property of limit, there exists a

positive integer N(ε0) such that

ti
k ∈ [T0 − ε0,T0], ∀k ≥ N(ε0). (3.16)

Noting qi(t) ≥ 0 and (3.13), we can conclude that one necessary condition to guarantee
that the inequality in (3.11) holds is

|x̂i(t) − xi(t)| ≥

√
ηi(0)
θiLii

e−
1
2 (βi+

ξi
θi

)t
. (3.17)

Again noting |ẋi(t)| = |ui(t)| ≤ 2M0Lii and |x̂i(ti
k) − xi(ti

k)| = 0 for any triggering time ti
k, we

can conclude that one necessary condition to guarantee that the above inequality holds is

(t − ti
k)2M0Lii ≥

√
ηi(0)
√
θiLii

e−
1
2 (βi+

ξi
θi

)t
. (3.18)

Now suppose that the N(ε0)-th triggering time of agent i, ti
N(ε0), has been determined.

Let ti
N(ε0)+1 and t̃i

N(ε0)+1 denote the next triggering time determined by (3.11) and (3.18),
respectively. Then

ti
N(ε0)+1 − ti

N(ε0) ≥t̃i
N(ε0)+1 − ti

N(ε0) =

√
ηi(0)

2
√
θiL3

iiM0

e−
1
2 (βi+

ξi
θi

)t̃i
N(ε0)+1

≥

√
ηi(0)

2
√
θiL3

iiM0

e−
1
2 (βi+

ξi
θi

)ti
N(ε0)+1 ≥

√
ηi(0)

2
√
θiL3

iiM0

e−
1
2 (βi+

ξi
θi

)T0 = 2ε0, (3.19)

which contradicts to (3.16). Therefore, Zeno behavior is excluded. �

Remark 3.4. (3.11) is a dynamic triggering law since it involves the extra dynamic
variables ηi(t). Similar to the static triggering law (3.6), it is also distributed. The static
triggering law (3.6) can be seen as a limit case of the dynamic triggering law (3.11) when
θi grows large. Thus, from the analysis in Remark 3.3, we can conclude that the distributed
triggering law (10) in [16] is a special case of the dynamic triggering law (3.11).

Remark 3.5. If we choose δi = 0 in (3.10) and σi = 0 in (3.11), then ηi(t) = ηi(0)e−βit and

now the inequality in (3.11) is |ei(t)| ≥
√
ηi(0)
√
θiLii

e−
βi
2 t. The later is the triggering function (7)

in [18] with c0 = 0, c1 =

√
ηi(0)
√
θiLii

, α =
βi
2 . However, we do not need the constraint α < ρ2(L)

which is necessary in [18].

32 Dynamic event-triggered control of multi-agent systems

If we choose βi large enough, then kW = (1−σmax)ρ2(L). Hence, in this case, from (3.9)
and (3.15), we know that the trajectories of the multi-agent system (3.1) –(3.2) under static
triggering law (3.6) and dynamic triggering law (3.11) have the same guaranteed decay
rate given by (3.9).

Remark 3.6. Intuitively, from (3.13), one can conclude that the larger ηi(0) the larger the
inter-event time. This is also consistent with the definition of ε0. However, how do those
design parameters ηi(0), βi, ξi, σi, θi affect the inter-event times and decay rate in theory is
unclear. We leave this as future study.

3.2.2 Discontinuous approach

In the above static and dynamic triggering laws, continuous updating of the control input
is avoided. However, in order to monitor the inequalities (3.6) and (3.11), each agent still
needs to continuously monitor its neighbors’s states, which means continuous broadcasting
and continuous receiving are still needed. In what follows, we will modify the above results
to avoid these two requirements.

We upper-bound the derivative of V(x(t)) along the trajectories of the multi-agent
system (3.1)–(3.2) in a different way. Similar to the derivation process to get (3.4), we
have

V̇(x(t)) =

n∑
i=1

xi(t)
n∑

j=1

−Li j x̂ j(t) = −

n∑
i=1

(x̂i(t) − ei(t))
n∑

j=1

Li j x̂ j(t)

∗∗
= −

n∑
i=1

q̂i(t) +

n∑
i=1

n∑
j=1

ei(t)Li j x̂ j(t)

= −

n∑
i=1

q̂i(t) +

n∑
i=1

n∑
j=1, j,i

ei(t)Li j(x̂ j(t) − x̂i(t))

≤ −

n∑
i=1

q̂i(t) −
n∑

i=1

n∑
j=1, j,i

Li je2
i (t) −

n∑
i=1

n∑
j=1, j,i

Li j
1
4

(x̂ j(t) − x̂i(t))2

= −

n∑
i=1

q̂i(t) +

n∑
i=1

Liie2
i (t) −

n∑
i=1

n∑
j=1

1
4

Li j(x̂ j(t) − x̂i(t))2

∗∗
= −

n∑
i=1

1
2

q̂i(t) +

n∑
i=1

Liie2
i (t), (3.20)

where

q̂i(t) = −
1
2

n∑
j=1

Li j(x̂ j(t) − x̂i(t))2 ≥ 0, (3.21)

3.2. Dynamic triggering laws 33

and the equalities denoted by ∗∗= hold since

n∑
i=1

q̂i(t) = −

n∑
i=1

1
2

n∑
j=1

Li j(x̂ j(t) − x̂i(t))2 =

n∑
i=1

n∑
j=1

x̂i(t)Li j x̂ j(t) = x̂>(t)Lx̂(t),

and the inequality holds since ab ≤ a2 + 1
4 b2.

Similar to [17] and [65], the following law can be used to determine the triggering
times:

ti
1 = 0, ti

k+1 = min
{
t : Liie2

i (t) −
σi

2
q̂i(t) ≥ 0, t ≥ ti

k

}
, k = 1, 2, . . . (3.22)

with σi ∈ (0, 1). From the way to determine the triggering times by (3.22), we have

Liie2
i (t) ≤

σi

2
q̂i(t), ∀t ≥ 0. (3.23)

Then, from (3.20) and (3.23), we have

V̇(x(t)) ≤ −
n∑

i=1

1
2

q̂i(t) +

n∑
i=1

Liie2
i (t) ≤ −

1
2

(1 − σmax)
n∑

i=1

q̂i(t)

= −
1
2

(1 − σmax)x̂>(t)Lx̂(t).

Furthermore,

x>(t)Lx(t) = (x̂(t) + e(t))>L(x̂(t) + e(t)) ≤ 2x̂>(t)Lx̂(t) + 2e>(t)Le(t)

≤ 2x̂>(t)Lx̂(t) + 2‖L‖‖e(t)‖2 ≤ 2x̂>(t)Lx̂(t) +
‖L‖σmax

mini Lii

n∑
i=1

q̂i(t)

=
(
2 +
‖L‖σmax

mini Lii

)
x̂>(t)Lx̂(t), (3.24)

where the first inequality holds since L is positive semi-definite and a>Lb ≤ 2a>La +

2b>Lb,∀a, b ∈ Rn, the second inequality holds since a>La ≤ ‖L‖‖a‖2,∀a ∈ Rn, and the
last inequality holds due to (3.23). We then obtain

V̇(x(t)) ≤ −
(1 − σmax) mini Lii

4 mini Lii + 2‖L‖σmax
x>(t)Lx(t) = −

(1 − σmax) mini Lii

2 mini Lii + ‖L‖σmax
ρ2(L)x>(t)Knx(t)

= −
(1 − σmax) mini Lii

2 mini Lii + ‖L‖σmax
ρ2(L)V(x(t)).

Hence,

V(x(t)) ≤ V(x(0))e−
(1−σmax) mini Lii

2 mini Lii+‖L‖σmax
ρ2(L)t

, ∀t ≥ 0. (3.25)

This implies that system (3.1)–(3.2) reaches average consensus exponentially if the
underlying graph G is connected.

34 Dynamic event-triggered control of multi-agent systems

Remark 3.7. Similar to the analysis in Remark 3.2, (3.22) is a static triggering law and
it is also distributed. Moreover, similar to the analysis in Remark 3.3, we can conclude
that the distributed triggering law (6) in [17] is a special case of the static triggering law
(3.22).

In [82] it is argued that the distributed triggering law (6) in [17] “does not discard the
possibility of an infinite number of events happening in a finite time period”. Zeno behavior
may also not be excluded under the static triggering law (3.22). In the following, in order
to explicitly exclude Zeno behavior, we will replace the static triggering law (3.22) by the
dynamic one.

Similar to (3.10), we propose an internal dynamic variable χi to agent i:

χ̇i(t) = −βiχi(t) − δi(Liie2
i (t) −

σi

2
q̂i(t)), i ∈ I (3.26)

where χi(0) > 0, βi > 0, ξi ∈ [0, 1], and σi ∈ [0, 1) are design parameters and can be
arbitrarily chosen in the given intervals. Our second main result is given in the following
theorem.

Theorem 3.2. Consider the multi-agent system (3.1)–(3.2). Suppose that the underlying
graph G is undirected. Given θi > 1−ξi

βi
and the first triggering time ti

1 = 0, agent i
determines the triggering times {ti

k}
∞
k=2 by

ti
k+1 = min

{
t : θi(Liie2

i (t) −
σi

2
q̂i(t)) ≥ χi(t), t ≥ ti

k

}
, (3.27)

with q̂i(t) defined in (3.21) and χi(t) defined in (3.26). Then, (i) average consensus is
achieved exponentially if and only if G is connected; and (ii) there is no Zeno behavior.

Proof. (i) The necessity is straightforward and we only prove sufficiency here. Similar to
(3.13), we have

χi(t) ≥ χi(0)e−(βi+
δi
θi

)t
> 0. (3.28)

Consider a Lyapunov candidate as follows

F(x(t), χ(t)) = V(x(t)) +

n∑
i=1

χi(t), (3.29)

where χ(t) = [χ1(t), . . . , χn(t)]>. Then the derivative of F(x(t), χ(t)) along the trajectories
of the multi-agent system (3.1)–(3.2) and system (3.26) satisfies

Ḟ(x(t), χ(t)) =V̇(x(t)) +

n∑
i=1

χ̇i(t)

≤ −

n∑
i=1

1
2

q̂i(t) +

n∑
i=1

Liie2
i (t) −

n∑
i=1

βiχi(t) +

n∑
i=1

δi(
σi

2
q̂i(t) − Liie2

i (t))

3.2. Dynamic triggering laws 35

= −

n∑
i=1

1
2

(1 − σi)q̂i(t) −
n∑

i=1

βiχi(t) +

n∑
i=1

(δi − 1)(
σi

2
q̂i(t) − Liie2

i (t))

≤ −

n∑
i=1

1
2

(1 − σi)q̂i(t) −
n∑

i=1

βiχi(t) +

n∑
i=1

1 − δi

θi
χi(t)

= −

n∑
i=1

1
2

(1 − σi)q̂i(t) −
n∑

i=1

(
βi −

1 − δi

θi

)
χi(t)

≤ − (1 − σmax)
n∑

i=1

1
2

q̂i(t) − kd

n∑
i=1

χi(t)

= −
1
2

(1 − σmax)x̂>(t)Lx̂(t) − kd

n∑
i=1

χi(t).

Similar to the derivation process to get (3.24), we have

x>(t)Lx(t) ≤2x̂>(t)Lx̂(t) + 2‖L‖‖e(t)‖2

≤2x̂>(t)Lx̂(t) +
‖L‖σmax

mini Lii

n∑
i=1

q̂i(t) +
2‖L‖

mini{θiLii}

n∑
i=1

χi(t)

=
(
2 +
‖L‖σmax

mini Lii

)
x̂>(t)Lx̂(t) +

2‖L‖
mini{θiLii}

n∑
i=1

χi(t)

≤kx x̂>(t)Lx̂(t) +
2‖L‖

mini{θiLii}

n∑
i=1

χi(t), (3.30)

where

kx = max
{
2 +
‖L‖σmax

mini Lii
,

2(1 − σmax)‖L‖
kd mini{θiLii}

}
.

Then,

−
1
2

(1 − σmax)x̂>(t)Lx̂(t) ≤ −
1

2kx
(1 − σmax)x>(t)Lx(t) +

kd

2

n∑
i=1

χi(t).

Thus,

Ḟ(x(t), χ(t)) ≤ −
1

2kx
(1 − σmax)x>(t)Lx(t) −

kd

2

n∑
i=1

χi(t)

≤ −
ρ2(L)
2kx

(1 − σmax)x>(t)Knx(t) −
kd

2

n∑
i=1

χi(t)

= −
ρ2(L)

kx
(1 − σmax)V(t) −

kd

2

n∑
i=1

χi(t)

36 Dynamic event-triggered control of multi-agent systems

≤kF F(x(t), χ(t)),

where kF = min
{
ρ2(L)

kx
(1 − σmax), kd

2

}
. Hence,

V(x(t)) < F(x(t), χ(t)) ≤ F(x(0), χ(0))e−kF t, ∀t ≥ 0. (3.31)

This implies that system (3.1)–(3.2) reaches average consensus exponentially.
(ii) The way to exclude Zeno behavior is the same as the proof in Theorem 3.1. �

Remark 3.8. The triggering law (3.27) is dynamic and it is also distributed. One can
easily check that every agent does not need to continuously access its neighbors’ states
when implementing the static and dynamic triggering laws (3.22) and (3.27).

Remark 3.9. The static triggering law (3.22) can be seen as a limit case of the dynamic
triggering law (3.27) when θi grows large. Thus, from the analysis in Remark 3.7, we can
conclude that the distributed triggering law (6) in [17] is a special case of the dynamic
triggering law (3.27).

If we choose βi large enough, then kF =
(1−σmax) mini Lii

2 mini Lii+‖L‖σmax
ρ2(L). Hence, in this case, from

(3.25) and (3.31), we know that the trajectories of the multi-agent system (3.1)–(3.2) under
static triggering law (3.22) and dynamic triggering law (3.27) have the same guaranteed
decay rate given by (3.25).

Remark 3.10. In [65], the authors propose three distributed triggering laws for multi-
agent systems with event-triggered control and directed topologies. With some modifica-
tions, similar to this chapter, the three distributed triggering laws in [65] can be extended
to dynamic triggering laws as the one in Theorems 3.1 and 3.2. In other words, the results
in Theorems 3.1 and 3.2 can be extended to the case that the underlying graph is directed
and has a directed spanning tree. Moreover, the results in Theorems 3.1 and 3.2 also can
most likely be extended to general linear and even nonlinear multi-agent systems. However,
in the general linear case, the triggering laws are not distributed anymore since global
information, such as the eigenvalues of the Laplacian matrix, is needed. Actually, to the
best of our knowledge, in all the existing papers that consider event-triggered control for
general linear multi-agent systems, the use of the eigenvalues of the Laplacian matrix
cannot be avoided. And for the nonlinear case, some standard continuity assumptions,
such as upper and lower Lipschtiz continuity assumptions, for the nonlinear dynamics are
normally required.

3.3 Self-triggered algorithm

When applying the dynamic triggering law (3.27) in Theorem 3.2, although each agent
avoids to continuously monitor its neighbors’ states, agent i still needs to continuously
sense its own state since it has to continuously monitor the triggering law (3.27) and
continuously listen to x j(t

j
k), k = 1, 2, . . . , j ∈ Ni, since it does not know the triggering

times of its neighbors, t j
k, k = 1, 2, . . . , j ∈ Ni, in advance. The way to avoid continuous

3.3. Self-triggered algorithm 37

sensing is straight forward since the control input of each agent is piece-wise constant and
the state of each agent can be predicted by simple calculation as (3.32) in the following.
The challenge is to avoid continuous listening. If every agent i ∈ I, at its current triggering
time ti

k, can predict (determine) its next triggering time ti
k+1 and broadcast it to its neighbors,

then at time ti
k agent i knows agent j’s latest triggering time t j

k j(ti
k)

which is before ti
k and its

next triggering time t j
k j(ti

k)+1
which is after ti

k, for j ∈ Ni. In this case, agent i only needs

listen to and receive information at {t j
k}
∞
k=1, j ∈ Ni since it knows these time instants in

advance. In this case, each agent only needs to to sense its state information and broadcast
its triggering information at its own triggering times, and to listen to and receive incoming
information from its neighbors at their triggering times. Inspired by this, in the following
we will propose a self-triggered algorithm such that at time ti

k each agent i could determine
ti
k+1 in advance. The idea is explained below.

From ẋi(t) = ui(t) = −
∑n

j=1 Li jx j(t
j
k j(t)

) = −
∑n

j=1 Li jui j(t) with ui j(t) = x j(t
j
k j(t)

) −
xi(ti

ki(t)
), we have

xi(t) = xi(ti
k) +

∫ t

ti
k

ui(s)ds = xi(ti
k) −

∫ t

ti
k

n∑
j=1

Li jui j(s)ds, t ∈ [ti
k, t

i
k+1). (3.32)

Thus for t ∈ [ti
k, t

i
k+1), we have

|ei(t)| = |xi(ti
k) − xi(t)| =

∣∣∣∣∣ n∑
j=1

∫ t

ti
k

Li jui j(s)ds
∣∣∣∣∣. (3.33)

Here we need to highlight that ui j(t) may not be a constant for all t ∈ [ti
k, t

i
k+1) since x j(t

j
k j(t)

)
may not be a constant for all t ∈ [ti

k, t
i
k+1). So at time ti

k, we do not know the value of |ei(t)|
for all t ∈ (ti

k, t
i
k+1) in advance. However, if at time ti

k we could estimate the upper-bound of
ui j(t), then we could estimate the upper-bound of |ei(t)|. In this case, we can estimate ti

k+1
at time ti

k.
In order to estimate the upper-bound of ui j(t), we first need to simplify the dynamic

triggering laws (3.11) and (3.2) in Theorem 3.1 and Theorem 3.2. As Remark 3.5 pointed
out, if we choose δi = 0 in (3.10) and σi = 0 in (3.11), then ηi(t) = ηi(0)e−βit and now the

inequality in (3.11) is |ei(t)| ≥ αie−
βi
2 t with αi =

√
ηi(0)
√
θiLii

> 0. Here, αi can be chosen as any
positive real numbers since ηi(0) can be chosen as any positive real numbers. Then from
Theorem 3.1, we derive the following corollary1.

Corollary 3.1. Consider the multi-agent system (3.1)–(3.2). Suppose that the underlying
graph G is undirected. Given α > 0, β > 0 and the first triggering time ti

1 = 0, agent i
determines the triggering times {ti

k}
∞
k=2 by

ti
k+1 = min

{
t : |ei(t)| ≥

α
√

Lii
e−

β
2 t, t ≥ ti

k

}
. (3.34)

1If we choose δi = 0 in (3.26) and σi = 0 in (3.27), then Corollary 3.1 is also a special case of Theorem 3.2.

38 Dynamic event-triggered control of multi-agent systems

Then, (i) average consensus is achieved exponentially if and only if G is connected; and
(ii) there is no Zeno behavior.

Remark 3.11. The design parameters α and β can be distributively chosen for each agent
in the above corollary, but their effects on inter-event times and decay rate are not clear in
theory. The reason that we require every agent to choose the same design parameters here
is that it is convenient to design the self-triggered algorithm in the following.

Next, let us upper-bound |xi(t) − x j(t)| which will be used later. From the way to
determine the triggering times in (3.34), we have

|ei(t)| ≤
α
√

Lii
e−

β
2 t, ∀t ≥ 0. (3.35)

From (3.4) and (3.35), we have

V̇(x(t)) ≤ −
n∑

i=1

1
2

qi(t) +

n∑
i=1

Liie2
i (t) ≤ −

1
2

x>(t)Lx(t) +

n∑
i=1

α2e−βt

≤ −
1
2
ρ2(L)x>(t)Knx(t) + nα2e−βt = −ρ2(L)V(x(t)) + nα2e−βt.

Then

dV(t)eρ2(L)t

dt
≤ nα2e(ρ2(L)−β)t.

Then

V(x(t)) ≤

V(0)e−ρ2(L)t + nα2

ρ2(L)−β (e−βt − e−ρ2(L)t), if ρ2(L) , β,
V(0)e−ρ2(L)t + nα2te−ρ2(L)t, if ρ2(L) = β.

From the factor that for any given ε > 0, eεt ≥ 1 + εt holds, we have

V(x(t)) ≤ k1e−ρ2(L)t + k2e−k3t, ∀t ≥ 0,

where

k1 =

 V(x(0)) − nα2

ρ2(L)−β , if ρ2(L) , β,
V(x(0)) − nα2

ε
, if ρ2(L) = β,

k2 =

 nα2

ρ2(L)−β , if ρ2(L) , β,
nα2

ε
, if ρ2(L) = β,

k3 =

 β, if ρ2(L) , β,
β − ε, if ρ2(L) = β,

with ε ∈ (0, β) is a design parameter. Then, from (3.3), we have
n∑

i=1

|xi(t) − x̄(0)|2 = 2V(x(t)) ≤ 2(k1e−ρ2(L)t + k2e−k3t), ∀t ≥ 0.

3.3. Self-triggered algorithm 39

 0

 𝑡𝑡
𝑘𝑘𝑗𝑗(𝑡𝑡𝑘𝑘

𝑖𝑖)
𝑗𝑗

𝑡𝑡
𝑘𝑘𝑗𝑗�𝑡𝑡𝑘𝑘

𝑖𝑖 �+1
𝑗𝑗

 𝑡𝑡𝑘𝑘𝑖𝑖

𝑡𝑡𝑘𝑘+1𝑖𝑖

𝑡𝑡𝑖𝑖𝑗𝑗1 (𝑡𝑡)

𝑡𝑡𝑖𝑖𝑗𝑗2 (𝑡𝑡)

 Time

(a) The case of t j
k j(tik)+1

< ti
k+1.

 0

 𝑡𝑡
𝑘𝑘𝑗𝑗(𝑡𝑡𝑘𝑘

𝑖𝑖)
𝑗𝑗

𝑡𝑡
𝑘𝑘𝑗𝑗�𝑡𝑡𝑘𝑘

𝑖𝑖 �+1
𝑗𝑗

 𝑡𝑡𝑘𝑘𝑖𝑖

𝑡𝑡𝑘𝑘+1𝑖𝑖

𝑡𝑡𝑖𝑖𝑗𝑗1 (𝑡𝑡)

𝑡𝑡𝑖𝑖𝑗𝑗2 (𝑡𝑡)

 Time

(b) The case of t j
k j(tik)+1

≥ ti
k+1.

Figure 3.1: Illustration of the relation of ti
k, ti

k+1, t ∈ [ti
k, t

i
k+1), t j

k j(ti
k)

, t j
k j(ti

k)+1
, t1

i j(t) and t2
i j(t).

Thus,

|xi(t) − x j(t)| ≤|xi(t) − x̄(0)| + |x j(t) − x̄(0)|

≤

√
2(|xi(t) − x̄(0)|2 + |x j(t) − x̄(0)|2) ≤ f x(t), ∀t ≥ 0, (3.36)

where f x(t) = 2
√

k1e−ρ2(L)t + k2e−k3t.
Now, we upper-bound ui j(t) as follows

|ui j(t)| =|x j(t
j
k j(t)

) − xi(ti
ki(t))| = |x j(t

j
k j(t)

) − x j(t) + x j(t) − xi(t) + xi(t) − xi(ti
ki(t))|

≤|x j(t
j
k j(t)

) − x j(t)| + |x j(t) − xi(t)| + |xi(t) − xi(ti
ki(t))|

≤
(α
√

Lii
+

α√
L j j

)
e−

β
2 t + f x(t), ∀t ≥ 0. (3.37)

Finally, let us upper-bound ei(t). For t ∈ [ti
k, t

i
k+1), denote

t1
i j(t) = min

{
t, t j

k j(ti
k)+1

}
, t2

i j(t) = max
{
t, t j

k j(ti
k)+1

}
. (3.38)

Figure 3.1 illustrates the relation of ti
k, ti

k+1, t ∈ [ti
k, t

i
k+1), t j

k j(ti
k)

, t j
k j(ti

k)+1
, t1

i j(t) and t2
i j(t).

From the definition of ui j(t) and t1
i j(t), we know that ui j(t) is constant for all t ∈

[ti
k, t

1
i j(t)]. And for t > t1

i j(t), ui j(t) can be upper-bounded by (3.37). Thus, from (3.33),

40 Dynamic event-triggered control of multi-agent systems

Algorithm 3.1
1: Choose α > 0, β > 0 and ε ∈ (0, β);
2: Agent i ∈ I sends Lii to its neighbors;
3: Initialize ti

1 = 0 and k = 1;
4: At time s = ti

k, agent i senses its own state xi(ti
k), and updates its control input ui(ti

k)
by (3.2), and determines ti

k+1 by (3.40)1, and broadcasts its triggering information
{ti

k+1, xi(ti
k)} to its neighbors;

5: At agent i’s neighbors’ triggering times which are between [ti
k, t

i
k+1], agent i receives

triggering information for its neighbors2 and updates its control input ui(·) by (3.2);
6: resets k = k + 1, and goes back to Step 4.

for t ∈ [ti
k, t

i
k+1) we have

|ei(t)| =
∣∣∣∣∣ n∑

j=1

∫ t

ti
k

Li jui j(s)ds
∣∣∣∣∣ =

∣∣∣∣∣ n∑
j=1

Li j

{ ∫ t1
i j

ti
k

ui j(s)ds +

∫ t2
i j

t j

k j (tik)+1

ui j(s)ds
}∣∣∣∣∣ ≤ gi(t), (3.39)

where

gi(t) =

∣∣∣∣∣ n∑
j=1

Li j(t1
i j − ti

k)ui j(ti
k)
∣∣∣∣∣ − n∑

j=1, j,i

Li j

∫ t2
i j

t j

k j (tik)+1

[(α
√

Lii
+

α√
L j j

)
e−

β
2 s + f x(s)

]
ds.

Hence, a necessary condition to guarantee (3.34), i.e.,

|ei(t)| ≥
α
√

Lii
e−

β
2 t, ∀t ∈ [ti

k, t
i
k+1),

is

gi(t) ≥
α
√

Lii
e−

β
2 t, ∀t ∈ [ti

k, t
i
k+1).

Since α
√

Lii
e−

β
2 t decreases with respect to t, gi(t) increases with respect to t during [ti

k, t
i
k+1)

and gi(ti
k) = 0, then given ti

k, agent i can estimate ti
k+1 by solving

gi(t) =
α
√

Lii
e−

β
2 t, t ≥ ti

k. (3.40)

In other words, if at time ti
k agent i knows t j

k j(ti
k)

, t j
k j(ti

k)+1
, x j(t

j
k j(ti

k)
), L j j, ∀ j ∈ Ni, then it

can determine its next triggering time ti
k+1 by solving (3.40). The above implement idea is

summarized in Algorithm 3.1.
The following theorem proves that consensus is achieved exponentially and there is no

Zeno behavior when every agent performs Algorithm 3.1.
1Agent i uses t j

k j(tik)
to replace t j

k j(tik)+1
to determine tik+1 by (3.40) when tik = t j

k j(tik)
.

2In other words, agent i onlys listen to incoming information at its neighbors’ triggering times. Thus
continuous listening is avoided.

3.4. Simulations 41

Table 3.1: Summary of the communication requirements for agent i when dynamic
triggering laws (3.11) and (3.27), and Algorithm 3.1 are performed.

Law (3.11) Law (3.27) Algorithm 3.1
Broadcasting time All t ≥ 0 {ti

k}
∞
k=1 {ti

k}
∞
k=1

Listening time All t ≥ 0 All t ≥ 0 {t j
k, j ∈ Ni}

∞
k=1

Receiving time All t ≥ 0 {t j
k, j ∈ Ni}

∞
k=1 {t j

k, j ∈ Ni}
∞
k=1

Information broadcasted {xi(t), t ≥ 0} {xi(ti
k)}∞k=1 {ti

k+1, xi(ti
k)}∞k=1

Zeno behavior No No No

Theorem 3.3. Consider the multi-agent system (3.1)–(3.2). Suppose that the underlying
graph G is undirected. If all agents perform Algorithm 3.1, then, (i) average consensus is
achieved exponentially if and only if G is connected; and (ii) there is no Zeno behavior.

Proof. The necessity is straightforward.
Under Algorithm 3.1, we have |ei(t)| ≤ α

√
Lii

e−
β
2 t for all i ∈ I and t ≥ 0. Then from

Corollary 3.1, we know that consensus is achieved exponentially.
The method of the exclusion of Zeno behavior is similar to the corresponding proof of

Theorem 3.1. �

Remark 3.12. In order to perform Algorithm 3.1, the global parameters V(0), n, and ρ2(L)
are needed to be known in advance, which man be a drawback.

Remark 3.13. Self-triggered control approaches are also proposed in [16, 65, 66, 69,
70, 72, 73]. However, one potential drawback of these papers and other papers using a
similar approach is that continuous listening is still needed. One can verify that continuous
sensing, broadcasting, listening, and receiving are avoided under Algorithm 3.1. Although
these are also avoided in [80–83] by combining event-triggered control with periodic
sampling, periodic sensing and listening are still needed. Moreover, it is not clear how to
show that the average inter-event time is strictly larger than the required sampling period
in theory.

Table 3.1 summarizes the required exchange of information by agent i ∈ I if the
dynamic triggering laws (3.11) and (3.27), and Algorithm 3.1 are performed.

3.4 Simulations

In this section, a numerical example is given to demonstrate the presented results. Consider
a connected undirected graph in Figure 2.2 (a). We choose an arbitrary initial state x(0) =

[6.2945, 8.1158,−7.4603, 8.2675]>. Then the average initial state is x̄(0) = 3.8044.
Figure 3.2 (a) shows the state evolutions of the multi-agent system (3.1)–(3.2) under the

static triggering law (3.6) with σi = 0.5. Figure 3.2 (b) shows the corresponding triggering
times for each agent.

42 Dynamic event-triggered control of multi-agent systems

Figure 3.3 (a) shows the state evolutions of the multi-agent system (3.1)–(3.2) under
the dynamic triggering law (3.11) with σi = 0.5, ηi(0) = 10, βi = 1, δi = 1 and θi = 1.
Figure 3.3 (b) shows the corresponding triggering times for each agent.

Figure 3.4 (a) shows the state evolutions of the multi-agent system (3.1)–(3.2) under
the static triggering law (3.22) with σi = 0.5. Figure 3.4 (b) shows the corresponding
triggering times for each agent.

Figure 3.5 (a) shows the state evolutions of the multi-agent system (3.1)–(3.2) under
the dynamic triggering law (3.27) with σi = 0.5, χi(0) = 10, βi = 1, δi = 1 and θi = 1.
Figure 3.5 (b) shows the corresponding triggering times for each agent.

Figure 3.6 (a) shows the state evolutions of the multi-agent system (3.1)–(3.2) when
each agent performs Algorithm 3.1 with α = 10, β = 1 and ε =

β
2 . Figure 3.6 (b) shows the

corresponding triggering times for each agent. And the smallest inter-event time is 0.009
in this simulation.

It can be seen that average consensus is achieved when performing the four triggering
laws and Algorithm 3.1 proposed in this chapter. Moreover, as stated in Theorem 3.1,
Theorem 3.2 and Theorem 3.3, from the simulations we can also see that there is no Zeno
behavior under the dynamic triggering law (3.11), the dynamic triggering law (3.27) and
Algorithm 3.1. It can also be seen that the average inter-event time under the dynamic
triggering law (3.11) and the dynamic triggering law (3.27) are larger than that determined
by Algorithm 3.1. Although there is also no Zeno behavior under the static triggering laws
(3.6) and (3.22) in the simulations, it is still not clear if this could be proven in theory.

3.5 Summary

In this chapter, we presented two dynamic triggering laws and one self-triggered algorithm
for multi-agent systems with event-triggered control over undirected graphs. We showed
that, some existing triggering laws are special cases of the proposed dynamic triggering
laws and average consensus is achieved exponentially if and only if the communication
graph is connected. In addition, Zeno behavior was excluded by proving that the triggering
time sequence of each agent is divergent. Moreover, each agent only needs to sense and
broadcast at its own triggering times, and to listen to and receive incoming information
from its neighbors at their triggering times. Thus continuous listening is avoided. Future
research directions include considering the influence of parameters in the proposed
dynamic triggering laws.

3.5. Summary 43

 t
0 1 2 3 4 5

 x
i(t

)

-6

-4

-2

0

2

4

6

8

 agent 1
 agent 2
 agent 3
 agent 4

(a)

 t
0 1 2 3 4 5

 agent 1

 agent 2

 agent 3

 agent 4

(b)

Figure 3.2: (a) The state evolutions of the multi-agent system (3.1)–(3.2) under the static
triggering law (3.6). (b) The triggering times for each agent.

44 Dynamic event-triggered control of multi-agent systems

 t
0 1 2 3 4 5

 x
i(t

)

-6

-4

-2

0

2

4

6

8

 agent 1
 agent 2
 agent 3
 agent 4

(a)

 t
0 1 2 3 4 5

 agent 1

 agent 2

 agent 3

 agent 4

(b)

Figure 3.3: (a) The state evolutions of the multi-agent system (3.1)–(3.2) under the dynamic
triggering law (3.11). (b) The triggering times for each agent.

3.5. Summary 45

 t
0 1 2 3 4 5

 x
i(t

)

-6

-4

-2

0

2

4

6

8

 agent 1
 agent 2
 agent 3
 agent 4

(a)

 t
0 1 2 3 4 5

 agent 1

 agent 2

 agent 3

 agent 4

(b)

Figure 3.4: (a) The state evolutions of the multi-agent system (3.1)–(3.2) under the static
triggering law (3.22). (b) The triggering times for each agent.

46 Dynamic event-triggered control of multi-agent systems

 t
0 1 2 3 4 5

 x
i(t

)

-6

-4

-2

0

2

4

6

8

 agent 1
 agent 2
 agent 3
 agent 4

(a)

 t
0 1 2 3 4 5

 agent 1

 agent 2

 agent 3

 agent 4

(b)

Figure 3.5: (a) The state evolutions of the multi-agent system (3.1)–(3.2) under the dynamic
triggering law (3.27). (b) The triggering times for each agent.

3.5. Summary 47

 t
0 1 2 3 4 5

 x
i(t

)

-6

-4

-2

0

2

4

6

8

 agent 1
 agent 2
 agent 3
 agent 4

(a)

 t
0 1 2 3 4 5

 agent 1

 agent 2

 agent 3

 agent 4

(b)

Figure 3.6: (a) The state evolutions of the multi-agent system (3.1)–(3.2) when performing
Algorithm 3.1. (b) The triggering times for each agent.

Chapter 4

Multi-agent systems with input saturation

In almost all real applications, actuators have bounds. However, there are few event-
triggered papers that take saturation into consideration. In fact, even for a single-
agent system with input saturation and event-triggered control, the stability problem is
challenging. [99] addresses the influence of actuator saturation on event-triggered control.
[100] studies a global stabilization of multiple integrator system using event-triggered
bounded control. Consensus problem with input saturation and event-triggered control is
challenging since the constraints lead to nonlinearities in the closed-loop dynamics. [67]
proposes a distributed event-triggered control strategy to achieve consensus for multi-agent
systems subject to input saturation through output feedback. Different from this chapter,
the underlying graph they consider is undirected and they do not exclude Zeno behavior
in their analysis. [74] investigates the event-triggered semi-global consensus problem for
general linear multi-agent systems subject to input saturation. However, the underlying
graph is assumed to be undirected and in order to determine the triggering times, each
agent needs to continuously measure its neighbors’ states, i.e., continuous communication
is still needed.

In this chapter, we solve the (global) consensus problem for multi-agent systems with
input saturation over digraphs. More specifically, we first show that the multi-agent systems
achieve consensus if and only if the digraph has a directed spanning tree. In other words, the
existence of a directed spanning tree is a necessary and sufficient condition for consensus
for both multi-agent systems with and without input saturation, despite that the saturation
gives rise to a more complex nonlinear dynamic behavior. We then consider event-triggered
control and propose a distributed triggering law, which leads to consensus under the same
necessary and sufficient directed spanning tree condition. By distributed, we mean that
the event-triggered control input together with the triggering law do not require any a
priori knowledge of global network parameters. The triggering law is a special kind of
dynamic triggering law, and is free from Zeno behavior, and is inspired by the Lyapunov
function we use in the proof of the first consensus result. The Lyapunov function is different
from the one in [58, 59]. As a result, continuous broadcasting, receiving, and updating
are avoided. However, continuous sensing is needed since each agent has to continuously
monitor the triggering law and continuous listening is also needed since the triggering

49

50 Multi-agent systems with input saturation

times are determined during runtime and not known in advance. Then, inspired by the idea
of self-triggered algorithm in Section 3.3, we also propose one self-triggered algorithm to
avoid continuous sensing and listening.

The remainder of this chapter is organized as follows. Section 4.1 reviews the
consensus problem for the first-order continuous-time multi-agent systems with input
saturation. Section 4.2 shows that the underlying digraph having a directed spanning tree is
a necessary and sufficient condition for consensus. Section 4.3 and Section 4.4 use event-
triggered and self-triggered control to solve the same problem, respectively. Simulations
are given in Section 4.5. The chapter is concluded in Section 4.6. Section 4.7 gives the
proof of the main results.

4.1 Problem formulation

We consider a set of n agents modeled as single integrators with input saturation:

ẋi(t) = sath(ui(t)), i ∈ I, t ≥ 0, (4.1)

where xi(t) ∈ Rp is the state and ui(t) ∈ Rp is the control input of agent i, respectively,
p > 0 is the state dimension, and sath(·) is the saturation function defined in (1.16).

Definition 4.1. We say consensus1 for the multi-agent system (4.1) is achieved if

lim
t→∞
‖xi(t) − x j(t)‖ = 0, ∀i, j ∈ I, ∀xl(0) ∈ Rp, l ∈ I.

We again consider the distributed consensus protocol

ui(t) = −

n∑
j=1

Li jx j(t), (4.2)

where Li j is the element of the Laplacian matrix L. In this chapter, we assume that the
underlying graph G is directed.
Our first goal in this chapter is to solve the following problem.

Problem 4.1. Prove that consensus for the multi-agent system (4.1) is achieved if and only
if the digraph G has a directed spanning tree.

Remark 4.1. For the ease of presentation, we focus on the case where all the agents have
the same saturation level. The analysis can be readily extended to the case where the agents
have different saturation levels.

The following properties about the saturation function are useful for our analysis.

Lemma 4.1. For any real constants a and b,

1
2

a2 ≥

∫ a

0
sath(s)ds ≥

1
2

(sath(a))2, and (a − b)2 ≥ (sath(a) − sath(b))2.

1In some literatures, such consensus is also referred to as global consensus.

4.2. Consensus 51

Lemma 4.2. Suppose that L is the Laplacian matrix associated with a digraph G that
has a directed spanning tree. For x1, . . . , xn ∈ R

p, define πi = sath(−
∑n

j=1 Li jx j). Then
π1 = · · · = πn if and only if x1 = · · · = xn.

Proof. The sufficiency is straightforward. Let us show the necessity. Let µi = −
∑n

j=1 Li jx j.
From π1 = · · · = πn, we know that for any l = 1, . . . , p, cl(µi) > 0, ∀i ∈ I, or cl(µi) <
0, ∀i ∈ I, or cl(µi) = 0, ∀i ∈ I, where cl(µi) is the l-th component of µi.

From Lemma 2 in [58], we know that neither cl(µi) > 0, ∀i ∈ I nor cl(µi) < 0, ∀i ∈ I
holds. Thus −

∑n
j=1 Li jcl(x j) = cl(µi) = 0, ∀i ∈ I. From Lemma 2.1, we know rank(L) =

n − 1. Thus, we have cl(xi) = cl(x j), ∀i, j ∈ I. Hence x1 = · · · = xn. �

4.2 Consensus

In this section, we will show that consensus is achieved even in the presence of input
saturation ifG has a directed spanning tree. The mathematical analysis is inspired by [101].

In the following, we show a necessary and sufficient condition to consensus for system
(4.1)–(4.2).

Theorem 4.1. Consider the multi-agent system (4.1)–(4.2). Consensus is achieved if and
only if the digraph G has a directed spanning tree.

The necessity in Theorem 4.1 is a direct result of Lemma 2.3. We illustrate the main
idea of the proof of sufficiency here, while the detailed proof is given in Appendix 4.7.1.
We first consider the case where G is strongly connected, i.e., M = 1 in (2.2), and show
that consensus is achieved. We next consider the case G has a directed spanning tree
but it is not strongly connected, i.e., M ≥ 2. From the first case (M = 1), it follows
that all agents in SCCM achieve consensus since SCCM is either strongly connected
or of dimension one. Then, we consider SCCM−1 and note that all agents in SCCM−1,
which is either strongly connected or of dimension one, achieve the same consensus
value as those in SCCM , since the agents in SCCM and SCCM−1 are not influenced by
SCC1, . . . ,SCCM−2 and the consensus problem of this subsystem can be treated as a leader–
follower problem where agents in SCCM are leaders and agents in SCCM−1 are followers.
Notice that SCC1, . . . ,SCCM−2, are either strongly connected or of dimension one. By
applying a similar analysis, consensus of SCCm,SCCm+1, . . . ,SCCM can be treated as
a leader–follower consensus problem with agents in SCCM ,SCCM−1, . . . ,SCCm+1 being
leaders and agents in SCCm being followers. Therefore, the result follows.

Remark 4.2. The proof of Theorem 4.1 is based on the Lyapunov function

V(x(t)) =

n∑
i=1

ξi

p∑
l=1

∫ −
∑n

j=1 Li jcl(x j(t))

0
sath(s)ds, (4.3)

where x(t) = [x>1 (t), . . . , x>n (t)]> and ξ> = [ξ1, . . . , ξn] was defined in Lemma 2.1. It is
different from the one used in [58]. In addition, our Lyapunov function facilitates the design
of event-triggered control as shown in Section 4.3.

52 Multi-agent systems with input saturation

Remark 4.3. When h → ∞, i.e., the multi-agent system is free from saturation, Theorem
4.1 corresponds to the well known result for the consensus problem of multi-agent systems
without saturation [36, 37]. The main differences between the case with and without
saturation are the convergence speed and the consensus value. For the saturated case,
the convergence speed is slower and the consensus value is not fully determined by the
Laplacian matrix L and the initial states of the agents. From the proof of Theorem 4.1, we
know that the saturation is no longer active after a finite time T2 ≥ 0 which depends on the
initial value of each agent, the saturation level, and the network topology. Thus after T2
the convergence speed is exponential and the consensus value is determined by the state of
each agent at T2.

4.3 Event-triggered control

To avoid continuous exchange of information among agents and update of actuators, we
equip the consensus protocol (4.2) with an event-triggered communication scheme. The
control signal is only updated when the triggering condition is satisfied. It results in the
following multi-agent system with input saturation and event-triggered control input

ẋi(t) = sath(ûi(t)), i ∈ I, t ≥ 0, (4.4)

ûi(t) = −

n∑
j=1

Li jx j(t
j
k j(t)

). (4.5)

Note that the consensus protocol (4.5) only updates at the triggering times and is constant
between two consecutive triggering times. For simplicity, let x̂i(t) = xi(ti

ki(t)
), and ei(t) =

x̂i(t) − xi(t).
Our second goal in this chapter is to solve the following problem.

Problem 4.2. Propose methods to determine the triggering times such that consensus is
reached, while continuous exchange of information, continuous update of actuators, and
Zeno behavior are avoided.

This problem is solved by the following theorem.

Theorem 4.2. Consider the multi-agent system (4.4)–(4.5). Given αi > 0, βi > 0 and the
first triggering time ti

1 = 0, agent i determines the triggering times {ti
k}
∞
k=2 by

ti
k+1 = min

{
t : ‖ei(t)‖2 ≥ αie−βit, t ≥ ti

k

}
. (4.6)

Then, (i) there is no Zeno behavior; and (ii) consensus is achieved if and only if the
underlying digraph G has a directed spanning tree.

The proof is given in Section 4.7.2.

Remark 4.4. The event-triggered control input (4.5) together with the triggering law (4.6)
is fully distributed. That is, each agent only requires its own state information and its
neighbors’ state information, without any a priori knowledge of any global parameter,
such as the eigenvalue of the Laplacian matrix. This is different from [18, 66].

4.4. Self-triggered algorithm 53

4.4 Self-triggered algorithm

When performing the event-triggered control input (4.5) together with the triggering law
(4.6), each agent needs to broadcast its state to its neighbors at its triggering times, and
to receive and to update its input at its neighbors’ triggering times. Thus, continuous
broadcasting, receiving, and updating are avoided. However, continuous sensing is needed
since each agent has to continuously monitor the triggering law and continuous listening
is also needed since the triggering times are determined during runtime and not known in
advance. Inspired by the idea of self-triggered algorithm in Section 3.3, if each agent can
predict its next triggering time and broadcast it to its neighbors at the current triggering
time, then each agent only needs to sense and broadcast at its own triggering times, and to
listen to and receive incoming information from its neighbors at their triggering times. In
the following we will propose a self-triggered algorithm such that at time ti

k each agent i
could estimate ti

k+1. The idea is illustrated as follows.
From ẋi(t) = sath(ûi(t)), we have

xi(t) = xi(ti
k) +

∫ t

ti
k

sath(ûi(s))ds, t ∈ [ti
k, t

i
k+1]. (4.7)

Thus for t ∈ [ti
k, t

i
k+1), we have

‖ei(t)‖ = ‖xi(ti
k) − xi(t)‖ =

∥∥∥∥∥ ∫ t

ti
k

sath(ûi(s))ds
∥∥∥∥∥. (4.8)

Here we need to highlight that sath(ûi(t)) may be not a constant vector for all t ∈ [ti
k, t

i
k+1)

since x j(t
j
k j(t)

) may be not a constant vector for all t ∈ [ti
k, t

i
k+1) which is due to that agent j

may trigger at some time instants in this interval. So at time ti
k we do not know what is the

value of ‖ei(t)‖ for all t ∈ (ti
k, t

i
k+1). However, we know sath(ûi(t)) is a constant vector for

t ∈ [ti
k,T

1
i (ti

k)), where

T 1
i (ti

k) = min
{
ti
k j(ti

k)+1, j ∈ N in
i

}
, (4.9)

i.e., T 1
i (ti

k) is the first triggering time of all agent i’s neighbors after time ti
k. Although,

at time ti
k, agent i does not know sath(ûi(t)) for t > T 1

i (ti
k), it knows |cl(sath(ûi(t)))| ≤ h,

l = 1 . . . , p. Hence

‖ei(t)‖ =

∥∥∥∥∥ ∫ t

ti
k

sath(ûi(s))ds
∥∥∥∥∥ =

∥∥∥∥∥ ∫ T 2
i (t)

ti
k

sath(ûi(s))ds +

∫ t

T 2
i (t)

sath(ûi(s))ds
∥∥∥∥∥ ≤ %i(t),

(4.10)

where

T 2
i (t) = min

{
T 1

i (ti
k), t

}
, for t ∈ [ti

k, t
i
k+1), (4.11)

54 Multi-agent systems with input saturation

Algorithm 4.1
1: Agent i ∈ I chooses αi > 0 and βi > 0;
2: Initialize ti

1 = 0 and k = 1;
3: At time s = ti

k, agent i senses xi(ti
k), and updates ui(ti

k) by (4.5), and determines ti
k+1 by

(4.13)1, and broadcasts its triggering information {ti
k+1, xi(ti

k)} to its neighbors;
4: At agent i’s neighbors’ triggering times which are between [ti

k, t
i
k+1], agent i receives

triggering information for its neighbors2 and updates its ui(·) by (4.5);
5: resets k = k + 1, and goes back to Step 3.

and

%i(t) =(T 2
i (t) − ti

k)‖sath(ûi(ti
k))‖ + (t − T 2

i (t))h
√

p, for t ∈ [ti
k, t

i
k+1). (4.12)

Then, a necessary condition to guarantee the inequality in (4.6), i.e.,

‖ei(t)‖2 ≥ αie−βit, ∀t ∈ [ti
k, t

i
k+1),

holds is

%i(t) ≥
√
αie−

βi
2 t, ∀t ∈ [ti

k, t
i
k+1).

Since
√
αie−

βi
2 t decreases with respect to t, %i(t) increases with respect to t during [ti

k, t
i
k+1)

and %i(ti
k) = 0, then given ti

k, agent i can estimate ti
k+1 by solving

%i(t) =
√
αie−

βi
2 t, t ≥ ti

k. (4.13)

In other words, if at time ti
k agent i knows t j

k j(ti
k)

, t j
k j(ti

k)+1
, x j(t

j
k j(ti

k)
), ∀ j ∈ Ni, then it

can estimate its next triggering time ti
k+1 by solving (4.13). The above implement idea

is summarized in Algorithm 4.1.
The following theorem shows that consensus is achieved and there is no Zeno behavior

when every agent performs Algorithm 4.1.

Theorem 4.3. Consider the multi-agent system (4.4)–(4.5). If all agents perform Algorithm
4.1, then, (i) there is no Zeno behavior; and (ii) consensus is achieved if and only if the
underlying digraph G has a directed spanning tree.

Proof. The method of the exclusion of Zeno behavior is similar to the way in the proof of
Theorem 4.2. Under Algorithm 4.1, we have ‖ei(t)‖2 ≤ αie−βit for all i ∈ I and t ≥ 0. Then
from Theorem 4.2, we know that consensus is achieved. �

Remark 4.5. In order to perform Algorithm 4.1, no global parameters are used, i.e.,
Algorithm 4.1 is distributed.

1Agent i uses t j
k j(tik)

to replace t j
k j(tik)+1

to determine tik+1 by (4.13) when tik = t j
k j(tik)

.
2In other words, agent i only listen to incoming information at its neighbors’ triggering times. Thus

continuous listening is avoided.

4.5. Simulations 55

4.5 Simulations

In this section, simulations are given to demonstrate the theoretical results. Consider again
the digraph and the corresponding multi-agent system in Figure 2.1. Let the saturation level
be h = 10. We choose an arbitrary initial state x(0) = [6.2945, 8.1158,−7.4603, 8.2675,
2.6472,−8.0492,−4.4300]>.

Figure 4.1 (a) shows the state evolutions of the multi-agent system (4.1)–(4.2) and
Figure 4.1 (b) shows the saturated input of each agent. We see that consensus is achieved,
even if some agents are saturated initially.

We next consider the case with event-triggered control input. Figure 4.2 (a) shows the
state evolutions of the multi-agent system (4.4)–(4.5) under the triggering law (4.6) with
αi = 10 and βi = 1. Figure 4.2 (b) shows the saturated input of each agent. Figure 4.3 shows
the corresponding triggering times for each agent. We see that consensus is achieved also
in this case. Moreover, from Figure 4.3, we see that each agent only needs to broadcast its
state to its neighbors at its triggering times. Thus continuous broadcasting and receiving
are avoided.

Figure 4.4 (a) shows the state evolutions of the multi-agent system (4.4)–(4.5) when
each agent performs Algorithm 4.1 with αi = 10 and βi = 1. Figure 4.4 (b) shows the
saturated input of each agent. Figure 4.5 shows the corresponding triggering times for
each agent. From Figure 4.4 (a) and (b), we see that consensus is achieved and sath(ui(t))
is within the saturation level. Moreover, from Figure 4.5, we see that each agent only
needs to sense and broadcast at its triggering times. Thus continuous sensing, broadcasting,
receiving, and listening are avoided. Note however that both the event-triggered control
and self-triggered control give rise to a less smooth state evolutions because of the large
variability in the control action.

4.6 Summary

In this chapter, we studied consensus problem for multi-agent systems with input saturation
constraints over digraphs. We showed that consensus is achieved if and only if the
underlying directed communication topology has a directed spanning tree by using a
Laypunov function. Moreover, we considered event-triggered control and presented a
distributed triggering law and a self-triggered algorithm to reduce the overall need of
communication and system updates. We showed that consensus is still achieved under the
same connectivity condition. Furthermore, Zeno behavior was excluded. Future research
directions include considering more general systems such as double integrator systems and
comparing the convergence speed between the saturation and non-saturation cases.

4.7 Appendices

4.7.1 Proof of sufficiency of Theorem 4.1

The proof of sufficiency follows the structure outlined after the theorem stated in Section
4.2. More specifically, we first show consensus for the case where M = 1 in (2.2) which

56 Multi-agent systems with input saturation

 t
0 2 4 6 8 10

 x
i(t

)

-5

0

5

 agent 1
 agent 2
 agent 3
 agent 4
 agent 5
 agent 6
 agent 7

(a)

 t
0 2 4 6 8 10

 u
i(t

)

-10

-5

0

5

10

 agent 1
 agent 2
 agent 3
 agent 4
 agent 5
 agent 6
 agent 7

(b)

Figure 4.1: (a) The state evolutions of the multi-agent system (4.1)–(4.2). (b) The saturated
input of each agent.

4.7. Appendices 57

 t
0 2 4 6 8 10

 x
i(t

)

-5

0

5

 agent 1
 agent 2
 agent 3
 agent 4
 agent 5
 agent 6
 agent 7

(a)

 t
0 2 4 6 8 10

 u
i(t

)

-10

-5

0

5

10

 agent 1
 agent 2
 agent 3
 agent 4
 agent 5
 agent 6
 agent 7

(b)

Figure 4.2: (a) The state evolutions of the multi-agent system (4.4)–(4.5) under the
triggering law (4.6). (b) The saturated input of each agent.

58 Multi-agent systems with input saturation

 t
0 2 4 6 8 10

 agent 1

 agent 2

 agent 3

 agent 4

 agent 5

 agent 6

 agent 7

Figure 4.3: The triggering times for each agent in the multi-agent system (4.4)–(4.5) under
the triggering law (4.6).

corresponds to only one SCC. Then, we consider the case M = 2 in (2.2), and show that the
agents in SCC1 and SCC2 reach consensus. We finally argue that the general case where
M > 2 follows in a similar way.

(i) In this part, we consider the situation where G is strongly connected, i.e., M = 1 in
(2.2).

We first prove that consensus is achieved. Consider the Lyapunov candidate (4.3)
introduced in Remark 4.2. From Lemma 2.1, we have ξi > 0, i ∈ I, since G is strongly
connected. From Lemma 4.1, we know that

Vil(x(t)) :=
∫ −

∑n
j=1 Li jcl(x j(t))

0
sath(s)ds ≥ 0,

and Vil(x(t)) = 0 if and only if −
∑n

j=1 Li jcl(x j(t)) = 0. Thus, we know that

V(x(t)) =

n∑
i=1

ξi

p∑
l=1

Vil(x) ≥ 0,

and V(x(t)) = 0 if and only if −
∑n

j=1 Li jcl(x j(t)) = 0 for all i ∈ I and l = 1, . . . , p. This
is furthermore equivalent to x1(t) = · · · = xn(t) since rank(L) = n − 1. Hence, we have
V(x(t)) ≥ 0 and V(x(t)) = 0 if and only if x1(t) = · · · = xn(t).

4.7. Appendices 59

 t
0 1 2 3 4

 x
i(t

)

-5

0

5

 agent 1
 agent 2
 agent 3
 agent 4
 agent 5
 agent 6
 agent 7

(a)

 t
0 1 2 3 4

 u
i(t

)

-10

-5

0

5

10
 agent 1
 agent 2
 agent 3
 agent 4
 agent 5
 agent 6
 agent 7

(b)

Figure 4.4: (a) The state evolutions of the multi-agent system (4.4)–(4.5) when each agent
performs Algorithm 4.1. (b) The saturated input of each agent.

60 Multi-agent systems with input saturation

 t
0 1 2 3 4

 agent 1

 agent 2

 agent 3

 agent 4

 agent 5

 agent 6

 agent 7

Figure 4.5: The triggering times for each agent in the multi-agent system (4.4)–(4.5) when
each agent performs Algorithm 4.1.

The derivative of V(x) along the trajectories of (4.1)–(4.2) is

V̇(x(t)) =

n∑
i=1

ξi

p∑
l=1

[sath(−
n∑

j=1

Li jcl(x j(t)))][−
n∑

j=1

Li jcl(ẋ j(t))]

=

n∑
i=1

ξi

p∑
l=1

[sath(cl(ui(t)))][−
n∑

j=1

Li jsath(cl(u j(t)))]

=

n∑
i=1

ξi[sath(ui(t))]>
n∑

j=1

−Li jsath(u j(t))

= −

n∑
i=1

ξiqs
i (t), (4.14)

where

qs
i (t) = −

1
2

n∑
j=1

Li j‖sath(u j(t)) − sath(ui(t))‖2 ≥ 0,

and the last equality of (4.14) holds since

−

n∑
i=1

ξiqs
i (t) =

n∑
i=1

1
2

n∑
j=1

ξiLi j‖sath(u j(t)) − sath(ui(t))‖2

4.7. Appendices 61

=

n∑
i=1

1
2

n∑
j=1

ξiLi j

[
‖sath(u j(t))‖2 + ‖sath(ui(t))‖2

]
−

n∑
i=1

n∑
j=1

ξiLi j[sath(u j(t))]>sath(ui(t))

=
1
2

n∑
j=1

‖sath(u j(t))‖2
n∑

i=1

ξiLi j +
1
2

n∑
i=1

ξi‖sath(ui(t))‖2
n∑

j=1

Li j

−

n∑
i=1

n∑
j=1

ξiLi j[sath(u j(t))]>sath(ui(t))

= −

n∑
i=1

n∑
j=1

ξiLi j[sath(u j(t))]>sath(ui(t)), (4.15)

where we have used ξ>L = 0 and L1n = 0 in (4.15).
From (4.14), we know that V̇(x(t)) ≤ 0 and V̇(x(t)) = 0 if and only if sath(ui(t)) =

sath(u j(t)), ∀i, j ∈ I. It follows from Lemma 4.2 that, this is equivalent to xi(t) =

x j(t), ∀i, j ∈ I. Thus, by LaSalle Invariance Principle [102], we have

lim
t→∞
‖xi(t) − x j(t)‖ = 0, ∀i, j ∈ I, (4.16)

i.e., consensus is achieved.
We next show that the input of each agent enters into the saturation level in finite time.
Since −

∑n
j=1 Li jcl(x j(t)), i ∈ I, l = 1, . . . , p are continuous with respect to t, it then

follows from (4.16) that there exists a constant T1 ≥ 0 such that

|cl(ui(t))| =
∣∣∣∣ − n∑

j=1

Li jcl(x j(t))
∣∣∣∣ ≤ h,∀t ≥ T1.

In other words the saturation function in (4.1) is not active after T1. Thus,

ẋi(t) = −

n∑
j=1

Li jx j(t), t ≥ T1. (4.17)

Finally, we estimate the convergence speed, which will be used later. Consider the
following function

Ṽ(x(t)) =
1
2

x>(t)(U ⊗ Ip)x(t). (4.18)

From Lemma 2.2, we know that Ṽ(x(t)) ≥ 0. The derivative of Ṽ(x(t)) along the trajectories
of system (4.17) satisfies

˙̃V(x(t)) =x>(t)(U ⊗ Ip)ẋ(t)

62 Multi-agent systems with input saturation

=x>(t)(U ⊗ Ip)(−L ⊗ Ip)x(t) = −x>(t)(R ⊗ Ip)x(t)

≤ −
ρ2(R)
ρ(U)

x>(t)(U ⊗ Ip)x(t) = −2
ρ2(R)
ρ(U)

Ṽ(x(t)), ∀t ≥ T1.

Thus

Ṽ(x(t)) ≤ Ṽ(x(T1))e−2 ρ2(R)
ρ(U) (t−T1), ∀t ≥ T1.

Noting that Ṽ(x(t)) is continuous with respect to t, there exists a positive constant C1 such
that

Ṽ(x(t)) ≤ C1, ∀t ∈ [0,T1].

Then

Ṽ(x(t)) ≤ C2e−2 ρ2(R)
ρ(U) t, ∀t ≥ 0, (4.19)

where C2 = max
{
Ṽ(x(T1)),C1e2 ρ2(R)

ρ(U) T1
}
.

Moreover, from Lemma 2.2, we know that

n∑
j=1

‖u j(t)‖2 =x>(t)(L>L ⊗ Ip)x(t)

≤
ρ(L>L)
ρ2(U)

x>(t)(U ⊗ Ip)x(t) = 2
ρ(L>L)
ρ2(U)

Ṽ(x(t))

≤2
ρ(L>L)
ρ2(U)

C2e−2 ρ2(R)
ρ(U) t, ∀t ≥ 0. (4.20)

(ii) In this part, we consider the case where M ≥ 2, but we first introduce some notations
which will be used later.

Let N0 = 0, Nl =
∑l

m=1 nm, l = 1, . . . ,M, where nm is the dimension of
Lm,m. Then the i-th agent in SCCm is the Nm−1 + i-th agent of the whole graph. In
the following, we exchangeably use vm

i and vNm−1+i to denote this agent. Accordingly,
denote xm

i (t) = xNm−1+i(t), x̂m
i (t) = x̂Nm−1+i(t), um

i (t) = uNm−1+i(t) and define um(t) =

[(um
1)>(t), . . . , (um

nm
)>(t)]>.

In the following we only consider the case where M = 2. The case where M > 2 can
be treated in a similar manner, as discussed in the proof sketch in Section 4.2.

First, note that the agents in SCC2 do not depend on any agents in SCC1. Thus, SCC2
can be treated as a strongly connected digraph. Then, from the analysis in (i), we have

lim
t→+∞

‖x2
i (t) − x2

j (t)‖ = 0, i, j = 1 . . . , n2,

and that there exists a constant T2 ≥ 0 such that

|cl(u2
i (t))| =

∣∣∣∣ − n2∑
j=1

L2,2
i j cl(x2

j (t))
∣∣∣∣ ≤ h, ∀t ≥ T2. (4.21)

4.7. Appendices 63

In addition, similar to (4.20), we have

‖u2(t)‖2 =

n2∑
j=1

‖u2
j (t)‖

2 ≤ C3e−C4t, t ≥ 0,

where C3 and C4 are two positive constants.
Second, let us consider SCC1. Similar to V(x) defined in (4.3), define

V1(x(t)) =

n1∑
i=1

ξ1
i

p∑
l=1

∫ cl(u1
i (t))

0
sath(s)ds, (4.22)

V2(x(t)) =

n2∑
i=1

ξ2
i

p∑
l=1

∫ cl(u2
i (t))

0
sath(s)ds. (4.23)

From the definition of the component operator cl(·), we know cl(u1
i (t)) = −

∑n1
j=1 L1,1

i j cl(x1
i (t))−∑n2

j=1 L1,2
i j cl(x2

i (t)) and cl(u2
i (t)) = −

∑n2
j=1 L2,2

i j cl(x2
i (t)). From Lemma 4.1, we have V1(x) ≥ 0

and V2(x) ≥ 0.
Similar to (4.14),

V̇2(x(t)) =

n2∑
i=1

−ξ2
i q2

i (t),

where

q2
i (t) = −

1
2

n∑
j=1

L2,2
i j ‖sath(u2

j (t)) − sath(u2
i (t))‖2 ≥ 0.

Moreover, similar to the analysis of V̇(x(t)) in (i), we know that V̇2(x(t)) = 0 if and only if
x2

i (t) = x2
j (t),∀i, j = 1, . . . , n2.

The derivative of V1(x(t)) along the trajectories of (4.1)–(4.2) satisfies

V̇1(x(t)) =

n1∑
i=1

ξ1
i

p∑
l=1

sath(cl(u1
i (t)))cl(u̇1

i (t))

=

n1∑
i=1

ξ1
i

p∑
l=1

cl(sath(u1
i (t)))

[
−

n1∑
j=1

L1,1
i j cl(sath(u1

j (t))) −
n2∑
j=1

L1,2
i j cl(sath(u2

j (t)))
]

=

n1∑
i=1

ξ1
i [sath(u1

i (t))]>
[
−

n1∑
j=1

L1,1
i j sath(u1

j (t)) −
n2∑
j=1

L1,2
i j sath(u2

j (t))
]

= − [sath(u1(t))]>(Q1 ⊗ Ip)sath(u1(t)) −
n1∑
i=1

ξ1
i [sath(u1

i (t))]>
n2∑
j=1

L1,2
i j sath(u2

j (t))

≤ − ρ2(Q1)‖sath(u1(t))‖2 +
ρ2(Q1)

2

n1∑
i=1

‖sath(u1
i (t))‖2

64 Multi-agent systems with input saturation

+
1

2ρ2(Q1)

n1∑
i=1

∥∥∥∥ξ1
i

n2∑
j=1

L1,2
i j sath(u2

j (t))
∥∥∥∥2

≤ −
ρ2(Q1)

2
‖sath(u1(t))‖2 +

n1n2 max{(L1,2
i j)2}

2ρ2(Q1)
‖sath(u2(t))‖2

≤ −
ρ2(Q1)

2
‖sath(u1(t))‖2 +

n1n2 max{(L1,2
i j)2}

2ρ2(Q1)
C3e−C4t, t ≥ 0,

where the first inequality holds since Q1 > 0 which could be found in Lemma 2.4.
Let us treat yi(t) = e−C4t, t ≥ 0, i ∈ I, as an additional state of each agent, and let

y(t) = [y1(t), . . . , yn(t)]>. Consider a Lyapunov candidate:

V3(x(t), y(t)) = V1(x(t)) + V2(x(t)) +
2n1n2 max{(L1,2

i j)2}

2ρ2(Q1)C4n
C3

n∑
i=1

yi(t).

The derivative of V3(t) along the trajectories of (4.1)–(4.2) is

V̇3(x(t), y(t)) =V̇1(x(t)) + V̇2(x(t)) −
2n1n2 max{(L1,2

i j)2}

2ρ2(Q1)n
C3

n∑
i=1

yi(t).

Then, we have

V̇3(x(t), y(t)) ≤ −
ρ2(Q1)

2
‖sath(u1(t))‖2 +

n2∑
i=1

−ξ2
i q2

i (t) −
n1n2 max{(L1,2

i j)2}

2ρ2(Q1)n
C3

n∑
i=1

yi(t), t ≥ 0.

By LaSalle Invariance Principle, similar to the analysis in (i), we have

lim
t→∞
‖x j(t) − xi(t)‖ = 0, ∀i, j ∈ I.

Thus, consensus is achieved. Moreover, similar to the analysis in (i), we can show that after
a finite time T2 ≥ 0 the saturation is no longer active.

4.7.2 Proof of Theorem 4.2

(i) Similar to the proof of excluding Zeno behavior in Theorem 3.1, we prove that there is
no Zeno behavior by contradiction. Suppose there exists Zeno behavior. Then there exists
an agent vi, such that limk→∞ ti

k = T0 for some constant T0. Let ε0 =
√
αi

2
√

ph e−
1
2 βiT0 > 0. Then

from the property of limits, there exists a positive integer N(ε0) such that

ti
k ∈ [T0 − ε0,T0], ∀k ≥ N(ε0). (4.24)

Also noting ‖sath(s)‖ ≤ h
√

p for any s ∈ Rp, we have

‖sath(ûi(t))‖ ≤ h
√

p.

4.7. Appendices 65

Noting ∣∣∣∣∣d‖ei(t)‖
dt

∣∣∣∣∣ ≤ ‖ẋi(t)‖ = ‖sath(ûi(t))‖ ≤ h
√

p,

and ‖x̂i(ti
k)−xi(ti

k)‖ = 0 for any triggering time ti
k, we conclude that one necessary condition

to guarantee ‖ei(t)‖2 ≥ αie−βit, t ≥ ti
k is

(t − ti
k)h
√

p ≥
√
αie−

1
2 βit, t ≥ ti

k. (4.25)

Then

ti
N(ε0)+1 − ti

N(ε0) ≥

√
αi
√

ph
e−

1
2 βiti

N(ε0)+1 ≥

√
αi
√

ph
e−

1
2 βiT0 = 2ε0,

which contradicts (4.24). Therefore, there is no Zeno behavior.
(ii) (Necessity) Necessity follows from Lemma 2.3.
(Sufficiency) (ii-1) In this part, we consider the situation where G is strongly

connected, i.e., M = 1 in (2.2).
We first show that consensus is achieved. Let fi(t) = sath(ûi(t)) − sath(ui(t)). The

derivative of V(x), as defined in (4.3), but along the trajectories of (4.4)–(4.5), satisfies

V̇(x(t)) =

n∑
i=1

ξi

p∑
l=1

[sath(−
n∑

j=1

Li jcl(x j(t)))][−
n∑

j=1

Li jcl(ẋ j(t))]

=

n∑
i=1

ξi

p∑
l=1

[sath(cl(ui(t)))][−
n∑

j=1

Li jsath(cl(û j(t)))]

= −

n∑
i=1

ξi[sath(ui(t))]>
n∑

j=1

Li jsath(û j(t))

= −

n∑
i=1

ξi[sath(ui(t))]>
n∑

j=1

Li j[sath(u j(t)) − f j(t)]

= −

n∑
i=1

n∑
j=1

ξiLi j[sath(ui(t))]>sath(u j(t)) −
n∑

i=1

n∑
j=1

ξiLi j[f j(t)]>sath(ui(t))

∗
=

n∑
i=1

ξi

2

n∑
j=1

Li j‖sath(ui(t)) − sath(u j(t))‖2

−

n∑
i=1

n∑
j=1, j,i

ξiLi j[fi(t)]>[sath(u j(t)) − sath(ui(t))]

≤

n∑
i=1

ξi

2

n∑
j=1

Li j‖sath(u j(t)) − sath(ui(t))‖2

+

n∑
i=1

n∑
j=1, j,i

{
− ξiLi j

1
4
‖sath(u j(t)) − sath(ui(t))‖2 − ξiLi j‖ fi(t)‖2

}

66 Multi-agent systems with input saturation

=

n∑
i=1

ξi

4

n∑
j=1

Li j‖sath(u j(t)) − sath(ui(t))‖2 +

n∑
i=1

ξiLii‖ fi(t)‖2

= −

n∑
i=1

ξi

2
qs

i (t) +

n∑
i=1

ξiLii‖ fi(t)‖2

= −

n∑
i=1

ξi

2
qs

i (t) +

n∑
i=1

ξiLii‖sath(ûi(t)) − sath(ui(t))‖2

∗∗

≤ −

n∑
i=1

ξi

2
qs

i (t) +

n∑
i=1

ξiLii‖ûi(t) − ui(t)‖2

= −

n∑
i=1

ξi

2
qs

i (t) +

n∑
i=1

ξiLii

∥∥∥∥ n∑
j=1

Li je j(t)
∥∥∥∥2

≤ −

n∑
i=1

ξi

2
qs

i (t) + max
i∈I

{
ξiLii

}
e>(t)(L>L ⊗ Ip)e(t)

≤ −

n∑
i=1

ξi

2
qs

i (t) + max
i∈I

{
ξiLii

}
ρ(L>L)

n∑
i=1

‖ei(t)‖2, (4.26)

where the equality denoted by ∗= holds due to (4.15) and the inequality denoted by
∗∗

≤ holds
due to Lemma 4.1.

Let us treat zi(t) = e−βit, t ≥ 0 as an additional state to agent vi, i ∈ I, and let z(t) =

[z1(t), . . . , zn(t)]>. Consider a Lyapunov candidate:

W(x(t), z(t)) = V(x(t)) + 2 max
i

{
ξiLii

}
ρ(L>L)

n∑
i=1

αi

βi
zi(t).

The derivative of W(x(t), z(t)) along the trajectories of (4.4)–(4.5) and żi(t) = −βizi(t) is

Ẇ(x(t), z(t)) =V̇(x) − 2 max
i

{
ξiLii

}
ρ(L>L)

n∑
i=1

αie−βit

≤ −

n∑
i=1

ξi

2
qs

i (t) + max
i

{
ξiLii

}
ρ(L>L)

n∑
i=1

‖ei(t)‖2 − 2 max
i

{
ξiLii

}
ρ(L>L)

n∑
i=1

αie−βit

≤ −

n∑
i=1

ξi

4
qs

i (t) −max
i

{
ξiLii

}
ρ(L>L)

n∑
i=1

αie−βit ≤ 0.

By LaSalle Invariance Principle, similar to the proof of Theorem 4.1, we have

lim
t→∞
‖x j(t) − xi(t)‖ = 0, i, j ∈ I, (4.27)

i.e., consensus is achieved.
We next show that the input of each agent enters into the saturation level in finite time.

4.7. Appendices 67

Since cl(ûi(t)) = −
∑n

j=1 Li jcl(x j(t)) −
∑n

j=1 Li jcl(e j(t)), (4.6), −
∑n

j=1 Li jcl(x j(t)), i ∈
I, l = 1, . . . , p are continuous with respect to t, it then follows from (4.27) that there exists
a constant T3 ≥ 0 such that

|cl(ûi(t))| ≤
∣∣∣∣ − n∑

j=1

Li jcl(x j(t))
∣∣∣∣ +

∣∣∣∣ − n∑
j=1

Li jcl(e j(t))
∣∣∣∣ ≤ h, ∀t ≥ T3. (4.28)

In other words, the saturation function in (4.4) is no longer active after T3. Thus, the multi-
agent system (4.4) with event-triggered control input (4.5) reduces to

ẋi(t) = −

n∑
j=1

Li j x̂ j(t), t ≥ T3. (4.29)

Finally, we estimate the convergence speed, which will be used later. Similar to the
proof of Theorem 2 in [65], we conclude that there exist C5 > 0 and C6 > 0 such that

Ṽ(x(t)) ≤ C5e−C6t, ∀t ≥ T3,

where Ṽ(x(t)) is defined in (4.18). Similar to (4.19), we have

Ṽ(x(t)) ≤ C7e−C6t, ∀t ≥ 0, (4.30)

where C7 is a positive constant.
Moreover, similar to the analysis for obtaining (4.20), we have

n∑
i=1

‖ûi(t)‖2 =

n∑
i=1

‖ui(t) −
n∑

j=1

Li je j(t)‖2

≤2
n∑

i=1

‖ui(t)‖2 + 2ρ(L>L)
n∑

i=1

‖ei(t)‖2

≤C9e−C8t, ∀t ≥ 0, (4.31)

where C9 and C8 are two positive constants.
(ii-2) In this part, we consider the situation whereG has a directed spanning tree but it is

not strongly connected, i.e., M ≥ 2 in (2.2). For simplicity, we only consider the case where
M = 2. The general case can be treated in a similar manner. We use the same notation
as in the proof of Theorem 4.1. For simplicity, let ûm

i (t) = ûNm−1+i(t), em
i (t) = eNm−1+i(t),

f m
i (t) = fNm−1+i(t), αm

i = αNm−1+i, βm
i = βNm−1+i, and ûm(t) = [(ûm

1)>(t), . . . , (ûm
nm

)>(t)]>.
First, let us consider SCC2 and note that no agent in SCC2 is dependent on any agent in

SCC1. Thus, SCC2 can be treated as a strongly connected digraph. Then, from the analysis
in (ii-1), we have that

lim
t→∞
‖x2

i (t) − x2
j (t)‖ = 0, i, j = 1 . . . , n2,

68 Multi-agent systems with input saturation

and that there exists a constant T4 ≥ 0 such that

|cl(û2
i (t))| =

∣∣∣∣ − n2∑
j=1

L2,2
i j cl(x̂2

j (t))
∣∣∣∣ ≤ h, ∀t ≥ T4. (4.32)

In addition, similar to (4.31), we have

‖û2(t)‖2 =

n2∑
j=1

‖û2
j (t)‖

2 ≤ C11e−C10t, t ≥ 0,

where C11 and C10 are two positive constants.
Second, let us consider SCC1. Similar to (4.26), the derivative of V2(x(t)), as defined in

(4.23), but along the trajectories of system (4.4)–(4.5), satisfies

V̇2(x(t)) ≤ −
n2∑
i=1

ξ2
i

2
q2

i (t) + d1

n2∑
i=1

‖e2
i (t)‖2,

where
d1 = max

i∈I

{
ξ2

i L2,2
ii

}
ρ((L2,2)>L2,2).

The derivative of V1(x(t)), as defined in (4.22), but along the trajectories of system
(4.4)–(4.5), satisfies

V̇1(x(t)) =

n1∑
i=1

ξ1
i

p∑
l=1

sath(cl(u1
i (t)))cl(u̇1

i (t))

=

n1∑
i=1

ξ1
i

p∑
l=1

cl(sath(u1
i (t)))

[
−

n1∑
j=1

L1,1
i j cl(sath(û1

j (t))) −
n2∑
j=1

L1,2
i j cl(sath(û2

j (t)))
]

=

n1∑
i=1

ξ1
i [sath(u1

i (t))]>
[
−

n1∑
j=1

L1,1
i j sath(û1

j (t)) −
n2∑
j=1

L1,2
i j sath(û2

j (t))
]

=

n1∑
i=1

ξ1
i [sath(û1

i (t)) − f 1
i (t)]>

[
−

n1∑
j=1

L1,1
i j sath(û1

j (t)) −
n2∑
j=1

L1,2
i j sath(û2

j (t))
]

= − [sath(û1(t))]>(Q1 ⊗ Ip)sath(û1(t)) +

n1∑
i=1

ξ1
i [sath(û1

i (t))]>
n2∑
j=1

L1,2
i j sath(û2

j (t))

+

n1∑
i=1

ξ1
i [f 1

i (t)]>
[n1∑

j=1

L1,1
i j sath(û1

j (t)) +

n2∑
j=1

L1,2
i j sath(û2

j (t))
]

≤ − ρ2(Q1)‖sath(û1(t))‖2 +
ρ2(Q1)

4

n1∑
i=1

‖sath(û1
i (t))‖2

+
1

ρ2(Q1)

n1∑
i=1

∥∥∥∥ξ1
i

n2∑
j=1

L1,2
i j sath(û2

j (t))
∥∥∥∥2

+
ρ2(Q1)

4

n1∑
j=1

‖sath(û1
j (t))‖

2

4.7. Appendices 69

+
1

ρ2(Q1)

n1∑
j=1

∥∥∥∥ n1∑
i=1

ξ1
i L1,1

i j f 1
i (t)

∥∥∥∥2
+

n1∑
i=1

1
4
‖ f 1

i (t)‖2 +

n1∑
i=1

∥∥∥∥ξ1
i

n2∑
j=1

L1,2
i j sath(û2

j (t))
∥∥∥∥2

≤ −
ρ2(Q1)

2
‖sath(û1(t))‖2 + d2

n1∑
i=1

‖ f 1
i (t)‖2 + d3‖sath(û2(t))‖2, (4.33)

where

d2 =
1
4

+ (n1)2 max
i∈{1,...,n1}

{
(ξ1

i L1,1
i j)2

} 1
ρ2(Q1)

,

d3 =2n1n2 max
i∈{1,...,n1}

{
(ξ1

i L1,2
i j)2

}(1
ρ2(Q1)

+ 1
)
.

Similar to the analysis to get (4.26), from (4.33), we have

V̇1(x(t)) ≤ −
ρ2(Q1)

2
‖sath(û1(t))‖2 + d4

n1∑
i=1

‖e1
i (t)‖2 + d4

n2∑
i=1

‖e2
i (t)‖2 + d3‖sath(û2(t))‖2,

where

d4 = d2ρ(L>L).

Let us treat ηr
i (t) = e−β

r
i y, t ≥ 0, as an additional state of agent vr

i , r = 1, 2, i = 1, . . . , n2,
θ2

i (t) = e−C10t, t ≥ 0, as an additional state of agent v2
i , i = 1, . . . , n2, and θ1

i (t) = 0, t ≥ 0, as
an additional state of agent v1

i , i = 1, . . . , n1. Let η(t) = [η1
1(t), . . . , η1

n1
(t), η2

1(t), . . . , η1
n2

(t)]>

and θ = [θ1
1(t), . . . , θ1

n1
(t), θ2

1(t), . . . , θ1
n2

(t)]>.
Consider the following Lyapunov candidate:

Wr(x(t), η(t), θ(t)) =V1(x(t)) + V2(x(t)) + 2
C11

C10
d3

n2∑
i=1

θ2
i (t)

+ 2
n2∑
i=1

(d1 + d4)α2
i

β2
i

η2
i (t) + 2

n1∑
i=1

d4α
1
i

β1
i

η1
i (t).

The derivative of Wr(t) along the trajectories of system (4.4)–(4.5) satisfies

Ẇr(x(t), η(t), θ(t)) =V̇1(x(t)) + V̇2(x(t)) − 2C11d3

n2∑
i=1

θ2
i (t)

− 2
n2∑
i=1

(d1 + d4)α2
i η

2
i (t) − 2

n1∑
i=1

d4α
1
i η

1
i (t).

Then, for any t ≥ T4, we have

Ẇr(x(t), η(t), θ(t)) ≤ −
ρ2(Q1)

2
‖sath(u1(t))‖2 +

n2∑
i=1

−
ξ2

i

2
q2

i (t)

70 Multi-agent systems with input saturation

−C11d3

n2∑
i=1

θ2
i (t) −

n2∑
i=1

(d1 + d4)α2
i η

2
i (t) −

n1∑
i=1

d4α
1
i η

1
i (t).

By LaSalle Invariance Principle again, we have

lim
t→∞
‖x j(t) − xi(t)‖ = 0, i, j ∈ I.

Thus, consensus is achieved. Moreover, similar to the analysis in (ii-1), we can show that
after a finite time the saturation is no longer active.

Chapter 5

Event-triggered formation control with
connectivity preservation

In this chapter, we study formation control for multi-agent systems with connectivity
preservation and event-triggered control. We propose distributed triggering laws for agents
to determine their triggering times and one corresponding algorithm for each agent to
avoid continuous monitoring of its own triggering law. The advantages of this algorithm
are that absolute measurements of states are avoided and it is only at its triggering
times that each agent needs to update its control input by sensing the relative states, to
broadcast its triggering information, including current triggering time and control input
at this time, to its neighbors. The main disadvantage is that continuous listening is still
needed. To overcome this, we then present two self-triggered algorithms. Two types of
system dynamics, single integrators and double integrators, are considered. We show that
under the proposed event-triggered and self-triggered algorithms all agents converge to
pre-specified formations exponentially with connectivity preservation. In addition, Zeno
behavior can be excluded by proving that the inter-event times are lower bounded by a
positive constant for single integrators and the triggering time sequence of each agent is
divergent for double integrators. Two related existing papers are [68], [75]. However, [68]
does not explicitly exclude Zeno behavior, but it is well known that such behavior can be
problematic, see [19]. And it is under the assumption that no agent exhibits Zeno behavior,
that [75] proves asymptotic rendezvous can be achieved.

The rest of this chapter is organized as follows. In Section 5.1, we review the formation
problem and related preliminaries. In Section 5.2, we consider formation control for
first-order continuous-time multi-agent systems with connectivity preservation and event-
triggered control. We then extend the results to second-order systems in Section 5.3.
Simulations are given in Section 5.4. Finally, the chapter is concluded in Section 5.5.

5.1 Formation control problem

Consider a connected undirected graphGwith n vertices and ne edges. Let B(G) denotes its
incidence matrix as defined in Section 2.2 and di j ∈ R

p the desired internode displacement

71

72 Event-triggered formation control with connectivity preservation

of edge (vi, v j) ∈ E(G). Denote Φ = {(τ>1 , . . . , τ
>
n)> ∈ Rnp|τi−τ j = di j, ∀(vi, v j) ∈ E(G)}. We

call the set of desired internode displacements {di j, (vi, v j) ∈ E(G)} a formation associated
with G and we say it is feasible if Φ , ∅.

Definition 5.1. Consider a multi-agent system with n agents whose underlying graph is
G. Let xi(t) ∈ Rp denotes the position of agent i at time t ≥ 0. The multi-agent system
converges to a desired formation {di j, (vi, v j) ∈ E(G)} if

lim
t→∞

(xi(t) − x j(t)) = di j, ∀(vi, v j) ∈ E(G).

In practice, agents normally have limited communication capabilities and one agent
cannot exchange information with the agents that outside its communication radius. For
simplicity we assume all agents have the same communication radius ∆ > 0. Figure 5.1
(a) shows the initial positions of three agents and each agent has the same communication
radius ∆; and (b) shows the desired formation {d12, d13, d23}. We say the graph G and the
multi-agent system are consistent if ‖xi(t) − x j(t)‖ ≤ ∆ for all (vi, v j) ∈ E(G) and all times
t ≥ 0. Namely, the communication channels are kept for all time. Notice here that we
assume the following.

Assumption 5.1. The desired formation {di j, (vi, v j) ∈ E(G)} is feasible and ‖di j‖ < ∆,
∀(vi, v j) ∈ E(G).

Definition 5.2. A group of agents are said to converge to the desired formation with
connectivity preservation if they converge to the formation while the graph G remains
consistent with their dynamics.

Remark 5.1. We do not assume new edges are created, while we only show that old edges
are maintained.

Our goal in this chapter is to solve the following problem.

Problem 5.1. Propose distributed event-triggered control input and determine the corre-
sponding triggering times for first-order and second-order multi-agent systems such that
a desired formation is achieved with connectivity preservation, while the use of absolute
state information, continuous exchange of information, continuous update of actuators,
and Zeno behavior are avoided.

5.2 Single integrators

In this section, we consider the case when the dynamics of agents is modeled as single
integrators given by

ẋi(t) = ui(t), i ∈ I, t ≥ 0, (5.1)

where xi(t) ∈ Rp is the position and ui(t) ∈ Rp is the control input of agent i, respectively.

5.2. Single integrators 73

 𝑣𝑣2

 𝑣𝑣1

 𝑣𝑣3

 ∆

(a)

 𝑣𝑣2

 𝑣𝑣1

 𝑣𝑣3

 ∆

 𝑑𝑑23

 𝑑𝑑12

 𝑑𝑑13

(b)

Figure 5.1: (a) The initial positions of three agents. (b) The desired formation {d12, d13, d23}.

From Assumption 5.1, we know Φ , ∅. Choose any (τ>1 , . . . , τ
>
n)> ∈ Φ. Let yi(t) =

xi(t) − τi for i ∈ I and y(t) = [y>1 (t), . . . , y>n (t)]>. Then, we can rewrite the above multi-
agent system as

ẏi(t) = ui(t), i ∈ I, t ≥ 0. (5.2)

At time t, for ‖yi(t) − y j(t)‖ < ∆ − ‖di j‖, the edge-tension function νi j (introduced first
in [25]) is defined as

νi j(∆, y(t)) =

 ‖yi(t)−y j(t)‖2

∆−‖di j‖−‖yi(t)−y j(t)‖
, if (vi, v j) ∈ E(G),

0, otherwise,

with

∂νi j(∆, y(t))
∂yi

=

2∆−2‖di j‖−‖yi(t)−y j(t)‖
(∆−‖di j‖−‖yi(t)−y j(t)‖)2 (yi(t) − y j(t)), if (vi, v j) ∈ E(G),

0, otherwise.

We denote as ωi j(t) the weight coefficient of the partial derivative of νi j with respect to
yi as above, i.e.,

ωi j(t) =

2∆−2‖di j‖−‖yi(t)−y j(t)‖
(∆−‖di j‖−‖yi(t)−y j(t)‖)2 , if (vi, v j) ∈ E(G),

0, otherwise.

Note that ωi j(t) can also be written as a function of xi(t) and x j(t) since yi(t) − y j(t) =

xi(t) − x j(t) − di j.

74 Event-triggered formation control with connectivity preservation

Let Lω denotes the Laplacian matrix associated withG after assigning the above weight
ωi j(t) to edge (vi, v j) ∈ E(G). Then, from Lemma 2.6, we have

Lω = B(G)WB(G)>,

where W = Diag([ω(e1), · · · , ω(ene)]), where ω(ek) = ωi j with ek being the label of edge
(vi, v j).

In order to reduce the overall need of communication and system updates, we use the
following event-triggered control input

ui(t) =
∑
j∈Ni

−ωi j(ti
ki(t))(yi(ti

ki(t)) − y j(ti
ki(t))) (5.3)

=
∑
j∈Ni

−ωi j(ti
ki(t))(xi(ti

ki(t)) − x j(ti
ki(t)) − di j). (5.4)

One can see that the above control input only updates at the triggering times.

5.2.1 Event-triggered approach

In the following theorem, we will give triggering laws to determine the triggering times
such that the formation with connectivity preservation can be established and Zeno
behavior can be excluded.

Theorem 5.1. Given a graph G which is undirected and connected, and a desired
formation associated with G which satisfies Assumption 5.1. Consider the multi-agent
system (5.1) with event-triggered control input (5.4) associated with G. Assume that at
the initial time,

‖xi(0) − x j(0) − di j‖ = ‖yi(0) − y j(0)‖ < ∆ − ‖di j‖, ∀(vi, v j) ∈ E(G). (5.5)

Given α > 0, and 0 < β < β0 with β0 =
ρ2(B(G)B(G)>)

∆0
and ∆0 = max(vi,v j)∈E(G) ∆ − ‖di j‖, and

given the first triggering time ti
1 = 0, agent i determines the triggering times {ti

k}
∞
k=2 by

ti
k+1 = min

{
t : ‖ei(t)‖ ≥ αe−βt, t ≥ ti

k

}
(5.6)

where

ei(t) =
∑
j∈Ni

ωi j(t)(xi(t) − x j(t) − di j) −
∑
j∈Ni

ωi j(ti
ki(t))(xi(ti

ki(t)) − x j(ti
ki(t)) − di j).

Then the multi-agent system (5.1) with event-triggered control input (5.4) converges to
the desired formation exponentially with connectivity preservation, and there is no Zeno
behavior.

Proof. This theorem holds if we can prove that

(i) ‖xi(t) − x j(t)‖ ≤ ∆, ∀(vi, v j) ∈ E(G), ∀t ≥ 0;

5.2. Single integrators 75

(ii) limt→∞(xi(t) − x j(t)) = di j, ∀(vi, v j) ∈ E(G), exponentially;

(iii) there exists a constant εi > 0, such that ti
k+1 − ti

k ≥ εi, ∀i ∈ I and ∀k = 1, 2, . . .

(i) We define the total tension energy of G as

ν(∆, y(t)) =
1
2

n∑
i=1

∑
j∈Ni

νi j(∆, y(t)). (5.7)

The time derivative of ν(∆, y(t)) along the trajectories of the multi-agent system (5.2)–(5.3)
is

ν̇(∆, y(t)) =

n∑
i=1

∑
j∈Ni

[∂νi j(∆, y)
∂yi

]>∣∣∣∣
y=y(t)

ẏi(t)

=

n∑
i=1

∑
j∈Ni

[ωi j(t)(yi(t) − y j(t))]>
∑
j∈Ni

−ωi j(ti
ki(t))(yi(ti

ki(t)) − y j(ti
ki(t)))

=

n∑
i=1

∑
j∈Ni

[ωi j(t)(yi(t) − y j(t))]>
[
ei(t) −

∑
j∈Ni

ωi j(t)(yi(t) − y j(t))
]

=

n∑
i=1

∑
j∈Ni

[ωi j(t)(yi(t) − y j(t))]>
(
−

∑
j∈Ni

ωi j(t)(yi(t) − y j(t))
)

+

n∑
i=1

∑
j∈Ni

[ωi j(t)(yi(t) − y j(t))]>ei(t)

≤ − ‖Lωy(t)‖2 +

n∑
i=1

∥∥∥∥∑
j∈Ni

ωi j(t)(yi(t) − y j(t))
∥∥∥∥2

+
1
4

n∑
i=1

‖ei(t)‖2

=
1
4

n∑
i=1

‖ei(t)‖2,

From (5.6), we know that

‖ei(t)‖ ≤ αe−βt, ∀t ≥ 0.

Hence

ν̇(∆, y(t)) ≤
nα2

4
e−2βt, ∀t ≥ 0.

Thus

ν(∆, y(t)) ≤ν(∆, y(0)) +
nα2

8β
[1 − e−2βt] ≤ kν, ∀t ≥ 0,

76 Event-triggered formation control with connectivity preservation

where

kν = ν(∆, y(0)) +
nα2

8β
=

1
2

n∑
i=1

∑
j∈Ni

‖xi(0) − x j(0) − di j‖
2

∆ − ‖di j‖ − ‖xi(0) − x j(0) − di j‖
+

nα2

8β
. (5.8)

Then, for any (vi, v j) ∈ E(G) and t ≥ 0, we have

νi j(∆, y(t)) =
‖yi(t) − y j(t)‖2

∆ − ‖di j‖ − ‖yi(t) − y j(t)‖
≤ 2ν(∆, y(t)) ≤ 2kν.

Hence

‖yi(t) − y j(t)‖ ≤ ki j, (5.9)

where

ki j = −kν +

√
k2
ν + 2kν(∆ − ‖di j‖) < ∆ − ‖di j‖. (5.10)

Then, we have

‖xi(t) − x j(t)‖ =‖xi(t) − τi − (x j(t) − τ j) + di j‖

=‖yi(t) − y j(t) + di j‖ ≤ ‖yi(t) − y j(t)‖ + ‖di j‖ ≤ ki j + ‖di j‖ < ∆,

and thus connectivity maintenance is established.
(ii) Let e(t) = [e>1 (t), . . . , e>n (t)]>, ȳ(t) = 1

n
∑n

i=1 yi(t) and δ(t) = y(t) − 1n ⊗ ȳ(t) =

(Kn ⊗ Ip)y(t). We consider the Lyapunov candidate

V(y(t)) =
1
2
δ>(t)δ(t) =

1
2

y>(t)(Kn ⊗ Ip)y(t). (5.11)

Then its derivative along the trajectories of the multi-agent system (5.2)–(5.3) is

V̇(y(t)) =y>(t)(Kn ⊗ Ip)ẏ(t) = y>(t)(Kn ⊗ Ip)[−(Lω ⊗ Ip)y(t) + e(t)]
= − y>(t)(Lω ⊗ Ip)y(t) + δ>(t)e(t).

For (vi, v j) ∈ E(G), define

fi j(l) =
2∆ − 2‖di j‖ − l
(∆ − ‖di j‖ − l)2 , l ∈ [0,∆ − ‖di j‖). (5.12)

We can easily check that fi j(l) is an increasing function on [0,∆ − ‖di j‖). Then from (5.9)
and (5.10) we have

ωi j(t) ≤ fi j(ki j), ∀(vi, v j) ∈ E(G), ∀t ≥ 0, (5.13)

and

ωi j(t) ≥ fi j(0) =
2

∆ − ‖di j‖
≥

2
∆0
.

5.2. Single integrators 77

Then,

W = Diag([ω(e1), · · · , ω(em)]) ≥
2
∆0

Im,

and

Lω = B(G)WB(G)> ≥
2
∆0

B(G)ImB(G)> ≥
2ρ2(B(G)B(G)>)

∆0
Kn = 2β0Kn.

Thus

V̇(y(t)) = − y>(t)(Lω ⊗ Ip)y(t) + δ>(t)e(t)

≤ − 2β0y>(t)(Kn ⊗ Ip)y(t) + β0δ
>(t)δ(t) +

1
4β0
‖e(t)‖2

= − 2β0V(y(t)) +
1

4β0
‖e(t)‖2 ≤ −2β0V(y(t)) +

nα2

4β0
e−2βt,

where the first inequality holds since W ≥ 2
∆0

Im and the second inequality holds since
Lemma 2.7. Hence

V(y(t)) ≤V(y(0))e−2β0t +
nα2

8β0(β0 − β)
[e−2βt − e−2β0t] < kVe−2βt,

where

kV = V(y(0)) +
nα2

8β0(β0 − β)
. (5.14)

Thus

‖yi(t) − y j(t)‖2 ≤ 2‖yi(t) − ȳ(t)‖2 + 2‖ȳ(t) − y j(t)‖2

≤ 4V(y(t)) < 4kVe−2βt, ∀i, j ∈ I. (5.15)

Hence

lim
t→∞

(xi(t) − x j(t)) = lim
t→∞

(yi(t) − τi − (y j(t) − τ j)) = di j,

exponentially.
(iii) For (vi, v j) ∈ E(G), define

gi j(l) =
2(∆ − ‖di j‖)2

(∆ − ‖di j‖ − l)3 , l ∈ [0,∆ − ‖di j‖), (5.16)

hi j(l) =
3∆ − 3‖di j‖ − l
(∆ − ‖di j‖ − l)3 , l ∈ [0,∆ − ‖di j‖). (5.17)

78 Event-triggered formation control with connectivity preservation

We can easily check that both gi j(l) and hi j(l) are increasing functions on [0,∆ − ‖di j‖).
From (5.13), we have

‖ẏi(t)‖ =‖ei(t) −
∑
j∈Ni

ωi j(t)(yi(t) − y j(t))‖ ≤ ‖ei(t)‖ +
∑
j∈Ni

ωi j(t)‖(yi(t) − y j(t))‖ (5.18)

<αe−βt +
∑
j∈Ni

2 fi j(ki j)
√

kVe−βt. (5.19)

From

ėi(t) =
∑
j∈Ni

[ω̇i j(t)(yi(t) − y j(t)) + ωi j(t)(ẏi(t) − ẏ j(t))]

=
∑
j∈Ni

{
hi j(‖yi(t) − y j(t)‖)

(yi(t) − y j(t))>

‖yi(t) − y j(t)‖
(ẏi(t) − ẏ j(t))(yi(t) − y j(t))

+ ωi j(t)(ẏi(t) − ẏ j(t))
}
, (5.20)

we have

d‖ei(t)‖
dt

≤‖ėi(t)‖

≤
∑
j∈Ni

{∥∥∥∥hi j(‖yi(t) − y j(t)‖)
(yi(t) − y j(t))>

‖yi(t) − y j(t)‖
(ẏi(t) − ẏ j(t))(yi(t) − y j(t))

∥∥∥∥
+ ‖ωi j(t)(ẏi(t) − ẏ j(t))‖

}
≤

∑
j∈Ni

{
hi j(‖yi(t) − y j(t)‖)‖ẏi(t) − ẏ j(t)‖‖yi(t) − y j(t))‖ + ωi j(t)‖ẏi(t) − ẏ j(t)‖

}
=

∑
j∈Ni

gi j(‖yi(t) − y j(t)‖)‖ẏi(t) − ẏ j(t)‖ (5.21)

≤
∑
j∈Ni

gi j(‖yi(t) − y j(t)‖)(‖ẏi(t)‖ + ‖ẏ j(t)‖) (5.22)

≤
∑
j∈Ni

gi j(ki j)[‖ẏi(t)‖ + ‖ẏ j(t)‖] < cie−βt, (5.23)

where

ci =
∑
j∈Ni

gi j(ki j)
[
2α +

∑
l∈Ni

2 fil(kil)
√

kV +
∑
l∈N j

2 f jl(k jl)
√

kV

]
. (5.24)

Thus, a necessary condition to guarantee the inequality in (5.6), i.e.,

αe−βt ≤ ‖ei(t)‖ =

∫ t

ti
k

d‖ei(s)‖
ds

ds, ∀t ∈ [ti
k, t

i
k+1),

5.2. Single integrators 79

is

αe−βt ≤

∫ t

ti
k

cie−βsds =
ci

β
[e−βti

k − e−βt] (5.25)

⇔(ci + αβ)e−βt ≤ cie−βti
k ⇔ (ci + αβ)e−β(t−ti

k) ≤ ci

⇒(ci + αβ)[1 − β(t − ti
k)] ≤ ci ⇔ t − ti

k ≥ εi,

where

εi =
α

ci + αβ
> 0. (5.26)

In other words, for all t ∈ [ti
k, t

i
k + εi], ‖ei(t)‖ ≤ αe−βt holds. Hence ti

k+1 ≥ ti
k + εi. �

Apparently, in order to monitor the inequality in the triggering law (5.6), each agent
needs to continuously sense the relative positions to its neighbors. This may be a drawback.
In the following we will give an event-triggered algorithm to avoid this. In other words,
the following algorithm is an implementation of Theorem 5.1, but it only requires agents
to sense, broadcast and receive at the triggering times. The idea is illustrated as follows.

Each agent i ∈ I, at any time s ≥ 0, knows its last triggering time ti
ki(s) and its control

input ui(s) = ui(ti
ki(s)) which is a constant until it determines its next triggering time. If agent

i also knows the relative position xi(s)− x j(s) and u j(s) = u j(t
j
k j(s)) which is a constant until

agent j determines its next triggering time, for j ∈ Ni, then agent i can predict

xi(t) − x j(t) = xi(s) − x j(s) + (t − s)[ui(ti
ki(s)) − u j(t

j
k j(s))], t ≥ s, (5.27)

until t ≤ min
{
ti
ki(s)+1, t

j
k j(s)+1

}
. This means continuous sensing, broadcasting and receiving

are not needed any more. The above implement idea is summarized in Algorithm 5.1.

Remark 5.2. In order to implement Algorithm 5.1, β0 should be known first. However β0
is a global parameter since it relates to ρ2(B(G)B(G)>) and ∆0. We can lower bound β0 by

4
n(n−1)∆ since ∆0 < ∆ and ρ2(B(G)B(G)>) ≥ 4

n(n−1) , see [103].

5.2.2 Self-triggered algorithms

When applying Algorithm 5.1, although continuous sensing, broadcasting and sensing are
avoided, each agent still needs to continuously listen to incoming information from its
neighbors since the triggering times are not known in advance. If every agent i ∈ I, at
its current triggering time ti

k, can predict its next triggering time ti
k+1 and broadcast it to

its neighbors, then at time ti
k agent i knows agent j’s latest triggering time t j

k j(ti
k)

which is

before ti
k and its next triggering time t j

k j(ti
k)+1

which is after ti
k, for j ∈ Ni. In this case, agent

i only needs to listen to and receive information at {t j}∞k=1, j ∈ Ni since it knows these
time instants in advance. Thus, each agent only needs to sense and broadcast at its own
triggering times, and to listen to and receive the incoming information from its neighbors at

80 Event-triggered formation control with connectivity preservation

Algorithm 5.1
1: Choose α > 0 and 0 < β < β0;
2: Initialize ti

1 = 0 and k = 1;
3: Agent i ∈ I sends {di j, (vi, v j) ∈ E(G)} to its neighbors;
4: Agent i continuously listens to whether there is broadcasting from its neighbors and

receives the broadcasted information if it occurs;
5: At time s = ti

k, agent i senses the relative position xi(s) − x j(s) and predicts future
relative position xi(t) − x j(t), t ≥ s, ∀ j ∈ Ni by (5.27);

6: Agent i substitutes these relative positions into ei(t) and finds out τi
k+1 which is the

smallest solution of equation ‖ei(t)‖ = αe−βt;
7: if there is broadcasting from its neighbors at t0 ∈ (s, τi

k+1), i.e., there exists j ∈ Ni such
that agent j broadcasts its triggering information at t0 ∈ (s, τi

k+1)1 then
8: agent i receives information at t0, and updates s = t0, and goes back to Step 5;
9: else

10: agent i determines ti
k+1 = τi

k+1, and updates its control input ui(ti
k+1) by sensing

the relative positions to its neighbors, and broadcasts its triggering information
{ti

ki(t)
, ui(ti

ki(t)
)} to its neighbors, and resets k = k + 1, and goes back to Step 5;

11: end if

their triggering times. Inspired by this, in the following we will propose two self-triggered
algorithms such that at time ti

k each agent i could estimate ti
k+1 in a more precise way than

ti
k + εi. The idea is explained below.

From (5.9) and (5.15), we have

‖yi(t) − y j(t)‖ < k̂i j(t), ∀(vi, v j) ∈ E(G), ∀t ≥ 0, (5.28)

where
k̂i j(t) = min

{
ki j, 2

√
kVe−βt

}
.

Then, from (5.18), we have

‖ui(t)‖ = ‖ẏi(t)‖ ≤ θi(t), ∀i ∈ I, ∀t ≥ 0, (5.29)

where
θi(t) = αe−βt +

∑
j∈Ni

fi j(k̂i j(t))k̂i j(t).

From (5.2), we have ẏi(t) − ẏ j(t) = ui(t) − u j(t). Then,

yi(t) − y j(t) =yi(ti
k) − y j(ti

k) +

∫ t

ti
k

[ui(s) − u j(s)]ds, t ≥ ti
k.

1This kind of situation can only occur at most finite times during (s, τi
k+1) since |Ni | is finite and there is no

Zeno behavior.

5.2. Single integrators 81

Agent i can determine yi(ti
k)− y j(ti

k) = xi(ti
k)− x j(ti

k)− di j for j ∈ Ni by sensing the relative
position to its neighbors at time ti

k.
The control input ui(s) is a constant during [ti

k, t
i
k+1) and u j(s) is a constant during

[t j
k j(ti

k)
, t j

k j(ti
k)+1

). At time ti
k, agent i already knows t j

k j(ti
k)

and u j(t
j
k j(ti

k)
), for j ∈ Ni. If at time

ti
k, agent i also knows t j

k j(ti
k)+1

, then at time ti
k it knows u j(s) ≡ u j(t

j
k j(ti

k)
), for s ∈ [ti

k, t
j
k j(ti

k)+1
).

In other words, same as (3.38), for t ∈ [ti
k, t

i
k+1), if denote

t1
i j(t) = min

{
t, t j

k j(ti
k)+1

}
, t2

i j(t) = max
{
t, t j

k j(ti
k)+1

}
, (5.30)

then at time ti
k, agent i knows u j(s) ≡ u j(t

j
k j(ti

k)
), for s ∈ [ti

k, t
1
i j(t)) but does not know u j(s),

for s ≥ t2
i j(t). Figure 3.1 illustrates the relation of ti

k, ti
k+1, t ∈ [ti

k, t
i
k+1), t j

k j(ti
k)

, t j
k j(ti

k)+1
, t1

i j(t)

and t2
i j(t).

Then,

yi(t) − y j(t) = zi j(ti
k, t) −

∫ t2
i j(t)

t j

k j (tik)+1

u j(s)ds, ∀(vi, v j) ∈ E(G), t ∈ [ti
k, t

i
k+1), (5.31)

where

zi j(ti
k, t) =yi(ti

k) − y j(ti
k) + (t − ti

k)ui(ti
k) − (t1

i j(t) − ti
k)u j(t

j
k j(ti

k)
).

Thus

‖yi(t) − y j(t)‖ ≤ ‖zi j(ti
k, t)‖ +

∫ t2
i j(t)

t j

k j(tik)+1

‖u j(s)‖ds, ∀(vi, v j) ∈ E(G), t ∈ [ti
k, t

i
k+1).

Then, from (5.29), we have

‖yi(t) − y j(t)‖ ≤ ǩi j(t), ∀(vi, v j) ∈ E(G), t ∈ [ti
k, t

i
k+1), (5.32)

where

ǩi j(t) = ‖zi j(ti
k, t)‖ +

∫ t2
i j(t)

t j

k j (tik)+1

θ j(s)ds, ∀(vi, v j) ∈ E(G), t ∈ [ti
k, t

i
k+1).

Then, from (5.28) and (5.32), we have

‖yi(t) − y j(t)‖ ≤ k̃i j(t), ∀(vi, v j) ∈ E(G), t ∈ [ti
k, t

i
k+1), (5.33)

where

k̃i j(t) = min
{
k̂i j(t), ǩi j(t)

}
, t ∈ [ti

k, t
i
k+1). (5.34)

82 Event-triggered formation control with connectivity preservation

Thus, from (5.20), (5.21), (5.29), (5.31) and (5.33), we have

‖ei(t)‖ ≤ ϕi(t), t ∈ [ti
k, t

i
k+1),

where

ϕi(t) =

∥∥∥∥∥∑
j∈Ni

∫ t1
i j(t)

ti
k

{
hi j(‖zi j(ti

k, s)‖)
(zi j(ti

k, s))>

‖zi j(ti
k, s)‖

(ui(ti
k) − u j(t

j
k j(ti

k)
))zi j(ti

k, s)

+ fi j(‖zi j(ti
k, s)‖)(ui(ti

k) − u j(t
j
k j(ti

k)
))
}
ds

∥∥∥∥∥
+

∑
j∈Ni

∫ t

t1
i j(t)

gi j(k̃i j(s))‖ui(ti
k)‖ds +

∑
j∈Ni

∫ t2
i j(t)

t j

k j (tik)+1

gi j(k̃i j(s))θ j(s)ds

=

∥∥∥∥∥∑
j∈Ni

{
fi j(‖zi j(ti

k, t
1
i j(t))‖)zi j(ti

k, t
1
i j(t)) − fi j(‖zi j(ti

k, t
i
k)‖)zi j(ti

k, t
i
k)
}∥∥∥∥∥

+
∑
j∈Ni

∫ t

t1
i j(t)

gi j(k̃i j(s))‖ui(ti
k)‖ds +

∑
j∈Ni

∫ t2
i j(t)

t j

k j (tik)+1

gi j(k̃i j(s))θ j(s)ds, t ∈ [ti
k, t

i
k+1).

(5.35)

Hence, a necessary condition to guarantee the inequality in (5.6), i.e.,

αe−βt ≤ ‖ei(t)‖, ∀t ∈ [ti
k, t

i
k+1),

is

αe−βt ≤ ϕi(t), ∀t ∈ [ti
k, t

i
k+1).

Since αe−βt decreases with respect to t, ϕi(t) increases with respect to t during [ti
k, t

i
k+1) and

ϕi(ti
k) = 0, then given ti

k, agent i can estimate ti
k+1 by the solution to

αe−βt = ϕi(t), t ≥ ti
k. (5.36)

In conclusion, if at time ti
k agent i knows ui(ti

k), t j
k j(ti

k)
, t j

k j(ti
k)+1

, u j(t
j
k j(ti

k)
), ∀ j ∈ Ni, then it

can predict its next triggering time ti
k+1 by solving (5.36). The above implement idea is

summarized in Algorithm 5.2.
Actually, broadcasting, receiving and listening can be ruled out except at the beginning,

and each agent only needs to sense the relative positions to its neighbors and update its
control input at its triggering times. The idea is illustrated as follows.

From (5.28), (5.18) and (5.22), we have

d‖ei(t)‖
dt

< ĉi(t), (5.37)

where
ĉi(t) =

∑
j∈Ni

gi j(k̂i j(t))
[
2α +

∑
l∈Ni

fil(k̂il(t))k̂il(t) +
∑
l∈N j

f jl(k̂ jl(t))k̂ jl(t)
]
.

5.2. Single integrators 83

Algorithm 5.2
1: Choose α > 0 and 0 < β < β0;
2: Agent i ∈ I sends {di j, (vi, v j) ∈ E(G)} to its neighbors;
3: Initialize ti

1 = 0 and k = 1;
4: At time s = ti

k, agent i updates its control input ui(ti
k) by sensing the relative positions to

its neighbors, and determines ti
k+1 by (5.36)1, and broadcasts its triggering information

{ti
k+1, ui(ti

k)} to its neighbors;
5: At agent i’s neighbors’ triggering times which are between [ti

k, t
i
k+1], agent i receives

triggering information for its neighbors2;
6: resets k = k + 1, and goes back to Step 4.

Algorithm 5.3
1: Choose α > 0 and 0 < β < β0;
2: Agent i ∈ I sends {di j, (vi, v j) ∈ E(G)} to its neighbors;
3: Initialize ti

1 = 0 and k = 1;
4: At time s = ti

k, agent i updates its control input ui(ti
k) by sensing the relative positions

to its neighbors, and determines ti
k+1 by (5.38), and resets k = k + 1, and repeats this

step.

Then, similar to the way to determine ξi in (5.26), if ti
k is known, then agent i can

estimate ti
k+1 by ∫ ti

k+1

ti
k

ĉi(t)dt = αe−βti
k+1 . (5.38)

The above implement idea is summarized in Algorithm 5.3.
The following theorem shows that the formation with connectivity preservation can be

established and Zeno behavior can be excluded.

Theorem 5.2. Under the same settings as Theorem 5.1. All agents perform Algorithm 5.2
or Algorithm 5.3, then the multi-agent system (5.1) with event-triggered control input (5.4)
converges to the formation exponentially with connectivity preservation, and there is no
Zeno behavior.

Proof. Under both Algorithm 5.2 and Algorithm 5.3, ‖ei(t)‖ ≤ αe−βt holds for all i ∈ I and
t ≥ 0. Then from Theorem 5.1, we know that the formation is achieved exponentially and

1Agent i uses t j
k j(tik)

to replace t j
k j(tik)+1

to determine tik+1 by (5.36) when tik = t j
k j(tik)

, i.e., when agent i does

not know t j
k j(tik)+1

at time tik . This situation could occur, for example when two adjacent agents trigger at the same

time.
2In other words, agent i only listens to incoming information at its neighbors’ triggering times. Thus

continuous listening is avoided. This is the main difference with Algorithm 5.1.

84 Event-triggered formation control with connectivity preservation

the connectivity is preserved. The method of the exclusion of Zeno behavior is similar to
the way in the proof of Theorem 5.1. �

Remark 5.3. In order to perform Algorithm 5.2 and Algorithm 5.3, the global parameters
n, β0, kν defined in (5.8) and kV defined in (5.14) are needed to be known in advance.
Firstly, from Remark 5.2, we can estimate β0 by 4

n2∆
. Secondly, one way to avoid using kν

is by choosing an arbitrary small ε > 0. Then, from (5.10), we have

k̂i j(ε) := ∆ − ‖di j‖ − ε ≥ ki j. (5.39)

Thus, k̂i j(ε) can be used to replace ki j since fi j(·) defined in (5.12) and gi j(·) defined in
(5.16) are increasing functions. Thirdly, kV can be estimated if we know the upper bound
of V(y(0)) defined in (5.11). From the underlying graph G is connected, we have ‖yi(0) −
y j(0)‖ < (n−1)∆, ∀i, j ∈ I. Then ‖yi(0)− ȳ(0)‖ < ∆, ∀i ∈ I. Hence V(y(0)) < 1

2 n∆2. Thus,
the only global parameter that is needed to perform Algorithm 5.2 and Algorithm 5.3 is n
the number of agents.

The comparison of the inter-event times determined by Algorithm 5.1, Algorithm 5.2
and Algorithm 5.3 is shown as below.

Property 5.1. Consider the multi-agent system (5.1) with event-triggered control input
(5.4). For agent i, assume ti

k has been determined, let ti,E1
k+1 , ti,S 1

k+1 and ti,S 2
k+1 be the next

triggering time determined by Algorithm 5.1, Algorithm 5.2 and Algorithm 5.3 respectively,
then ti,E1

k+1 ≥ ti,S 2
k+1 ≥ ti

k + εi and ti,S 1
k+1 ≥ ti,S 2

k+1 ≥ ti
k + εi.

Proof. From (5.24) and (5.37), we know cie−βt ≥ ĉi(t),∀t ≥ 0 since (5.28), and fi j(·)
defined in (5.12) and gi j(·) defined in (5.16) are increasing functions. Thus ti,S 2

k+1 ≥ ti
k + εi.

From (5.35) and (5.37), we know ϕi(t) ≤
∫ t

ti
k
ĉi(s)ds, for t ≥ ti

k since (5.34), and fi j(·)

and gi j(·) are increasing functions. Thus ti,S 1
k+1 ≥ ti,S 2

k+1 .
From (5.37), we know ti,E1

k+1 ≥ ti,S 2
k+1 . �

Remark 5.4. Property 5.1 has to be considered carefully, since it only shows that for given
ti
k, the next triggering time determined by Algorithm 5.1 or Algorithm 5.2 is larger than that

determined by Algorithm 5.3. However, we cannot say anything on further triggering times
because generally ti,E1

k+1 , ti,S 2
k+1 and ti,S 1

k+1 , ti,S 2
k+1 , and thus we cannot apply this property

again. Moreover, we cannot to compare ti,E1
k+1 and ti,S 1

k+1 since u j(·) are different when we
perform Algorithm 5.1 and Algorithm 5.2.

Table 5.1 summary the required exchange of information by agent i ∈ I if Algorithms
5.1–5.3 are performed.

5.3. Double integrators 85

Table 5.1: Summary of the communication requirements for agent i when Algorithms 5.1–
5.3 are performed.

Algorithm 5.1 Algorithm 5.2 Algorithm 5.3

Sensing time {ti
k, t

j
k, j ∈ Ni}

∞
k=1 {ti

k}
∞
k=1 {ti

k}
∞
k=1

Broadcasting
time {ti

k}
∞
k=1 {ti

k}
∞
k=1 ti

1 = 0

Listening time All t ≥ 0 {t j
k, j ∈ Ni}

∞
k=1 ti

1 = 0

Receiving time {t j
k, j ∈ Ni}

∞
k=1 {t j

k, j ∈ Ni}
∞
k=1 ti

1 = 0

Information
sensed

{xi(ti
k)− x j(ti

k)}∞k=1,

{xi(t
j
k)− x j(t

j
k), j ∈ Ni}

∞
k=1

{xi(ti
k) − x j(ti

k)}∞k=1 {xi(ti
k) − x j(ti

k)}∞k=1

Information
broadcasted {ti

k, ui(ti
k)}∞k=1, di j, j ∈ Ni

{ti
k, ui(ti

k)}∞k=1,
di j, j ∈ Ni

di j, j ∈ Ni

Zeno behavior No No No

5.3 Double integrators

In this section, we extend the results in above section to the case where the dynamics of
agents is modeled as double integrators given byẋi(t) = ri(t),

ṙi(t) = ud
i (t), i ∈ I, t ≥ 0,

(5.40)

where xi(t) ∈ Rp still denotes the position of agent i at time t, ri(t) ∈ Rp denotes the speed
and ud

i (t) ∈ Rp is the control input. We can also rewrite (5.40) asẏi(t) = ri(t),
ṙi(t) = ud

i (t), i ∈ I, t ≥ 0.
(5.41)

Denote

B1 =

 0 1
0 0

 , B2 =

 0
1

 , zi(t) =

 yi(t)
ri(t)

 ,
then we can rewrite (5.41) as

żi(t) = (B1 ⊗ Ip)zi(t) + (B2 ⊗ Ip)ud
i (t). (5.42)

One can easily check that (B1, B2) is controllable and (I2, B1) is observable. Hence, from
[104], we know that there exist positive constants k0, k1 and k2 such that

P > 0,
1
2

(PB1 + B>1 P) − β1PB2B>2 P + 2I2 ≤ 0, (5.43)

86 Event-triggered formation control with connectivity preservation

with P =

 k0 k1

k1 k2

 and 0 < β1 ≤ β0. Similar to (2.5), we have

ρ(P) ≥ P ≥ ρ2(P). (5.44)

Similar to the event-triggered control input (5.4), we use the following event-triggered
control input

ud
i (t) = − k1

∑
j∈Ni

ωi j(ti
ki(t))(yi(ti

ki(t)) − y j(ti
ki(t)))

− k2

∑
j∈Ni

ωi j(ti
ki(t))(ri(ti

ki(t)) − r j(ti
ki(t))) − k3ri(ti

ki(t)) (5.45)

= − k1

∑
j∈Ni

ωi j(ti
ki(t))(xi(ti

ki(t)) − x j(ti
ki(t)) − di j)

− k2

∑
j∈Ni

ωi j(ti
ki(t))(ri(ti

ki(t)) − r j(ti
ki(t))) − k3ri(ti

ki(t)), (5.46)

where k3 is a constant which will be determined later. Here we should highlight that this
control input needs absolute speed information because of the term k3ri(ti

ki(t)
). Later we will

show that no agent needs to sense absolute speed if each agent knows its initial speed.

5.3.1 Event-triggered approach

Similar to Theorem 5.1, we have the following results.

Theorem 5.3. Given a graph G which is undirected and connected, and a desired
formation associated with G which satisfies Assumption 5.1. Given 0 < β1 ≤ β0 with
β0 defined in Theorem 5.1, determine P by (5.43). Consider the multi-agent system (5.40)
with event-triggered control input (5.46) associated with G. Assume the initial position
satisfies (5.5) for all (vi, v j) ∈ E(G) and every agent knows its initial speed1. Given

0 < k3 < 4
k2+
√

k2
1+k2

2

, αd > 0, 0 < βd < 2−k4
ρ(P) with k4 = k3

k2+
√

k2
1+k2

2
2 < 2, and the first

triggering time ti
1 = 0, agent i determines the triggering times {ti

k}
∞
k=2 by

ti
k+1 = min{t : ‖Ei(t)‖ ≥ αde−βd t, t ≥ ti

k}, (5.47)

where

Ei(t) =k1ei(t) + k2er
i (t) + k3(ri(t) − ri(ti

ki(t))),

er
i (t) =

∑
j∈Ni

ωi j(t)(ri(t) − r j(t)) −
∑
j∈Ni

ωi j(ti
ki(t))(ri(ti

ki(t)) − r j(ti
ki(t))).

Then the multi-agent system (5.40) with event-triggered control input (5.46) converges to
the formation exponentially with connectivity preservation, and there is no Zeno behavior.

1In real applications, initial speed normally is zero.

5.3. Double integrators 87

Proof. This theorem holds if we can prove that

(i) ‖xi(t) − x j(t)‖ ≤ ∆, ∀(vi, v j) ∈ E(G), ∀t ≥ 0;

(ii) limt→∞(xi(t) − x j(t)) = di j, ∀(vi, v j) ∈ E(G), exponentially;

(iii) there is no Zeno behavior.

(i) We define the total tension energy of G as

νd(∆, y(t)) = k1ν(∆, y(t)) +
1
2

n∑
i=1

‖ri(t)‖2. (5.48)

Then time derivative of νd(∆, y(t)) along the trajectories of the multi-agent system (5.41)
with event-triggered control input (5.45) is

ν̇d(∆, y(t)) =k1

n∑
i=1

∑
j∈Ni

[∂νi j(∆, y)
∂yi

]>∣∣∣∣
y=y(t)

ẏi(t) +

n∑
i=1

r>i (t)ṙi(t)

=

n∑
i=1

r>i (t)
{
k1

∑
j∈Ni

[ωi j(t)(yi(t) − y j(t))] + ud
i (t)

}
=

n∑
i=1

r>i (t)
{
Ei(t) − k2

∑
j∈Ni

ωi j(t)(ri(t) − r j(t)) − k3ri(t)
}

≤
1

4k3

n∑
i=1

‖Ei(t)‖2 −
n∑

i=1

r>i (t)k2

∑
j∈Ni

ωi j(t)(ri(t) − r j(t))

=
1

4k3

n∑
i=1

‖Ei(t)‖2 − k2r>(t)Lωr(t), (5.49)

From (5.47), we know that

‖Ei(t)‖ ≤ αde−βd t,∀t ≥ 0. (5.50)

Hence

ν̇d(∆, y(t)) ≤
nα2

d

4k3
e−2βd t,∀t ≥ 0.

Thus

νd(∆, y(t)) ≤νd(∆, y(0)) +
nα2

d

8k3βd
[1 − e−2βd t] ≤ kd

ν ,∀t ≥ 0, (5.51)

where

kd
ν =νd(∆, y(0)) +

nα2
d

8k3βd

88 Event-triggered formation control with connectivity preservation

=
k1

2

n∑
i=1

∑
j∈Ni

‖xi(0) − x j(0) − di j‖
2

∆ − ‖di j‖ − ‖xi(0) − x j(0) − di j‖
+

1
2

n∑
i=1

‖ri(0)‖2 +
nα2

d

8k3βd
. (5.52)

Then, for any (vi, v j) ∈ E(G) and t ≥ 0, we have

νi j(∆, y(t)) =
‖yi(t) − y j(t)‖2

∆ − ‖di j‖ − ‖yi(t) − y j(t)‖
≤

2
k1
νd(∆, y(t)) ≤

2
k1

kd
ν .

Hence

‖yi(t) − y j(t)‖ ≤ kd
i j, (5.53)

where

kd
i j = −

kd
ν

k1
+

√(kd
ν

k1

)2
+ 2

kd
ν

k1
(∆ − ‖di j‖) < ∆ − ‖di j‖. (5.54)

Then, we have

‖xi(t) − x j(t)‖ =‖xi(t) − τi − (x j(t) − τ j) + di j‖ = ‖yi(t) − y j(t) + di j‖

≤‖yi(t) − y j(t)‖ + ‖di j‖ ≤ kd
i j + ‖di j‖ < ∆,

and thus connectivity maintenance is guaranteed.
(ii) Note B>2 P =

[
k1 k2

]
, then we can rewrite the control input (5.45) as

ud
i (t) = −(B>2 P ⊗ Ip)

∑
j∈Ni

ωi j(t)(zi(t) − z j(t)) + Ei(t) − k3(B>2 ⊗ Ip)zi(t).

Let z(t) = [z>1 (t), . . . , z>n (t)]> and z̄(t) = 1
n
∑n

i=1 zi(t). We consider the following Lyapunov
candidate

Vd(z(t)) =
1
2

[z(t) − 1nz̄(t)]>(In ⊗ P ⊗ Ip)[z(t) − 1nz̄(t)] =
1
2

z>(t)(Kn ⊗ P ⊗ Ip)z(t).

The last equality holds since

z>(t)(Kn ⊗ I2 ⊗ Ip)z(t) = [z(t) − 1nz̄(t)]>(In ⊗ I2 ⊗ Ip)[z(t) − 1nz̄(t)]

due to Kn = In −
1
n 1n1>n . Then the derivative of Vd(z(t)) along the trajectories of (5.42) is

V̇d(z(t)) =z>(t)(Kn ⊗ P ⊗ Ip)ż(t)

=z>(t)(Kn ⊗ P ⊗ Ip)
{
(In ⊗ B1 ⊗ Ip)z(t) + (In ⊗ B2 ⊗ Ip)ud(t)

}
=z>(t)(Kn ⊗ P ⊗ Ip)

{
(In ⊗ B1 ⊗ Ip)z(t)

+ (In ⊗ B2 ⊗ Ip)[−(Lω ⊗ B>2 P ⊗ Ip)z(t) + E(t) − k3(In ⊗ B>2 ⊗ Ip)z(t)]
}

5.3. Double integrators 89

=z>(t)(Kn ⊗
PB1 + B>1 P

2
⊗ Ip)z(t) − z>(t)(Lω ⊗ PB2B>2 P ⊗ Ip)z(t)

− k3z>(t)(Kn ⊗ PB2B>2 ⊗ Ip)z(t) + z>(t)(Kn ⊗ PB2 ⊗ Ip)E(t),

where ud(t) = [(ud
1)>(t), . . . , (ud

n)>(t)] and E(t) = [E>1 (t), . . . , E>n (t)]. From PB2B>2 P ≥ 0
and Lω ≥ 2β0Kn ≥ 2β1Kn (see Lemma 2.7), we have

−z>(t)(Lω ⊗ PB2B>2 P ⊗ Ip)z(t) ≤ −2β1z>(t)(Kn ⊗ PB2B>2 P ⊗ Ip)z(t). (5.55)

Noting

PB2B>2 + B2B>2 P
2

=

 0 k1
2

k1
2 k2

 ,
one can easily check that ρ(PB2B>2 +B2B>2 P

2) =
k2+
√

k2
1+k2

2
2 . Noting k4 = k3

k2+
√

k2
1+k2

2
2 , we have

−k3z>(t)(Kn ⊗ PB2B>2 ⊗ Ip)z(t) ≤ k4z>(t)(Kn ⊗ I2 ⊗ Ip)z(t). (5.56)

Then from (5.55), (5.56) and the following inequality

z>(t)(Kn ⊗ PB2 ⊗ Ip)E(t) ≤ β1z>(t)(Kn ⊗ PB2B>2 P ⊗ Ip)z(t) +
1

4β1
‖E(t)‖2,

we get

V̇d(z(t)) ≤z>(t)
(
Kn ⊗

[PB1 + B>1 P
2

− β1PB2B>2 P
]
⊗ Ip

)
z(t)

+ k4z>(t)(Kn ⊗ I2 ⊗ Ip)z(t) +
1

4β1
‖E(t)‖2

≤ − (2 − k4)z>(t)(Kn ⊗ I2 ⊗ Ip)z(t) +
1

4β1
‖E(t)‖2

≤ −
2(2 − k4)
ρ(P)

Vd(z(t)) +
nα2

d

4β1
e−2βd t,

where the second inequality holds since (5.43) and the last inequality holds since (5.44).
Hence

Vd(z(t)) ≤ Vd(z(0))e−
2(2−k4)
ρ(P) t

+
ρ(P)nα2

d[e−2βd t − e−
2(2−k4)
ρ(P) t]

8β1[(2 − k4) − βdρ(P)]
.

Thus

‖yi(t) − y j(t)‖2 + ‖ri(t) − r j(t)‖2

=‖zi(t) − z j(t)‖2 ≤ 2‖zi(t) − z̄(t)‖2 + 2‖z̄(t) − z j(t)‖2 ≤
4

ρ2(P)
Vd(z(t)) < kd

Ve−2βd t, (5.57)

90 Event-triggered formation control with connectivity preservation

where

kd
V =

4Vd(z(0))
ρ2(P)

+
ρ(P)nα2

d

2ρ2(P)β1[(2 − k4) − βdρ(P)]
. (5.58)

Hence

lim
t→∞

(xi(t) − x j(t)) = lim
t→∞

(yi(t) − τi − (y j(t) − τ j)) = di j, (5.59)

and

lim
t→∞

(ri(t) − r j(t)) = 0, (5.60)

exponentially.
(iii) From

ṙi(t) = ud
i (t) = Ei(t) − k1

∑
l∈Ni

ωil(t)(yi(t) − yl(t)) − k2

∑
l∈Ni

ωil(t)(ri(t) − rl(t)) − k3ri(t),

we have

dek3tri(t)
dt

=
[
Ei(t) − k1

∑
l∈Ni

ωil(t)(yi(t) − yl(t)) − k2

∑
l∈Ni

ωil(t)(ri(t) − rl(t))
]
ek3t.

Then, similar to (5.19), we have

d‖ek3tri(t)‖
dt

≤

∥∥∥∥∥∥dek3tri(t)
dt

∥∥∥∥∥∥ =
∥∥∥∥Ei(t) − k1

∑
l∈Ni

ωil(t)(yi(t) − yl(t)) − k2

∑
l∈Ni

ωil(t)(ri(t) − rl(t))
∥∥∥∥ek3t

≤ cr
i e

(k3−βd)t,

where

cr
i = αd + (k1 + k2)

∑
l∈Ni

fil(kd
il)

√
kd

V .

From

ek3t d‖ri(t)‖
dt

≤ ek3t d‖ri(t)‖
dt

+ k3ek3t‖ri(t)‖ =
dek3t‖ri(t)‖

dt
=

d‖ek3tri(t)‖
dt

,

we have

d‖ri(t)‖
dt

≤ cr
i e
−βd t, ∀t ≥ 0. (5.61)

Thus

‖ri(t)‖ ≤ ‖ri(0)‖ +
cr

i

βd
, (5.62)

5.3. Double integrators 91

and

‖ud
i (t)‖ =‖ṙi(t)‖ =

∥∥∥∥Ei(t) − k1

∑
l∈Ni

ωil(t)(yi(t) − yl(t)) − k2

∑
l∈Ni

ωil(t)(ri(t) − rl(t)) − k3ri(t)
∥∥∥∥

≤cr
i e
−βd t + k3

(
‖ri(0)‖ +

cr
i

βd

)
. (5.63)

Again, similar to (5.19), we have

‖ṙi(t) − ṙ j(t)‖ =‖Ei(t) − E j(t) − k1

∑
l∈Ni

ωil(t)(yi(t) − yl(t))

− k2

∑
l∈Ni

ωil(t)(ri(t) − rl(t)) + k1

∑
l∈N j

ω jl(t)(y j(t) − yl(t))‖

+ k2

∑
l∈N j

ω jl(t)(r j(t) − rl(t)) − k3(ri(t) − r j(t))‖ (5.64)

<cr
i je
−βd t, (5.65)

where

cr
i j =2αd +

{
(k1 + k2)

[∑
l∈Ni

fil(kd
il) +

∑
l∈N j

f jl(kd
jl)

]
+ k3

}√
kd

V . (5.66)

Similar to (5.20), we have

ėi(t) =
∑
j∈Ni

[ω̇i j(t)(yi(t) − y j(t)) + ωi j(t)(ẏi(t) − ẏ j(t))]

=
∑
j∈Ni

{
hi j(‖yi(t) − y j(t)‖)

(yi(t) − y j(t))>

‖yi(t) − y j(t)‖
(ri(t) − r j(t))(yi(t) − y j(t))

+ ωi j(t)(ri(t) − r j(t))
}
, (5.67)

and

ėr
i (t) =

∑
j∈Ni

[ω̇i j(t)(ri(t) − r j(t)) + ωi j(t)(ṙi(t) − ṙ j(t))]

=
∑
j∈Ni

{
hi j(‖yi(t) − y j(t)‖)

(yi(t) − y j(t))>

‖yi(t) − y j(t)‖
(ri(t) − r j(t))(ri(t) − r j(t))

+ ωi j(t)(ṙi(t) − ṙ j(t))
}
. (5.68)

Similar to (5.23), we have

d‖Ei(t)‖
dt

=
d‖k1ei(t) + k2er

i (t) + k3(ri(t) − ri(ti
ki(t)

))‖

dt
≤‖k1ėi(t) + k2ėr

i (t) + k3ṙi(t)‖ (5.69)

92 Event-triggered formation control with connectivity preservation

≤k1‖ėi(t)‖ + k2‖ėr
i (t)‖ + k3‖ṙi(t)‖

≤
∑
j∈Ni

{
k1gi j(‖yi(t) − y j(t)‖)‖ri(t) − r j(t)‖

+ k2hi j(‖yi(t) − y j(t)‖)‖ri(t) − r j(t)‖2 + k2ωi j(t)(‖ṙi(t) − ṙ j(t)‖)
}

+ k3‖ud
i (t)‖
(5.70)

≤
∑
j∈Ni

k1gi j(kd
i j)‖ri(t) − r j(t)‖ + k2hi j(kd

i j)‖ri(t) − r j(t)‖2

+ k2 fi j(kd
i j)(‖ṙi(t) − ṙ j(t)‖) + k3

[
cq

i e−βd t + k3

(
‖ri(0)‖ +

cr
i

βd

)]
<cd

i e−βd t + k3

[
cr

i e
−βd t + k3

(
‖ri(0)‖ +

cr
i

βd

)]
,

where

cd
i =

∑
j∈Ni

{
k1gi j(kd

i j)
√

kd
V + k2hi j(kd

i j)k
d
V + k2 fi j(kd

i j)c
r
i j

}
.

Thus

d‖Ei(t)‖
dt

< ce
i , (5.71)

where

ce
i = cd

i + k3

[
cr

i + k3

(
‖qi(0)‖ +

cr
i

βd

)]
.

From (5.71), similar to the way to exclude Zeno behavior in the proof of Theorem 3.1
or 4.2, we can prove that there is no Zeno behavior by contradiction. �

Similar to the analysis after Theorem 5.1, in order to monitor the inequality in the
triggering law (5.47), each agent needs to continuously sense its absolute speed, the relative
positions and speeds to its neighbors. In the following we will give an event-triggered
algorithm to implement Theorem 5.3 and at the same time to avoid continuous sensing by
using the similar idea as Algorithm 5.1.

Since it is assumed that every agent knows its initial speed, every agent i ∈ I, can know
{ri(ti

k)}∞k=1 by iterative computation as follows

ri(ti
k+1) = ri(ti

k) + (ti
k+1 − ti

k)ud
i (ti

k). (5.72)

Thus, at any time s ≥ 0, agent i can predict

ri(t) = ri(ti
ki(s)) + (t − ti

ki(s))u
d
i (ti

ki(s)), ∀t ≥ s. (5.73)

This means that no agent needs to sense absolute speed.

5.3. Double integrators 93

Algorithm 5.4
1: Choose 0 < β1 ≤ β0 and determine P by (5.43);
2: Choose 0 < k3 <

4
k2+
√

k2
1+k2

2

, αd > 0 and 0 < βd <
2−k4
ρ(P) ;

3: Initialize ti
1 = 0 and k = 1;

4: Agent i ∈ I sends {di j, (vi, v j) ∈ E(G)} to its neighbors;
5: Agent i continuously listens to whether there is broadcasting from its neighbors and

receives the broadcasted information if it occurs;
6: At time s = ti

k, agent i senses the relative position xi(s) − x j(s) and relative speed
ri(s) − r j(s), and predicts future relative position xi(t) − x j(t), the relative speed ri(t) −
r j(t), ∀ j ∈ Ni, and its future speed ri(t), t ≥ s by (5.74), (5.75) and (5.73), respectively;

7: Agent i substitutes these into Ei(t) and finds out τi
k+1 which is the smallest solution of

equation ‖Ei(t)‖ = αde−βd t;
8: if there is broadcasting from its neighbors at t0 ∈ (s, τi

k+1), i.e., there exists j ∈ Ni such
that agent j broadcasts its triggering information at t0 ∈ (s, τi

k+1) then
9: agent i receives information at t0, and updates s = t0, and goes back to Step 6;

10: else
11: agent i determines ti

k+1 = τi
k+1, and gets ri(ti

k+1) by (5.72), and updates ud
i (ti

k+1)
by sensing the relative positions and speeds to its neighbors, and broadcasts its
triggering information {ti

ki(t)
, ud

i (ti
ki(t)

)} to its neighbors, and resets k = k + 1, and
goes back to Step 6;

12: end if

Each agent i ∈ I, at any time s ≥ 0, knows its last triggering time ti
ki(s) and control

input ud
i (ti

ki(s)) which is a constant until it determines its next triggering time. If agent i also

knows the relative position xi(s) − x j(s), relative speed ri(s) − r j(s) and ud
j (s) = ud

j (t
j
k j(s))

which is a constant until agent j determines its next triggering time, for j ∈ Ni, then agent
i can predict

xi(t) − x j(t) =xi(s) − x j(s) + (t − s)(ri(s) − r j(s)) +
1
2

(t − s)2(ud
i (ti

ki(s)) − ud
j (t

j
k j(s))), (5.74)

ri(t) − r j(t) =ri(s) − r j(s) + (t − s)(ud
i (ti

ki(s)) − ud
j (t

j
k j(s))), t ≥ s, (5.75)

until t ≤ min
{
ti
ki(s)+1, t

j
k j(s)+1

}
. This means that continuous sensing, broadcasting and

receiving are not needed any more.
The above implement idea is summarized in Algorithm 5.4.

5.3.2 Self-triggered algorithms

As noted earlier, each agent still needs to continuously listen to incoming information
from its neighbors. In order to avoid this, in the following we will first give a self-triggered
algorithm which is similar to Algorithm 5.2 such that each agent only needs to listen at its
neighbors’ triggering times. Then, we will give another self-triggered algorithm which is

94 Event-triggered formation control with connectivity preservation

similar to Algorithm 5.3 such that broadcasting, receiving, and listening only occur at the
beginning.

From (5.53) and (5.57), we have

‖yi(t) − y j(t)‖ < k̂y
i j(t), ∀(vi, v j) ∈ E(G),∀t ≥ 0, (5.76)

where
k̂y

i j(t) = min
{
kd

i j,
√

kd
Ve−βd t

}
.

From (5.57) and (5.62), we have

‖ri(t) − r j(t)‖ < k̂r
i j(t), ∀i, j ∈ I,∀t ≥ 0. (5.77)

where

k̂r
i j(t) = min

{√
kd

Ve−βd t, ‖ri(0)‖ + ‖r j(0)‖ +
cr

i + cr
j

βd

}
.

Then, similar to (5.65), we have

‖ṙi(t) − ṙ j(t)‖ = ‖ud
i (t) − ud

j (t)‖ < θ
d
i j(t), ∀(vi, v j) ∈ E(G),∀t ≥ 0, (5.78)

where

θd
i j(t) = 2αde−βd t +

∑
l∈Ni

fil(k̂
y
il(t))

(
k1k̂y

il(t) + k2k̂r
il(t)

)
+

∑
l∈N j

f jl(k̂
y
jl(t))

(
k1k̂y

jl(t) + k2k̂r
jl(t)

)
+ k3k̂r

i j(t).

Then, similar to (5.31), we have

ri(t) − r j(t) = zr
i j(t

i
k, t) +

∫ t2
i j(t)

t j

k j (tik)+1

(ud
i (s) − ud

j (s))ds, ∀(vi, v j) ∈ E(G), t ∈ [ti
k, t

i
k+1), (5.79)

where t1
i j(t) and t2

i j(t) defined in (5.30), and

zr
i j(t

i
k, t) = ri(ti

k) − r j(ti
k) + (t1

i j(t) − ti
k)(ud

i (ti
k) − ud

j (t
j
k j(ti

k)
)).

Thus

‖ri(t) − r j(t)‖ ≤‖zr
i j(t

i
k, t)‖ +

∫ t2
i j(t)

t j

k j (tik)+1

‖ud
i (s) − ud

j (s)‖ds

≤ǩr
i j(t), ∀(vi, v j) ∈ E(G), t ∈ [ti

k, t
i
k+1),

where

ǩr
i j(t) =‖zr

i j(t
i
k, t)‖ +

∫ t2
i j(t)

t j

k j (tik)+1

θd
i j(s)ds, t ∈ [ti

k, t
i
k+1). (5.80)

5.3. Double integrators 95

Hence, then, from (5.77) and (5.80), we have

‖ri(t) − r j(t)‖ ≤ k̃r
i j(t),∀(vi, v j) ∈ E(G), t ∈ [ti

k, t
i
k+1), (5.81)

where

k̃r
i j(t) = min{k̂r

i j(t), ǩ
r
i j(t)}, t ∈ [ti

k, t
i
k+1). (5.82)

From ẏi(t) = ri(t) and (5.79), we have

yi(t) − y j(t) =yi(ti
k) − y j(ti

k) +

∫ t

ti
k

[ri(s) − r j(s)]ds

=zy
i j(t

i
k, t) +

∫ t

ti
k

∫ t2
i j(r)

t j

k j (tik)+1

(ud
i (s) − ud

j (s))dsdr, ∀(vi, v j) ∈ E(G), t ∈ [ti
k, t

i
k+1),

(5.83)

where

zy
i j(t

i
k, t) =yi(ti

k) − y j(ti
k) + (t1

i j(t) − ti
k)(ri(ti

k) − r j(ti
k)) +

1
2

(t1
i j(t) − ti

k)2(ud
i (ti

k) − ud
j (t

j
k j(ti

k)
)).

Thus

‖yi(t) − y j(t)‖ ≤‖z
y
i j(t

i
k, t)‖ +

∫ t

ti
k

∫ t2
i j(r)

t j

k j (tik)+1

‖ud
i (s) − ud

j (s)‖dsdr

≤ǩy
i j(t), ∀(vi, v j) ∈ E(G), t ∈ [ti

k, t
i
k+1), (5.84)

where

ǩy
i j(t) = ‖zy

i j(t
i
k, t)‖ +

∫ t

ti
k

∫ t2
i j(r)

t j

k j(tik)+1

θd
i j(s)dsdr. (5.85)

Hence, then, from (5.76) and (5.84), we have

‖yi(t) − y j(t)‖ ≤ k̃y
i j(t), ∀(vi, v j) ∈ E(G), t ∈ [ti

k, t
i
k+1), (5.86)

where

k̃y
i j(t) = min

{
k̂y

i j(t), ǩ
y
i j(t)

}
, t ∈ [ti

k, t
i
k+1). (5.87)

Then from (5.67)–(5.70), (5.79), (5.81), (5.83), and (5.86), we have

‖Ei(t)‖ ≤ ϕd
i (t), t ∈ [ti

k, t
i
k+1), (5.88)

where

ϕd
i (t) =

∥∥∥∥∥∑
j∈Ni

∫ t1
i j(t)

ti
k

{
k1hi j(‖z

y
i j(t

i
k, s)‖)

(zy
i j(t

i
k, s))>

‖zy
i j(t

i
k, s)‖

zr
i j(t

i
k, s)zy

i j(t
i
k, s)

96 Event-triggered formation control with connectivity preservation

+ k1 fi j(‖z
y
i j(t

i
k, s)‖)(zr

i j(t
i
k, s)) + k2hi j(‖z

y
i j(t

i
k, s)‖)

(zy
i j(t

i
k, s))>

‖zy
i j(t

i
k, s)‖

zr
i j(t

i
k, s)zr

i j(t
i
k, s)

+ k2 fi j(‖z
y
i j(t

i
k, s)‖)(ud

i (ti
k) − ud

j (t
j
k j(ti

k)
))
}
ds + k3(t − ti

k)ud
i (ti

k)
∥∥∥∥∥

+
∑
j∈Ni

∫ t

t1
i j(t)

{
k1gi j(k̃

y
i j(s))k̃r

i j(s) + k2hi j(k̃
y
i j(s))(k̃r

i j(s))2 + k2 fi j(k̃
y
i j(s))θd

i j(s)
}
ds

=

∥∥∥∥∥∑
j∈Ni

{
fi j(‖z

y
i j(t

i
k, t

1
i j(t))‖)(k1zy

i j(t
i
k, t

1
i j(t)) + k2zr

i j(t
i
k, t

1
i j(t)))

− fi j(‖z
y
i j(t

i
k, t

i
k)‖)(k1zy

i j(t
i
k, t

i
k) + k2zr

i j(t
i
k, t

i
k))

}
+ k3(t − ti

k)ud
i (ti

k)
∥∥∥∥∥

+
∑
j∈Ni

∫ t

t1
i j(t)

{
k1gi j(k̃

y
i j(s))k̃r

i j(s) + k2hi j(k̃
y
i j(s))(k̃r

i j(s))2

+ k2 fi j(k̃
y
i j(s))θd

i j(s)
}
ds, t ∈ [ti

k, t
i
k+1). (5.89)

Hence, a necessary condition to guarantee the inequality in (5.47), i.e.,

αde−βd t ≤ ‖Ei(t)‖, ∀t ∈ [ti
k, t

i
k+1),

is

αde−βd t = ϕd
i (t), ∀t ∈ [ti

k, t
i
k+1).

Since αde−βd t decreases with respect to t, ϕd
i (t) increases with respect to t during [ti

k, t
i
k+1)

and ϕd
i (ti

k) = 0, then given ti
k, agent i can estimate ti

k+1 by the solution to

αde−βd t = ϕd
i (t), t ≥ ti

k. (5.90)

In other words, if at time ti
k agent i knows t j

k j(ti
k)

, t j
k j(ti

k)+1
, ud

j (t
j
k j(ti

k)
), ∀ j ∈ Ni, then it

can estimate its next triggering time ti
k+1 by solving (5.90). The above implement idea

is summarized in Algorithm 5.5.
Similar to the single integrators case, broadcasting, receiving and listening can be ruled

out except at the beginning, and each agent only needs to sense the relative positions to its
neighbors and to update its control input at its triggering times. The idea is illustrated as
follows.

From (5.76), (5.77), (5.64) and (5.70), we have

d‖Ei(t)‖
dt

< ĉd
i (t), (5.91)

where

ĉd
i (t) =

∑
j∈Ni

{
k1gi j(k̂

y
i j(t))k̂

r
i j(t) + k2hi j(k̂

y
i j(t))(k̂

r
i j(t))

2 + k2 fi j(k̂
y
i j(t))θ

d
i j(t)

}
+ k3‖ud

i (t)‖.

5.3. Double integrators 97

Algorithm 5.5
1: Choose 0 < β1 ≤ β0 and determine P by (5.43);
2: Choose 0 < k3 <

4
k2+
√

k2
1+k2

2

, αd > 0 and 0 < βd <
2−k4
ρ(P) ;

3: Agent i ∈ I sends {di j, (vi, v j) ∈ E(G), ri(0)} to its neighbors;
4: Initialize ti

1 = 0 and k = 1;
5: At time s = ti

k, agent i gets ri(ti
k) by (5.72), and updates ud

i (ti
k) by sensing the relative

positions and speeds to its neighbors, and determines ti
k+1 by (5.90)1, and broadcasts

its triggering information {ti
k+1, u

d
i (ti

k)} to its neighbors;
6: At agent i’s neighbors’ triggering times which are between [ti

k, t
i
k+1], agent i receives

triggering information for its neighbors2;
7: resets k = k + 1, and goes back to Step 5.

Algorithm 5.6
1: Choose 0 < β1 ≤ β0 and determine P by (5.43);
2: Choose 0 < k3 <

4
k2+
√

k2
1+k2

2

, αd > 0 and 0 < βd <
2−k4
ρ(P) ;

3: Agent i ∈ I sends {di j, (vi, v j) ∈ E(G), ri(0)} to its neighbors;
4: Initialize ti

1 = 0 and k = 1;
5: At time s = ti

k, agent i gets ri(ti
k) by (5.72), and updates ud

i (ti
k) by sensing the relative

positions and speeds to its neighbors, and determines ti
k+1 by (5.92), and resets k = k+1,

and repeats this step.

If ti
k is known, then agent i can estimate ti

k+1 by∫ ti
k+1

ti
k

ĉd
i (t)dt = αde−βd ti

k+1 . (5.92)

The above implement idea is summarized in Algorithm 5.6.
The following theorem shows that the formation with connectivity preservation can be

established and Zeno behavior can be excluded.

Theorem 5.4. Under the same settings as Theorem 5.3. All agents perform Algorithm
5.5 or Algorithm 5.6, then the multi-agent system (5.40) with event-triggered control input
(5.46) converges to the formation exponentially with connectivity preservation, and there
is no Zeno behavior.

Proof. Under both Algorithm 5.5 and Algorithm 5.6, ‖Ei(t)‖ ≤ αde−βd t holds for all i ∈ I
and t ≥ 0. Then from Theorem 5.3, we know that the formation is achieved exponentially
and the connectivity is preserved. The method of the exclusion of Zeno behavior is similar
to the way in the proof of Theorem 5.3. �

1Agent i uses t j
k j(tik)

to replace t j
k j(tik)+1

to determine tik+1 by (5.90) when tik = t j
k j(tik)

.
2In other words, agent i only listen to incoming information at its neighbors’ triggering times. Thus

continuous listening is avoided.

98 Event-triggered formation control with connectivity preservation

Remark 5.5. In real applications, it is reasonable to assume the initial speed of each agent
is zero. By this assumption and Remark 5.3, we know that the only global parameter that
is needed to perform Algorithm 5.5 and Algorithm 5.6 is n the number of agents.

Remark 5.6. The absolute measurements of positions and speeds are not needed when
performing Algorithms 5.1–5.6.

Similar to Table 5.1, we can summarizes what and when information should be
exchanged by each agent when Algorithms 5.4–5.6 are performed. Since it is similar to
Table 5.1, we omit it here. Moreover, the comparison of the inter-event times determined
by Algorithms 5.4–5.6 is similar to Property 5.1.

5.4 Simulations

In this section, two numerical examples are given to demonstrate the effectiveness of the
presented results.

Consider a network of n = 3 agents in R2 whose Laplacian matrix is given by

L =

2 −1 −1
−1 2 −1
−1 −1 2

 .
The three agents are trying to establish a right triangle formation with

d12 =

 0
−3

 , d13 =

 −4
0

 , d23 =

 −4
3

 .
The communication radius is ∆ = 20. We have β0 = 0.1765.

Firstly, we consider the situation that the three agents are modeled as single integrators.
The initial positions of agents can be randomly selected as long as the initial condition (5.5)
is satisfied. Here, the initial positions of agents are chosen by

x1(0) =

 2
4

 , x2(0) =

 3.5
7

 , x3(0) =

 4.5
5.5

 .
One can easily check that both Assumption 5.1 and initial condition (5.5) hold. Choose
α = 100 and β =

β0
50 , by applying the Algorithm 5.2, we get the evolutions of the formation

shown in Figure 5.2.
Figure 5.3 (a) shows the position evolutions of the multi-agent system (5.1) with event-

triggered control input (5.4) when performing Algorithm 5.2, where “circles” denote the
initial positions and “triangle” denotes the desired formation, and the triggering times for
each agent shown in Figure 5.3 (b), respectively. When every agent performs Algorithm
5.3, Figure 5.4 (a) and Figure 5.4 (b) show the position evolutions and the triggering times,
respectively.

5.4. Simulations 99

0 2 4 6
X-axis

2

4

6

8

10

Y
-a

xi
s

 agent 1
 agent 2
 agent 3

(a) At t = 0.

0 2 4 6
X-axis

2

4

6

8

10

Y
-a

xi
s

 agent 1
 agent 2
 agent 3

(b) At t = 1.2.

0 2 4 6
X-axis

2

4

6

8

10

Y
-a

xi
s

 agent 1
 agent 2
 agent 3

(c) At t = 1.6.

0 2 4 6
X-axis

2

4

6

8

10

Y
-a

xi
s

 agent 1
 agent 2
 agent 3

(d) At t = 2.4.

0 2 4 6
X-axis

2

4

6

8

10

Y
-a

xi
s

 agent 1
 agent 2
 agent 3

(e) At t = 3.2.

0 2 4 6
X-axis

2

4

6

8

10

Y
-a

xi
s

 agent 1
 agent 2
 agent 3

(f) At t = 10.4.

Figure 5.2: Evolutions of the formation process of the multi-agent system (5.1) with event-
triggered control input (5.4) when performing Algorithm 5.2.

100 Event-triggered formation control with connectivity preservation

0 2 4 6
X-axis

2

4

6

8

10

Y
-a

xi
s

 agent 1
 agent 2
 agent 3

(a)

0 2 4 6 8 10 12

 t

 agent 1

 agent 2

 agent 3

(b)

Figure 5.3: (a) The position evolutions of the multi-agent system (5.1) with event-triggered
control input (5.4) when performing Algorithm 5.2. (b) The triggering times for each agent.

5.4. Simulations 101

0 2 4 6
X-axis

2

4

6

8

10

Y
-a

xi
s

 agent 1
 agent 2
 agent 3

(a)

0 2 4 6 8 10 12

 t

 agent 1

 agent 2

 agent 3

(b)

Figure 5.4: (a) The position evolutions of the multi-agent system (5.1) with event-triggered
control input (5.4) when performing Algorithm 5.3. (b) The triggering times for each agent.

102 Event-triggered formation control with connectivity preservation

Secondly, we consider the situation that the three agents are modeled as double
integrators. The initial positions of agents are chosen as before. The initial speeds of agents
can be randomly selected and here we choose

r1(0) =

 1
2

 , r2(0) =

 −1
−2

 , r3(0) =

 −1
−1

 .
We have P =

 5.0237 1.1547
1.1547 1.4502

, k1 = 1.1547, k2 = 1.4502, and ρ(P) = 5.3643. Choose

k3 = 2
k2+
√

k2
1+k2

2

= 0.6053, αd = 10, and βd =
(2−k4)
10ρ(P) , by applying the Algorithm 5.5, we

get the evolutions of the position shown in Figure 5.5 (a), where “circles” denote the initial
positions and “triangle” denotes the desired formation, and the triggering times for each
agent shown in Figure 5.5 (b), respectively. When every agent performs Algorithm 5.6,
Figure 5.6 (a) and Figure 5.6 (b) show the position evolutions and the triggering times,
respectively.

It can be seen that the formation is achieved when any one of the four self-triggered
algorithms is performed, but the formation could be achieved in different positions. It
can also be seen that the average inter-event time determined by Algorithm 5.2 is greater
than that determined by Algorithm 5.3. However, just as Table 5.1 summarized, the only
communication requirement that each agent needs to perform in Algorithm 5.3 is to sense
the relative positions to its neighbors. Similar comparison can be made between Algorithms
5.5 and 5.6. Moreover, we can see that double integrators have more smooth trajectories
compared with single integrators.

5.5 Summary

In this chapter, formation control for multi-agent systems with limited communication, in-
cluding sensing, broadcasting, receiving and listening, was addressed. We first considered
the situation that agents are modeled as single integrators. An event-triggered algorithm
and two self-triggered algorithms, to avoid continuous communication and using absolute
measurements of positions, were proposed. It was shown that each agent only updates its
control input by sensing the relative state to its neighbors and broadcasts its triggering
information at its triggering times, and listens to and receives its neighbors’ triggering
information at their triggering times. Moreover, the desired formation was established
exponentially with connectivity preservation and exclusion of Zeno behavior. Then, these
results were extended to double integrators. Future research directions of this work include
taking input saturation into account since the proposed event-triggered control input could
be very large, which is unrealistic.

5.5. Summary 103

0 2 4 6
X-axis

2

4

6

8

10

Y
-a

xi
s

 agent 1
 agent 2
 agent 3

(a)

0 2 4 6 8 10 12

 t

 agent 1

 agent 2

 agent 3

(b)

Figure 5.5: (a) The position evolutions of the multi-agent system (5.40) with event-
triggered control input (5.46) when performing Algorithm 5.5. (b) The triggering times
for each agent.

104 Event-triggered formation control with connectivity preservation

0 2 4 6
X-axis

2

4

6

8

10

Y
-a

xi
s

 agent 1
 agent 2
 agent 3

(a)

0 2 4 6 8 10 12

 t

 agent 1

 agent 2

 agent 3

(b)

Figure 5.6: (a) The position evolutions of the multi-agent system (5.40) with event-
triggered control input (5.46) when performing Algorithm 5.5. (b) The triggering times
for each agent.

Chapter 6

Conclusions and future research

In this chapter, we summarize the main results presented in Chapters 3–5 and discuss
possible directions for future research.

6.1 Conclusions

This thesis proposed distributed dynamic event-triggered control strategies for multi-agent
systems to reduce energy consumption, the amount of information exchanged, and system
update in general. In particular, the three problems of average consensus for single-
integrator agents, agents systems with input saturation, and formation control for single-
and double-integrator agents with connectivity preservation were solved.

Dynamic event-triggered control for multi-agent systems

We first proposed two dynamic event-triggered control strategies for first-order continuous-
time multi-agent systems to solve average consensus problem. Compared with existing
event-triggered control strategies, our dynamic event-triggered control strategies involve
internal dynamic variables which play an essential role to guarantee that the triggering
time sequence does not exhibit Zeno behavior. Some of the existing event-triggered control
strategies are special cases of our strategies. We proved that average consensus is achieved
exponentially if and only if the communication graph is connected, and Zeno behavior
was excluded by proving that the triggering time sequence of each agent is divergent.
Then, we proposed a self-triggered control strategy to avoid continuous listening over the
network. As a result, each agent only needs to sense and broadcast at its triggering times,
and to listen to and receive incoming information from its neighbors at their triggering
times. Thus continuous listening is avoided. With some modifications, the results in this
part can be extended to the cases that the underlying graph is directed and has a directed
spanning tree. Furthermore, the results also can most likely be extended to general linear
and nonlinear multi-agent systems with standard controllability assumptions for linear
dynamics and standard continuity assumptions for the nonlinear dynamics.

105

106 Conclusions and future research

Multi-agent systems with input saturation

We extended the results above to multi-agent systems with input saturation constraints
over digraphs. We showed that consensus is achieved if and only if the underlying
directed communication topology has a directed spanning tree. We considered event-
triggered control and presented a distributed triggering law to reduce the overall need of
communication and system updates. The triggering law was a special kind of dynamic
triggering and was inspired by a Lyapunov function we used in the proof of the first result.
We showed that consensus is achieved for the event-triggered control under the same
connectivity condition, and the triggering law was proven to be free of Zeno behavior.
Moreover, we presented a self-triggered algorithm to avoid continuous listening. With
some modifications, we believe that the results in this part can be extended to multi-agent
systems with output saturation constraints and even nonlinear multi-agent systems with
standard continuity assumptions.

Event-triggered formation control with connectivity preservation

Formation control for multi-agent systems with limited communication was addressed.
We first considered the situation that agents are modeled as single integrators and designed
distributed event-triggered control. An event-triggered algorithm and two self-triggered
algorithms were proposed. It was shown that each agent only updates its control input
by sensing the relative state to its neighbors and broadcasts its triggering information at
its triggering times, and listens to and receives its neighbors’ triggering information at
their triggering times. The desired formation was shown to be established exponentially
with connectivity preservation and exclusion of Zeno behavior. Then, these results were
extended to double integrators. With some modifications, we think the results in this part
can be extended to position- and distance-based formation control, and can most likely be
extended to systems with input saturation.

Summary

We summarize some aspects of the thesis results in Table 6.1 and compare them with
the literature. The rows list some specific properties of the considered multi-agent control
protocols and the implication of the developed analysis. None of the listed work assume
continuous broadcasting of the agents’ state to its neighbors, but it is common in the
literature to assume continuous listening. None of results in Chapters 3–5 require that
agents has to continuously listen to their neighbors. The table specifies if the considered
control laws are based on absolute agent state information or relative state information.
Finally, as shown in the thesis it is important to exclude Zeno behavior. In the literature,
this issue has not always been carefully investigated. In particular, references [16,17,67–69,
71,73,75] do not strictly show that Zeno behavior is excluded, while [18,64–66,70,72,74]
do.

6.2. Future research directions 107

Table 6.1: Summary of the thesis results and comparison with the literature.

[16–18,
64–68]

[69–75] Chapter 3 Chapter 4 Chapter 5

Continuous
broadcasting? No No No No No

Continuous
listening? Yes Yes No No No

State
information? Absolute Relative Absolute Absolute Relative

Avoiding
Zeno? ? ? Yes Yes Yes

6.2 Future research directions

There are several interesting research directions based on the work of this thesis. Some of
the immediate ones were mentioned above. Other extensions are discussed in this section.

Optimal target tracking

For the autonomous target tracking example in Section 1.1, the target is not static. It would
be interesting to consider how to control a multi-agent system to track a moving target.
It is reasonable to study optimal formation control to track a moving target such that
the resource consumed (for motion and communication) to reach the desired formation
is minimized.

Number of triggering times

In Chapters 3–5, we showed when agents perform the dynamic event-triggered strategies
not only the desired properties are achieved but also the overall need of communication
and system updates are reduced. It would be interesting to quantify this reduction
systematically and compare it with other event- and time-triggered strategies. One specific
problem is to determine the number of triggering times that are needed to guarantee that
all agents reach a ball of given radius centered at the average of all agents’ states.

Time delays and noise

There are time delays and noise in sensing and communication in most real applications.
The loss of perfect information due to such issues can degrade the performance of the
multi-agent systems and even destabilize it. It would be interesting to extend the results in
Chapters 3–5 to models with time delays and noise.

108 Conclusions and future research

Bit rate

It would be interesting to find the minimum communication rate between agents to
guarantee that desired properties still can be achieved. Such minimum rate question is
well studied for single-agent systems [105], the data rate theorem [106]. However, it is
not well studied for multi-agent systems [107]. It would be interesting to quantify bit rate
conditions to guarantee desired properties are achieved for multi-agent systems based on
event-triggered control approaches.

Bibliography

[1] C. H. Botts, J. C. Spall, and A. J. Newman, “Multi-agent surveillance and tracking
using cyclic stochastic gradient,” in American Control Conference. IEEE, 2016,
pp. 270–275.

[2] E. Shakshuki and M. Reid, “Multi-agent system applications in healthcare: current
technology and future roadmap,” Procedia Computer Science, vol. 52, pp. 252–261,
2015.

[3] C. Giannella, R. Bhargava, and H. Kargupta, “Multi-agent systems and distributed
data mining,” in International Workshop on Cooperative Information Agents.
Springer, 2004, pp. 1–15.

[4] L. Panait and S. Luke, “Cooperative multi-agent learning: the state of the art,”
Autonomous Agents and Multi-agent Systems, vol. 11, no. 3, pp. 387–434, 2005.

[5] N. R. Jennings and M. Wooldridge, “Agent-oriented software engineering,”
Handbook of Agent Technology, vol. 18, 2001.

[6] M. Pipattanasomporn, H. Feroze, and S. Rahman, “Multi-agent systems in a
distributed smart grid: design and implementation,” in Power Systems Conference
and Exposition, 2009, pp. 1–8.

[7] X. F. Xie, S. F. Smith, and G. J. Barlow, “Schedule-driven coordination for real-time
traffic network control,” in Twenty-Second International Conference on Automated
Planning and Scheduling, 2012.

[8] T. Máhr, J. Srour, M. de Weerdt, and R. Zuidwijk, “Can agents measure up?
a comparative study of an agent-based and on-line optimization approach for a
drayage problem with uncertainty,” Transportation Research Part C: Emerging
Technologies, vol. 18, no. 1, pp. 99–119, 2010.

[9] C. Sabol, R. Burns, and C. A. McLaughlin, “Satellite formation flying design and
evolution,” Journal of spacecraft and rockets, vol. 38, no. 2, pp. 270–278, 2001.

[10] R. Faller, A. Ohndorf, B. Schlepp, and S. Eberle, “Preparation, handover,
and conduction of prisma mission operations at gsoc,” in IAF International
Astronautical Congress, 2012, pp. 1–11.

109

110 Bibliography

[11] S. Persson, S. Veldman, and P. Bodin, “Prisma—a formation flying project in
implementation phase,” Acta Astronautica, vol. 65, no. 9, pp. 1360–1374, 2009.

[12] A. Alam, B. Besselink, V. Turri, J. Martensson, and K. H. Johansson, “Heavy-duty
vehicle platooning for sustainable freight transportation: A cooperative method to
enhance safety and efficiency,” IEEE Control Systems Magazine, vol. 35, no. 6, pp.
34–56, Dec 2015.

[13] R. Ringbräck, “Multi-agent autonomous target tracking using distance-based
formations,” Master’s thesis, KTH Royal Institute of Technology, 2017.

[14] C. Fischione, An Introduction to Wireless Sensor Networks. Draft, version 2.0,
2015.

[15] K. J. Åström and B. Wittenmark, Computer-controlled systems: theory and design.
Courier Corporation, 2013.

[16] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed event-triggered
control for multi-agent systems,” IEEE Transactions on Automatic Control, vol. 57,
no. 5, pp. 1291–1297, 2012.

[17] E. Garcia, Y. Cao, H. Yu, P. Antsaklis, and D. Casbeer, “Decentralised event-
triggered cooperative control with limited communication,” International Journal
of Control, vol. 86, no. 9, pp. 1479–1488, 2013.

[18] G. S. Seyboth, D. V. Dimarogonas, and K. H. Johansson, “Event-based broadcasting
for multi-agent average consensus,” Automatica, vol. 49, no. 1, pp. 245–252, 2013.

[19] K. H. Johansson, M. Egerstedt, J. Lygeros, and S. Sastry, “On the regularization
of zeno hybrid automata,” Systems & Control Letters, vol. 38, no. 3, pp. 141–150,
1999.

[20] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent formation control,”
Automatica, vol. 53, pp. 424–440, 2015.

[21] W. Ren and E. Atkins, “Distributed multi-vehicle coordinated control via local
information exchange,” International Journal of Robust and Nonlinear Control,
vol. 17, no. 10-11, pp. 1002–1033, 2007.

[22] W. Dong and J. A. Farrell, “Cooperative control of multiple nonholonomic mobile
agents,” IEEE Transactions on Automatic Control, vol. 53, no. 6, pp. 1434–1448,
2008.

[23] T. H. Van den Broek, N. van de Wouw, and H. Nijmeijer, “Formation control
of unicycle mobile robots: a virtual structure approach,” in IEEE Conference on
Decision and Control, held jointly with the 28th Chinese Control Conference, 2009,
pp. 8328–8333.

Bibliography 111

[24] J. Li, W. Ren, and S. Xu, “Distributed containment control with multiple dynamic
leaders for double-integrator dynamics using only position measurements,” IEEE
Transactions on Automatic Control, vol. 57, no. 6, pp. 1553–1559, 2012.

[25] M. Ji and M. Egerstedt, “Distributed coordination control of multiagent systems
while preserving connectedness,” IEEE Transactions on Robotics, vol. 23, no. 4,
pp. 693–703, 2007.

[26] K.-K. Oh and H.-S. Ahn, “Formation control of mobile agents based on inter-agent
distance dynamics,” Automatica, vol. 47, no. 10, pp. 2306–2312, 2011.

[27] G. Wen, Z. Duan, W. Ren, and G. Chen, “Distributed consensus of multi-agent
systems with general linear node dynamics and intermittent communications,”
International Journal of Robust and Nonlinear Control, vol. 24, no. 16, pp. 2438–
2457, 2014.

[28] D. V. Dimarogonas and K. J. Kyriakopoulos, “On the rendezvous problem for
multiple nonholonomic agents,” IEEE Transactions on Automatic Control, vol. 52,
no. 5, pp. 916–922, 2007.

[29] ——, “A connection between formation infeasibility and velocity alignment in
kinematic multi-agent systems,” Automatica, vol. 44, no. 10, pp. 2648–2654, 2008.

[30] D. V. Dimarogonas and K. H. Johansson, “On the stability of distance-based
formation control,” in IEEE Conference on Decision and Control, 2008, pp. 1200–
1205.

[31] ——, “Further results on the stability of distance-based multi-robot formations,” in
American Control Conference, 2009, pp. 2972–2977.

[32] ——, “Stability analysis for multi-agent systems using the incidence matrix:
quantized communication and formation control,” Automatica, vol. 46, no. 4, pp.
695–700, 2010.

[33] K.-K. Oh and H.-S. Ahn, “Distance-based undirected formations of single-integrator
and double-integrator modeled agents in n-dimensional space,” International
Journal of Robust and Nonlinear Control, vol. 24, no. 12, pp. 1809–1820, 2014.

[34] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann, 1996.

[35] W. Ren, R. W. Beard, and E. M. Atkins, “A survey of consensus problems in multi-
agent coordination,” in American Control Conference, 2005, pp. 1859–1864.

[36] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems under
dynamically changing interaction topologies,” IEEE Transactions on Automatic
Control, vol. 50, no. 5, pp. 655–661, 2005.

[37] M. Cao, A. S. Morse, and B. D. Anderson, “Agreeing asynchronously,” IEEE
Transactions on Automatic Control, vol. 53, no. 8, pp. 1826–1838, 2008.

112 Bibliography

[38] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with
switching topology and time-delays,” IEEE Transactions on Automatic Control,
vol. 49, no. 9, pp. 1520–1533, 2004.

[39] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in multivehicle
cooperative control,” IEEE Control Systems Magazine, vol. 27, no. 2, pp. 71–82,
2007.

[40] Z. Li, Z. Duan, G. Chen, and L. Huang, “Consensus of multiagent systems and
synchronization of complex networks: A unified viewpoint,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 57, no. 1, pp. 213–224, 2010.

[41] W. Lu and T. Chen, “Synchronization analysis of linearly coupled networks of
discrete time systems,” Physica D: Nonlinear Phenomena, vol. 198, no. 1, pp. 148–
168, 2004.

[42] ——, “New approach to synchronization analysis of linearly coupled ordinary
differential systems,” Physica D: Nonlinear Phenomena, vol. 213, no. 2, pp. 214–
230, 2006.

[43] T. Yang, S. Roy, Y. Wan, and A. Saberi, “Constructing consensus controllers for
networks with identical general linear agents,” International Journal of Robust and
Nonlinear Control, vol. 21, no. 11, pp. 1237–1256, 2011.

[44] B. Liu, W. Lu, and T. Chen, “Consensus in networks of multiagents with switching
topologies modeled as adapted stochastic processes,” SIAM Journal on Control and
Optimization, vol. 49, no. 1, pp. 227–253, 2011.

[45] F. Xiao and L. Wang, “Asynchronous consensus in continuous-time multi-agent
systems with switching topology and time-varying delays,” IEEE Transactions on
Automatic Control, vol. 53, no. 8, pp. 1804–1816, 2008.

[46] K. You and L. Xie, “Network topology and communication data rate for
consensusability of discrete-time multi-agent systems,” IEEE Transactions on
Automatic Control, vol. 56, no. 10, pp. 2262–2275, 2011.

[47] J. Wei, X. Yi, H. Sandberg, and K. H. Johansson, “Nonlinear consensus protocols
with applications to quantized systems,” arXiv preprint arXiv:1604.03592, 2016.

[48] D. P. Spanos and R. M. Murray, “Robust connectivity of networked vehicles,” in
IEEE Conference on Decision and Control, vol. 3, 2004, pp. 2893–2898.

[49] D. V. Dimarogonas and K. J. Kyriakopoulos, “Connectivity preserving state
agreement for multiple unicycles,” in American Control Conference, 2007, pp.
1179–1184.

[50] M. M. Zavlanos and G. J. Pappas, “Potential fields for maintaining connectivity
of mobile networks,” IEEE Transactions on Robotics, vol. 23, no. 4, pp. 812–816,
2007.

Bibliography 113

[51] A. Ajorlou, A. Momeni, and A. G. Aghdam, “A class of bounded distributed control
strategies for connectivity preservation in multi-agent systems,” IEEE Transactions
on Automatic Control, vol. 55, no. 12, pp. 2828–2833, 2010.

[52] Z. Kan, A. P. Dani, J. M. Shea, and W. E. Dixon, “Network connectivity preserving
formation stabilization and obstacle avoidance via a decentralized controller,” IEEE
Transactions on Automatic Control, vol. 57, no. 7, pp. 1827–1832, 2012.

[53] D. Boskos and D. V. Dimarogonas, “Robust connectivity analysis for multi-agent
systems,” in IEEE Conference on Decision and Control, 2015, pp. 6767–6772.

[54] T. Yang, Z. Meng, D. V. Dimarogonas, and K. H. Johansson, “Global consensus for
discrete-time multi-agent systems with input saturation constraints,” Automatica,
vol. 50, no. 2, pp. 499–506, 2014.

[55] Z. Meng, Z. Zhao, and Z. Lin, “On global leader-following consensus of identical
linear dynamic systems subject to actuator saturation,” Systems & Control Letters,
vol. 62, no. 2, pp. 132–142, 2013.

[56] Y.-H. Lim and H.-S. Ahn, “Consensus with output saturations,” arXiv preprint
arXiv:1606.05980, 2016.

[57] Q. Wang and C. Sun, “Conditions for consensus in directed networks of agents
with heterogeneous output saturation,” IET Control Theory & Applications, vol. 10,
no. 16, pp. 2119–2127, 2016.

[58] Y. Li, J. Xiang, and W. Wei, “Consensus problems for linear time-invariant multi-
agent systems with saturation constraints,” IET Control Theory & Applications,
vol. 5, no. 6, pp. 823–829, 2011.

[59] J. Wei, A. R. Everts, M. K. Camlibel, and A. J. van der Schaft, “Consensus dynamics
with arbitrary sign-preserving nonlinearities,” Automatica, vol. 83, pp. 226–233,
2017.

[60] K. J. Åström and B. Bernhardsson, “Comparison of periodic and event based
sampling for first-order stochastic systems,” in IFAC World congress, vol. 11, 1999,
pp. 301–306.

[61] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control tasks,” IEEE
Transactions on Automatic Control, vol. 52, no. 9, pp. 1680–1685, 2007.

[62] X. Wang and M. D. Lemmon, “Event-triggering in distributed networked control
systems,” IEEE Transactions on Automatic Control, vol. 56, no. 3, pp. 586–601,
2011.

[63] W. Heemels, K. H. Johansson, and P. Tabuada, “An introduction to event-triggered
and self-triggered control,” in IEEE Conference on Decision and Control, 2012, pp.
3270–3285.

114 Bibliography

[64] C. Nowzari and J. Cortés, “Zeno-free, distributed event-triggered communication
and control for multi-agent average consensus,” in American Control Conference.
IEEE, 2014, pp. 2148–2153.

[65] X. Yi, W. Lu, and T. Chen, “Distributed event-triggered consensus for multi-agent
systems with directed topologies,” in Chinese Control and Decision Conference,
2016, pp. 807–813.

[66] D. Yang, W. Ren, X. Liu, and W. Chen, “Decentralized event-triggered consensus
for linear multi-agent systems under general directed graphs,” Automatica, vol. 69,
pp. 242–249, 2016.

[67] X. Wu and T. Yang, “Distributed constrained event-triggered consensus: L2 gain
design result,” in Annual Conference of the IEEE Industrial Electronics Society.
IEEE, 2016, pp. 5420–5425.

[68] H. Yu and P. J. Antsaklis, “Formation control of multi-agent systems with connec-
tivity preservation by using both event-driven and time-driven communication,” in
IEEE Conference on Decision and Control, 2012, pp. 7218–7223.

[69] Y. Fan, G. Feng, Y. Wang, and C. Song, “Distributed event-triggered control of
multi-agent systems with combinational measurements,” Automatica, vol. 49, no. 2,
pp. 671–675, 2013.

[70] Y. Fan, L. Liu, G. Feng, and Y. Wang, “Self-triggered consensus for multi-agent
systems with zeno-free triggers,” IEEE Transactions on Automatic Control, vol. 60,
no. 10, pp. 2779–2784, 2015.

[71] H. Li, X. Liao, T. Huang, and W. Zhu, “Event-triggering sampling based leader-
following consensus in second-order multi-agent systems,” IEEE Transactions on
Automatic Control, vol. 60, no. 7, pp. 1998–2003, 2015.

[72] X. Yi, W. Lu, and T. Chen, “Pull-based distributed event-triggered consensus
for multi-agent systems with directed topologies,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 28, no. 1, pp. 71–79, 2017.

[73] W. Hu, L. Liu, and G. Feng, “Output consensus of heterogeneous linear multi-agent
systems by distributed event-triggered/self-triggered strategy,” IEEE transactions on
cybernetics, 2017.

[74] X. Wang, H. Su, X. Wang, and G. Chen, “Fully distributed event-triggered
semiglobal consensus of multi-agent systems with input saturation,” IEEE
Transactions on Industrial Electronics, vol. 64, no. 6, pp. 5055–5064, 2017.

[75] Y. Fan and G. Hu, “Connectivity-preserving rendezvous of multi-agent systems with
event-triggered controllers,” in IEEE Conference on Decision and Control, 2015, pp.
234–239.

Bibliography 115

[76] M. Velasco, J. Fuertes, and P. Marti, “The self triggered task model for real-time
control systems,” in Work-in-Progress Session of the 24th IEEE Real-Time Systems
Symposium, vol. 384, 2003.

[77] X. Wang and M. D. Lemmon, “Self-triggered feedback control systems with finite-
gain L2 stability,” IEEE Transactions on Automatic Control, vol. 45, no. 3, pp. 452–
467, 2009.

[78] A. Anta and P. Tabuada, “To sample or not to sample: Self-triggered control for
nonlinear systems,” IEEE Transactions on Automatic Control, vol. 55, no. 9, pp.
2030–2042, 2010.

[79] C. De Persis and P. Frasca, “Robust self-triggered coordination with ternary
controllers,” IEEE Transactions on Automatic Control, vol. 58, no. 12, pp. 3024–
3038, 2013.

[80] X. Meng and T. Chen, “Event based agreement protocols for multi-agent networks,”
Automatica, vol. 49, no. 7, pp. 2125–2132, 2013.

[81] X. Meng, L. Xie, Y. C. Soh, C. Nowzari, and G. J. Pappas, “Periodic event-triggered
average consensus over directed graphs,” in IEEE Conference on Decision and
Control, 2015, pp. 4151–4156.

[82] C. Nowzari and J. Cortés, “Distributed event-triggered coordination for average
consensus on weight-balanced digraphs,” Automatica, vol. 68, pp. 237–244, 2016.

[83] X. Ge and Q.-L. Han, “Distributed formation control of networked multi-agent
systems using a dynamic event-triggered communication mechanism,” IEEE
Transactions on Industrial Electronics, 2017.

[84] A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H. Johansson, “Control of multi-
agent systems with event-triggered cloud access,” in European Control Conference,
2015, pp. 954–961.

[85] C. Nowzari and G. J. Pappas, “Multi-agent coordination with asynchronous cloud
access,” in American Control Conference, 2016, pp. 4649–4654.

[86] A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H. Johansson, “Multi-agent
trajectory tracking with self-triggered cloud access,” in IEEE Conference on
Decision and Control, 2016, pp. 2207–2214.

[87] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks.
Princeton University Press, 2010.

[88] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge university press, 2012.

[89] W. Lu and T. Chen, “A new approach to synchronization analysis of linearly coupled
map lattices,” Chinese Annals of Mathematics, Series B, vol. 28, no. 2, pp. 149–160,
2007.

116 Bibliography

[90] C. W. Wu, Synchronization in complex networks of nonlinear dynamical systems.
World Scientific, 2007.

[91] Z. Lin, B. Francis, and M. Maggiore, “Necessary and sufficient graphical conditions
for formation control of unicycles,” IEEE Transactions on automatic control,
vol. 50, no. 1, pp. 121–127, 2005.

[92] C. W. Wu, “Synchronization in networks of nonlinear dynamical systems coupled
via a directed graph,” Nonlinearity, vol. 18, no. 3, pp. 1057–1064, 2005.

[93] C. Godsil and G. F. Royle, Algebraic graph theory. Springer Science & Business
Media, 2013, vol. 207.

[94] A. Girard, “Dynamic triggering mechanisms for event-triggered control,” IEEE
Transactions on Automatic Control, vol. 60, no. 7, pp. 1992–1997, 2015.

[95] S. Hu, D. Yue, X. Yin, X. Xie, and Y. Ma, “Adaptive event-triggered control for
nonlinear discrete-time systems,” International Journal of Robust and Nonlinear
Control, vol. 26, no. 18, pp. 4104–4125, 2016.

[96] V. Dolk, D. P. Borgers, and W. Heemels, “Output-based and decentralized dynamic
event-triggered control with guaranteed Lp-gain performance and zeno-freeness,”
IEEE Transactions on Automatic Control, vol. 62, no. 1, pp. 34–49, 2017.

[97] V. Dolk, P. Tesi, C. De Persis, and W. Heemels, “Event-triggered control systems
under denial-of-service attacks,” IEEE Transactions on Control of Network Systems,
vol. 4, no. 1, pp. 93–105, 2017.

[98] V. Dolk and M. Heemels, “Event-triggered control systems under packet losses,”
Automatica, vol. 80, pp. 143–155, 2017.

[99] G. A. Kiener, D. Lehmann, and K. H. Johansson, “Actuator saturation and anti-
windup compensation in event-triggered control,” Discrete event dynamic systems,
vol. 24, no. 2, pp. 173–197, 2014.

[100] Y. Xie and Z. Lin, “Event-triggered global stabilization of multiple integrator
systems with bounded controls,” in Proceedings of the American Control
Conference, 2017.

[101] T. Chen, X. Liu, and W. Lu, “Pinning complex networks by a single controller,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 6, pp.
1317–1326, 2007.

[102] H. K. Khalil, Nonlinear Systems, 3rd. Prentice-Hall, New Jersey, 2002.

[103] B. Mohar, “Eigenvalues, diameter, and mean distance in graphs,” Graphs and
Combinatorics, vol. 7, no. 1, pp. 53–64, 1991.

Bibliography 117

[104] V. Kucera, “A contribution to matrix quadratic equations,” IEEE Transactions on
Automatic Control, vol. 17, no. 3, pp. 344–347, 1972.

[105] Q. Ling, “Bit rate conditions to stabilize a continuous-time scalar linear system
based on event triggering,” IEEE Transactions on Automatic Control, vol. 62, no. 8,
pp. 4093–4100, 2017.

[106] G. N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans, “Feedback control under data
rate constraints: An overview,” Proceedings of the IEEE, vol. 95, no. 1, pp. 108–137,
2007.

[107] A. Kashyap, T. Başar, and R. Srikant, “Quantized consensus,” Automatica, vol. 43,
no. 7, pp. 1192–1203, 2007.

