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Abstract

Dynamical network systems are complex interconnected systems describing many
real world problems. The current trend is to connect more and more systems
together, and at the same time requiring continuous availability. To this end, it
is crucial to understand the dynamic behaviors of networked systems. This thesis
makes three contributions in this area.

First, we study the important problem of gathering data that are distributed
among the nodes in a network. Two specific tasks are considered: to estimate the
size of the network, and to aggregate the distribution of local measurements gener-
ated by the nodes. We consider a framework where the nodes require anonymity,
and restricted computational resources. We propose probabilistic algorithms with
low resource requirements, that quickly generate arbitrarily accurate estimates. For
dynamical networks, we improve the accuracy through a regularization term which
captures the trade-off between the gathered data and a-priori assumptions on the
dynamics.

In the second part of this thesis, we consider a dynamical network system where
one node is misbehaving due to a failure. We specifically seek robustness condi-
tions that guarantee that the entire network system is still functional. The nodes’
dynamics is governed by consensus updates, and we present thresholds on the in-
teraction strengths that determines if the system will reach consensus, or if the
system will diverge.

Finally, a peer-to-peer network is utilized to improve a live-streaming media
application. In particular, we study how an overlay network, constructed from
simple preference functions, can be used to build efficient topologies that reduce
both network latency and interruptions. We present necessary and sufficient con-
vergence conditions, as well as convergence speed estimates, and demonstrate the
improvements for a real peer-to-peer video streaming application.
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Chapter 1

Introduction

“The important thing is not to stop
questioning.”

— Albert Einstein

As the society is growing and technology makes us more interconnected, we need
to handle huge systems that are distributed over large areas. The transition to these
interconnected systems imposes a fundamental change in our understanding of the
world around us. The main developments during the last century have been in
improving our understanding of isolated subsystems, but we still miss the under-
standing of what happens when many small and simple subsystems are connected,
and how different interconnections can yield different behaviors.

The outline of this chapter is as follows: In section 1.1 we give some motivating
examples that inspired the work towards this thesis. In section 1.2 we introduce
some preliminary results and necessary background material. In section 1.3 we for-
mulate the main mathematical problems which we study in the following chapters.
In section 1.4 we discuss some of the related work, while section 1.5 presents the
contributions of this thesis.

1.1 Motivation

There is an abundance of illustrative examples where dynamical network systems
appear around us. In the following sections, we describe some of them that relate
to the results in this thesis.

Computer Networks
The Internet, i.e., the network of physical connections between computers, is a
large and ever-changing network. It is undeniable that the Internet has been a
great success, and much of the traffic is controlled by the transmission control pro-
tocol/Internet protocol (TCP/IP), originally introduced by Cerf and Kahn (1974).
One of the main goals of the transmission control protocol (TCP) is to minimize

1



2 Introduction

Figure 1.1: A P2P network disseminating information from a central server.

network congestion, which happens when a link or node is receiving more traffic
than it can handle. The first global congestion collapse was observed in October
1986 when the backbone’s throughput dropped three orders of magnitude from
its normal capacity. Congestion control can be seen as a distributed optimization
algorithm for solving optimal rate allocation with fair allocations.

An overlay network is a computer network built on top of another network, e.g.,
when virtual connections are built on top of the physical network, or an application
network on top of the TCP network. This abstraction makes it easier to replace
technological solutions, and design application protocols without full knowledge of
the underlying network. However, there is still a lack of knowledge in how to design
‘optimal’ overlay networks.

A prominent example of an application networks is the peer-to-peer (P2P) live-
streaming networks, illustrated in fig. 1.1. P2P networks are distributed network
architectures, where each individual node can act as both a supplier and consumer
of resources. The advantages of using P2P networks include resilience against fail-
ures, and creating scalable computer networks, where the capacity is increasing
with the number of peers. The P2P networks can be divided into unstructured
and structured networks, where the first class is based on nodes establishing ran-
dom connections, while the structured class organizes the topology into a specific
structure to ensure efficient services.



1.1. Motivation 3

Figure 1.2: The community structure of the author’s LinkedIn network. (Courtesy
of LinkedIn Maps)

Social Networks

A social network is a set of people or groups of people with some relations or inter-
actions between them. The friendships between individuals, business relationships
between companies, and intermarriages between families are all examples of social
networks. Social network analysis emerged as an important research topic in so-
ciology decades ago, with the first studies focused on the adoption of medical and
agricultural innovations. Most of the early work was carried out as field studies on
small communities, gathering data through questionnaires, interviews, and other
labor-intensive methods, e.g., the famous small world experiment by Travers and
Milgram (1969). In recent years, social network research has adopted data collected
from on-line social network platforms (e.g., Facebook, LinkedIn, mobile phone net-
works, etc.). It has resulted in a huge increase in the availability and in the size
of social network data, and also completely redefined the types of data that can
be collected and analyzed, leading to the emergence of a new computational social
science. An example can be found in the paper by Lambiotte et al. (2008), who
analyzed the network structure of mobile phone records, and could identify the
French and Flemish speaking communities in Belgium. Figure 1.2 illustrates the
community detection in a network.
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Figure 1.3: The evolution of Krause’s opinion dynamics, where the initial positions
where randomized with uniform probability.

There has also been considerable interest in studying opinion dynamics through
social networks. One such model is the Krause’s model by Hegselmann and Krause
(2002), which is based on the two assumptions:

• people trust each other by similarity of opinions;

• people get influenced by the opinion of those they trust.

The opinion of a person is modeled as a value xi ∈ R, for example the political
opinion on a left-right scale, and the options evolve according to an averaging
scheme,

xi(t+ 1) =

∑
j:[xi(t)−xj(t)]<1

xj(t)∑
j:[xi(t)−xj(t)]<1

1
.

This model can explain how people form groups of similar opinions, fig. 1.3, and
was studied by Blondel et al. (2009, 2010); Krause (2006); Nedić and Touri (2012).

However, even though online social networks can provide valuable data, there
is also a great concern about preserving the users’ privacy. This introduces new
challenges in establishing anonymity preserving computing.
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Power Networks
Power networks are large and complex dynamic networks, see fig. 1.4. The network
mainly consists of power stations producing electricity, consumers of power (e.g.,
factories and cities), and the electric grid that transmits the electricity between
the producers and consumers. The Swedish power grid can be divided into several
layers, the local grid (40 kV or less), the regional grid (40-130 kV) and the national
grid (220 kV and 400 kV). The national grid is also connected to other countries’
power grids, adding an additional layer to the network.

The power grid is operated through supervisory control and data acquisition
(SCADA) systems, a complex system where many computer controls and human
operators interact. The well-known power outage Northeast blackout 2003 in the
USA affected more than 50 million people, and shows the far-reaching consequences
of cascading failures in these highly interconnected systems. The primary cause of
the power outage was a software bug, that prevented an alarm to reach the human
operators. In light of this event, there has been a lot of interest in securing the power
grid from malicious attacks, e.g., Teixeira et al. (2012) discussed different attack
models for networked control systems. This awareness of this threat has also been
fueled by the recent Stuxnet computer virus, which was targeting specific SCADA
systems (Falliere et al., 2011). A commonly used criteria is that the systems should
be robust against any single point of failure, i.e., be able to avoid global cascading
failures if any single node or link malfunctions.

Transport Networks
The transport network is another prominent example of a network system, where
intersections can be modeled as nodes, and roads are the edges between the inter-
sections. One of the main challenges in transportation networks is to accurately
estimate traveling times (Jenelius and Koutsopoulos, 2013). As the transportation
demand approaches the capacity of the road, traffic congestion sets in (fig. 1.5),
which is often seen during rush hours. The congestion leads to both waisted com-
muting times and polluting effects on the environment.

Researchers cannot fully predict when traffic jams will occur, because minor
incidents can have ripple effects in the entire traffic system. It is also difficult due
to the hybrid nature of the traffic system, considering both continuous traffic flows
and discrete vehicles.

Simply building new roads might not be the best solution. For example, Braess’s
paradox describes a scenario where adding extra capacity to a network can reduce
the overall performance. Instead, there is a huge potential in improving the situa-
tion through better traffic management and personalized recommendations to the
drivers.

This illustrate the significance of being able to estimate the current state of the
network in a fast and reliable manner.
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Figure 1.5: A traffic jam in Delhi (Courtesy of Wikimedia)

1.2 Preliminaries

In this section, we introduce some mathematical preliminaries. In particular, we
introduce some graph theoretical tools used to model networked systems, and also
two of the basic distributed consensus algorithms.

Graph Theory

Networks are commonly modeled as mathematical graphs, models of pairwise re-
lations between objects. In this section, we introduce some notation and basic
concepts from graph theory that will be useful for describing network systems. A
more complete description of this topic can be found in the book by Diestel (2005).

A graph G(V, E) consists of a set of objects, called nodes, vertices, or in some of
our applications agents, denoted by V, and a set of pairwise relations, called edges
or links, denoted by E ⊆ V×V. We usually denote the number of nodes in a graph G
by NG = |V|, or simply N if the graph can be understood from the context. Further,
we usually label the nodes with numbers from 1 to N , thus V = {1, . . . , N}.

We can divide the graphs into two categories, the undirected graphs are the
graphs where the edges are unordered pairs of vertices, hence (i, j) and (j, i) are
considered to be the same edge, and (i, j) ∈ E if and only if (j, i) ∈ E . All other
graphs are directed graphs, and the edge (i, j) is directed from node i to node j.

The usual way of picturing an undirected graph is by drawing a circle for each
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(a) An undirected graph with 7 nodes and 7 edges.
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(b) A directed graph with 7 nodes and 8 edges.

Figure 1.6: Graphs are illustrated with circles representing nodes, and lines repre-
senting edges.

node, and joining two of the circles by a line if the corresponding nodes form an
edge, fig. 1.6a.

Similarly, a directed graph is pictured by drawing a circle for each node, and
joining two circles with an arrow pointing from i to j if (i, j) forms an edge of the
graph, fig. 1.6b.

Two nodes that have an edge between them are said to be adjacent. The neigh-
bors of a node i are those nodes which have an incoming edge from node i. We
denote the neighbors of node i by Ni, and the degree of a node is the size of its
neighborhood deg (i) = |Ni|, where

Ni = {j | (i, j) ∈ E} .

A path in G is a list of distinct vertices {v0, v1, . . . , vn} such that (vi, vi+1) ∈ E ,
i = 0, 1, . . . , n− 1. The number of edges in the path is the length of the path. The
path is said to go from v0 to vn.

A directed graph is strongly connected if there exists a path from every vertex
to every other vertex in the graph, while for an undirected graph, it is simply called
connected. The distance dist (v0, vn) between two nodes v0 and vn, is the length
of the shortest path between them, or ∞ if there is no such path. Further, the
diameter of a graph is the greatest distance between any two nodes in the graph.

Spectral Graph Theory

An important way to study graphs is through representing them with matrices and
analyzing matrix properties, such as eigenvalues.
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The adjacency matrix A of a graph G(V, E) is an N ×N matrix, whose entries
aij are given by the edges as:

aij =
{

1 if i 6= j and (i, j) ∈ E ,
0 otherwise.

The next important matrix is the Laplacian matrix L of a graph, defined as
L = D−A, where D is the diagonal degree matrix, and A is the adjacency matrix:

lij =


deg (i) if i = j,
−1 if i 6= j and (i, j) ∈ E ,
0 otherwise.

The eigenvalues of the Laplacian matrix are important for many network appli-
cations, including robustness and convergence time. Also, the multiplicity of 0 as
an eigenvalue is equal to the number of connected components.

For example, the adjacency matrix and Laplacian matrix of the undirected graph
in fig. 1.6a are

A =



0 1 0 1 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
1 0 1 0 1 0 0
0 0 0 1 0 1 1
0 0 0 0 1 0 0
0 0 0 0 1 0 0


L =



2 −1 0 −1 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
−1 0 −1 3 −1 0 0
0 0 0 −1 3 −1 −1
0 0 0 0 −1 1 0
0 0 0 0 −1 0 1


Consensus Algorithms
The consensus problem, or agreement problem, is a distributed computing problem
with the goal of reaching agreement on a final value. Typically in a setting with
failing nodes, and limited computational and communication resources. Two spe-
cific algorithms are considered: to reach consensus on the average and the maximal
initial value respectively.

Both of these algorithms assumes a strongly connected network G of nodes V,
where each node i ∈ V is given an initial real value xi(0) ∈ R. Each node then
updates its own value based only on the values of its neighbors Ni, without any
influence from the rest of the network.

Average Consensus

The average consensus algorithm is based on linear iterations over the neighbors.
The goal is to let every node’s value converge to the average of the initial values,

xi(t)
t→∞−−−→ 1

N

∑
j∈V

xj(0), ∀i ∈ V. (1.1)
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Each node follows the update rule

xi(t+ 1) = wiixi(t) +
∑
j∈Ni

wijxj(t). (1.2)

If W is the weight matrix with entries wij (or 0 if wij is not present in the updates
above), then, in vector form, where x =

[
x1, x2, · · · , xN

]T, the entire network
update can be condensed into

x(t+ 1) = Wx(t). (1.3)

This system will converge to the average values, for an arbitrary initial condition,
if and only if the weight matrix satisfies

lim
t→∞

W t = 1
N
11T

An equivalent condition is that W is a double stochastic matrix, and that ρ(W −
(1/N)11T) < 1 (Xiao and Boyd, 2003).

Notice that the convergence is asymptotic in the number of iterations.

Max Consensus

Here, the goal is to let every node’s value converge to the maximum of the initial
values,

xi(t)
t→∞−−−→ max

j∈V
xj(0), ∀i ∈ V. (1.4)

The local update consists of simply taking the maximum of the neighbors’ values,

xi(t+ 1) = max
j∈Ni

xj(t). (1.5)

This protocol can be implemented with either gossip or broadcast communications.
In the latter case, agents sequentially broadcast their local values, and whoever
receives this information updates its local value with the maximum. Under mild
assumptions on the communication process, the max consensus protocols are proven
to converge to the true maximum in a finite amount of time, bounded by the
diameter of the network (Iutzeler et al., 2012).
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1.3 Problem Formulation

The aim of this thesis is to provide an analytical framework to study dynamical
network systems. In particular, we focus on estimation and convergence properties
for algorithms that are based on the consensus protocols.

The first problem we study is to estimate properties in a dynamical network,
specifically the network size N(t) = |V(t)|. This is an important tool for network
reconfiguration and fault detection in networks. We assume that there exists a-
priori knowledge on the expected evolution of the network size N(t), which can be
used to improve the estimate. The methods should be distributed, where all nodes
execute the same algorithms in parallel, and where all agents should reach consensus
on the estimate as fast as possible. We want to have a framework of anonymous
agents, where the there is no guarantee that the nodes have global identities.

The second problem we consider is a continuous time consensus system,

ẋi(t) =
∑
j∈Ni

aij(t)
(
xj(t)− xi(t)

)
,

but where one agent k has an error that causes it to use positive feedback instead
of negative: akj → −akj . The aim is to study robustness properties against this
type of faults, and determine thresholds on the interaction weights such that the
system still converges to consensus.

In the final problem, we consider topologies in P2P live-streaming applications.
The goal is to reduce the latency and interruptions in the video stream through
designing an overlay networks that aids in network reconfigurations. The gradient
overlay topology should be built using a local preference function that selects peers
from a random peer sampling service, and convergence properties for this system
are needed.

1.4 Related Work

In this section, we summarize some of the important contributions in the field of
dynamical network systems, and in particular related to the work in this thesis.

Estimation in Networks
The importance of distributed estimation is reflected by the variety of applications
where agents interact and cooperate to reach a common goal. Examples of these
systems include environmental monitoring (Lynch et al., 2008), management of the
electrical grid (Bolognani and Zampieri, 2013) and the public transportation system
(Herring et al., 2009).

A common approach to network size estimation is to use random walks (Gkant-
sidis et al., 2006; Massoulié et al., 2006; Ribeiro and Towsley, 2010), relying on a
token being passed around the network to collect information each time it visits
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an agent. Another strategy is to use randomly generated numbers (Kostoulas et
al., 2007), and then exploit classical results on order statistics to infer the number
of participants (Baquero et al., 2012; Cardoso et al., 2009; Chassaing and Gerin,
2006; Giroire, 2009; Lumbroso, 2010; Varagnolo et al., 2013). These probabilis-
tic techniques have been statistically analyzed (Cichon et al., 2012b; Clifford and
Cosma, 2012), and are extensions of methodologies for estimating sums over net-
works (Cohen, 1997; Mosk-Aoyama and Shah, 2008). Other network size estimation
schemes use the capture-recapture concept (Peng et al., 2009; Petrovic and Brown,
2009), where seed numbers are randomly disseminated through the network, and
then, by counting how many seeds are in a given subset, inferring the size of the
network. Some studies (Cichon et al., 2012a, 2011) exploit probabilistic counting
algorithms (Flajolet et al., 2007) usually implemented in non-distributed contexts.
Other techniques take advantage of their specific framework and are not imple-
mentable in general settings (Ali et al., 2009; Dolev et al., 2006; Howlader et al.,
2008; Leshem and Tong, 2005).

The previous studies mainly dealt with static networks, but there are also some
extensions to dynamical settings. Fusy and Giroire (2007) used order statistics,
Psaltoulis et al. (2004) considered random walks, Chabchoub and Hébrail (2010)
exploited probabilistic counting algorithms and Alouf et al. (2004, 2002); Shafaat
et al. (2008) also dealt with dynamic scenarios.

When it comes to estimating probability mass functions over networks, the lit-
erature can be divided into parametric and non-parametric approaches. Parametric
approaches assume the estimand to have a certain structure before obtaining obser-
vations, e.g., to be a sum of Gaussian distributions. Distributed implementations of
the expectation-maximization (EM) algorithm (Forero et al., 2008; Jiang and Jin,
2006; Nowak, 2003; Vlassis et al., 2005) are examples of a parametric approach.
Non-parametric approaches, on the other hand, do not assume a fixed structure
a-priori, but rather select it from the observations. Kernel density estimation (Hu
et al., 2007), classification (Klusch et al., 2003) and clustering approaches (Nguyen
et al., 2005) are all examples of non-parametric approaches.

The literature can also be characterized by how information is propagated and
aggregated over the network. There are strategies based on pre-established hier-
archic tree routing structures, where the nodes compute the distributions in their
sub-trees and propagate the information towards the root (Greenwald and Khanna,
2004; Madden et al., 2002; Motegi et al., 2006; Shrivastava et al., 2004). Borges et
al. (2012); Haridasan and van Renesse (2008); Sacha et al. (2010) all used gossip
communications, and exploit averaging techniques to explicitly compute the cu-
mulative distribution functions, while Cheng et al. (2010); Massoulié et al. (2006)
estimated how many agents are in a specific state.

Multi-Agent Control Systems
Co-operative control of multi-agent systems has been extensively investigated in the
literature for consensus, formation, flocking, aggregation and coverage of a group
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of autonomous agents (Cortes and Bullo, 2005; Jadbabaie et al., 2003; Lin et al.,
2005, 2007; Olfati-Saber and Murray, 2004; Olfati-Saber and Shamma, 2005; Ren
and Beard, 2008; Shi and Hong, 2009; Shi et al., 2012; Tanner et al., 2007; Tsitsiklis
et al., 1986).

In leader-follower protocols, some agents are designated as leaders whose task
it is to guide the remaining follower agents. The controllability of leader-follower
systems was introduced by Tanner (2004), in which necessary and sufficient con-
ditions were established. Gustavi et al. (2010) studied conditions for maintaining
connectivity in leader-follower networks, with single integrator action. The graph-
theoretic characterizations were further studied by Ji et al. (2006); Rahmani et al.
(2009); Rahmani and Mesbahi (2006).

Hong et al. (2006) studied tracking control for multi-agent consensus with one
single active leader and a neighbor-based observer. Gu and Wang (2009) discussed
leader-follower flocking, where only a few agents have the knowledge of a desired
trajectory. The leader-to-formation stability was studied for formation control of
multi-agent systems by Olfati-Saber and Murray (2004). There has also been work
with multiple leaders (Couzin et al., 2005; Ji et al., 2008; Lin et al., 2005). Cao
and Ren (2009) studied distributed control protocols to drive a collection of mobile
agents to stationary state, with connectivity maintenance and collision avoidance.
Meng et al. (2012) discussed swarm tracking problems for a group of Lagrange
systems. Shi and Hong (2009) studied multiple leaders aggregating the entire multi-
agent system within a convex target set.

Peer-to-Peer Networks
Randomized gossiping algorithms have been recent tools for building distributed
systems, in particular in the areas of overlay networks, sensor networks and cloud
computing storage services (Boyd et al., 2006; Kermarrec and van Steen, 2007).
Convergence properties of gossip-based aggregation algorithms have been studied
for both fixed topologies (Olshevsky and Tsitsiklis, 2006) and regular graphs (Jel-
asity et al., 2007; Liu et al., 2009).

Research in gossiping has also focused on using the Preferential Connectivity
Model (Mihail et al., 2003) to construct overlay network topologies, where nodes ini-
tially connected in a random graph use a preferential connection function to break
the symmetry of the random graph, and build a topology that contains useful global
information. Barabási (2002) first described how a preferential attachment func-
tion in a growing network can build a scale-free network topology from a random
graph. Barabási’s preferential attachment functions are based on the global state,
but in overlay networks, nodes only have a relatively small partial view of the sys-
tem. Thus, the preference functions can only be based on the local state and the
state of the node’s neighbors. Examples of existing overlay networks that construct
their topologies using gossiping and preference functions include Spotify, that pref-
erentially connects nodes with similar music play-lists (Kreitz and Niemelä, 2010),
Sepidar, that preferentially connects P2P live-streaming nodes with similar upload
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bandwidth capacity (Payberah et al., 2010b), and T-Man, a framework that pro-
vides a generic preference function for building such overlays (Jelasity et al., 2009).

1.5 Thesis Outline and Contributions

This thesis is a compilation of results presented in peer reviewed scientific venues.
The remainder of this thesis is organized as follows.

Chapter 2: Estimation in Anonymous Networks

In this chapter, we consider the problem of estimating the state of a network,
motivated by network maintenance. In particular, we study two problems, first
estimating the size of the network, and secondly to estimate the entire empiri-
cal distributions of measurements over the network. The proposed algorithms are
based on max consensus information exchange protocols, since they lead to fast
convergence speeds as well as small communication burdens. What is particular
in our scheme is that we assume the the agents to be anonymous, thus severely
limiting the communication information.

This chapter is based on the publications

• Håkan Terelius, Damiano Varagnolo, and Karl Henrik Johansson. 2012. Dis-
tributed Size Estimation of Dynamic Anonymous Networks. In 51st IEEE
Conference on Decision and Control, pages 5221–5227, Maui, HI, USA, De-
cember 2012

• Håkan Terelius, Damiano Varagnolo, Carlos Baquero, and Karl Henrik Jo-
hansson. 2013b. Fast Distributed Estimation of Empirical Mass Functions
over Anonymous Networks. In 52nd IEEE Conference on Decision and Con-
trol, Florence, Italy. To appear

Chapter 3: Faulty Nodes in Consensus Protocols

This chapter studies consensus control for a multi-agent system with a faulty node.
The node dynamics follow a normal continuous-time consensus protocol with neg-
ative feedback, where the faulty node instead uses positive feedback. In particular,
we study the interaction strength parameters that can guarantee the system to
reach consensus.

This chapter is based on the publication

• Håkan Terelius, Guodong Shi, and Karl Henrik Johansson. 2013a. Consensus
Control for Multi-agent Systems with a Faulty Node. In 4th IFAC Workshop
on Distributed Estimation and Control in Networked Systems, pages 425–432,
Koblenz, Germany, September 2013
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Chapter 4: Convergence in Peer-to-Peer Networks
In this chapter, we investigate the topology convergence in a P2P network system.
The goal of the system is to maximize live-streaming performance through estab-
lishing a gradient overlay topology. The gradient overlay network is characterized
by a directed graph, where each node has a set of neighbors with the same utility
value and a set of neighbors containing higher utility values, such that paths of
increasing utilities emerge in the network topology. The gradient overlay network
is built using gossiping and a preference function that samples from nodes using a
uniform random peer sampling service. Evaluation of the gradient overlay topology
in the live-streaming application GLive was performed by SICS.

This chapter is based on the publication

• Håkan Terelius, Guodong Shi, Jim Dowling, Amir H. Payberah, Ather Gat-
tami, and Karl Henrik Johansson. 2011a. Converging an Overlay Network
to a Gradient Topology. In 50th IEEE Conference on Decision and Con-
trol and European Control Conference, pages 7230–7235, Orlando, FL, USA,
December 2011

Chapter 5: Conclusions and Future Work
A summary of this thesis, and possible future research directions.

Other Contributions
The following publication is not covered in this thesis, but is relevant for networked
systems. The paper studies a distributed multi-agent optimization problem of min-
imizing the sum of convex objective functions. A decentralized optimization algo-
rithm is introduced, based on dual decomposition, together with the sub-gradient
method for finding the optimal solution.

• Håkan Terelius, Ufuk Topcu, and Richard M. Murray. 2011b. Decentral-
ized Multi-Agent Optimization via Dual Decomposition. In 18th IFAC World
Congress, pages 11245–11251, Milan, Italy, August 2011

Author’s Contributions
The order of the authors reflect their contributions in the mentioned papers. The
author has formulated and solved the problems, as well as written the papers. The
co-authors has participated in discussions and conventional supervision.





Chapter 2

Estimation in Anonymous Networks

“Prediction is very difficult,
especially if it’s about the future.”

— Niels Bohr

In this chapter we consider distributed estimation of data obtained by the nodes
in a network. Two specific problems are analyzed: first to estimate the size of
the network N = |V|, and later to estimate the empirical distribution of local
measurements zi generated by each node i ∈ V. We explicitly target dynamical
networks by utilizing a regularization term which captures a-priori assumptions on
the dynamic behavior.

Our aim is to obtain distributed methods, where all nodes execute the same
algorithm in parallel, and where neither leaders nor an overlay structure is present.
We assume that the nodes have no knowledge of the network topology, and that they
have narrowly bounded computational, memory and bandwidth resources, where
especially the size of the exchanged information packets stays constant over time.
Finally, the goal is that all agents should quickly reach consensus, in the sense that
they should share the same estimates of the global properties for the network as
fast as possible.

We further restrict our methods to anonymous networks, where the uniqueness
of the nodes’ IDs is not guaranteed (Yamashita and Kameda, 1988), thus avoid-
ing the possibility of tracing or characterizing a single agent. The anonymity is
motivated for maintaining users’ privacy (e.g., in P2P networks where users may
not want to disclose information about their identity), but is also beneficial in
applications when the estimation strategies must be simple with limited resource
requirements.

The outline of this chapter is as follows: In section 2.1 we introduce the network
size estimation problem for dynamical networks, which we analyze in section 2.2.
We continue by specifically considering quadratic regularization terms in section 2.3,
and evaluate the estimator in section 2.4 with numerical experiments.

Next, we turn to the probability mass function (PMF) estimation problem for
static networks in section 2.5, and introduce two different estimators for this prob-

17
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lem in section 2.6. These estimators are analyzed in section 2.7, and evaluated with
numerical simulations in section 2.8.

Finally, we combine the dynamical network size estimator from section 2.1 with
the PMF estimator from section 2.6 to estimate PMFs in dynamical networks in
section 2.9. In section 2.10 we summarize and conclude this chapter.

2.1 Size Estimation Problem

The first problem we consider in this anonymous network framework is to estimate
the network size N(t) = |V(t)| of a time-dependent network G(t) = (V(t), E(t)). In
many distributed network applications, the network will need to redirect resources
or take other restorative actions if the network topology changes. Thus, being able
to estimate the size and, in particular, changes in the network size is indispensable
for automatic network reconfiguration and fault detection.

Compared to the previous literature, we derive a distributed estimator that
extends techniques based on order statistics with a regularization approach (Vapnik,
1998; Wahba, 1990). We introduce a regularization term that allows the designer to
combine the empirical evidence from the data with a-priori believes on the expected
behavior of the network size to be estimated, and then provide an analysis of the
quadratic regularization functions.

Let N(t) represent the true number of agents in the network at time t ∈ N, while
N̂(t) denotes the estimated value of this quantity. In the maximum likelihood (ML)
estimator, we denote a generic hypothesis by N(t) for the estimated value of N(t).
The estimator will simultaneously estimate the network size for a time window of
length τ +1, and we can utilize previous estimates up until time t−η, where η ≥ τ ,
in the regularization term. We therefore introduce the following vectorized versions
of the previous quantities, where the bold italics indicate vectors:

N(t) .= [N(t), . . . , N(t− τ)]T (2.1)

N(t) .=
[
N(t), . . . , N(t− τ)

]T (2.2)

N̂(t) .= [N̂(t), . . . , N̂(t− τ)]T (2.3)

N̂η
τ (t) .= [N̂(t− τ − 1), . . . , N̂(t− η)]T . (2.4)

Thus, N(t) refers to the true values over a time window of length τ+1, N(t) refers
to a generic hypothesis on the true value of N(t), and N̂(t) refers to the estimate
of the true values. N̂η

τ (t) contains an additional memory of previous estimates that
is used to improve the regularization process of the estimate. Notice that τ, η ∈ N
are fixed design parameters of the algorithm.

The considered network model G(t) of interconnected agents V(t) = {1, . . . , N(t)}
is based on agents which can join or leave at any time. The goal is to distributively
track the network size, i.e., each agent should create an estimate of the number of
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agents as the network size is evolving. At the same time, each agent can only com-
municate with its direct neighbors, and the anonymity assumption further implies
that no global unique identifiers can be exchanged for the estimation purposes.

At the communication protocol level, we consider a simplified framework, where
effects of clock synchronization, packet loss and quantization issues can be ne-
glected.

2.2 Network Size Estimation Algorithm

The basic idea behind the network size estimation scheme, introduced by Varagnolo
et al. (2010), is that each agent i ∈ V(t) generates a uniform, random sample U [0, 1],
and then the max consensus protocol, described in section 1.2, is used to compute
the maximum of these samples. This yields a sample of a random variable whose
distribution is the maximum of N(t) independent and identically distributed (i.i.d.)
random variables, which depends upon N(t). Hence, this sample can be used to
compute a ML estimate of N(t).

The specific extension of this idea to dynamic network size estimation includes a
repetitive generation of new random samples and computation of the maximal value.
The samples from the max distribution is kept for a time window of length τ+1, to
simultaneously estimate N(t) with the a-priori assumptions on the evolution. Our
algorithm also include an additional memory of the previous estimates N̂η

τ (t) for
an extended time window of length η− τ , which are considered as fixed parameters
in the estimation scheme. All this data is then used to compute a penalized ML
estimate N̂(t), as described in Algorithm 2.1 and eq. (2.6).
Remark. The time index t does not need to denote physical quantities (such as sec-
onds), but rather epochs, under which each iteration of algorithm 2.1 is completed.
We thus implicitly assume that the agents always reach the max consensus on the
locally generated samples.

The penalized log-likelihood function J in (2.5) is defined as:

J
(
N ; f(t), . . . ,f(t− τ), N̂η

τ (t)
)
.=

− log
(
p
(
f(t), . . . ,f(t− τ) ; N

))
+ γR

(
N , N̂η

τ (t)
)
. (2.6)

This allows us to estimate the network size N(t) while penalizing hypotheses N
that deviate from expected behaviors by means of the regularization term R :
Rτ+1 × Rη−τ → R+. Thus, given a hypothesis N , eq. (2.6) evaluates both its
plausibility in the regularization term and its empirical evidence in the log-likelihood
function (Schölkopf and Smola, 2002, Chap. 4). The parameter γ in (2.6) is called
the regularization parameter, and can be tuned to capture the trade-off between
the empirical evidence of N and its plausibility.

Notice that the hypothesisN correspond to a time-window of length τ+1, while
the regularization term R explicitly depends on the memory of the past estimates
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Algorithm 2.1 Dynamic Network Size Estimation Algorithm
1: for every t = 1, 2, . . . do
2: (Generation step) Each agent i = 1, . . . , N(t) generates M i.i.d. random

values
yi,m(t) ∼ U [0, 1] , m = 1, . . . ,M

3: (Communication step) Agents compute, through max consensus strategies,
the M -dimensional max vector

f(t) .= [f1(t), . . . , fM (t)]T ,

where
fm(t) = max

i=1,...,N(t)
yi,m(t).

4: (Computation step) Each agent estimates the total number of agents in the
network through the penalized ML scheme as

N̂(t) = arg min
N∈Rτ+1

J
(
N ; f(t), . . . ,f(t− τ), N̂η

τ (t)
)

(2.5)

5: end for

N̂η
τ (t) up to time t− η (η ≥ τ), defined in (2.4). The past estimates N̂η

τ (t) are not
changed by the estimator, and are used as fixed extra parameters. An illustrative
description of how these time windows shift in time is given in fig. 2.1.
Remark. If the regularization term is removed,R = 0, then Algorithm 2.1 is reduced
to sequentially computing the estimates as

N̂(t) .= arg min
N∈R

(
− log

(
p
(
f(t) ; N

)) )
= −

(
1
M

M∑
i=1

log (fi)
)−1

.

(2.7)

In this case, the various N̂(t)’s are estimated independently, and this corresponds
to the ML approach used in static anonymous network frameworks (Varagnolo et
al., 2010). The accuracy is clearly improved by increasing the number of random
samplesM , as can be seen from the statistical properties of N̂ in this case (assuming
M > 2):

E

[
N̂(t)
N(t) ; M

]
= M

M − 1 , (2.8)

E

(N(t)− N̂(t)
N(t)

)2

; M

 = M2 +M − 2
(M − 1)2(M − 2) . (2.9)
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time

N̂

time (+1)

N̂

Figure 2.1: Example of the time behavior of the estimation scheme of eq. (2.6).
The white rectangle indicates the extra parameters N̂η

τ (t), while the gray rectangle
indicates the time-window where the optimization problem of eq. (2.5) acts to
obtain new estimates.

Parameter Design Constraints
Also for the dynamical network size estimation, the estimation accuracy is intu-
itively non-decreasing in M, τ and η. However, M is bounded by transmission
costs (in the max consensus step), τ is bounded by computational constraints (in
the size of the optimization problem, eq. (2.5)), while η is bounded by memory
limitations.

Notice that memory can be saved by compressing the vectors f(t),f(t− 1), . . .
into scalars without loss of information, as the following proposition states.

Proposition 2.1. Let s(τ) .= −
∑M
m=1 log (fm(τ)). Then s(τ) is a complete and

minimal sufficient statistic for N(τ).

By introducing s(t) .= [s(t), . . . , s(t− τ)]T , the penalized likelihood (2.6) can be
rewritten as

J
(
N ; s(t), N̂η

τ (t)
)

= −log
(
p
(
s(t) ; N

))
+ γR

(
N , N̂η

τ (t)
)

Proof. Because the samples yi,m(τ) are i.i.d., it follows that p
(
f(t), . . . ,f(1) ; N

)
=∏t

τ=1 p
(
f(τ) ; N(τ)

)
. To prove the proposition it is then sufficient to show that

s(τ) is a complete and minimal sufficient statistic for N(τ).

p
(
f(τ) ; N(τ)

)
=

M∏
m=1

N(τ) · fm(τ)N(τ)−1 = N(τ)Me−(N(τ)−1)s(τ),
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for all τ , thus, s(τ) is a sufficient statistic for N(τ) because of the Fisher-Neyman
factorization theorem. It is also clearly minimal since it is a scalar.

To show the completeness of s(τ), we must show that if g(s(τ)) is a generic
measurable function such that E [g(s(τ)) | N ] = 0 independently of N , then it
must be g(·) ≡ 0 almost everywhere (a.e.). Consider now that −log (fi(τ)) is an
exponential random variable with rate N . Thus, s(τ) is the sum of i.i.d. exponential
random variables, i.e., s(τ) ∼ Γ

(
M, 1

N

)
. E [g(s(τ)) | N ] = 0 can then be rewritten

as
Γ (M)−1

NM

∫ +∞

0
g(s)sM−1exp (−sN) ds ≡ 0 .

This is equivalent to the fact that the Laplace transform of g(s)sM−1 has to be zero
a.e., and this happens if and only if g(s) is zero a.e..

This compression of variables actually results in a memory saving ofM ·τ scalars,
and only a single vector of M scalars is needed for computing the current f(t) in
the max consensus step.

Quadratic Regularization
Adding a regularization term R in empirical risk minimization problems, as we did
in eq. (2.6), generally improves their conditioning properties (Schölkopf and Smola,
2002, Chap. 4). The usage of these terms can also be motivated by Bayesian
perspectives, where the penalty R reflects a-priori beliefs on a typical behavior.

Here we explicitly consider quadratic regularization terms, i.e.,

R
(
N , N̂η

τ

)
=
[
N − µ1

N̂η
τ − µ2

]T [
Q11 Q12
QT12 Q22

]
︸ ︷︷ ︸

Q−1

[
N − µ1

N̂η
τ − µ2

]
(2.10)

where µ is a nominal behavior of N , and Q−1 is a symmetric positive definite
matrix.

Proposition 2.2. Given a quadratic regularization term as in eq. (2.10), the opti-
mal estimator N̂(t) for eq. (2.5) satisfies the quadratic equation system

diag
(
N̂(t)

)
·
(
s(t) + 2γQ11

(
N̂(t)− µ1

)
+ 2γQ12

(
N̂η
τ (t)− µ2

))
−M · 1 = 0 . (2.11)

Proof. Since s(t), . . . , s(t− τ) are independent, and their probability distribution is

p
(
s(τ) ; N(τ)

)
= N(τ)Me−(N(τ)−1)s(τ),
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it follows that

−log
(
p
(
s(t), . . . , s(t− τ) ; N

))
=

t∑
i=t−τ

(
(N(i)− 1)s(i)−M log

(
N(i)

) )
.

We can thus rewrite the estimator (2.5) as

arg min
N

t∑
i=t−τ

(
(N(i)− 1)s(i)−M log

(
N(i)

) )
+γ
(
N − µ1

)TQ11
(
N − µ1

)
+2γ

(
N − µ1

)TQ12

(
N̂η
τ − µ2

)
+γ
(
N̂η
τ − µ2

)T
Q22

(
N̂η
τ − µ2

)
.

Setting the gradient with respect toN equal to zero yields, for each i = t−τ, . . . , t,

s(i)− M

N(i)
+ 2γ

(
Q(i)

11
(
N − µ1

)
+Q(i)

12

(
N̂η
τ − µ2

))
= 0,

where Q(i)
11 is the i-th row of Q11 (similarly for Q(i)

12 ). Multiplying by N(i) and
vectorizing the previous equation into a matrix equality leads to eq. (2.11).

Quadratic regularization terms, as in eq. (2.10), especially capture the de-
sign strategies where R penalizes just the changes between consecutive estimates
N(t), . . . , N(t − η). In fact, by defining Ωij

.= (ei − ej)(ei − ej)T , where {ei} is
the standard basis of Rn, x = [x1, . . . , xn]T , and letting Q−1 =

∑
i,j qijΩij with

qij > 0 then ‖x− µ1‖2Q =
∑
i,j qij(xi− xj)2. In this case, choices for η larger than

η = τ + 1 are meaningless, since a larger value would just add a constant to the
regularization term.

2.3 Properties under a Markovian P2P Model

We now derive the quadratic regularization term as an approximation of the prob-
abilistic model for a simple but practical network example. This example also
illustrates an important extension of the algorithm; that it can be used to count
the number of nodes that satisfies any property, as long as the nodes can determine
this property themselves.

Consider an anonymous peer-to-peer file sharing network, where a certain file is
only available at a subset of the peers, and the goal is to estimate how many peers
that have this file. At any time, a user who does not have the file can choose to
download it, and a user who does have the file can choose to delete it. All peers
in the network will participate in the estimation algorithm, but only the peers who
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have the file perform the first step of generating new random values. Those peers
who do not have the file would instead initialize their state with zeros in order to
not affect the max consensus protocol. We further assume that:

• there exists a boundary on the total number of peers1, say Nmax;

• downloading and deleting files happen independently among the peers;

• the stochastic process that peer i downloads or deletes the file is a Markov
process with (known) probabilities:

p
.= P [xi(t) = 1 | xi(t− 1) = 0]

q
.= P [xi(t) = 0 | xi(t− 1) = 1]

(2.12)

where xi(t) = 1 corresponds to peer i having the file at time t, while xi(t) = 0
corresponds to that peer i does not have the file at time t.

Given these assumptions, we derive an estimator for the current time step (τ = 0),
but with two-steps of regularization memory (η = 1).

Derivation of the Regularization Term
Let us consider the Bayesian interpretation of the quadratic regularization term
as a log-Gaussian prior on [N(t), N(t − 1)]. Given the independence assumptions
stated above, we need to compute the nominal behavior µ .= E [N(t)] and variance

Q
.= E

[[
N(t)− µ

N(t− 1)− µ

] [
N(t)− µ

N(t− 1)− µ

]T]
.

Lemma 2.3. Let α .= p
q be the radio between the two transition probabilities in the

Markov chain. Then,

µ
.= E [N(t)] = α

1 + α
Nmax (2.13)

var (N(t)) = α

(1 + α)2Nmax (2.14)

cov (N(t), N(t− 1)) = (1− p− q) α

(1 + α)2Nmax (2.15)

Proof. Notice that N(t) =
∑Nmax
a=1 xa(t), where the processes xa are i.i.d.. Thus, let

us first compute the expected value, variance and covariance for a single agent.
The Markov process in (2.12) is described by the transition matrix P given by

P =
[
1− p p
q 1− q

]
.

1As stated later in this section, this assumption is not strictly required and could be removed.
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The equilibrium distribution, π = πP , for the Markov process is π = 1
1+α

[
1 α

]
,

thus the expected value is
E [xa(t)] = α

1 + α
.

Further, the variance is

var (xa(t)) = E
[
xa(t)2]− E [xa(t)]2 = α

1 + α
−
(

α

1 + α

)2
= α

(1 + α)2 .

Finally, for a single agent we have the covariance

cov (xa(t), xa(t− 1)) = E [xa(t)xa(t− 1)]− E [xa(t)]E [xa(t− 1)] =

= α

1 + α
(1− q)−

(
α

1 + α

)2
= (1− p− q) α

(1 + α)2 .

For the entire system N(t) =
∑Nmax
a=1 xa(t) we can simply multiply the results

for a single agent by Nmax, because the different agents are i.i.d., and because of
the linearity of the expected value, variance and covariance.

Thus we have the quadratic regularization

Q = Nmax
α

(1 + α)2

[
1 1− p− q

1− p− q 1

]
. (2.16)

Derivation of the Estimator
We had τ = 0 and η = 1, thus our variables corresponds to N̂(t) = N̂(t), N̂η

τ (t) =
N̂(t− 1),

µ1 = µ2 = µ = α

1 + α
Nmax,

Q11 = Q22 = 1
µq
(
2− q(1 + α)

) ,
Q12 = Q21 = q(1 + α)− 1

µq
(
2− q(1 + α)

) .
In this case, the condition on the optimal estimator (2.11) simplifies into the
quadratic equation

aN̂2(t) +
(
bN̂(t− 1) + c

)
N̂(t)−M = 0 (2.17)

where
a

.= 2γQ11,
b

.= 2γQ12,
c

.= s(t)− 2γ (Q11 +Q12)µ.
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The unique admissible solution for N̂(t) is given by

N̂(t) =

√√√√(bN̂(t− 1) + c

2a

)2

+ M

a
−

(
bN̂(t− 1) + c

2a

)
. (2.18)

Remarkably, our penalized ML approach leads to a recursive estimator that is
nonlinear but still easy to be implemented in devices with small computational capa-
bilities. The reason that the obtained smoother is nonlinear is because even though
we derived the regularization term using Gaussian assumptions on [N(t), N(t−1)],
the likelihood term in eq. (2.6) is non-Gaussian. If the likelihood had been Gaus-
sian, then the estimator would have been a linear smoother, leading to a Kalman
filter.

Notice that the derivation of Q using Gaussian assumptions is formally incor-
rect, since it implies that N(t), N(t − 1) could take negative values. A formally
correct probabilistic interpretation would require the regularization term R to be
derived from the actual prior distribution, but this would lead to a non-quadratic
R, and non-closed-form solutions of (2.5). Despite this formal error, the effects of
this approximation vanish as Nmax increase since N(t) =

∑Nmax
a=1 xa(t) is approxi-

matively Gaussian due to central limit effects.

The Role of the Regularization Parameter γ
In eq. (2.6), the log-likelihood function −log

(
p
(
s(t) ; N

))
takes into account the

experimental evidence, while the regularization term R reflects the a-priori infor-
mation about the regularity of the solution. The regularization parameter γ then
captures the trade-off between these two components, and represents how much
one trusts the regularity assumptions. Notice that the γ maximizing the predic-
tive capabilities of the filter strongly depends on M , i.e., on the accuracy of the
experimental evidence.

IfNmax is not known a-priori, or if its value is uncertain, then γ can also be tuned
on-line, e.g., with cross-validation methods (Hastie et al., 2009, Chap. 7.10). In this
case, tuning γ, assuming that the probabilities q and p are known, corresponds to
estimating Nmax given q, p and M .

2.4 Evaluation of the Size Estimation Algorithm

Let us evaluate the regularization based dynamic network size estimator on the
Markovian network model introduced in section 2.3. We generate networks with
Nmax = 1000 total peers, and let the transition probabilities be p = q = 0.01. Each
active peer is generating M = 200 uniformly random samples at each time step,
and the regularization parameter is chosen as γ = 0.001.

We start by noticing the beneficial effects of our regularization approach of
eq. (2.18) in fig. 2.2, where we compare the outcomes of our estimator with a
point-wise estimation (corresponding to γ = 0).
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Figure 2.2: Comparison of the results for a regularization based estimator and a
point-wise estimator, for the same set of s(τ). The network consists of Nmax = 1000
nodes, with transition probabilities p = q = 0.01.

Next we examine the effects of the parameters p, q, γ,Nmax and M on the
estimation performance by considering 4 different scenarios: p = q = 0.1 or
0.01; Nmax = 1000 or 2000. For each of these scenarios we evaluate the root-
mean-square error (RMSE) by generating 1000 independent network models Nj(t),
t = 1, . . . , 100, j = 1, . . . , 1000 from the Markovian model in section 2.3. For
each trajectory Nj(t) we compute the estimator of eq. (2.18) using different M ’s
in [10, 200] and different γ’s in [10−6, 10−2]. In fig. 2.3 each of the 4 subplots then
illustrates the dependency on M and γ of the RMSE, defined as:

RMSE(M,γ) .=

√√√√ 1
105

1000∑
j=1

100∑
t=1

(
Nj(t)− N̂j(t ; M,γ)

)2
, (2.19)
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Figure 2.3: Dependency of the average root-mean-square error on the parameters
M and γ for various values of p, q and Nmax.
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Figure 2.4: Dependency of the RMSE (2.19) on the number of bits used to repre-
sent the samples yi,m(t), assuming (2.18) and (2.19) to be computed using 64-bits
precisions. Nmax = 1000, p = q = 0.01, M = 200 and γ = 0.001.

Assuming that p, q,M and Nmax are fixed, then there exists an optimal regu-
larization parameter γ∗ minimizing the RMSE. The behaviors of the four surfaces
supports the following intuitive rules-of-thumb for selecting the estimator’s param-
eters.

• if p, q and Nmax are fixed, then increasing M leads to a smaller optimal
regularization parameter;

• if M and Nmax are fixed, then increasing p and q leads to a smaller optimal
regularization parameter;

• if p, q and M are fixed, then increasing Nmax leads to a smaller optimal
regularization parameter.

We finally evaluate how finite representations using only b-bits of the random
samples yi,m(t) in algorithm 2.1 can affect the estimation performances, i.e.,

yi,m(t) ∈ {0, α, 2α, . . . , 1} with α = 1
2b − 1 . (2.20)

Considering again 1000 trajectories Nj(t), t = 1, . . . , 100, j = 1, . . . , 1000 from the
network model in section 2.3, with Nmax = 1000, p = q = 0.01, M = 200 and
γ = 0.001, as in fig. 2.2. During the communication step the peers only use b-bits
precision, but later in the local computation of the estimate (2.18), they use full
64-bits precision. The average RMSE performance index shows (fig. 2.4) that for
small networks it is sufficient to represent the random samples yi,m(t) with 12 bits.
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Remark. Experiments in figs. 2.2 and 2.3 have been computed with the discretiza-
tion scheme in fig. 2.4 using 12 bits. With M = 200 random samples, and ignoring
the communication protocol overheads, this leads to data packets consisting of 300
bytes.

2.5 Estimation of Probability Mass Functions Problem

As we have seen so far, aggregating and estimating data over networks is essential
for many distributed systems. However, simple aggregations, such as computing
averages, maxima, or sums of a distributed data set, lose a lot of the informa-
tion contained in the original data. We will now continue and propose algorithms
that estimate the entire empirical PMF over anonymous networks. Specifically, we
consider protocols that aim to estimate the empirical distributions in the shortest
possible time.

Our proposed strategy is based on the max consensus estimator in section 2.2.
As the max consensus protocol convergence is bounded by the number of steps
needed to transmit information between arbitrary nodes in the network, this is one
of the fastest possible aggregation mechanism. The emphasis on fast convergence is
because the time aspect is a crucial factor in many practical situations, for example
in control applications.

From an algorithmic point of view our strategy departs from Borges et al. (2012);
Jesus (2012); Sacha et al. (2010) by substituting the average consensus schemes
with max consensus. This apparently minor modification actually makes the two
estimators completely different, and opens up for a variety of novel problems. In
fact, while the average consensus scheme requires exchanging very few scalars per
iteration, and where the agents compute the exact PMF asymptotically in time, the
max consensus scheme converges much faster than the average consensus scheme,
but not to the exact value. Again, the statistical performance depends on how
many scalars are exchanged per iteration. We specifically compare the temporal
behavior of these two strategies.

Statement of the PMF Estimation Problem

Consider a strongly connected network G = (V, E) ofN = |V| agents communicating
through the links E . In this section we assume the network to be static, and return
to the problem of estimating PMFs in time dependent networks in section 2.9. Let
Ni denote the set of neighbors of agent i, and N (t)

i the set of the t-steps neighbors
of agent i, i.e., all agents that can be reached by paths of length at most t from
agent i. Recall that N (t)

i can be defined for t = 0 as N (0)
i = {i} and, for t ≥ 1,

through the recursion
N (t)
i

.=
⋃

j : (i,j)∈E

N (t−1)
j . (2.21)
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Let every agent i ∈ V belong to a discrete state zi ∈ NB
.= {0, . . . , B − 1}, e.g.,

given by sensor measurements, where NB is the set of plausible states. We are then
interested in distributively estimating the relative frequencies of the local states
z1, . . . , zN , i.e., if nb

.=
∣∣{i : zi = b}

∣∣ is the number of agents in state b, then we
aim to estimate the PMF

pb
.= nb
N
, b ∈ NB , (2.22)

given that the network size N is unknown, while the plausible states NB are known.
We focus on distributed algorithms where each agent i ∈ V has a local variable

xi(t) that can be modified at time t + 1 by accessing the states xj(t)’s of the
neighboring nodes, and performing the aggregation operation

xi(t+ 1) = f (xi(t), xj1(t), xj2(t), . . .) , j1, j2, . . . ∈ Vi

that preserves the dimension of xi(t). At every time t, each agent also computes a
local estimate of the PMF function from the local variable xi(t),

p̂
(i)
b (t) = g (xi(t))

for an appropriate estimation function g(·).
The estimation strategy is thus defined by the initial variables xi(0), the update

function f and the estimation function g. In order to compare different estimation
strategies we consider the mean squared error (MSE) as a performance index, i.e.,

MSE
(
p̂1, . . . , p̂B

) .= E

 1
N ·B

∑
b∈NB ,i∈V

(
pb − p̂(i)

b

)2
 (2.23)

where the expectation is taken over all initial conditions.

2.6 PMF Estimators Based on Consensus Protocols

We consider two particular estimators, one based on the average consensus strategy
(see also Borges et al. (2012); Jesus (2012); Sacha et al. (2010)), and a strategy based
on max consensus in section 2.2.

In the following, we abstract away the message transmission and consider a
distributed system where agents communicate by synchronous rounds. At each
round, and over each edge, only a constant size message is transmitted, and no
messages are lost.

Remark. For notational simplicity we consider synchronous communication steps.
Nonetheless this could be relaxed for both estimators, since they can be adapted
to operate with gossip asynchronous transmissions.
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Estimator Based on Average Consensus
In the average consensus protocol, the local variable is a B-dimensional real vector
xi(t) ∈ RB containing the estimate of the PMF. At initialization, each node sets
its local variable based on its own state,

x
(b)
i (0) =

{
1, if zi = b,

0, otherwise.

Let x(b) denote the vector of all agents’ states x(b)
i . It is known that if at each

time the local variables are updated with an average consensus update like

x(b)(t+ 1) = Wx(b)(t), b ∈ NB (2.24)

where W is a doubly-stochastic weight matrix (for example chosen as the Metropo-
lis weights), then, assuming perfect computations2, every x(b)

i (t) converges to the
average of the initial values (Fagnani and Zampieri, 2008). Thus

x
(b)
i (t) t→∞−−−→ 1

N

∑
j∈V

x
(b)
i (0) = nb

N
= pb.

The PMF estimate is simply the local state,

p̂
(i)
b (t) = x

(b)
i (t). (2.25)

To describe the convergence properties of eq. (2.24), recall that the estimation
error can be bounded by an exponential function (Xiao and Boyd, 2003), i.e., by∣∣∣∣pb − p̂b(t)∣∣∣∣2 ≤ ce−αt
where c and α depend on the initial condition, the network topology and the choice
of the weights.
Remark. We do not consider more advanced protocols, such as accelerated average
consensus (Aysal et al., 2009), or finite-time average consensus (Yuan et al., 2011).
The reason is that we want to characterize the simplest averaging algorithm, with
the smallest demands from both communication and computational points of view.

Estimator Based on Max Consensus
In the max consensus based estimator, the local variable is instead a B × M -
dimensional real matrix xi(t) ∈ RB×M whose elements are initially generated from
a uniform random distribution based on the local state as

x
(b,m)
i (0) ∼

{
U [0, 1] , if zi = b

0, otherwise
(2.26)

2For simplicity we do not consider the quantization effects (Carli et al., 2010).
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where U [0, 1] is the uniform distribution between 0 and 1. Then at each time t, the
local variables are updated with the max consensus update

x
(b,m)
i (t) = max

j∈Vi

{
x

(b,m)
j (t− 1)

}
, b ∈ NB ,m = 1, . . . ,M. (2.27)

Notice that the definition of t-steps neighborhood N (t)
i precisely captures the

agents that contributed to the generation of x(b,m)
i (t), i.e.,

x
(b,m)
i (t) = max

j∈N (t)
i

{
x

(b,m)
j (0)

}
. (2.28)

Let N (t)
i

.=
∣∣∣N (t)

i

∣∣∣ be the number of t-step neighbors, then

p
(i)
b (t) .=

∣∣{i ∈ N (t)
i : zi = b}

∣∣
N

(t)
i

, (2.29)

and n(i)
b (t) .= p

(i)
b (t)N (t)

i . As was shown in eq. (2.7), the ML estimator for n(i)
b (t)

given the x(b,m)
i (t)’s was

n̂
(i)
b = −

(
1
M

M∑
m=1

log
(
x

(b,m)
i

))−1

. (2.30)

Now, since

p
(i)
b (t) =

p
(i)
b (t)∑

β∈NB p
(i)
β (t)

=
n

(i)
b (t)∑

β∈NB n
(i)
β (t)

because of the functional invariance property of ML estimators (Casella and Berger,
2002, Thm. 7.2.10, p. 320), the ML estimate of p(i)

b (t) given the x(b,m)
i (t)’s is

p̂
(i)
b (t) =

n̂
(i)
b (t)∑

β∈NB n̂
(i)
β (t)

. (2.31)

For t ≥ d (d being the network diameter) the max consensus strategy converges
globally, and n(i)

b (t) = nb, thus the PMF estimated p(i)
1 (t), . . . , p(i)

B (t) converges to
an estimate of the global PMF p1, . . . , pB .

Remarkably, this estimator provides additional estimates of the distributions
of the states in every t-steps neighborhood. Considering a certain agent i, the
set of p(i)

b (0), p(i)
b (1), . . . correspond to local views of the neighborhood’s empirical

distribution that can be used by i to rapidly infer if close neighbors tend to have
similar states.

Notice that the statistical properties of the estimator in eq. (2.31) are essen-
tially different from the previous network size estimation scheme, since the vectors
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Figure 2.5: Graphical representation of the properties from the estimators. By
increasingM it is possible to let the max consensus estimator (2.31) perform better
than the average consensus scheme (2.25) for t ≤ d.

[
p̂

(i)
1 (t), . . . , p̂(i)

B (t)
]
have correlated components. We also notice that appropriate

termination rules can be based on estimates of the diameter d of the network, again
obtained by exploiting max consensus approaches as done by Cardoso et al. (2009);
Garin et al. (2012).

Finally, notice that under continuity assumptions, the choice of stochastic gen-
eration mechanism proposed in (2.26) is general, since as soon as we neglect quanti-
zation effects, substituting U [0, 1] with another continuous probability distribution
leads to estimators with identical statistical performance (Varagnolo et al., 2010).

Summary of the Differences Between the Two Estimators

The max consensus scheme (2.31) converges in finite d steps to an estimate of
the true PMF. Given a fixed M , its MSE (2.23) will vary up to time t = d and
then remain constant. By increasing the sample size M , the MSE curves are also
expected to get closer and closer to zero, due to the consistency property of ML
estimators.

The average consensus scheme (2.25) requires nodes to exchange less informa-
tion, and is in general converging asymptotically for t→ +∞. These comments are
graphically represented in fig. 2.5.

The aim is to find conditions on M and on the network for which it is possible
to state which algorithm is preferred for t ≤ d, i.e., when time is a concern. To
this end, we first need to describe the statistical properties of the max consensus
estimator.
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2.7 Statistical Characterization of the Max Consensus
PMF Estimator

As stated before, interrupting the max consensus protocol before it has reached
consensus is equivalent to estimating the PMF for a t-step neighborhood. Thus,
for notational simplicity we consider the stationary state where the max consensus
has already been reached, i.e., where x(b,m)

i (t) = x(b,m) .= maxi∈V
{
x

(b,m)
i (0)

}
.

With this assumption the joint PMF p (n̂b ; n1, . . . , nB ,M) is equal to the local
p
(
n̂

(i)
b (t) ; n(i)

1 (t), . . . , n(i)
B (t),M

)
. To derive this distribution, consider that x(b,m)

is statistically independent of the parameter nβ if b 6= β. Thus, from simple order-
statistics arguments (David and Nagaraja, 2004),

p
(
x(b,m) ; n1, . . . , nB

)
= p

(
x(b,m) ; nb

)
= nb

(
x(b,m)

)nb−1

for all m (omitting the dependency on the parameter M for notational simplicity).
Since the states x(b,m)’s are i.i.d. we have

p
(
x(b,1), . . . x(b,M) ; nb

)
=

M∏
m=1

p
(
x(b,m) ; nb

)
= nMb

M∏
m=1

(
x(b,m))nb−1 (2.32)

To derive the probability density p (n̂b ; nb) consider that y
.= −log

((
x(b,m))) is an

exponential random variable with rate nb, i.e.,

p (y ; nb) =
{
nbe
−nby if y ≥ 0,

0 otherwise . (2.33)

From eq. (2.30), Mn̂−1
b is the sum of M i.i.d. exponential random variables with

rate nb, i.e., Mn̂−1
b is a Γ variate with shape M and scale 1

nb
. Thus M−1n̂b ∼

I-Γ (M,nb), where I-Γ (·, ·) is the inverse Gamma distribution with shape M and
scale Mnb, i.e.,

p (n̂b ; nb,M) = I-Γ (M,Mnb)

= Γ (M)−1 1
n̂b

(
Mnb
n̂b

)M
exp

(
−Mnb

n̂b

)
.

For the estimate in eq. (2.31), p̂b is the ratio of correlated sums of inverse-Gamma
variates, each with its own scale.

Unfortunately, to the best of our knowledge there exists no current available
literature describing a distribution of this kind. The closest manuscripts char-
acterize ratios of the form x

x+y , where x and y are independent inverse Gamma
variates (Ali et al., 2007). Moreover both the Gamma and inverse Gamma dis-
tributions are not closed, i.e., linear combinations of independent copies of these
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kinds of variates do not have the same original distribution up to location and scale
parameters (Witkovský, 2001). This means that there is, in general, no possibility
to reduce the fraction (2.31) to the case described by Ali et al. (2007), and the
characterization of the statistical properties of p̂b must rely on Monte Carlo (MC)
integration methods.

Case NB = {0, 1}
Consider the restricted case when the distribution only consists of two different
states, NB = {0, 1}. Then p̂(i)

b (t) becomes a special ratio that is described by Ali
et al. (2007), with probability density

p
p̂0

(x ; n0, n1,M) =

(
x(1− x)

)M−1

(
n0

n1

)M
B (M,M)

(
1 + n1 − n0

n0
x

)−2M
, (2.34)

where B (·, ·) is the Beta function, and x ∈ [0, 1]. Its cumulative distribution is
given by eq. (2.35)

F
p̂0

(x ; n0, n1,M) =

(
1 + n1

n0
1−x
x

)−M
M ·B (M,M) ·

2F1

(
M, 1−M ;M + 1;

(
1 + n1

n0

1− x
x

)−1
)

(2.35)

where

2F1 (a, b; c;x) .=
+∞∑
i=0

(a)i (b)i
(c)i · i!

xi (2.36)

is the Gauss hypergeometric function and

(x)i
.= x(x+ 1) · · · (x+ i− 1) (2.37)

is the so called Pochhammer symbol (with the convention that (x)0 = 1). From
this, it is possible to compute the moments of p̂0, and in particular of p̂0 − E [p̂0]),
using the relation

E
[
(p̂0)k

]
=


B (M + k,M)
B (M,M) F(k,M, n0, n1) if n0 > n1,(
n0

n1

)k
B (M + k,M)
B (M,M) F(k,M, n1, n0) otherwise.

(2.38)

where
F(k,M, a, b) .= 2F1

(
k,M ; 2M + k; a− b

a

)
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(notice that n0 and n1 appear in inverted positions in the two cases in eq. (2.38)).
When n0 = n1 the estimators are unbiased for everyM , otherwise, as expected,

they are only asymptotically unbiased (for M → +∞).
In fig. 2.6 we evaluate the relative bias, and in fig. 2.7 the relative MSE of the

estimator, based on the design parameter M and on the distribution of the states.
Notice that the MSE performance follows the typical 1

M behavior for this kind of
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estimators.
Remark. The performance indicators summarized in figs. 2.6 and 2.7 are valid for
general p̂(i)

b (t)’s when associated with the local n(i)
b (t)’s. The derivations of this

section also characterize the behavior of the estimators during the transient.

2.8 Evaluation of PMF Estimators

Here we evaluate the performance of the average consensus based estimator of
eq. (2.25) and the max consensus based estimator of eq. (2.31) during their transient
phases. The primary goal is to determine when to use each algorithm, and how to
tune the parameter M for the max consensus estimator.

We consider four different network topologies, the line topology (fig. 2.8a), the
cyclic topology (fig. 2.8b), the cyclic grid topology (fig. 2.8c), and a geometric
random topology (fig. 2.8d), each network consisting of 100 agents.

We evaluate the algorithms through Monte Carlo (MC) simulations, using the
MSE from eq. (2.23) as the performance index, where the mean is taken over both
all agents and all MC simulations. On each network the communication proto-
col proceeds in synchronous steps, where nodes cyclically repeat the algorithms
described in eq. (2.24) and eq. (2.27).

In the first experiment, fig. 2.9, the initial state is selected randomly for each MC
simulation, where each agent is placed in either state zi = 0 or zi = 1 with equal
probability. The figure shows the 95% confidence intervals for both the average
consensus based estimator as well as for the max consensus based estimator with
M = 10, M = 100 and M = 1000.

As expected, the average consensus based estimator converges asymptotically to
the true value, while the max consensus based estimator converges in finite time

(a) Line network

(b) Cyclic network (c) Cyclic grid network
with (2 × 50) nodes

(d) Geometric random
network

Figure 2.8: Network topologies, with 100 nodes.
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(c) Cyclic grid network (2 × 50 nodes)
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Figure 2.9: Comparison of max consensus based estimator against the average
consensus based estimator. Each network consists of 100 nodes, and the network
diameter d is marked in the figures. The shaded regions mark the 95% confidence
interval for the max consensus estimator, while the two solid lines mark the upper
and lower bound of the 95% confidence interval for the average consensus estimator.
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(after d steps, where d is the diameter of the network). However, the max consensus
based estimate does not converge to the true value, but instead its MSE decreases
with M . In this scenario the choices of M = 100 and M = 1000 yield similar
precisions that outperform the average consensus in most reasonable time scales.

We observe that for the max consensus-based scheme a remarkable phenomenon
may appear, especially whenM is small (e.g.,M = 10 in fig. 2.9), the MSE actually
increases with the number of iterations. This phenomenon appears because the
MSE index sums the agents’ local MSEs, and small M ’s induce estimates with
high statistical variance, i.e., increase the chances that at least one agent will have
some p̂(i)

b (t) noticeably overestimated. At time t = 1 this overestimation has not
yet influenced a majority of the agents and the overall MSE, since it only affected
the erroneous agent, but as time passes, the max consensus protocol spreads this
overestimation through the network of agents, which is seen in the MSE.

In the second experiment, fig. 2.10, we switch the initial condition to a single
worst-case distribution of the states zi, where the leftmost half of the agents in
fig. 2.8 are in state 0 and the rightmost half are in state 1. Notice that this cor-
responds exactly to a spatial correlation between the agents positions and their
measurements, which is actually a reasonable assumption for estimation applica-
tions in wireless sensor networks.

Since there is only one fixed initial state, the average consensus based estimator
is now deterministic and unique. The figure thus compares the confidence inter-
vals of the max consensus estimators (depending upon the realization of the initial
random sample x(b,m)

i ’s) against the performance of the deterministic average con-
sensus estimate.

The first thing we notice is that the convergence speed is slower than for the
randomized initial distribution, because in that case each t-step neighborhood was
a reasonable sample of the complete distribution, while in this case a t-step neigh-
borhood (t � d) is not a good representation of the complete distribution. Still,
this example shows even more clearly that a max consensus based estimator can
be much faster and accurate than an average consensus based counterpart, even
for very small M ’s (even though a larger M improves the accuracy). The motiva-
tion is that the max consensus protocol has a much faster mixing time, and if the
distribution of states in the network topology is not homogeneous then the max
consensus is much more efficient at propagating information about certain states
through the network.
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Figure 2.10: Comparison of max consensus based estimator against the average
consensus based estimator for a single worst-case initial condition. Each network
consists of 100 nodes, and the initial state is determined by the agents spatial
configuration. The shaded regions mark the 95% confidence interval for the max
consensus estimator, while the solid line marks the deterministic estimation for the
average consensus estimator.
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2.9 Estimating Time Dependent PMFs

The PMF estimator we proposed in section 2.6 is using the max consensus based
network size estimation scheme that we also developed in section 2.2 to handle time
dependent networks. It is therefore straightforward to handle time dependent PMF
estimation by substituting the regularization based estimator in eq. (2.6) into the
PMF estimator in eq. (2.30).

This can be demonstrated by considering a Markov chain driven state, similar
to section 2.3. We create a network with N = 1000 nodes, each node initially
belonging to one out of four states zi ∈ N4 = {0, 1, 2, 3}. The nodes change their
state according to a Markov process, i.e., there exists a transition matrix P ∈ R4×4

with entries pij giving the probabilities

pij
.= P [zi(t+ 1) = j | zi(t) = i ] .

Thus, after updating their state, they generate B ×M random values (all except
M equal to zero), according to eq. (2.26). After the max consensus step, each node
can estimate n̂b, b ∈ N4, where we replace eq. (2.30) with the regularization based
estimator of eq. (2.6), and finally compute the dynamic PMF estimate through
eq. (2.31).

In fig. 2.11 we evaluate the regularization based dynamic PMF estimator (γ =
0.005) against the point-wise PMF estimator (γ = 0), both using the same realiza-
tion of random samples, and a smallM = 10. In the regularization based estimator
we only use one step memory, τ = 0, η = 1.

Since the number of samples are relatively small (only M = 10, compared
to figs. 2.9 and 2.10), the variance in the estimates are quite significant, but the
regularization based estimator does successfully reduce the variance and yields an
improved estimate of the true distribution.
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Figure 2.11: Comparing the regularization based (γ = 0.005) and the point-wise
(γ = 0) PMF estimator against the true dynamic distribution, of four states. In the
first step (top figure), both estimators yield the same result since the regularization
based estimator has not yet initialized its memory, but in the following steps it
reduces the variance compared to the point-wise estimator.
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2.10 Conclusions

In this chapter, the max consensus protocol was used to derive two specific esti-
mators, one which estimates the network size in time dependent networks, and one
which estimates probability mass functions. Finally, we showed how these estima-
tors could be combined to estimate time dependent PMFs.

One of the main advantages with the max consensus protocol compared to other
strategies is that it has the fastest possible convergence time, and it is also very easy
to implement, even in networks with unreliable communication through pairwise
gossiping communication. It does neither require any global information nor global
identities among the nodes, so it is a suitable choice for anonymous networks. The
main disadvantage of the max consensus strategy is that it does not converge to
the exact value, but is instead based on probabilistic estimation schemes. However,
its accuracy can be improved through increasing the packet sizes.

The size estimation of anonymous dynamical networks extended the static net-
work estimation strategy through a regularization term, which penalizes hypotheses
conflicting with a-priori assumptions on the network’s behavior. We explicitly con-
sidered and characterized the class of quadratic regularization terms, which resulted
in a closed form estimator that corresponds to a nonlinear smoother.

Two distributed estimators of empirical PMFs were considered, one based on
max consensus and one based on average consensus. The main differences are
that the average consensus based estimator converges asymptotically in time, while
the max consensus based estimator converges in finite time, but not to the exact
value. Also, the accuracy of the max consensus based estimator can be improved
through increasing the packet size, which means that it will typically use larger
packets than the average consensus based estimator. However, our experiments
show that if estimation speed is important, and in particular if there is also a
spatial correlation among the nodes’ initial values, then the max consensus based
estimator outperforms the average consensus based estimator.

The algorithms has indeed been derived using some simplifying assumptions,
in particular reliable communications and infinite numerical precision. We have
however shown with numerical experiments that quantization effects seem to play
a minor role, and that representing the numbers with just a few bits is enough
even for networks of hundreds of agents. Furthermore, we remark that if the max
consensus protocol does not reach consensus, it would imply that the network is,
at least temporarily, not strongly connected. The estimation process would still
succeed in the estimation of the reachable subset of nodes, which is an interesting
extension.



Chapter 3

Faulty Nodes in Consensus Protocols

“Don’t find fault, find a remedy.”
— Henry Ford

In this chapter we consider a leader-follower multi-agent system. We present
a framework where the follower agents are tracking an antagonistic leader rather
than a cooperative leader. Related are the classical results of game theory for the
so-called pursuit-evasion game (Başar and Olsder, 1999; Ho et al., 1965), where the
considered game consists of a pursuer who aims to capture the evader while the
evader tries to prevent being captured.

A motivating example is resilience of a multi-agent system against faults, for
example considered in power networks as robustness against any single point of
failure. There has been much work on trying to detect failures (Guo et al., 2012;
Shames et al., 2012; Teixeira et al., 2012), but here we focus on the effects of the
fault, when the leader is using positive feedback, instead of negative feedback.

The outline of this chapter is as follows: In section 3.1 we introduce the tracking
problem of the faulty agent. In section 3.2 we present and analyze the convergence
theorems for this multi-agent system, which we further illustrate with numerical
simulations in section 3.3. Section 3.4 concludes this chapter.

3.1 Problem Statement

We consider a multi-agent system, consisting of one faulty agent (leader) and n
follower agents (n + 1 agents in total). The set of agents is denoted by V =
{0, 1, . . . , n}, where 0 is the faulty agent, and the remaining follower agents are
denoted by VF .= {1, . . . , n}.

The interaction topology of the multi-agent network is modeled as a switching
topology, which means that the undirected graph Gσ(t)(V, Eσ(t)) is time dependent,
and switches topology between a limited number of graphs. Here, σ : [0,+∞)→ Q
is a piecewise constant function, where Q is the finite set indicating the possible
undirected graphs, see Royle (2001). GFσ(t)(VF , EFσ(t)) denotes the induced commu-
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nication graph among the follower agents, i.e., the graph obtained by removing the
faulty agent. Let Ni(σ(t)) represent the neighbors of agent i in Gσ(t), for i ∈ V at
time t, and NF

i (σ(t)) the set of neighbors in GFσ(t), for i ∈ VF .
Each follower i ∈ VF has an associated state xi ∈ R, and the state of the faulty

agent is denoted by y ∈ R. The goal of each follower agent i ∈ VF is to reach
consensus with every other agent in V. The evolution of their state xi(t) is given
by

ẋi(t) =
∑

j∈NF
i

(σ(t))

aij(x, t)
(
xj(t)− xi(t)

)
+ bi(t)

(
y(t)− xi(t)

)
where the function

bi(t) =
{
b∗, if i is connected to the faulty agent
0, otherwise.

marks whether agent i ∈ VF is connected to the faulty agent, with a given weight
b∗ > 0 and a piecewise continuous function aij(x, t) > 0, i, j ∈ VF describing the
weight of the edge between agent i and j.

The faulty agent follows the same algorithm, but has distorted weights, which
has resulted in a changed sign. Without loss of generality, we have scaled this
weight to be -1. The evolution of the faulty agent’s state is given by

ẏ(t) =
∑

j∈N0(σ(t))

−
(
xj(t)− y(t)

)
.

The overall dynamics for the considered multi-agent systems can then be sum-
marized as:

ẏ(t) =
∑

j∈N0(σ(t))

−
(
xj(t)− y(t)

)
,

ẋi(t) =
∑

j∈NF
i

(σ(t))

aij(x, t)
(
xj(t)− xi(t)

)
+ bi(t)

(
y(t)− xi(t)

)
,

for i = 1, . . . , n

(3.1)

Note that, compared to most of the existing leader-follower models (Hong et al.,
2006; Shi and Hong, 2009; Tanner et al., 2004), the faulty agent is observing the
follower’s states and then takes opposed actions in order to escape from being
tracked. Let (x(t), y(t)) = (x1(t), . . . , xn(t), y(t))T ∈ Rn+1 denote the solution to
eq. (3.1) when starting from initial value x(0) ∈ Rn and y(0) ∈ R. The interesting
question is whether the faulty agent can be tracked, or if it will escape from the
followers. To this end, define the tracking measurement

Υ(t) = max
i=1,...,n

∣∣xi(t)− y(t)
∣∣

We introduce the following notations.
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Definition 3.1.

(i) System (3.1) is trackable for initial value x(0) ∈ Rn and y(0) ∈ R if

lim
t→∞

Υ(t) = 0.

(ii) System (3.1) is globally trackable if it is trackable for all initial values.

(iii) System (3.1) is escapable for initial value x(0) ∈ Rn and y(0) ∈ R if

lim
t→∞

Υ(t) =∞.

3.2 Convergence Results

Here we analyze the convergence properties of the consensus system, first for fixed
communication graphs, and then for time dependent communication graphs.

Fixed Graphs
First we focus on time-invariant graphs, with the following assumption.

Assumption 3.1 (Fixed Topology). The communication graph Gσ(t) and the
weight functions aij(t), bi(t) are time-independent.

Hence, in the remainder of this section we will drop the time parameter t from
these symbols. Now, introduce the state difference with the faulty agent as ξi(t) =
xi(t)− y(t). System (3.1) can then be written as:

ξ̇i =
∑
j∈NF

i

aij
(
ξj − ξi

)
− biξi +

∑
j∈N0

ξj (3.2)

Let LF = DF − AF be the Laplacian matrix of the follower graph, given by the
adjacency matrix AF = [aij ] ∈ Rn×n and degree matrix DF = diag (d1 . . . dn),
where di =

∑n
j=1,j 6=i aij is the node degree. Let B = diag (b1, . . . , bn) denote the

connection weights from the followers to the faulty agent, and E = 1eT denote
the connections from the faulty agent to the followers, with eT = (e1 . . . en) ∈ Rn,
where ei = 1 if i ∈ N0 and ei = 0 otherwise. By denoting ξ = (ξ1, . . . , ξn)T , we can
simplify the system equations (3.2) to give the compact matrix form

ξ̇ = −Gξ, (3.3)

where G = LF +B − E.
Notice that global tracking for System (3.1) is equivalent with stability of the

matrix system (3.3). The following theorem follows directly.
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Theorem 3.1. Suppose assumption 3.1 holds, then

(i) System (3.1) is globally trackable if and only if −G is a Hurwitz matrix.

(ii) There exists initial values for which System (3.1) is escapable if and only if
−G has at least one eigenvalue with strictly positive real part.

In fact, if −G has an eigenvalue λ with strictly positive real part and the corre-
sponding eigenvector βλ, then, for every initial value (x(0), y(0)) with x(0)− y(0)1
not orthogonal to βλ, System (3.1) is escapable.
Remark. The boundary case when the system is neither globally trackable nor
escapable is if the eigenvalue with largest real part is zero. We will not specifically
consider this case.

Although Theorem 3.1 gives a clear description of the trackability of System
(3.1), we still need simple conditions which only rely on the structure of the com-
munication graph. The following lemma can be found in Hong et al. (2006).

Lemma 3.2. Suppose assumption 3.1 holds, and G is connected. Then LF +B is
a positive definite matrix.

According to lemma 3.2, we can denote the eigenvalues of −(LF + B) as λ∗n ≤
· · · ≤ λ∗1 < 0, and then the following theorem holds.

Theorem 3.3. Suppose assumption 3.1 holds and G is connected. System (3.1) is
globally trackable if λ∗1 < −

√
n|N0|, where |N0| represents the number of neighbors

of the faulty agent.

The proof of Theorem 3.3 relies on the following lemma on the perturbation of
eigenvalues (Quarteroni et al., 2007):

Lemma 3.4. Given a matrix C ∈ Rn×n, let λ be an eigenvalue to C, and Λ the
matrix of eigenvectors. If µ is an eigenvalue of the perturbed matrix C+P ∈ Rn×n,
then

min
λ∈λ(C)

∣∣λ− µ∣∣ ≤ ‖Λ‖2 · ‖Λ−1‖2 · ‖P‖2 (3.4)

where λ(C) denotes the spectrum of C.

We are now ready to present the proof of Theorem 3.3.

Proof of Theorem 3.3. Let µ be any eigenvalue of −G = −LF −B +E, and apply
lemma 3.4 on the matrix (−LF −B) + E. We get

min
λ∗
i

i=1,...,n

∣∣λ∗i − µ∣∣ ≤ ‖E‖2 (3.5)
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since we can select eigenvectors of −LF − B which forms an orthogonal matrix.
Moreover, noticing that

‖E‖2 =
√
n|N0|,

we obtain
Re (µ) ≤ λ∗1 + ‖E‖2 ≤ λ∗1 +

√
n|N0| < 0

for any eigenvalue µ of −G when λ∗1 < −
√
n|N0|.

Theorem 3.3 gives us a sufficient condition for global trackability, and in the
next theorem we give a necessary condition for global trackability.

Theorem 3.5. Suppose assumption 3.1 holds and G is connected. If System (3.1)
is globally trackable, then the fault threshold b∗ ≥ |N0| is satisfied.

Proof of Theorem 3.5. Theorem 3.1 implies that, for all eigenvalues,

Re (λ(LF +B − E)) ≥ 0

if the system is globally trackable. But if the system is trackable, then so is also
the system where bi = b∗, ∀i ∈ VF , hence

Re (λ(LF − E)) ≥ −b∗.

Notice that 1 is an eigenvector to E with eigenvalue |N0|, but also an eigenvector
of LF with eigenvalue 0. Thus, we have in particular for this eigenvector that

0− |N0| ≥ −b∗ ⇒ b∗ ≥ |N0|

Time Dependent Graphs
Now we turn our attention to dynamical graphs, but follow the tradition of switch-
ing dynamics (Jadbabaie et al., 2003; Lin et al., 2007; Shi and Hong, 2009). The
following assumption gives a bound on the switching signal σ(t) : [0,+∞) → Q
between graph topologies.

Assumption 3.2 (Dwell Time). There exists a lower bound τD > 0 between two
switching instances of σ(t).

We also impose bounds on the weight functions, aij(x, t):

Assumption 3.3 (Weights Rule). There exists a lower bound a∗ > 0 and an upper
bound a∗ > 0 such that

a∗ ≤ aij(x, t) ≤ a∗, t ∈ R+, x ∈ Rn.
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The joint graph of Gσ(t) over a time interval [t1, t2) with t1 < t2 ≤ +∞ is
denoted as G([t1, t2)) = ∪t∈[t1,t2)G(t) = (V,∪t∈[t1,t2)Eσ(t)). The joint follower graph
is similarly defined as GF ([t1, t2)). Another assumption is given on the connectivity
of the joint communication graphs:

Assumption 3.4 (Joint Connectivity). There exists T > 0 such that both graphs
G([t, t+ T )) and GF ([t, t+ T )) are connected for all t.

For time dependent communication graphs, we have the following main results.

Theorem 3.6. Suppose assumptions 3.2 to 3.4 hold, then there exists initial values
for which System (3.1) is escapable if b∗ < 1.

Theorem 3.7. Suppose assumptions 3.2 to 3.4 hold. System (3.1) is globally track-
able if the system parameters b∗, a∗, a∗, T, τD satisfy

0 <
(
en(n+1)T0 − w∗

(
%0e
−(n2−1)a∗T0

)n)
< 1 (3.6)

where T0 = T + τD and

w∗ =
b∗ + (eτD − 1)

(
enT0 − 1

) (
e−b∗T0 − 1

)
(n− 1)a∗ + b∗

· e−(n−1)a∗(n+1)T0 ;

%0 =
(
1− e−((n−2)a∗+a∗)τD

)
a∗

(n− 2)a∗ + a∗
.

Notice that parameters meeting the requirement of Theorem 3.7 can always
be found as long as we choose T−1

0 and a∗ sufficiently large. In the rest of this
subsection, we first establish several lemmas which are useful for the convergence
analysis, and then prove Theorems 3.6 and 3.7.

Key Lemmas

Since we are analyzing piecewise continuous functions, we recall the Dini derivatives.
Let a and b (> a) be two real numbers, and consider a function h : (a, b) → R
together with a point t ∈ (a, b). The upper Dini derivative of h at t is defined as

D+h(t) = lim sup
s→0+

h(t+ s)− h(t)
s

.

It is well known that when h is continuous on (a, b), then h is non-increasing on
(a, b) if and only if D+h(t) ≤ 0 for every t ∈ (a, b) (Clarke et al., 1998). The next
result is given for the calculation of the Dini derivative (Danskin, 1966; Lin et al.,
2007).
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Lemma 3.8. Let Vi(t, x) : R × Rd → R (i = 1, . . . , n) be C1 and V (t, x) =
maxi=1,...,n Vi(t, x). If I(t) = {i ∈ {1, 2, . . . , n} : V (t, x(t)) = Vi(t, x(t))} is the set
of indices where the maximum is attained at time t, then

D+V (t, x(t)) = max
i∈I(t)

V̇i(t, x(t)).

Introduce the minimum and maximum state value among the followers as

m(t) = min
i∈VF

xi(t);

M(t) = max
i∈VF

xi(t).

The following lemma holds for m(t) and M(t).

Lemma 3.9. Suppose y(t) ∈ [m(t),M(t)] for t ≥ 0. Then D+m(t) ≥ 0 and
D+M(t) ≤ 0 for all t ≥ 0.

Proof. We only proveD+m(t) ≥ 0, the other case follows by a symmetric argument.
Denoting I0(t) as the index set consisting of all the follower agents which reaches
the minimal value at time t. Let i ∈ I0(t), then we have

ẋi(t) =
∑

j∈NF
i

(σ(t))

aij(x, t)
(
xj(t)− xi(t)

)
+ bi(t)

(
y(t)− xi(t)

)
≥ 0

because xj(t) ≥ xi(t) = m(t) for all j ∈ NF
i (σ(t)) and y(t) ≥ xi(t) = m(t).

Therefore, according to lemma 3.8,

D+m(t) = max
i∈I0(t)

ẋi(t) ≥ 0.

The following lemma indicates that System (3.1) is trackable when y(t) ∈
[m(t),M(t)] for t ≥ 0.

Lemma 3.10. Suppose assumptions 3.2 to 3.4 hold, and y(t) ∈ [m(t),M(t)] for
t ≥ 0. Then System (3.1) is trackable.

Proof. The idea behind the proof is to consider an agent attaining the minimal
value m(t), and then, since the network is jointly connected over a period of time
T , we can find a path of influence in the joint network which will bound the state
even for the agents attaining M(t).

To this end, take any t0 ≥ 0. Suppose agent i0 ∈ VF attains the minimal value
at time t0, i.e., xi0(t0) = m(t0). Based on lemma 3.9, we have

m(t) ≥ m(t0);
M(t) ≤M(t0)
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for all t ≥ t0. As a result, with assumption 3.3, if y(t) ∈ [m(t),M(t)] for t ≥ 0, we
obtain

ẋi0(t) =
∑

j∈NF
i0

(σ(t))

ai0j(x, t)
(
xj(t)− xi0(t)

)
+ bi(t)

(
y(t)− xi0(t)

)

≤

 ∑
j∈NF

i0
(σ(t))

ai0j(x, t)

(M(t)− xi0(t)
)

+ bi(t)
(
M(t)− xi0(t)

)
≤ (n− 1)a∗

(
M(t0)− xi0(t)

)
+ b∗

(
M(t0)− xi0(t)

)
= −

(
(n− 1)a∗ + b∗

)(
xi0(t)−M(t0)

)
, t ≥ t0. (3.7)

Thus, by Grönwall’s inequality, we further conclude that

xi0(t) ≤ e−
(

(n−1)a∗+b∗

)
(t−t0)xi0(t0) +

(
1− e−

(
(n−1)a∗+b∗

)
(t−t0)

)
M(t0)

= e−
(

(n−1)a∗+b∗

)
(t−t0)m(t0) +

(
1− e−

(
(n−1)a∗+b∗

)
(t−t0)

)
M(t0),

for t ≥ t0, which implies

xi0(t) ≤ e−
(

(n−1)a∗+b∗

)
(n−1)T0m(t0) +

(
1− e−

(
(n−1)a∗+b∗

)
(n−1)T0

)
M(t0)

= d0m(t0) + (1− d0)M(t0)
.= φ0 (3.8)

for all t ∈ [t0, t0 + (n− 1)T0], where d0 = e−
(

(n−1)a∗+b∗

)
(n−1)T0 and T0 = T + τD.

Now we have bounded the first agent’s state in the network, so we will continue
with the next one. According to the joint connectivity assumption 3.4, there exists
at least one agent i1 such that i1 is connected to i0 in the graph Gσ(t̂1) for some
t̂1 ∈ [t0, t0 + T ).

First, if there exists some s ∈ [t̂1, t̂1 + τD] such that

xi1(s) ≤ φ0 = d0m(t0) + (1− d0)M(t0).

then we have immediately bounded xi1 also. Thus, we assume that for all t ∈
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[t̂1, t̂1 + τD], it holds that xi1(t) ≥ φ0. Then we see from eq. (3.8) that

ẋi1(t) =
∑

j∈NF
i1

(σ(t))

ai1j(x, t)
(
xj(t)− xi1(t)

)
+ bi(t)

(
y(t)− xi1(t)

)
≤ ai1i0(t)

(
xi0(t)− xi1(t)

)
+ bi(t)

(
M(t)− xi1(t)

)
+
(
M(t)− xi1(t)

) ∑
j∈NF

i1
(σ(t))\{i0}

aij(x, t)

≤ a∗
(
φ0 − xi1(t)

)
+ b∗

(
M(t0)− xi1(t)

)
+ (n− 2)a∗

(
M(t0)− xi1(t)

)
= −

(
(n− 2)a∗ + b∗ + a∗

)(
xi1(t)−

M(t0)
(
(n− 2)a∗ + b∗

)
+ a∗φ0

(n− 2)a∗ + b∗ + a∗

)
,

for t ∈ [t̂1, t̂1 + τD]. This implies

xi1(t̂1 + τD) ≤ δ0xi1(t̂1) +
(
1− δ0

)(M(t0)
(
(n− 2)a∗ + b∗

)
+ a∗φ0

(n− 2)a∗ + b∗ + a∗

)

≤ δ0M(t0) +
(
1− δ0

)(M(t0)
(
(n− 2)a∗ + b∗

)
+ a∗φ0

(n− 2)a∗ + b∗ + a∗

)

= a∗(1− δ0)d0

(n− 2)a∗ + b∗ + a∗
m(t0) +

(
1− a∗(1− δ0)d0

(n− 2)a∗ + b∗ + a∗

)
M(t0)

.= (1− δ0)d0λ0m(t0) +
(

1− (1− δ0)d0λ0

)
M(t0),

where

δ0
.= e−

(
(n−2)a∗+b∗+a∗

)
τD ;

λ0
.= a∗

(n− 2)a∗ + b∗ + a∗
.

Consequently, in either case, there exists a t̃1 ∈ [t0, t0 + T0] such that we can
bound xi1 with

xi1(t̃1) ≤ (1− δ0)d0λ0m(t0) +
(

1− (1− δ0)d0λ0

)
M(t0).

Noticing that inequality (3.7) also holds for i1, we can similarly obtain

xi1(t) ≤ (1− δ0)d2
0λ0m(t0) +

(
1− (1− δ0)d2

0λ0

)
M(t0)

for all t ∈ [t0 + T0, t0 + (n− 1)T0].
We can now proceed with the analysis at the time intervals [t0 + T0), . . . , [t0 +

(n−2)T0, t0 +(n−1)T0), and by the joint connectivity assumption 3.4, we can find
agents i2, i3, . . . , in−1 ∈ VF such that

xis(t) ≤
[
(1− δ0)d0λ0

]s
d0m(t0) +

(
1−

[
(1− δ0)d0λ0

]s
d0

)
M(t0)
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for all t ∈ [t0 + sT0, t0 + (n − 1)T0]. Notice that at the latest when s = n − 1 we
have a bound that is also valid for M(t),

M
(
t0 + (n− 1)T0

)
≤
[
(1− δ0)d0λ0

]n−1
d0m(t0)

+
(

1−
[
(1− δ0)d0λ0

]n−1
d0

)
M(t0).

Thus, according to lemma 3.9, we eventually obtain

M
(
t0 + (n− 1)T0

)
−m

(
t0 + (n− 1)T0

)
≤
(

1−
[
(1− δ0)d0λ0

]n−1
d0

)(
M(t0)−m(t0)

)
. (3.9)

Since t0 is chosen arbitrarily, eq. (3.9) implies

lim
t→∞

∣∣∣M(t)−m(t)∣∣∣ = 0,

and thus
lim
t→∞

ξ(t) = 0

as long as y(t) ∈ [m(t),M(t)] for t ≥ 0. This completes the proof.

Let us now proceed to the general case, when there exists some time t∗ ≥ 0 such
that y(t∗) /∈ [m(t∗),M(t∗)].

Lemma 3.11.

(i) If there exists some t∗ ≥ 0 such that y(t∗) > M(t∗),
then y(t) > M(t) for all t ≥ t∗.

(ii) If there exists some t∗ ≥ 0 such that y(t∗) < m(t∗),
then y(t) < m(t) for all t ≥ t∗.

Proof. We focus on proving (i), since (ii) holds from a symmetric argument.
The differential equation (3.1) is piecewise continuous, and since y(t∗) > M(t∗),

there exists an ε > 0 such that y(t) > M(t) for all t ∈ [t∗, t∗ + ε). Consequently,
by a similar analysis as in lemma 3.9, we have

D+M(t) ≤ b∗
(
y(t)−M(t)

)
;

D+y(t) ≥ 0

for t ∈ [t∗, t∗ + ε]. This leads to

y(t∗ + ε)−M(t∗ + ε) > e−b∗ε
(
y(t∗)−M(t∗)

)
> 0. (3.10)

Then eq. (3.10) implies that y(t) > M(t) for all t ≥ t∗.
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We are now ready to prove the main theorems for time dependent networks.

Proof of Theorem 3.6. The intuitive explanation of the proof is that if the attractive
force from the followers (b∗) is lower than the repulsive force (−1) from the faulty
agent, then the system will be escapable. Consider initial values (x(0), y(0)) such
that y(0) > M(0). Then, lemma 3.11 implies that y(t) > M(t) for all t > 0.
Therefore, when there are no follower agents connected to the faulty agent, we
have

D+M(t) ≤ 0;
D+y(t) = 0,

and when at least one follower agent is connected to the faulty agent

D+M(t) ≤ b∗
(
y(t)−M(t)

)
;

D+y(t) ≥ y(t)−M(t).

This leads to

D+[y(t)−M(t)
]
≥

0, if no follower is connected to the faulty
agent at time t

(1− b∗)
[
y(t)−M(t)

]
, otherwise.

It is straightforward to see that limt→∞
[
y(t)−M(t)

]
=∞ since the assumptions

guarantee that there will be some follower agent connected to the faulty agent
sufficiently often.

Proof of Theorem 3.7. Based on lemma 3.11, we just need to prove Theorem 3.7
for the cases when ∃ t∗ ≥ 0 such that y(t∗) > M(t∗) or y(t∗) < m(t∗). We focus on
the first case, since the proof for the second case can be obtained by a symmetric
argument.

Suppose y(t∗) > M(t∗) for some t∗ > 0. Then, lemma 3.11 suggests that
y(t) > M(t) for all t ≥ t∗. The proof follows the same ideas as in the proof of
lemma 3.10, to create a chain of influence between y(t) and m(t).

Choose t0 ≥ t∗, in our first step we bound y(t). Similar to lemma 3.9, since
y(t) > M(t), we have D+m(t) ≥ 0 for all t ≥ t∗. Noticing that

ẏ(t) =
∑

j∈N0(σ(t))

(
y(t)− xj(t)

)
≤ n

(
y(t)−m(t)

)
≤ n

(
y(t)−m(t0)

)
for all t ≥ t0, we obtain

y(t) ≤ en(t−t0)y(t0) +
(
1− en(t−t0))m(t0), t ≥ t0. (3.11)
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This implies

y(t) ≤ en(n+1)T0y(t0) +
(
1− en(n+1)T0

)
m(t0), t ∈ [t0, t0 + (n+ 1)T0],

where T0 = T + τD.
On the other hand, (3.11) implies

D+M(t) ≤ b∗
(
y(t)−M(t)

)
≤ −b∗

(
M(t)− enT0y(t0)−

(
1− enT0

)
m(t0)

)
,

for t ∈ [t0, t0 + T0], which yields

M(t) ≤ e−b∗T0M(t0) +
(
1− e−b∗T0

)
·
(
enT0y(t0) +

(
1− enT0

)
m(t0)

)
,

t ∈ [t0, t0 + T0]. (3.12)

Since G
(
[t0, t0 + T )

)
is connected, there exists t̂1 ∈ [t0, t0 + T ) such that the faulty

agent is connected to some follower agent at time t̂1. As a result, (3.12) leads to

ẏ(t) =
∑

j∈N0(σ(t))

(
y(t)− xj(t)

)
≥ y(t)−M(t)
≥ y(t)− e−b∗T0M(t0)−

(
1− e−b∗T0

)
·
(
enT0y(t0) +

(
1− enT0

)
m(t0)

)
(3.13)

for t ∈ [t̂1, t̂1 + τD] with t̂1 + τD ≤ T0, which implies

y(t̂1 + τD) ≥ eτDy(t0) + (1− eτD )·[
e−b∗T0M(t0) +

(
1− e−b∗T0

)(
enT0y(t0) +

(
1− enT0

)
m(t0)

)]
(3.14)

Let 0 < χ ≤ 1 be a constant satisfying y(t0) − M(t0) = χ
[
y(t0) − m(t0)

]
.

Noticing that y(t) is strictly increasing for t > t∗, we see from (3.14) that

y(t) ≥ y(t̂1 + τD)

≥ y(t0) +
(
eτD − 1

)
·
(
y(t0)−m(t0)

)
·
((
enT0 − 1

)(
e−b∗T0 − 1

)
+ χe−b∗T0

)
= y(t0) + p0

(
y(t0)−m(t0)

)
, (3.15)

for all t ≥ t0 + T0 after some simple algebra, where

p0
.=
(
eτD − 1

)((
enT0 − 1

)(
e−b∗T0 − 1

)
+ χe−b∗T0

)
. (3.16)
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Next, we give a lower bound for m
(
t0 +(n+1)T0

)
. Since G

(
[t0 +T0, t0 +2T )

)
is

connected, there exists at least one follower agent i0 ∈ VF and t̂2 ∈ [t0 +T0, t0 +2T )
such that i0 is connected to the faulty agent at time t̂2. Therefore, with (3.15), we
have

ẋi0(t) =
∑

j∈NF
i0

(σ(t))

ai0j(x, t)
(
xj(t)− xi0(t)

)
+ b∗

(
y(t)− xi0(t)

)
≥ (n− 1)a∗

(
m(t0)− xi0(t)

)
+ b∗

(
y(t0) + p0

(
y(t0)−m(t0)

)
− xi0(t)

)
,

for t ∈ [t̂2, t̂2 + τD], which implies

xi0(t̂2 + τD) ≥ e−((n−1)a∗+b∗)τDxi0(t̂2) +
(
1− e−((n−1)a∗+b∗)τD

)
·

(n− 1)a∗m(t0) + b∗
[
y(t0) + p0

(
y(t0)−m(t0)

)]
(n− 1)a∗ + b∗

≥ e−((n−1)a∗+b∗)τDm(t0) +
(
1− e−((n−1)a∗+b∗)τD

)
·

(n− 1)a∗m(t0) + b∗
[
y(t0) + p0

(
y(t0)−m(t0)

)]
(n− 1)a∗ + b∗

= b∗ + p0

(n− 1)a∗ + b∗
y(t0) +

(
1− b∗ + p0

(n− 1)a∗ + b∗

)
m(t0).

Next, for t ∈ [t̂2 + τD, t0 + (n+ 1)T0], we have

ẋi0(t) =
∑

j∈NF
i0

(σ(t))

ai0j(x, t)
(
xj(t)− xi0(t)

)
+ bi(t)

(
y(t)− xi0(t)

)
≥ (n− 1)a∗

(
m(t0)− xi0(t)

)
,

and thus,

xi0(t) ≥ e−(n−1)a∗(n+1)T0xi0(t̂2 + τD)
+
(
1− e−(n−1)a∗(n+1)T0

)
m(t0)

≥ b∗ + p0

(n− 1)a∗ + b∗
e−(n−1)a∗(n+1)T0y(t0)

+
(

1− (b∗ + p0)e−(n−1)a∗(n+1)T0

(n− 1)a∗ + b∗

)
m(t0)

.= w0y(t0) + (1− w0)m(t0)

for all t ∈ [t0 + 2T0, t0 + (n+ 1)T0], where w0 = b∗+p0
(n−1)a∗+b∗

e−(n−1)a∗(n+1)T0 .
Since G

(
[t0 + 2T0, t0 + 2T0 + T )

)
is connected, there exists at least one follower

agent i1 ∈ VF and time t̂3 ∈ [t0 + 2T0, t0 + 2T0 + T ) such that i1 is connected to
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the faulty agent, or to the follower agent i0, at time t̂3.

ẋi1(t) =
∑

j∈NF
i1

(σ(t))

ai1j(x, t)
(
xj(t)− xi1(t)

)
+ bi(t)

(
y(t)− xi1(t)

)
≥ ai1i0(t)

(
xi0(t)− xi1(t)

)
+
(
M(t)− xi1(t)

) ∑
j∈NF

i1
(σ(t))\{i0}

aij(x, t)

≥ a∗
(
w0y(t0) + (1− w0)m(t0)− xi1(t)

)
+ (n− 2)a∗

(
m(t0)− xi1(t)

)
,

for t ∈ [t̂3, t̂3+τD], where we assume xi1(t) ≤ w0y(t0)+(1−w0)m(t0), t ∈ [t̂3, t̂3+τD],
without loss of generality. As a result, we have

xi1(t̂3 + τD) ≥ e−((n−2)a∗+a∗)τDm(t0) +
(
1− e−((n−2)a∗+a∗)τD

)
·
a∗
(
w0y(t0) + (1− w0)m(t0)

)
+ (n− 2)a∗m(t0)

(n− 2)a∗ + a∗

=
(
1− e−((n−2)a∗+a∗)τD

)
a∗w0

(n− 2)a∗ + a∗
y(t0)

+
(

1−
(
1− e−((n−2)a∗+a∗)τD

)
a∗w0

(n− 2)a∗ + a∗

)
m(t0)

.= %0w0y(t0) + (1− %0w0)m(t0),

where %0 =
(

1−e−((n−2)a∗+a∗)τD
)
a∗

(n−2)a∗+a∗
. This immediately implies

xi1(t) ≥ %0w0e
−(n−1)a∗(n+1)T0y(t0) +

(
1− %0w0e

−(n−1)a∗(n+1)T0
)
m(t0)

for all t ∈ [t0 + 3T0, t0 + (n+ 1)T0].
Continuing the analysis for the remaining follower agents i2, . . . , in eventually

results in the bound

xi
(
t0 + (n+ 1)T0

)
≥ w0

(
%0e
−(n−1)a∗(n+1)T0

)n
y(t0)

+
(

1− w0
(
%0e
−(n−1)a∗(n+1)T0

)n)
m(t0)

for all i = 1 . . . , n, and thus

m
(
t0 + (n+ 1)T0

)
≥ w0

(
%0e
−(n−1)a∗(n+1)T0

)n
y(t0)

+
(

1− w0
(
%0e
−(n−1)a∗(n+1)T0

)n)
m(t0). (3.17)
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As a result of eqs. (3.11) and (3.17) we get[
y
(
t0 + (n+ 1)T0

)
−m

(
t0 + (n+ 1)T0

)]
≤ en(n+1)T0y(t0) +

(
1− en(n+1)T0

)
m(t0)

− w0
(
%0e
−(n−1)a∗(n+1)T0

)n
y(t0)

−
(

1− w0
(
%0e
−(n−1)a∗(n+1)T0

)n)
m(t0)

=
(
en(n+1)T0 − w0

(
%0e
−(n2−1)a∗T0

)n) · [y(t0)−m(t0)].
(3.18)

By denoting Ψ(t) = y
(
t
)
−m

(
t
)
, eq. (3.18) can be written as

Ψ
(
t0 + (n+ 1)T0

)
≤
(
en(n+1)T0 − w0

(
%0e
−(n2−1)a∗T0

)n)Ψ(t0) (3.19)

for all t0 ≥ t∗. According to the definition of p0 in (3.16), w0 increases as long as
χ increases, and then we see from eq. (3.19) that

Ψ
(
t0 + (n+ 1)T0

)
≤
(
en(n+1)T0 − w∗

(
%0e
−(n2−1)a∗T0

)n)Ψ(t0)

where

w∗ =
b∗ +

(
eτD − 1

)(
enT0 − 1

)(
e−b∗T0 − 1

)
(n− 1)a∗ + b∗

· e−(n−1)a∗(n+1)T0 .

It is now clear that when the parameter condition holds,

0 <
(
en(n+1)T0 − w∗

(
%0e
−(n2−1)a∗T0

)n)
< 1,

the system will be globally trackable.

Remark. Systems with multiple faulty agents will never be globally trackable in
our framework. A trivial example can be constructed by placing all follower agents
symmetrically distributed between two faulty agents, where the two faulty agents
will then diverge.

3.3 Illustration of Convergence Results

In this section we will explore the system’s convergence properties through numer-
ical simulations. First we evaluate the states of the agents in a system consisting
of 5 agents (the faulty agent and four follower agents), when the communication
topology is a fixed line graph, see fig. 3.1. In figs. 3.2 to 3.4 we simulate the system
with different b∗ selected as 3, 4 and 5 respectively. In the first fig. 3.2, where
b∗ < n, the state errors are diverging, and we thus have an escapable system. In
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Figure 3.1: System configuration with a line graph topology. The red node denotes
the faulty agent, while the blue nodes denote the followers.

0 20 40 60 80 100
Time t

x
i(
t)

Escapable system, b∗ = 3, λ1(−G) = 0.074

Faulty agent
Followers

Figure 3.2: Simulation of a multi agent system with a line topology consisting of 5
agents, n = 4 and b∗ = 3.

fig. 3.3, where b∗ is increased to b∗ = n, the state error remains constant, which is
the boundary case when the largest eigenvalue is zero, and the system is neither
escapable nor trackable. Finally, in fig. 3.4, where b∗ > n, the state errors are
diminishing to zero, and the eigenvalues are all smaller than zero, so this system is
globally trackable.



3.3. Illustration of Convergence Results 63
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Followers

Figure 3.3: Simulation of a multi agent system with a line topology consisting of 5
agents, n = 4 and b∗ = 4.
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Trackable system, b∗ = 5, λ1(−G) = −0.044
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Followers

Figure 3.4: Simulation of a multi agent system with a line topology consisting of 5
agents, n = 4 and b∗ = 5.
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Figure 3.5: Threshold values for b∗ for the line and complete graphs. The threshold
value b∗ ≥ n seems to be a tight condition, and independent of the agents position
and the topology.

Next, we examine the threshold value of b∗ for the system to be either escapable
or trackable. We consider both the line graph and complete graph as communication
topologies, and also vary the size of the network from 5 to 100 agents. For the line
graph, it is interesting to see if the faulty agents position on the line would affect
the threshold value b∗. The results are shown in fig. 3.5. According to Theorem 3.5,
the threshold must be at least b∗ ≥ |N0|, which seems to be a tight condition for the
complete graph where |N0| = n. The simulations does however indicate that the
same value of b∗ ≥ n is true even for the line graph, and we therefore hypothesize
that our result could be strengthened to be b∗ ≥ n as a both necessary and sufficient
condition for trackability, i.e., that the condition is independent of the topology,
and only depends on the number of follower agents.
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3.4 Conclusions

This chapter presented a framework for a multi-agent system tracking a faulty
agent through consensus updates. In contrast to most published results, the faulty
agent is measuring the position of its follower agents and acting against the follower
agents using positive feedback from their relative state. Sufficient conditions and
necessary conditions were established for the multi-agent system to converge to con-
sensus under both fixed and time dependent communication topologies, and these
conditions could also be related to the topology. Numerical simulations validate
our results, and also indicate that a stronger condition might be possible.





Chapter 4

Convergence in Peer-to-Peer Networks

“Never trust a computer you can’t
throw out a window.”

— Steve Wozniak

In this chapter, we investigate a peer-to-peer (P2P) network for efficient live-
streaming television, inspired by gradientTv and Sepidar (Payberah et al., 2010a,b).
The gradient topologies are fundamental in self-organizing systems, and are a gener-
alization of rooted trees. The goal of this application is to distribute a data stream
from a small set of seed nodes to every other node in the network, and the problem
is to design distributed algorithms for creating an efficient overlay network topol-
ogy. In particular, this chapter deals with the convergence problem, in which the
network graph converges to a complete gradient overlay network. The contribution
of this chapter is the convergence analysis of the given algorithm.

The outline of this chapter is as follows: In section 4.1 we introduce the network
model and topology convergence problem, which we analyze in section 4.2. In
section 4.3 we simulate the construction of a gradient topology using the model in
section 4.1, and in section 4.4 we evaluate the live-streaming performance in a real
P2P application using the gradient overlay topology. Finally, section 4.5 concludes
this chapter.

4.1 The Gradient Topology Problem

The gradient topology belongs to the class of gossip-generated overlay networks
that are built from a random overlay network through symmetry breaking using a
preference function. Thus, we are given a node set V = {1, . . . , N}, and need to
select edges E to construct our network G(V, E).

In the live streaming application, the idea is to utilize the nodes in the P2P
network to aid in the content distribution, but since the peers are heterogeneous,
not all peers will be equally useful. Thus, we classify each node i ∈ V with its utility
value ui ∈ R, which captures, for example, the node’s upload capacity, latency and
reliability for the P2P network.

67
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(a) The initial random overlay network
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4 4
(b) The network after converging to a complete gradient topology

Figure 4.1: The gradient network is described as a directed graph. The nodes are
labeled with their respective utility value, and the edges from the similar neighbor
sets are shown. In the gradient topology, paths of increasing utilities emerge.

Formally, a gradient topology is defined as an overlay network satisfying, for any
two nodes v1 and v2 with utility values uv1 and uv2 , if uv1 ≥ uv2 then dist (v1, v?) ≤
dist (v2, v?), where v? is the node with highest utility in the system and dist (·, ·) is
the length of the shortest path between the nodes in the network (Sacha, 2009). In
other words, nodes with a higher utility value should be closer to the seed nodes
compared to nodes with a lower utility value, so that gradient paths of increasing
utilities emerge in the system, see fig. 4.1.

In constructing the gradient overlay, the nodes i ∈ V build two sets of neighbors:
a similar view N s

i (t) and a random view N r
i (t). For the similar view, nodes prefer

neighbors with close but slightly higher utility values, while the random view is
used to sample new nodes with uniform probability for possible inclusion in the
similar view. Thus, the node i’s total neighbors are Ni(t) = N s

i (t) ∪N r
i (t).

Each node i defines a preference function >i over its neighbors, where node i is
said to prefer node a over node b (denoted by a >i b) if

ua ≥ ui > ub or if
|ua − ui| < |ub − ui| when ua, ub > ui or ua, ub < ui.

Further, let minN s
i denote node i’s least preferred neighbor in its similar neighbor

set.
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For any given initial overlay network, the topology is evolving through each
node i at each time t updating its own neighbor set Ni(t) independently of the
other nodes according to Algorithm 4.1. The algorithm can be summarized as
sampling random nodes from the network, and if the random node is preferred over
the least preferred node in the similar set, then those two neighbors are exchanged.

Algorithm 4.1 Topology Dynamics
for every t = 1, 2, 3, . . . do

for each node i ∈ V do
Let N r

i (t) = {j}, where j ∈ V is a randomly selected node with uniform
probability pt, 0 < Npt < 1. Otherwise N r

i (t) = ∅.
if N r

i (t) 6= ∅ then
if j /∈ N s

i (t− 1) and j >i minN s
i (t− 1) then

N s
i (t) = N s

i (t− 1) ∪ {j} \ {minN s
i (t− 1) }

else
N s
i (t) = N s

i (t− 1)
end if

end if
end for

end for

It is assumed that the node degree di(t) = |N s
i (t)| = di stays constant through-

out the algorithm. Notice that the sampling probabilities pt can be time dependent,
and that the random neighbor setN r

i (t) is empty with probability 1−Npt. The rea-
son is that a node typically samples more frequently just after joining the network
to improve its neighbors, and then stabilizing at a lower sampling rate.

The preference function >i induced a partial order on the nodes V, thus there
could be multiple optimal neighbor sets. In order to study the system topology
convergence to a gradient structure with the proposed algorithm, we let Λi denote
the set of optimal similar neighbor sets for node i, i.e., ∀N̂ ∈ Λi there are no j ∈ N̂
and k ∈ V\N̂ such that k >i j.

For every node i ∈ V, we define Xi(t) that counts the number non-optimal
neighbors in i’s similar neighbor set,

Xi(t)
.= di − max

N̂∈Λi

∣∣∣N s
i (t) ∩ N̂

∣∣∣ .
Notice that Xi(t) is monotonically decreasing under Algorithm 4.1 since an optimal
neighbor will never be removed from the similar neighbor set N s

i (t).
Let G(t) be the graphs generated by Algorithm 4.1. Then we give the definition

of gradient convergence as follows (see also fig. 4.1).
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Definition 4.1. G(t) is said to converge to a gradient topology if

lim
t→∞

Xi(t) = 0

for all i ∈ V.

4.2 Convergence Analysis

Since each node updates its neighbor set independent of the other nodes, the analy-
sis can be carried out separately on each Xi(t). We therefore simplify the notations
in the following discussion, and let X(t) represents Xi(t) for an arbitrary node
i ∈ V.

Denote the maximum degree D = maxi{di}, then it is not hard to see that
X(0) = D is the worst initial condition. Furthermore, X(t) decreases precisely
when the randomly sampled node is a new optimal neighbor, and the probability
of this event occurring is minimal when the optimal solution is unique, and then
equal to

P [X(t+ 1) = k − 1 | X(t) = k ] = kpt, k = 1, . . . , D, (4.1)

where k is the number of non-optimal neighbors.
In the following theorem we propose a both necessary and sufficient condition

on the probabilities pt for almost sure convergence of Algorithm 4.1.

Theorem 4.1. The graph generated by Algorithm 4.1 converges to a gradient topol-
ogy (X(t) = 0) with probability 1 if and only if

lim
T→∞

T∏
t=0

(1− pt) = 0. (4.2)

Before proving Theorem 4.1, let us take a closer look at Algorithm 4.1, and
notice especially that the stochastic process in eq. (4.1) for X(t) has the Markov
property, hence we can describe it as a simple Markov chain, fig. 4.2.

X(t) = D X(t)=D−1 · · · X(t) = 1 X(t) = 0

Dpt (D − 1)pt 2pt pt

1−Dpt 1− (D − 1)pt 1− pt 1

Figure 4.2: Markov chain illustration of the stochastic process.
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Let π(t) denote the row vector of probabilities for the states X(t), i.e.,

πi(t) = P [X(t) = D − i] . (4.3)

The evolution of π(t) can be written in matrix form as

π(t+ 1) = π(t)Pt, (4.4)

where Pt is the transition matrix at time t,

Pt =



1−Dpt Dpt 0 · · · 0 0
0 1− (D − 1)pt (D − 1)pt · · · 0 0
0 0 1− (D − 2)pt · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1− pt pt
0 0 0 · · · 0 1


Since Pt is a triangular matrix, the eigenvalues are given by the diagonal elements,
i.e., the eigenvalues of Pt are λi(t) = 1− (D− i)pt, i = 0, . . . , D. Notice that there
is a single unit eigenvalue λD(t) = 1, and all other eigenvalues are strictly less than
one. Furthermore, all eigenvalues are distinct, hence the eigenvectors form a basis
for RD. In the following lemma, we characterize the eigenvectors.

Lemma 4.2. The eigenvector ξi(t) corresponding to eigenvalue λi(t) is independent
of pt 6= 0, for i = 0, . . . , D.

Proof. The (left-)eigenvectors of Pt satisfy λi(t)ξi(t) = ξi(t)Pt. Let ξij(t) denote the
j:th component of ξi(t), then, by inspection of the matrix Pt, we have the system
of equations

(1− (D − i)pt) ξi0(t) = (1−Dpt) ξi0(t)
(1− (D − i)pt) ξij(t) = (1− (D − j)pt) ξij(t)

+ (D − j + 1)ptξij−1(t) j = 1, . . . , D

which is equivalent to

iξi0(t) = 0
(i− j)ξij(t) = (D − j + 1)ξij−1(t) j = 1, . . . , D

or further

ξij(t) = 0 if j < i

ξij(t)
i− j

D − j + 1 = ξij−1(t) if j > i (4.5)
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while ξii(t) can be chosen as an arbitrary non-zero value to scale the eigenvector.
From eq. (4.5) it is evident that the eigenvectors are independent of pt.

An important consequence of Lemma 4.2 is that all Pt, independent of t, have
the same eigenvectors, and are thus simultaneously diagonalizable. Hence we can
simplify the notation by dropping the parameter t from the eigenvectors ξi.

Let us now return to the initial probability distribution π(0), and decompose it
into the eigenvector basis as

π(0) =
D∑
i=0

αiξ
i, (4.6)

for some real numbers αi.

Lemma 4.3. αDξD = eD, where ei is the standard basis [0, . . . , 0, 1, 0, . . . , 0]T .

Proof. Let us consider ξi1 for i = 0, . . . , D − 1. By equation (4.5),

ξi1 =
D∑
j=0

ξij =
D∑
j=i

ξij =
D−i∑
j=0

ξii+j

We will show by induction that

k∑
j=0

ξii+j = D − i− k
D − i

ξii+k. (4.7)

The case when k = 0 is clearly true, thus, assume that (4.7) holds for k and consider
the case when k + 1,

k+1∑
j=0

ξii+j =
k∑
j=0

ξii+j + ξii+k+1

= D − i− k
D − i

ξii+k + ξii+k+1

= D − i− k
D − i

−(k + 1)
D − i− k

ξii+k+1 + ξii+k+1

= D − i− (k + 1)
D − i

ξii+k+1

Using (4.7) implies that ξi1 = 0, i = 0, . . . , D−1, and thus, π(0)1 = αDξ
D1. Now,

since π(0) is a probability distribution, we know that π(0)1 = 1, but (4.5) tells us
that only the last component of ξD is non-zero, hence the lemma follows.

We are now ready to prove the main theorem.
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Proof of Theorem 4.1. The almost sure convergence condition means that

lim
T→∞

P [X(T ) = 0] = 1 ⇒

lim
T→∞

πD(T ) = 1 ⇒

lim
T→∞

π(T ) = eD

Equations (4.4) and (4.6) gives us

π(T ) = π(0)
T−1∏
t=0

Pt

=
D∑
i=0

αiξ
i
T−1∏
t=0

Pt

=
D∑
i=0

αiξ
i
T−1∏
t=0

λi(t)

=
D−1∑
i=0

αiξ
i
T−1∏
t=0

λi(t) + eD. (4.8)

Consider the limit limT→∞ π(T ),

lim
T→∞

|π(T )− eD| = lim
T→∞

∣∣∣∣∣
D−1∑
i=0

αiξ
i
T−1∏
t=0

λi(t)

∣∣∣∣∣
≤
D−1∑
i=0

∣∣αiξi∣∣ · lim
T→∞

T−1∏
t=0

(1− pt).

Clearly, this converges to zero if limT→∞
∏T
t=0(1− pt) = 0.

Furthermore, the set of initial probability distributions spawns RD. Thus, there
exists an initial probability distribution π(0) such that αD−1 6= 0. Assume that the
limit limT→∞

∏T
t=0(1− pt) = c > 0 is finite (the limit exists since it is a monotone

bounded sequence), then

lim
T→∞

|π(T )− eD| =

∣∣∣∣∣
D−2∑
i=0

αiξ
i

(
lim
T→∞

T−1∏
t=0

λi(t)
)

+ cαD−1ξ
D−1

∣∣∣∣∣ > 0 (4.9)

since the eigenvectors are linearly independent. Thus, we have proven the theorem.
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Corollary 4.1. The graph generated by Algorithm 4.1 converges to a gradient topol-
ogy with probability 1 if and only if

lim
T→∞

T∑
t=0

pt =∞. (4.10)

Proof. This follows directly from Theorem 4.1, and the relation

lim
T→∞

T∏
t=0

(1− pt) = 0 ⇔ lim
T→∞

T∑
t=0

pt =∞

for 0 < pt < 1.

Convergence Rate Estimation
We will now investigate the convergence rate of X(t), with a constant sampling
probability pt = p. Define the stochastic variable Ti as the time when X(t) reaches
0, when starting at X(0) = i,

Ti = inf
t

[X(t) = 0 | X(0) = i].

Further, let Mi = E [Ti] denote the expected convergence time when starting at
X(0) = i. Clearly M0 = 0, and for i = 1, . . . , D we have the recursion

Mi = 1 + P [X(t+ 1) = i− 1 | X(t) = i ] ·Mi−1

+ P [X(t+ 1) = i | X(t) = i ] ·Mi

= 1 + ipMi−1 + (1− ip)Mi

which can be further simplified to

Mi = 1 + ipMi−1

ip
= 1
ip

+Mi−1.

By continuing with induction, we can sum up the expected convergence time as

Mi = 1
p

i∑
n=1

1
n
.

The worst initial case is when X(0) = D, where the expected convergence time is

MD = 1
p

D∑
n=1

1
n
≤ 1 + ln(D)

p
. (4.11)

Remark. MD is the expected time for an individual node’s neighbor set to converge,
not the expected time for all nodes to converge to a gradient topology. As such, it
provides a lower bound on the convergence time.
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4.3 Convergence Simulation

Here we examine the convergence rate of Algorithm 4.1 with numerical examples.
In the first two simulations (figs. 4.3a and 4.3b) the degree of each node is di = 10
and the total number of nodes in the network is N = 100. For the third simulation
(fig. 4.3c) the degree is di = 50, and the total number of nodes in the network is
N = 500.

The similar view N s
i (0) is initialized with di nodes uniformly chosen among all

nodes in the network. In the first and third simulation the sampling probability pt
is held at a constant value of 1

2N . Hence, for each node, and at each iteration of the
algorithm, the random view is empty with 50% probability. Theorem 4.1 guarantees
the convergence of the algorithm for these examples, which is also confirmed by
the simulations. These two simulations should also be compared to the expected
convergence rate given in eq. (4.11), 566 and 4479 iterations respectively.

In the second simulation (fig. 4.3b), we simulate a decaying probability pt =
1
N

1
(1+t/100)2 . Notice that

∑∞
t=0Npt < 101, hence, by Corollary 4.1, there is a

positive probability that the algorithm does not converge to a gradient topology.
This is also confirmed by the simulation, in which the gradient topology is missing.
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(a) Convergence in a network with 100 nodes, di = 10, and constant probability Npt = 1
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(c) Convergence in a network with 500 nodes, di = 50, and constant probability Npt = 1
2 .

Figure 4.3: Convergence rate simulations. The neighbor set measurement X(t), for
each node in the network, is shown as a function of the iteration number t.

4.4 Evaluating Live-Streaming using the Gradient Topology

Now we turn to an evaluation of the effect of sampling nodes from the gradient
overlay network compared to a random overlay network when building a P2P live-
streaming application, called GLive. GLive is based on nodes cooperating to share a
media stream supplied by a source node, and uses an approximate auction algorithm
to match nodes that are willing and able to share the stream with one another.
GLive extends the tree-based live-streaming, gradienTv (Payberah et al., 2010a)
and Sepidar (Payberah et al., 2010b), to mesh-based live-streaming.

Nodes want to establish connections to other nodes that are as close as possible
to the source. They bid for connections to the best neighbors using their own upload
bandwidth, and nodes share their bounded number of connections with nodes who
bid the highest (contribute the most upload bandwidth). Auctions are continuous
and restarted on failures or free-riding. The desired effect of our auction algorithm
is that the source will upload to nodes who contribute the most upload bandwidth,
who will, in turn, upload to nodes who contribute the next highest amount of
bandwidth, and so on until the topology is fully constructed.

One of the main problems with the lack of global information about nodes’
upload bandwidths is that it affects the rate of convergence of the auction algorithm.
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Nodes would ideally like to bid for connections to other nodes who they can afford
to connect to, rather than win a connection to a better node and later be removed
because a better bid was received. The traditional way to discover nodes to bid on
is using a uniform random peer-sampling service (Jelasity et al., 2007). Instead, we
use the gradient overlay to sample nodes, where a node’s utility value is the upload
bandwidth it contributes to the system. As such, the gradient should provide
other nodes with references to nodes who have well-matched upload bandwidths.
Payberah et al. (2010b) showed that using the gradient overlay network reduced the
rate of parent switching for tree-based live-streaming by 20% compared to random
peer sampling. Here, we show for GLive the effect of sampling neighbors using
random peer sampling (GLive/Random) versus sampling from the gradient overlay
(GLive/Gradient).

GLive is implemented using Kompics’ discrete event simulator (Arad et al.,
2009) that provides different bandwidth, latency and churn models. In our experi-
mental setup, we set the streaming rate to 512 kbit/s, which is divided into blocks
of 16 kB. Nodes start playing the media after buffering it for 5 seconds. The size
of the similar view in GLive is 15 nodes, and in the auction algorithm, nodes have
8 download connections. To model upload bandwidth, we assume that each up-
load connection has an available bandwidth of 64 kbit/s and that the number of
upload connections for the nodes is set to 2i, where i is picked randomly from the
range 1 to 10. This means that nodes have an upload bandwidth capacity between
128 kbit/s and 1.25 Mbit/s. As the average upload bandwidth of 704 kbit/s is not
much higher than the streaming rate of 512 kbit/s, nodes need to find good parents
to achieve the streaming performance. The media source is a single node with 40
upload connections, providing five times the upload bandwidth of the stream rate.
We assume 11 utility levels, such that nodes contributing the same amount of up-
load bandwidth are located at the same utility level. Latencies between nodes are
modeled using a latency map based on the King data-set (Gummadi et al., 2002).
We assume the size of sliding window for downloading is 32 blocks, such that the
first 16 blocks are considered as the in-order set and the next 16 blocks are the
blocks in the rare set. A block is chosen for download from the in-order set with
90% probability, and from the rare set with 10% probability. In the experiments,
we measure the following metrics:

1. Playback continuity: the percentage of blocks that a node received before their
playback time. We consider the case where nodes have a playback continuity
of greater than 99%;

2. Playback latency: the difference in seconds between the playback point of a
node and the playback point at the media source.
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We compare the playback continuity and playback latency of GLive/Gradient
and GLive/Random in the following three scenarios:

1. Churn: 500 nodes join the system following a Poisson distribution, with an
average inter-arrival time of 100 milliseconds. Then, until the end of the
simulation, nodes join and fail continuously following the same distribution
with an average inter-arrival time of 1000 milliseconds;

2. Flash crowd: first, 100 nodes join the system following a Poisson distribution
with an average inter-arrival time of 100 milliseconds. Then, 1000 nodes join
following the same distribution with a shortened average inter-arrival time of
10 milliseconds;

3. Catastrophic failure: 1000 nodes join the system following a Poisson distribu-
tion with an average inter-arrival time of 100 milliseconds. Then, 500 existing
nodes fail following a Poisson distribution with an average inter-failure time
of 10 milliseconds.

Figure 4.4 shows the percentage of the nodes that have a playback continuity
of at least 99%. We see that all the nodes in GLive/Gradient receive at least 99%
of all the blocks very quickly in all scenarios, while it takes slightly more time
for GLive/Random. This is because nodes in GLive/Gradient find a good set of
matches faster than nodes in GLive/Random by running the auction algorithm
against nodes with similar upload bandwidth. One point to note is that the 5
seconds of buffering cause the spike in playback continuity at the start, which
then drops off as nodes are joining the system. To summarize, using the gradient
overlay instead of random sampling produces better performance when the system
is undergoing large changes - such as large numbers of nodes joining or failing over
a short period of time.

Figure 4.5 shows the playback latency of the systems in the different scenar-
ios. As we can see, although there is only a small difference between the sys-
tems, GLive/Gradient consistently maintains relatively shorter playback latency
than GLive/Random for all experiments. The playback latency includes both the
5 seconds buffering time and the time required to pull the blocks over the live-
streaming overlay constructed using the auction algorithm.
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Figure 4.4: Playback continuity of the GLive/Gradient and GLive/Random systems
in the churn, flash crowd and catastrophic failure scenarios.



82 Convergence in Peer-to-Peer Networks

 0

 5

 10

 15

 20

 0  50  100  150  200  250  300

P
la

y
b
a
c
k
 L

a
te

n
c
y
 (

S
e
c
o
n
d
s
)

Time (s)

gradient
random

(a) Churn

 0

 5

 10

 15

 20

 0  50  100  150  200  250  300

P
la

y
b
a
c
k
 L

a
te

n
c
y
 (

S
e
c
o
n
d
s
)

Time (s)

gradient
random

(b) Flash Crowd



4.4. Evaluating Live-Streaming using the Gradient Topology 83

 0

 5

 10

 15

 20

 0  50  100  150  200  250  300

P
la

y
b
a
c
k
 L

a
te

n
c
y
 (

S
e
c
o
n
d
s
)

Time (s)

gradient
random

(c) Catastrophic failure

Figure 4.5: Playback latency of the GLive/Gradient and GLive/Random systems
in the churn, flash crowd and catastrophic failure scenarios.
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4.5 Conclusions

In this chapter, we studied the network topology convergence problem for the
gossip-generated gradient overlay network. We showed necessary and sufficient con-
ditions for convergence to a complete gradient structure, and we also characterized
the expected convergence time for a network without churn.

Our live-streaming experiments show the potential advantages of topologies
built using preference functions. We showed how nodes can use implicit information
captured in the gradient topology to efficiently find suitable neighbors compared to
using random sampling. As such, our work on proving convergence properties of
the gradient topology should have significance for other future information-carrying
topologies.



Chapter 5

Conclusions and Future Work

“The future belongs to those who
believe in the beauty of their dreams.”

— Eleanor Roosevelt

5.1 Conclusions

In this thesis we have explored some important and interesting algorithms for es-
timation and convergence in networks. We based these algorithms on simple con-
sensus protocols which lead to easily distributed solutions, which can be imple-
mented in networks with unreliable communication and with moderate hardware
and software requirements. These methods constitute fundamental building blocks
of distributed systems, with many diverse applications.

Estimation in Anonymous Networks

We derived distributed estimators to estimate both the network size and probabil-
ity mass functions in the specific framework where agents are anonymous. These
estimators were based on probabilistic methods and the max consensus protocol.
One of the main advantages with the max consensus protocol compared to other
strategies is that it has the fastest possible convergence time, and it is also very
easy to implement, even in networks with unreliable communication through pair-
wise gossiping communication. Even though the accuracy of these methods is not
perfect in general, it can be made arbitrarily good by increasing the packet sizes.

We designed these methods to specifically handle time dependent networks
through a regularization term, which penalizes hypotheses conflicting with a-priori
assumptions on the network’s behavior. We explicitly considered and characterized
the class of quadratic regularization terms, which resulted in closed-form estimators.
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Faulty Nodes in Consensus Protocols

We presented a multi-agent framework for tracking a misbehaving agent through
consensus strategies. The faulty agent in this scheme was measuring the position
of its neighboring agents, and acting against them using positive state feedback.
We derived both sufficient conditions and necessary conditions for the multi-agent
system to converge to consensus, and considered both fixed and time dependent
communication topologies. In particular, we related these conditions to the network
topology.

Convergence in Peer-to-Peer Networks

We studied a P2P network for live-streaming video applications, and considered the
advantages of using a gradient topology for finding suitable neighbors. The advan-
tage of this method is that the peers can find a good set of neighbors more quickly,
and thus avoid rapid switching, which increases the latency and probability of in-
terruptions. We derived both necessary and sufficient conditions for convergence to
a complete gradient topology, and we also characterized the expected convergence
time.

5.2 Future Work

There are many natural extensions of the work presented in this thesis. The future
work can be divided into general formulations in the field of dynamical network
systems, and specific problem formulations related to the problems studied in this
thesis. We summarize below some ideas for future research.

General Research Directions

Dynamical network systems is an extremely rich field, with many interesting open
problems. The general research directions can be divided into two tracks: the
experimental and the theoretical.

From a theoretical perspective, one fundamental task is to develop general tools
for analyzing dynamical networks, that could be used in cross disciplinary settings.
In the field of automatic control, we have for a long time been studying feedback
loops. What role does feedback loops play in the formation of network structures?
How can feedback loops that govern the evolution of networks be found? Can con-
cepts such as controllability and observability aid in the design of high performance
dynamical network systems?

With an abundance of practical applications, it would be interesting to work
with, and analyze real world data. For example studying community formation in
social networks, and study the interaction between the network structure and the
information propagation through the network.
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Estimation in Anonymous Networks

We estimated two specific properties in the anonymous network framework, but a
natural continuation is to ask what can be computed or estimated in this frame-
work. There has been some work done on deterministic computation in anonymous
networks, but through the introduction of random number generation, these results
could be extended to a broader class of functions. Specifically, what can be learned
about the network topology besides the size, and how can these estimates be used to
create intelligent networks that automatically reconfigure themselves to be robust
against failures.

It was shown that the accuracy could be improved by increasing the packet size.
An important question is to consider the quantization effects due to limited number
precision, and to design an optimal alphabet which results in the highest precision
per bit transmitted. A natural direction would also consist of developing on-line
algorithms for tuning the estimation parameters, especially the packet size based
on the current performance requirements in the application.

We assumed that the communication was synchronized, but it would be in-
teresting to relax this assumption. Either by introducing distributed clock syn-
chronization schemes, or by changing our algorithms to an event-triggered version.
This could be accomplished by assuming that any agent could initiate a new epoch
using a randomized time-out event. Could additional properties be estimated by
using the transient information while the consensus algorithm is converging to the
maximum?

Another research direction could be to study the robustness of this scheme
against different types of attacks. Either modeled as randomized noise or failures
among the nodes, or with malicious agents who are actively trying to influence the
estimate in a particular direction.

Faulty Nodes in Consensus Protocols

In our numerical simulations we hypothesized that there is a strong threshold phe-
nomenon: the system is globally trackable if and only if b∗ > n. We would like to
validate this hypothesis and further explore the threshold.

One of the main assumptions in this chapter was that the faulty agent was still
following the same consensus protocol, where only the weights had been perturbed.
It would be interesting to extend this into broader classes of faults, and especially
in the direction of network games, where the worst possible actions are considered.
This would also relate to fault detection, and trying to find faulty agents which
should be expunged from the network.

Another assumption was that the network should be undirected, and a natural
extension would be to consider directed networks, where nodes could have different
in-degree and out-degree. The connectivity assumption could then be replaced by
a strongly connected assumption, which should still allow the arguments in the



88 Conclusions and Future Work

time dependent case, where paths of influence are built. Would there be any other
fundamental changes in the results?

This work was motivated by robustness against faults among the agents in a
multi-agent system, but in our work, we studied the case where the faulty agent
was known. This leads to the natural extension to consider a global robustness
property, and conditions where the system will reach consensus irrespective of the
faulty agents.

Convergence in Peer-to-Peer Networks
As we saw in our live experiments, P2P networks often exhibit stochastic behavior,
with nodes both joining and leaving the network (churn). In our analysis, we instead
considered a static network in order to define the convergence time to an optimal
configuration. We would like to extend this analysis to networks with churn, and
examine how high churn rates could be tolerated while still maintaining a reasonable
gradient overlay structure, and also the relationship with the sampling rate.

Another property that we ignored was that there is an underlying physical
network, where the latency can be specified as a pairwise map. Thus, the utility
value of a node might not be a truly universal property, and we could instead define
the utility value as a pairwise function describing the utility a node could provide
to a specific other node.

The sampling was performed with given probabilities, so an important question
is how to tune these probabilities, and could they be tuned on-line as topology
changes are detected? Furthermore, we used uniform sampling among all peers,
but some of the random peer sampling services give biased samples, most notably
those based on random walks. What would the effect be of these biased samples,
and in particular, if the samples where generated by random walks within the same
gradient overlay topology?
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