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Abstract

An increasing need for goods and passenger transportation drives continued world-
wide growth in traffic. As traffic increases environmental concerns, traffic safety,
and cost efficiency become ever more important. Advancements in microelectronics
open the possibility to address these issues through new advanced driver assistance
systems. Applications such as predictive cruise control, automated gearbox control,
predictive front lighting control, and hybrid vehicle state-of-charge control decrease
the energy consumption of vehicles and increase the safety. These control systems
can benefit significantly from preview road grade information. This information is
currently obtained using specialized survey vehicles, and is not widely available.
This thesis proposes new methods to obtain road grade information using on-board
sensors. The task of creating road grade maps is addressed by the proposal of a
framework where vehicles using a road network collect the necessary data for esti-
mating the road grade. The estimation can then be carried out locally in the vehicle,
or in the presence of a communication link to the infrastructure, centrally. In either
case the accuracy of the map increases over time, and costly road surveys can be
avoided.

This thesis presents a new distributed method for creating accurate road grade
maps for vehicle control applications. Standard heavy duty vehicles in normal op-
eration are used to collect measurements. Estimates from multiple passes along a
road segment are merged to form a road grade map, which improves each time a
vehicle retraces a route. The design and implementation of the road grade estimator
are described, and the performance is experimentally evaluated using real vehicles.

Three different grade estimation methods, based on different assumption on the
road grade signal, are proposed and compared. They all use data from sensors that
are standard equipment in heavy duty vehicles. Measurements of the vehicle speed
and the engine torque are combined with observations of the road altitude from
a GPS receiver, using vehicle and road models. The operation of the estimators
is adjusted during gearshifts, braking, and poor satellite coverage, to account for
variations in sensor and model reliability. The estimated error covariances of the
road grade estimates are used together with their absolute positions to update a
stored road grade map.

Highway driving trials show that the proposed estimators produce accurate road
grade data. The estimation performance improves as the number of road segment
traces increases. A vehicle equipped with the proposed system will rapidly develop
a road grade map for its area of operation. Simulations show that collaborative
generation of the third dimension for a pre-existing large area two-dimensional
map is feasible. The experimental results indicate that road grade estimates from
the proposed methods are accurate enough to be used in predictive vehicle control
systems to enhance safety, efficiency, and driver comfort in heavy duty vehicles. The
grade estimators may also be used for on-line validation of road grade information
from other sources. This is important in on-board applications, since the envisioned
control applications can degrade vehicle performance if inaccurate data are used.
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Chapter 1

Introduction

“Wir müssen wissen
wir werden wissen.”

David Hilbert, in an address to the Society of German
Scientists and Physicians, Königsberg, 1930.

Road vehicles have seen a rapid growth in on-board processing power and
digital storage capacity during the last few decades. Recently, wireless com-
munication capabilities have been added, enabling both real-time updates

to the information digitally stored in the vehicle and a return path from the vehicle
to the outside world. The combination of this information path from the vehicle
and the rich variety of sensors available in modern vehicles enable an entirely new
set of applications, where vehicles share information with each other and the in-
frastructure. Vehicles in normal operation can now provide sensor data for many
transport related applications. Vehicle-to-vehicle and vehicle-to-infrastructure com-
munication and applications are currently very active research areas.

Satellite based navigation with digital maps has become popular among mo-
torists. The maps that power these systems constantly evolve. What has tradition-
ally been a replacement for a road atlas is quickly turning into a digital description
of every feature of interest, static or dynamic, in the vicinity of the vehicle. This
development is made possible by replacing quarterly physical media updates to the
navigation system by live communication links to other vehicles and the infrastruc-
ture. In many of the electronic safety and comfort systems developed today, data
from local sensors are merged with a variety of other information sources into an
overall digital description of the surroundings.

This thesis proposes a method for road grade estimation that uses vehicle sensor
data to generate digital maps. The performance of three versions of the method is
investigated, when they are applied to real measurements. The method is evaluated
experimentally using the three types of Heavy Duty Vehicles (HDVs) shown in
Figure 1.1. The convergence of the road grade estimate when many measurements
are available is studied through simulations.

1



2 Introduction

Figure 1.1: The proposed road grade estimation method has been tested on high-
way E4 between Södertälje and Nyköping, using three types of HDVs. (Photographs
courtesy of Scania CV AB)
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Figure 1.2: The top graph shows the estimated road grade profile for the Southbound
direction on highway E4 south of Södertälje, based on the conducted experiments. The
bottom graph illustrates the deviation from the reference profile for each data set. The
results from the constant estimator (solid blue), are shown together with the measured
reference road grade (dotted gold), and sample data from a commercial provider of
road grade map data (dashed red).

The final grade estimate created by the method, based on six experiments on
a 15 km test segment of the southbound highway E4 south of Södertälje, is shown
together with reference road grade data in Figure 1.2. Using the proposed method,
the road grade in the experiments can be estimated with a bias of −0.04 % grade,
with an approximately normal error distribution with a mean standard deviation
around the bias of 0.13 % grade. The convergence of the road grade estimate to the
reference road grade is illustrated in Figure 1.3, for two example road sections.
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Figure 1.3: The road grade errors quickly decrease when several estimates are com-
bined. Initially the rate is close to the 1/

√
N to be expected for white noise errors. As

more experiments are added, the decay rate decreases. The figure shows the decrease
in the log of the estimation error versus the log of the number of experiments used,
based on simulations for the southbound segment of the test site (solid), and a part of
highway E44 between Koblenz and Trier (dashed). Lines starting at the error after one
experiment, and decreasing at a rate of 1/

√
N , are shown for each data set (dotted).

The first section of this chapter introduces the ideas of using standard vehicles
for road grade mapping. This is followed by a motivation for the thesis through a
description of look-ahead vehicle control. The next section gives the problem state-
ment for the thesis. This is followed by descriptions of the main thesis contributions.
The introduction is concluded by a description of the publications forming the basis
for the thesis and an outline of the rest of the thesis.

1.1 Distributed Road Grade Estimation

Current in-vehicle navigation systems primarily provide information such as turn-
by-turn directions and hazard warnings to the driver. In the future, this will likely
shift so that the navigation system also provides information to automated vehicle
functions, such as an automated speed control, electronic stability system, or anti-
rollover system. Digital maps are increasingly being seen as a source of information
that can complement the vehicle sensors, and the information about the vehicle
surroundings obtained from the map is commonly referred to as the ADAS (Ad-
vanced Driver Assistance Systems) horizon. An example of such a horizon is shown
in Figure 1.4. A standardized protocol for transmitting ADAS horizon information
from a map database control unit to other systems in vehicles has recently been
developed. Early products using such systems are now entering the market.

The road geometry information in digital maps has traditionally been obtained
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Figure 1.4: Illustration of an ADAS horizon with a number of physical and legal
attributes. (Illustration courtesy of the PReVENT project)

by specialized survey vehicles, operated by mapping companies. The update fre-
quency of the map data has been limited by the number of survey vehicles oper-
ating in a region. The availability of affordable Global Positioning System (GPS)
receivers with logging capabilities has spurred interest in amateur mapping. This
interest has been captured by the major mapping companies through features that
allow users to send corrections back to the companies. The generation of map data
has expanded from a centralized process controlled by the mapping companies to
a distributed effort by the users together with the mapping company.

The new possibilities to record accurate position information have also led to
the emergence of an alternative map. There is now a free and open map database
available online, the OpenStreetMap (OSM). It has been created by volunteers as a
community effort. Reporting an error in a commercial navigation device using the
provided tool is usually very easy. Mapping your neighborhood for OSM requires
significantly more skills, but there are thousands who have both the desire to do so
and the technical know-how.

Until recently, only rather inexact two-dimensional road geometry information
was recorded by the mapping companies. Growing automotive industry interest in
map based control applications has led to the emergence of new products providing
accurate information on the geometry, including the third dimension. However, the
user-generated road maps currently available are still almost exclusively restricted
to two dimensions. The system described in this thesis could be used to obtain
highly accurate information about highway road grades, by using the principles
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Figure 1.5: Sensor data from each drive along a road segment is used to estimate a
road grade profile. This profile is then processed together with the existing road grade
map database to give an updated database. The new database is used for control
applications the next time the vehicle returns to the same road segment. If a commu-
nication link is available the database may be centralized. All vehicles connected to
the system may then benefit from the estimates generated by all other vehicles.

of user generated content and crowdsourcing1. The principle of operation for the
proposed system is illustrated in Figure 1.5. Road grade data are both collected
and used by vehicles in normal operation.

Autonomous road map creation, without any prior knowledge, is very hard.
Adding information to an existing map is much easier. By combining the cur-
rently available user generated two-dimensional map with this new method, a three-
dimensional road map, which can potentially be used in on-board control systems,
can be created. The methods described in this thesis have been designed to operate
with sensors that are already standard equipment in HDVs. If the methods were to
be implemented in series production, tens of thousands of road grade probes would
be estimating the road grade of hundreds of millions of miles of roadway annually,
within a few years.

1.2 Motivation

Resource scarcity generates demand for increased efficiency in all aspects of soci-
ety. The longitudinal dynamics of an HDV traveling on a highway is considerably
affected by the road grade. In uphill sections a fully loaded vehicle is likely to lose
speed, and in downhill sections braking must be done properly to maintain safety.
Compared to a regular cruise controller, predictive cruise control, where the vehicle
speed is adapted ahead of upcoming changes in the road grade, has the potential
to significantly reduce the energy consumption. If there is information about an up-
coming obstacle or speed restriction on the road, coasting from the proper distance
can save energy as well. These and many other future vehicle control systems that

1Wikipedia defines crowdsourcing as the act of outsourcing tasks, traditionally performed by
an employee or contractor, to an undefined, large group of people or community (a “crowd”),
through an open call.
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Figure 1.6: A large fleet of vehicles will quickly produce an accurate estimate of the
major highways in an area. The figures show the predicted RMS grade estimation error
for major European roads in southern Sweden, Denmark, and northern Germany after
data from (starting from the left) N = 10, 100, 1 000 trips, of 50–500 km each, have been
recorded and used in the proposed estimation scheme. Darker segments have lower
estimation errors

have a potential to increase the energy efficiency, comfort, and safety, rely on high
quality information about the road grade ahead of the vehicle.

The road grade maps that are available have limited geographical coverage,
and require a license fee to be paid to the supplier. Currently available sensors
in HDVs can be used to estimate the road grade, e.g., through models for the
driving resistance and Newton’s second law. Thus, alternative road grade maps
may potentially be created using standard vehicles. It is however hard to achieve
the accuracy required by emerging control applications with a single measurement,
collected with the sensors present in production vehicles. By recording estimates in
a map as the truck drives along, it is possible to predict the road grade the next
time the same road is driven. In general, HDVs frequently drive along a limited set
of roads. By merging estimates from many trips in the map, the desired accuracy
can be achieved.

The problem of obtaining road grade information for HDV applications can be
solved using vehicles in normal operation. Signal noise from the standard mounted
sensors in the vehicle make determining the road grade after only one trip along
a road section hard. Using a combination of an iterative road grade estimation
algorithm with a map that can be used to store estimates, accurate information
about future road grades can be created based on many trips. The truck will have a
better map each time it returns to a particular road. Figure 1.6 shows the road grade
accuracy for a map generated with the proposed method, based on a simulation
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α

Figure 1.7: An HDV traveling on a road is affected by forces from its powertrain,
rolling resistance, air resistance, gravity, and possibly its brake system. The influence
of gravity depends on the road grade α.

study. By combining local map-building with communications technologies and a
global community, large amounts of estimates become available in a short time.
Most vehicles will then also have access to a good map already on the first trip
along a road.

1.3 Problem formulation

The problem studied in this thesis is how to estimate the road grade of roads that
are frequently traveled by HDVs, based on sensors that are part of the standard
vehicle equipment. Due to sensor signal noise and model mismatch during some
driving events, the required accuracy of the estimates cannot be achieved using
only one measurement. It is thus necessary to use data from multiple passes over
each road segment.

An HDV climbing a hill with a road grade α, and the most important forces
affecting the vehicle, are shown in Figure 1.7. The vehicle is described by a dynamic
model fv for its longitudinal movement, which links the road grade to the engine
torque and the absolute altitude. The road is modeled with one state for the altitude,
whose dynamics is described by fz, and one for the road grade. Two different road
grade models fα, are investigated. One is based on the fact that the road grade
changes slowly compared to the other signals, the other one is based on highway
design principles. The total system model is

dv

ds
= fv(v, α, Te)

dz

ds
= fz(α)

dα

ds
= fα(s)

(1.1)
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Figure 1.8: The proposed grade estimation methods use sensor information from a
standard HDV. The estimators depend on two directly measured states; the vehicle
speed and road altitude. The engine torque is treated as a measured input signal
in the vehicle model. The estimators also rely on auxiliary information about when
braking and gearshifts occur, the currently engaged gear, and the number of tracked
GPS satellites. The current two-dimensional position of the vehicle is used to locate
the vehicle in the map.

where s is the distance along the road, v is the vehicle speed, α is the road grade,
Te is the engine torque, and z is the absolute altitude of the vehicle.

The vehicle speed and engine torque are available from the vehicle control net-
work. The altitude can be determined from a GPS receiver. The GPS receiver also
reports the number of tracked satellites. This signal is used to assess the accuracy
of the altitude signal. The vehicle dynamics model fv depends on which gear is
engaged, if any. This information is obtained by sensing the current gear and if a
gearshift is in progress. When the vehicle is braking the dynamics will be radically
different than otherwise. Since the brake force Fbrake is not available for measure-
ment, the road grade estimation is done with only a status signal indicating if
braking is taking place. Since the task is to estimate roads that are traveled fre-
quently, a position log from the GPS is included to enable many estimates of the
road grade to be merged. Finally the GPS receiver vehicle speed signal used to
calibrate the in-vehicle speed sensor. The system model and sensor information are
used together to create the road grade estimator shown in Figure 1.8.

The problem that is solved in this thesis is how to use sensor signals already
available in many HDVs to iteratively create road grade maps based on all the
sensor information available from many runs along the same roads.
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1.4 Main Thesis Contributions

The problem of how to obtain accurate road grade information for HDV control
is analyzed and solved through proposed estimators based on standard mounted
sensors. Three different estimators are proposed and evaluated.

The first estimator uses a constant road grade model together with a time-
varying longitudinal vehicle model to link acceleration, engine torque, and absolute
altitude readings to a common road grade estimate. This estimator is referred to
as the constant estimator throughout the thesis. Logic is developed to adjust the
estimator to vehicle operating conditions such as the number of available GPS
satellites, and whether gear changing or braking is in progress. A Kalman Filter
(KF) is used to process the sensor data based on information about the operating
conditions. The estimator is designed to be operated off-line, which enables Rauch-
Tung-Striebel (RTS) smoothing to be used to increase the measurement information
used and avoid filter lag. The smoothed estimate is used to update a stored map
based on the relative reliability of the latest estimate and the already stored data.

The constant road grade model assumption, while being simple to work with,
conflicts with the properties of real road grade profiles. In the second estimator,
dubbed the piecewise estimator, the road grade signal is instead restricted to be
a piecewise linear function. The least-squares optimal, piecewise linear road grade
approximation is identified from sensor data. For comparison, the reference road
grade profile is approximated with a piecewise linear function as well. The analysis
shows that while the piecewise linear assumption is certainly more accurate than
the constant road grade model, restricting the grade profile to a piecewise linear
representation gives larger errors than in the first estimator. The residual error
in the piecewise linear approximation of the reference road grade signal is also
significant, compared to the total estimation error of the previous method.

In the third estimator, the spline estimator, the piecewise linear model is used
to extend the first estimator. A linear spline road grade model is identified and
used, but the output is not restricted to be piecewise linear. This method yields
better grade estimates than the second one, and for large sampling distances it
works better than the first estimator.

The three estimators are also compared to the performance obtained by filtering
road grade estimates computed directly through the vehicle model or the derivative
of the GPS altitude signal. This is referred to as the nominal estimator.

Finally, a framework for using the estimated road grade profiles to build a
road grade map is developed and tested in simulations. The convergence of the
estimates of the constant estimator, when a large number of estimates are available,
is analyzed. Two scenarios are studied. In the first, a single vehicle is performing
all the estimation on-board. In the second scenario, communication equipment is
available and all vehicles in an area are exchanging information with each other.
The proposed estimation scheme is predicted to be useable for collecting road grade
information that is accurate enough for HDV control applications, both in the non-
communicating and communication-enabled scenarios.
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1.5 Publications

The work described in this thesis has previously appeared in scientific publications,
as outlined below. In parallel with the development of the grade estimators, appli-
cations of the data have also been studied. This has been done primarily through
supervision of Master’s thesis projects. The work has also resulted in a number
of patent applications, mainly related to the applications of the road grade data.
These are detailed in Section 1.5.1.

The development and evaluation of the constant estimator has been described
in four papers. These form the foundation for the modeling of the vehicle and
sensors in Chapter 3 and the description of the estimation method in Chapter 4.
The experimental setup given in Chapter 5, and the majority of the experimental
results for the constant estimator described in Chapter 5, are also included in these
papers.

The first paper, presented at the Fifth IFAC Symposium on Advances in Au-
tomotive Control in August of 2007, outlines the basic ideas of the methods and
initial grade estimation results. Additional experimental results are given in the
second paper. The follow up paper, at the 17th IFAC World Congress in July 2008,
gives a deeper analysis of the grade estimator. In that paper the possibility of using
a linear, instead of a non-linear, vehicle model is also investigated. The results were
summarized, and illustrated through additional examples, in the journal publica-
tion.

P. Sahlholm, H. Jansson, E. Kozica, and K. H. Johansson. A sensor and data
fusion algorithm for road grade estimation. In Fifth IFAC Symposium on Advances
in Automotive Control. Monterey Coast, CA, USA (2007b)

P. Sahlholm, H. Jansson, and K. H. Johansson. Road grade estimation results
using sensor and data fusion. In 14th World Congress on Intelligent Transport
Systems. Beijing, China (2007a)

P. Sahlholm, H. Jansson, and K. H. Johansson. Road grade estimation for
look-ahead vehicle control. In 17th IFAC World Congress. Seoul, Korea (2008)

P. Sahlholm and K. H. Johansson. Road grade estimation for look-ahead vehicle
control using multiple measurement runs. Control Engineering Practice, 18(11):
1328 – 1341 (2010a). Special Issue on Automotive Control Applications, 2008 IFAC
World Congress

From the literature on road design, it is clear that highways should be built
with a piecewise linear road grade profile, as is further described in Chapter 3.
The contribution to the 2011 SAE World Congress details the effort to identify
a piecewise linear road grade profile based on this design principle. The proposed
method is described in Chapter 4. While the method does produce optimal piecewise
linear estimates, it is computationally intensive and, contrary to the other two
developed methods, does not allow for efficient distributed updates. Experimental
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results from this work are given in Chapter 5.

P. Sahlholm, A. Gattami, and K. H. Johansson. Piecewise linear road grade
estimation. In SAE 2011 World Congress, accepted for publication. Detroit, MI,
USA (2011)

By requiring that the end of each linear piece of the road grade profile meet
with the beginning of the next piece, a linear spline approximation of the profile is
obtained. This road grade model was used in the paper presented at CDC 2010, to
extend the constant estimator. A three step estimation method is proposed. First,
the measured data are used to obtain an initial road grade estimate. Second, linear
segments are identified in the road grade signal. Third, the linear segments are
used with the measured data to produce a final road grade estimate. The method
is described in Chapter 4. The proposed method is implemented and evaluated
experimentally, and the results are given in Chapter 5.

In addition to material from the fully peer reviewed publications listed above,
the thesis contains results that have not yet been published, and results from the
non-fully peer reviewed publications summarized below. These are either Master’s
thesis reports where the author has supervised the work, or papers presented at
conferences that only peer review an extended abstract.

P. Sahlholm and K. H. Johansson. Segmented road grade estimation for fuel
efficient heavy duty vehicles. In 49th Conference on Decision and Control. Atlanta,
GA, USA (2010b)

A leading motivation for estimating the road grade is the possibility of using
a known future grade profile to plan an efficient vehicle speed trajectory. The first
Master’s thesis presents both a patent survey of control applications using position-
ing systems, and a test implementation of an optimizing vehicle speed controller
based on the future road grade. The implementation part of the work was carried
out under the supervision of the author of this thesis. The potential HDV applica-
tions of road grade information, and the negative effect of errors in that information,
are explored in the first contribution to the 2008 ITS World Congress. A proposed
system for adjusting the speed of an HDV based on road grade information, and
knowledge of upcoming mandated speed changes, is described in the second paper
at the same conference, and the last Master’s thesis report.

N. Gustafsson. The Use of Positioning Systems for Look-Ahead Control in Ve-
hicles. Master’s thesis, Linköpings tekniska högskola (2006)

P. Sahlholm. Improved heavy duty vehicle performance through the use of 3d
map data. In 15th World Congress on Intelligent Transport Systems. New York,
NY, USA (2008)

A. Alam and P. Sahlholm. A method for determining an economical speed for
heavy vehicles. In 15th World Congress on ITS. New York, NY, USA (2008)

A. Alam. Optimally Fuel Efficient Speed Adaptation. Master’s thesis, Royal
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Institute of Technology (KTH) (2008)

Further work aimed at analyzing the vehicle sensor data and estimator perfor-
mance is described in the above publications. The first two are focused on analyzing
the difference between GPS based road grade determination based on vertical speed
and absolute altitude information. The last report analyzes the influence of mod-
eling and parameter errors in the vehicle model on estimation errors. The work in
that project has also contributed to the formulation of the simulation model used
in Chapter 6.

K. Wänglund and P. Sahlholm. Comparison of road grade estimation results
based on GPS position and velocity data. In 16th World Congress on ITS. Stock-
holm, Sweden (2009)

K. Wänglund. Evaluation of GPS Velocity and Altitude Data used for Road
Grade Estimation. Master’s thesis, Royal Institute of Technology (KTH) (2009)

P. Ståhl. Performance analysis of a road grade estimation method by means
of simulation. Master’s thesis, Royal Institute of Technology (KTH) (2011). In
preparation

The creation of software capable of turning estimated road grade profiles into
content in a road map was done as a Master’s thesis project. This software was
used to generate the map estimation results presented in Chapter 6.

N. Andersson. Skapande av karta för fordonsreglering med framförhållning [Map
creation for look-ahead vehicle control]. Master’s thesis, Royal Institute of Technol-
ogy (KTH) (2011). In preparation

1.5.1 Patents

In addition to the academic publications, the work described in this thesis has led
to five Swedish patents. Three of these have been published as international patents
as well.

The last four Swedish patents are active. The first was approved based on the
merits of the invention, but later revoked due to publication of parts of the inven-
tion before the submission of the patent application. The first patent is related to
the constant estimator while the rest describe methods developed when studying
applications of road grade data.

P. Sahlholm, H. Jansson, and E. Kozica. Metod och anordning för estimering
av lutningen för ett underlag på vilket ett fordon färdas [Method and system for
esimating the inclination of a surface on which a vehicle is driving]. Swedish patent
SE 530 728 C2 (filed 2006). Revoked: Sep 2, 2010

J. Slettengren, H. Jansson, and P. Sahlholm. Förfarande och anordning för
att stödja en reglerstrategi för framförandet av ett fordon [Method and device for
supporting a regulating strategy for the driving of a vehicle]. Swedish patent SE 531
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835 C2 (filed 2007)

A. Alam, J. Andersson, and P. Sahlholm. Metod, system och datorprogram för
automatisk hastighetsreglering av ett motorfordon [Method, system and computer
program product for automated vehicle speed control]. Swedish patant SE 531 922
C2 (filed 2008b)

A. Alam, J. Andersson, and P. Sahlholm. Fastställande av accelerationsbeteende
[Determination of acceleration behavior]. Swedish patent SE 533 144 C2 (filed
2008a)

A. Alam and P. Sahlholm. Metod och system för reglering av ett fordons hastighet
i en kurva [Method and system for vehicle curve speed control]. Swedish patent SE
533 044 C2 (filed 2008)

The three international patents are translated versions of the first three Swedish
patents.

J. Slettengren, H. Jansson, and P. Sahlholm. Method and device for supporting
a regulating strategy for the driving of a vehicle. World patent WO 2009 072965
(filed 2008)

A. Alam, P. Sahlholm, and J. Andersson. Method, system and computer program
product for automated vehicle speed control. World patent WO 2009 096882 (filed
2009b)

A. Alam, J. Andersson, and P. Sahlholm. Determination of acceleration be-
haviour. World patent WO 2010 062242 (filed 2009a)

1.6 Outline

The rest of this thesis is organized as follows. Chapter 2 describes applications
of road grade information, as well as an overview of the methods for obtaining
such information. Data quality requirements and the sensors that are used are also
treated. The proposed road grade estimators are based on models for both the
road grade signal and the vehicle. A vehicle model is also used in simulations to
generate data for the study on the convergence of the estimates. The necessary
models are developed in Chapter 3. In Chapter 4, the details of the three different
road grade estimators are described. Chapter 5 contains the experimental setup and
a comprehensive description of the experimental results for each of the studied road
grade estimation algorithms. It ends with a comparison of the performance of the
different methods. In Chapter 6, the predicted behavior when using the proposed
method with a large number of vehicles is analyzed. Finally, in Chapter 7, the thesis
is concluded with a discussion about the usefulness of the proposed methods, and
an outlook into the future.





Chapter 2

Background

“Knowledge is of two kinds. We know a subject ourselves, or we know
where we can find information on it.”

Samuel Johnson, quoted in Boswell’s Life of Johnson, 1791.

The demand for accurate digitized information about the road grade has re-
cently increased in the automotive world. This is an effect of the evolution of
embedded electronics, which has made HDV control units powerful enough

to take such information into account in real-time. When the control algorithms are
extended from considering only the local road grade to also include the upcoming
grade profile it becomes impractical to sense the data as it is needed. A road grade
map is required.

This chapter starts off with a motivating scenario highlighting potential benefits
from having road grade information available. This is followed by an account of
recent major research projects related to the acquisition and use of such information.
Section 2.3 provides an overview of the development and current state of digital
road maps. The following sections describes the most important applications of
road grade maps, from an HDV point of view, and outlines options for how such
maps can be created.

A large number of methods for obtaining road grade information, both on-board
vehicles and through surveying, are available in the literature. An overview of the
field is given in Section 2.6. This is followed by an analysis of the accuracy require-
ments on the estimated road grade, based on a predictive speed control application.
The chapter is concluded with a description of the sensors used in the experimental
study, with a special focus on the GPS, and a summary of the background for the
thesis.

15
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2.1 A Vision for Road Traffic

The road transport networks that carry the trade goods and people of the globalized
world consume massive amounts of energy in the form of liquid fuel. The rise out
of poverty currently happening in large parts of the world drives the demand for
ever more transport. Future fuels may provide part of the solution to the energy
challenge, but new energy approaches to energy conservation will also be required.

The growth in traffic is not only an energy problem. Traffic is also a leading
cause of death and severe injury around the world. A World Health Organization
report lists deaths and injury from traffic accidents as the ninth leading cause of
disability-adjusted life year health loss, a measure designed to combine years lost
from premature death with health lost from injury, globally in 2004 (World Health
Organization, 2008, p.51). The same report predicts that traffic accidents will be
the third largest cause in 2030.

Significant improvements in vehicle control, to a point where vehicles mainly
drive autonomously, can provide the solution to both these problems. Driverless
vehicles can have power plants designed to solve only the transport task, replacing
the powerful engines, optimized for driveability, found in most vehicles today. Au-
tomated vehicles can also be designed to communicate with surrounding vehicles
to decrease the overall energy consumption of the transport network. Well designed
cooperative control algorithms should also be able to significantly reduce the num-
ber of high energy crashes. As a result the passive safety features in vehicles should
not need to be as extensive as today, enabling vehicles to be made much smaller,
lighter, and thus more energy efficient. The potential of this idea is explored in detail
in (Guzzella, 2009). Since the road grade affects the dynamics and energy balance of
a vehicle, one of many pre-requisites for crash-free, autonomous, energy optimizing
vehicles is a high quality map of the surroundings. Such a map needs to include
road grade information. Since there are already many driver support systems in cars
that rely on, or can be improved using, road grade information making it available
in vehicles can have an important effect on the safety and energy efficiency of the
transport network both today and in the future.

2.2 Intelligent Transportation Systems

Modern information and communications technology is being applied around the
world to transport more goods and people with higher energy efficiency and fewer
accidents than before. Intelligent Transportation Systems (ITS) is a broad area,
which covers a large number of technologies and applications. Government agencies
have been set up to work within the area in many countries, and regular conferences
are held to discuss developments.

In Europe, ITS activities are coordinated by the European Road Transport
Telematics Implementation Co-ordination Organisation (ERTICO). Their official
definition of ITS, as presented on the organization web page is:
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ITS - Intelligent Transport Systems and Services - is the integration
of information and communications technology with transport infras-
tructure, vehicles and users. By sharing vital information, ITS allows
people to get more from transport networks, in greater safety and with
less impact on the environment. (ERTICO, 2010)

A number of Swedish, European, and American research projects have been
carried out within the ITS field. The most recent and closely related projects are
described in the next section.

2.2.1 Research Projects

Research into various ITS related fields has in recent years been carried out in
many different contexts worldwide. A large part of the projects focused on digi-
tal road maps intended for use by vehicle systems rather than directly by humans
have been funded by the EC. These include eCoMove, MAPS&ADAS (PReVENT),
ROSATTE, NextMAP, ActMAP, FeedMAP, and EuroRoadS. The Swedish Intel-
ligent Vehicle Safety Systems (IVSS) programme has, in addition to the project
“Vehicle control by using preview information —- Look Ahead’, which is funding
the research reported in this thesis, supported the Safe Operation for Large Vehicles
Initiative (SOLVI) project with a similar aim as the ROSATTE project.

eCoMove

The goal of the Cooperative Mobility Systems and Services for Energy Efficiency
(eCoMove) project is to combine state of the art vehicle control for energy efficient
driving with traffic information, infrastructure management and communications
technologies to achieve a 20 % reduction in energy and consumption and CO2 emis-
sions. The areas that the project aims to improve are indicated in Figure 2.1. The
algorithms intended to provide energy efficient speed control rely heavily on accu-
rate road grade information. The project was initiated in 2010 and will run until
2013 (eCoMove, 2010).

MAPS&ADAS

PReVENT was a large integrated project within the EC sixth framework pro-
gramme. It handled many different aspects of ITS, and one of the sub-projects was
MAPS&ADAS. The MAPS&ADAS project was initiated by the Advanced Driver
Assistance Systems Interface Specification (ADASIS) forum. The objective of the
ADASIS forum is to jointly develop a standardized data model to represent the map
data ahead of a vehicle, and a way for applications to access this data. Much of
the initial development work on this data model and the associated communication
protocol was carried out within MAPS&ADAS. The final report was delivered in
January 2008. This effort is described in further detail in Section 2.4.2. The work of
the ADASIS forum continues, and the developed standard for transmitting digital
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Figure 2.1: Transport energy wasted due to real drivers not behaving like perfect
eco-drivers. The recently launched eCoMove projects intends to narrow the gap, partly
by using road grade information stored in maps. Source: eCoMove (2010)

horizon information (c.f. Section 2.4.2) on car communication networks is about to
be introduced in production vehicles from several manufacturers.

ROSATTE

The challenge of how to transfer of information from the databases of road au-
thorities across Europe, to the companies who supply advanced digital maps to
the market was studied in the ROad Safety ATTributes exchange infrastructure in
Europe (ROSATTE) project. The availability of reliable road data in general has
been seen to be rather low, and where it exists the storage methods differ widely be-
tween different authorities. A well functioning data exchange system between map
suppliers and road authorities would be a good way to use potentially excellent
data from when roads are built. The lack of quality data at the source, specifically
road grade data, limits this approach to be a partial solution to obtain European
road grade data. This is true even if effective data transfer methods are developed.
ROSATTE was the next step after the earlier EuroRoadS project of the 2004–2006
period. ROSATTE ran from 2008 to 2010. The survey of available data and storage
formats was published as a public deliverable by the project (ROSATTE, 2008).

SOLVI

The Swedish project SOLVI was also aimed at finding ways to move road network
data between providers, distributors, and users. The focus was on safety critical
attributes for HDVs e.g., load carrying capacity, overpass height, and dynamic at-
tributes such as road works, traffic congestion, and variable speed limits. Road
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grade and road curvature information, and potential sources for it, were also stud-
ied. The transferred data was validated in the project, by building demonstrators
for the intended applications. The results are described in (Sena, 2008).

NextMAP, ActMAP, FeedMAP

The development of map databases for vehicle navigation application was done in
part through EC funded projects. The Geographic Data Files (GDF) standard for
storing geographical data is one example of a widely used result of these efforts. As
newly developed ITS applications created a demand for more precise maps with new
attributes, an update to the format became necessary. In the year 2 000 NextMAP
was launched, the first of a series of projects to define, prototype, and evaluate map
content for future in-vehicle ITS systems (NextMAP, 2002). NextMAP ran until the
end of 2001, and was followed by ActMAP (2002–2004) and FeedMap (2006–2008).

These later projects focused on ways of delivering incremental updates to in-
vehicle databases (ActMAP), and provide a return channel for data from the user
(FeedMAP). Mapmakers estimate that 10-15,% of the road network changes every
year, and this number may be as high as 40,% in high growth areas (Löwenau et al.,
2008). Making incremental over-the-air updates instead of replacing the entire map
is a way to provide users with more current information. The proposed incremental
data update chain from the ActMAP final report is shown in Figure 2.2.

One challenge that map suppliers face is how to determine where the road net-
work has changed, so that those areas can be scheduled for re-survey. The FeedMAP
project aimed to investigate methods to collect deviation reports from both vehi-
cles that detect erroneous map attributes (automatically or manually) and public
authorities. A framework to validate these reports, and potentially turn them into
dynamic updates through the ActMAP chain was developed. Road grade is men-
tioned (but called slope) in the FeedMAP final specification, as an attribute that
can be validated in the system (FeedMAP, 2008). This would be one potential use
of the road grade estimation system described in Chapter 3.

2.3 Encoded Road Maps

A key element in ITS is the use of machine readable maps. They are used on every
level from simulation for infrastructure planning, to helping a vehicle stay in its
lane. Machine readable maps for automotive navigation and route guidance have
been used since the first trials with route guidance systems in the early 1900’s.
Accounts of the history of automobile navigation can be found in (French, 1987),
and the introduction chapter of (Zhao, 1997). A more thorough historic account of
the use of maps in travel and navigation is available in (Akerman, 2006).

The first systems were mechanical and used a dead reckoning to signal upcoming
turns or points of interest to the user. Dead reckoning is a process where a known
starting point and a traveled distance, e.g., from an odometer, are used to predict
the current position. The map was an encoded set of distances to drive between
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Figure 2.2: The ActMAP chain of incremental map updates. Road network updates
are combined with changes to location based content and sent to clients as incremental
updates over digital communication channels instead of by replacing or overwriting
the entire map. Source: (ActMAP, 2005)

instructions. With better road signage and paper maps interest in the primitive
guidance systems declined. During World War II an electromechanical system that
could draw a vehicle’s course on a map based on the driven distance and a magnetic
compass was developed by the U.S. Army. In the late 1960’s computer technology
had matured to the level where electronic systems started to be developed. These
were either based on dead reckoning from a known starting point, or proximity
beacons with known positions throughout the road network. In the 1980’s map
matching algorithms, where a recorded drive path was compared to possible routes
in a database, gained popularity. These digital maps contained larger and more
complex road networks than in previous systems (French, 1987).

From the launch of the GPS, satellite based positioning enabled devices with
digital road maps, aided by different levels of dead reckoning and Inertial Navigation
Systems (INS) support, have been the industry standard in navigation aids. Modern
solid state storage can easily hold detailed road maps of entire continents. The
world market for digital road maps for vehicle navigation is currently dominated
by two companies, Navteq and Tele Atlas. They have large fleets of data collection
vehicles that measure new roads and verify existing data in the field. The widespread
adoption of consumer oriented navigation devices has made collection of detailed
data sets covering large parts of the globe economically feasible for these companies.
However, despite recent progress, many features are still missing from the maps.
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Current business models and technologies also lead to many systems operating
with outdated maps. There is still room for significant improvement both in the
way data are collected, and distributed to the users.

A key map feature for HDV applications that is still missing from the majority of
commercial maps is the road grade. Road grade data can be obtained using suitably
equipped survey vehicles. Both Navteq and Tele Atlas have such equipment, but
not all roads have been surveyed with the new equipment. The existing road grade
data are only included in specialized map products sold to industrial partners at a
premium price point. The availability of road grade maps from the major suppliers
is likely to increase in the future, and the price difference may decrease. Using
the system proposed in Chapter 6, it may become unnecessary to buy the road
grade information at all. Standard vehicles operating on the roads may be able to
provide the necessary grade data themselves, over time and given that an extensible
two-dimensional road map already exists.

2.3.1 OpenStreetMap

The OSM project was started to create and provide free geographic data to anyone
who wants it. It is a community driven project largely enabled by the advent of
cheap ubiquitous GPS receivers. Contributors record tracks and take notes about
their surroundings when taking trips, or go out specifically to record raw data
for mapping. They then log in to the OSM database and input their data using
one of the many software applications available. The database is then processed to
produce street maps in many formats. There are routines to make live online maps
as well as printed maps of a specific area. Seeing that the project lives and develops
online, the most authoritative and up to date information is found on the Internet,
see for example (OpenStreetMap, 2010; OpenCycleMap, 2010). The OSM data are
easily accessed and manipulated using free tools, making it ideal for use in research
projects.

The project is now mature enough, and has a wide enough user base, that
frequently traveled roads, such as major highways, are included with very good
coverage. The data quality depends on the skill and equipment used by the person
encoding the information, but very bad data points tend to be corrected by someone
else rather quickly. Many roads have also been checked versus geographical infor-
mation, such as satellite and aerial imagery, which has been donated to the project
by various rights holders. The current version of OSM is note reliable enough to be
used directly in ADAS systems, but it does provide a starting point for automated
mapping efforts such as the one described in this thesis. The task of creating a high
quality map focused on a particular feature is greatly simplified by starting from
the encoded knowledge already present in the street map. As cars become even
more connected, it is likely that numerous contributors around the world will start
working on implementing algorithms for automatic refinement of the map based on
large amounts of trip data. The case study presented in Chapter 5 of this thesis is
one early example of such an effort.
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The map database is governed by a creative commons share-alike license, with
relatively liberal terms for reuse (OpenStreetMap License, 2010). The presence of
the basic data set has inspired many extensions. Some display the data of the main
database in new ways, essentially adding another graphical layer on top of the
basic map. One example is the OpenCycleMap (OpenCycleMap, 2010). The data
displayed is part of the regular OSM, but the OpenCycleMap highlights it for the
user. Other extensions use additional data sources to create new maps, such as
the WikipediaWorld project that places all georeferenced articles of the Wikipedia
georeferencing project on a rendition of OSM (Wikipedia, 2010b,a).

While there is support for both altitudes and road grades in the OSM database,
these attributes are not commonly used. Attributes are stored in the database
as keys connected to nodes, ways, or relations (groups of nodes or ways). In the
European subset of the map the key “highway”, which is to be used for all roads
and streets, is used on 14 988 523 objects. The key “incline”, which is recommended
for representing the road grade, is used on 15 304 objects. The “incline” key can
have both numerical and text values. The values “up”, “down”, and “yes” together
account for 7 544 of the occurrences. The majority of the rest of the values are
numerical. By considering the dominance of integer inclines among the numerical
values, it appears that accurate road grades are highly unusual in today’s map. All
the statistics for the map are current as of November 12, 2010, and extracted from
the map using the service (OpenStreetMap tag watch, 2010).

There is also an elevation tag described in the documentation, but it is primar-
ily used to represent the elevation of landmarks such as mountain peaks and train
stations. The software infrastructure of the OSM project has been built around
editing of two-dimensional maps. The information on the official wiki about eleva-
tion and altitude is rather sparse, and there is apparently no established way of
incorporating road elevation or road grade into the map database. There has been
some discussion in the OSM community on how to improve the altitude content
in the maps. The discussions do not seem to be finalized, and whatever content
does exist is commonly relative to an unspecified altitude reference system, c.f. Sec-
tion 2.8.2. The English language documentation of open street map is very sparse
when it comes to altitude, but some information is given in the German documenta-
tion (OpenStreetMap Altitude, 2011). A proposal for how altitude and road grade
information can be added to the map is a part of the contribution of this thesis, it is
given in Chapter 6. Some projects based on OSM, for example the OpenCycleMap,
use external elevation data from the NASA Shuttle Radar Topography Mission
(SRTM) altitude data set. While this is the best global elevation data set currently
released into the public domain, the accuracy is far from sufficient for ADAS.

2.4 Applications of Road Grade Maps

Current and future vehicles contain many ADAS designed to improve transport
safety and energy efficiency. Sensors, which are a part of many such systems, help
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the driver by improving the total perception of the environment. In the case of look-
ahead systems, a map with stored information is used to extend the perception
horizon beyond what either the driver or conventional on-board sensors can see.
Actuators connected to ADAS improve vehicle control by acting in situations where
the driver is unable to do so. In map based look-ahead systems the automatic action
can be based on information that the driver will only be able to get at a later time.

An increasing number of vehicle control systems now utilize stored information
from a map, to aid the driver in piloting the truck in a safe and economical manner.
Examples of map attributes that are commonly used are speed restrictions, road
class, road curvature, and road grade. Knowledge of the current and future road
grade can be used in engine and gearbox control systems to help meet the instan-
taneous power demand while keeping fuel consumption and environmental impact
as low as possible.

2.4.1 Look-Ahead Vehicle Control

The emerging availability of low cost high accuracy GPS receivers together with
enhanced computational capabilities of embedded control systems and increased
storage capacity has opened up new possibilities in vehicle control. Absolute global
positioning combined with a map enables the vehicle to predict where it is going
next, and exercise control actions based on this assumption. Many different types
of attributes can be utilized in this way to enhance vehicle safety and efficiency, but
for HDV the road grade is the most important one.

Vehicle functions that support the driver, by using electronic sensors, actuators
and control units, are usually referred to as ADAS. A multitude of such systems that
utilize look ahead have been showcased in the last few years, but only a few have
yet entered production. This section describes how ADAS benefit from access to
electronic maps, and outlines main application areas where look-ahead road grade
information improves existing, or enables new, functionality. The systems covered
are

• Speed Control for Energy Efficiency

• Hybrid Vehicle Control

• Control of Auxiliary Units

• Gearbox Control

• Adaptive Front Lighting Control

• Overtaking Assistance

There are already many more examples of imaginative ways of using look-ahead
road information, and more will undoubtedly follow once such information becomes
universally available. The applications described here have been chosen for their
relevance to HDVs and dependence on road grade information.
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Road grade information is particularly important for HDVs, due to their large
mass. To illustrate the road grade sensitivity of a standard long haulage HDV, the
maximum grade that can be traversed at a constant speed, using the top gear, is
shown in Figure 2.3. The figure is based on the vehicle model developed in Chapter 3,
and results are shown for three different vehicle weights. Similarly, the large mass
will lead to increased speed in downhill sections. The equilibrium grade at which
the vehicle will coast at a constant speed, again using the top gear, is shown in
Figure 2.4.
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Figure 2.3: HDVs are heavily influenced by the road grade. The maximum uphill
grades that can be traversed at constant speed are shown for three different vehicle
weights. The weights are 20 t (dash-dotted), 40 t (solid), and 60 t (dashed). A road
grade of 1 % is barely noticeable in a passenger vehicle.

The HDV in Figure 2.5 will speed up when going down one hill, and lose speed
when climbing the next one. If the road grade for the kilometer or so directly ahead
of the vehicle is known, it is possible to automatically adjust the speed in advance
of up- and downhill road segments and thus conserve fuel without increasing trip
time. The preview road grade information can also be utilized when determining
if a gearshift should be performed or the state of some energy buffer changed.
Furthermore the brake management system could use the road grade information
to determine the highest allowable speed when going down a hill. Thus waste heat
generation in excess of the system’s ability to release it can be avoided. This in turn
ensures that the vehicle retains emergency stopping power, a clear safety benefit.

Road grade maps of sufficient accuracy to support automatic vehicle control
systems are currently not widely available. Commercial efforts to create such maps
are underway, but access to them will most certainly be associated with some cost.
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Figure 2.4: Even moderate downhill road grades will lead to large speed increases.
The figure shows the road grade required for running at constant speed with no engine
power. The lines represent the vehicle weights 20 t (dash-dotted), 40 t (solid), and 60 t
(dashed). On long downhill segments steeper than -1.5 % most fully loaded trucks will
need to apply some brake system.

Figure 2.5: HDVs traveling on a hilly road. At the position of the leftmost vehicle,
it is advantageous to lower the speed to take full advantage of the upcoming downhill
road segment. In the second position the overall fuel economy can be improved by
increasing the speed before the steep part of the hill is reached. In the third position
it is important to maintain the driving torque, to avoid costly loss of turbo pressure
when entering the continued ascent.
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Figure 2.6: The ADAS horizon road network ahead of the car is shown in grey, and
its most probable path is shown in black. The vehicle is located in the middle right of
the figure, heading left and soon to encounter an intersection, highlighted by a small
warning sign. (Illustration courtesy of Navteq)

HDVs commonly travel the same routes frequently, and are thus ideally suited to
be their own probes and estimate the road grade for the small subset of all roads
that are relevant for a particular vehicle.

2.4.2 ADAS Horizon

A crucial part of a look-ahead control system is the ability to extract the interesting
part of a large map. The map is generally kept on a mass storage device, in some
format that allows for fast searching based on geographical coordinates. As the
vehicle moves a digital model of the surrounding road network with its associated
attributes needs to be constructed. This model is commonly referred to as the
ADAS horizon. Figure 1.4 shows an example ADAS horizon with both physical and
legal attributes. The desired application places varying demands on the selection of
ADAS horizon attributes, their accuracy, and the horizon size. In some applications
one is only interested in the vehicle’s most probable path, in others the entire
horizon is taken into account. An example of the most probable path, based on
road network attributes such as the road type classification and turn angles, is
shown in Figure 2.6.

To enable multiple look-ahead applications in a distributed control system to use
a single map data source there needs to be a method for transferring the ADAS hori-
zon to different control units on the vehicle communication network. The ADASIS
forum is a joint effort by slightly more than 30 ADAS original equipment manufac-
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turers, map suppliers, and vehicle manufacturers to create a common solution for
how to accomplish this. The ADASIS forum has developed a proposed standard for
both the representation of attributes in the ADAS horizon and the transmission
of these attributes over vehicle communication networks. These efforts started in
2001, and there is currently a fully functional proposal available. The most recent
results from the forum can be found in (Ress et al., 2008).

2.4.3 Speed Control for Energy Efficiency

When a highway contains segments with an uphill grade so steep that a vehicle
cannot maintain the desired speed, or a downhill grade so steep that over speeding
will occur unless the brake system is used, there is a potential for decreasing the fuel
consumption compared to a standard cruise controller, with unchanged trip time.
This has been explored for example in (Huang, 2010; Hellström, 2010; Hellström
et al., 2010; Fröberg, 2008; Terwen et al., 2004).

To achieve a reduction in the fuel consumption it is necessary to lower the
vehicle speed over hill crests and increase it ahead of steep uphill segments. Thus
the number of steep hill segments as well as the traffic load of the road affects the
fuel consumption gain that can be achieved.

Furthermore, road grade data of sufficient accuracy must be present for the
highways where the vehicle will operate. The quality of the grade data needs to
be high, so that the vehicle speed can be predicted over a long enough distance.
Field tests have shown that averaged single frequency GPS based measurements
from a few runs along the road give sufficient precision to realize fuel savings in
actual driving. The most crucial information needed by the optimization algorithm
is whether the vehicle will lose speed uphill despite running at full throttle or gain
speed without fuel injection when going downhill. Not knowing the exact rate of the
speed increase or decrease will reduce the possible savings due to the extra margins
needed before action can be taken, but the principle of operation can remain largely
unchanged. For typical long haulage HDVs the most interesting range of road grades
will be 0 %–2 % either up- or downhill.

2.4.4 Hybrid Vehicle Control

In hybrid electric vehicles one of the most challenging control objectives is to keep
the state of the energy buffer from hitting the boundaries of its operating range.
To minimize the energy consumption it is necessary to empty the buffer ahead of
driving events that will generate surplus energy, such as braking or driving in steep
downhill grades. On the other hand, driveability will generally suffer if the energy
buffer happens to be empty when an event that requires maximum power output
occurs. Since the problem of determining the optimal state of the energy buffer at
every point along the route depends on the power demands ahead of, as well as
behind, the vehicle it seems natural to use some type of look-ahead information.
The road grade is one factor that influences the power demands of a hybrid electric
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vehicle, but the speed profile is often of equal or higher importance. Much of the
energy consumption gains, using hybrid technology come from regenerative braking
in city driving scenarios. Numerous solutions to how to utilize advance knowledge
of both the road grade and anticipated speed profile have been proposed in the
literature. In (Johannesson, 2006) various predictive control strategies based on
stochastic models of the road grade and speed profiles for a hybrid electric passenger
car in city traffic are evaluated. The work is extended further in (Johannesson
and Egardt, 2007). A current and instructive survey of results obtained by route
optimized control of hybrid electric vehicles, both passenger cars and HDVs, can be
found in (Gonder, 2008), while a wider survey of the current state of energy buffer
management research for hybrid electric vehicles is available in (Salmasi, 2007). A
self-learning system that identifies the power demands for various segments of a
commuting route through many repeated measurements is described in (Ichikawa
et al., 2004). A system using similar ideas to those applied in the previous section
is the predictive driveline control system, thoroughly investigated in (Back, 2005).

2.4.5 Control of Auxiliary Units

An HDV contains a number of auxiliary units such as an electric generator, a power
steering pump, a water pump, a cooling fan, an air compressor, an oil pump, and
sometimes an air conditioning unit. A common trait of these is that they generally
operate with some kind of energy buffer. As an example the electric generator
charges a battery, and the power steering pump maintains pressure in the power
steering system. For short periods of time the battery could potentially be used
to power the electric system without the help of the generator, and the power
steering pump might not need to run at full throttle when going straight. Advance
knowledge of the near-future energy needs of auxiliary systems, combined with
state information about their energy buffers, and improved auxiliary units that can
be turned on and off enable look-ahead control strategies to be used in pursuit of
maximum energy efficiency. Similarly to the speed control case the units can be used
to charge the buffers when there is an energy surplus available. The potential for
energy savings from using more controllable auxiliaries is explored in (Pettersson
and Johansson, 2006).

2.4.6 Gearbox Control

Automatic gearboxes stand to benefit considerably from advance knowledge of the
upcoming road grade. Performing a gearshift takes some time, especially with the
automated manual gearboxes that are commonplace in HDVs. During this time the
turbo pressure is lost in the engine, and the vehicle slows down rapidly due to the
absence of a driving torque. If the vehicle is near the top of the hill the gearshift
can often be avoided, if the grade profile is known. Unnecessary downshifts near
the end of uphill road segments are a well known annoyance to truck drivers using
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automatic gearboxes. Additionally, the shifting strategy and choice of starting gear
can be improved in many other cases using reliable stored road grade information.

2.4.7 Safety and Comfort Systems

Two examples of look-ahead systems that need road grade information, but focus on
safety and driver comfort rather than energy efficiency, are adaptive front lighting
control and overtaking assistance. The basic idea of front lighting control is that
the center of the light beam should always be where the driver wants to look. In
curves the headlamps then have to be angled sideways, and when the road grade
changes the beams need to be adjusted up or down. With look-ahead information
about the three-dimensional road profile, and full position information about the
vehicle, fully controllable headlamps can be directed to center on a specific point
on the road, as described in e.g., (Löwenau et al., 2000) and (Lauffenburger et al.,
2007).

The more passenger car focused overtaking assistance has been described as a
utility to inform the driver of when it is unsafe to pass vehicles in front, and how far
it is until the next location where there may be an overtaking opportunity (Löwenau
et al., 2006). In this application the road grade is of importance both to judge
the visibility distance at any given point, and to determine the maximum relative
acceleration available. The acceleration in turn determines the time required to pass
the preceding vehicle.

2.5 Map Creation

It is apparent that the idea of using vehicle sensors and a model for the vehicle
and road is not new. Solutions based on this idea have been implemented using a
number of different methods, to reach various design goals. GPS receivers of varying
quality are used in a number of methods for road map generation. What is new in
this thesis is the particular method of combining the vehicle sensors and a GPS to
create a road grade map based on many runs along a particular road segment.

2.5.1 Enhanced Navigation Maps

The current major suppliers of road maps for navigation devices make up a potential
source for digital maps with road grade information. The currently delivered maps
do not contain road grade or altitude information accurate enough to be used in
vehicle control. However, the major companies in the field already have numerous
measurement vehicles in the field, as well as a built up infrastructure for map
production based on collected data. Relatively simple equipment upgrades to the
measurement vehicles should enable road grade data to be included in the products.
Plans to provide a compact low cost navigation system without a user interface, with
only map attributes relevant for ADAS have recently been announced by one of the
manufacturers (NAVTEQ Press Release, 2008).
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At least one of the current navigation map suppliers have been investigating
ways to add road grade data to their during the last decade. This is indicated by a
patent application filed in filed 2003 and awarded in 2005. The patent describes a
system where the road grade is estimated onboard a vehicle using one of a selection
of methods from the classes outlined in Section 2.6, and then sent to a data collection
facility. The key point of the patent the act of detecting and locating a road grade
change point (using a known method) and sending it to a remote data collection
facility.

2.5.2 Data Mining

The idea of automatic creation of road maps from GPS traces has been described
in a few places. An interesting approach based on position logs from many runs
along a road, using consumer grade GPS receivers, is described in (Schroedl et al.,
2004). Another automatic road map generation approach, based on more expen-
sive Differential GPS (DGPS) receivers, is detailed in (Brüntrup et al., 2005). The
emphasis in this project is on the data mining methods being applied, and on
achieving lane-level accuracy in the generated maps. Both these contributions treat
two-dimensional maps without road grade information. They also do not explore
the possibility to use a vehicle model and on-board sensors to improve accuracy.

A method based on high resolution specialized measuring equipment is also
described in (Noyer et al., 2008), where an attempt is made at defining a map
production method with curve clothoid identification for a lane-level accurate map.
The roads to be mapped have to be driven by the probe vehicle, but there is no
need to interfere with the regular flow of traffic, as there is with classical surveying
methods. The aim of the method is to produce a map with an accuracy one order
of magnitude better than current street maps for navigation purposes, i.e., around
one meter. The road grade is currently not treated by this method.

A research group in Germany is developing a self-learning route memory, that
records vehicle state and driving events along frequently traveled roads. The sys-
tem described aims to automatically identify route conditions accurately enough
to be used in look-ahead vehicle control applications such as predictive powertrain
control for hybrid electric vehicles. The work has recently been described in (Carls-
son et al., April 2009), where a prototype implementation of the route memory is
detailed. In this work significant attention is directed towards practical issues such
as data storage requirements for different attributes, rather than the identification
of attribute values, such as the road grade.

2.6 Road Grade Estimation

A large number of methods for estimating road grades have been proposed during
the last 40 years of automotive research. As the computational power of the elec-
tronic control units has increased, and more advanced sensor technology appeared,
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the resolution and accuracy of the methods have improved. Today accurate estima-
tion of dynamic vehicle states is an important pre-requisite for many vehicle safety
and driver assistance systems. Some approaches are directly focused on finding the
road grade, while others attempt to identify the full vehicle movement with six
degrees of freedom (three linear velocities and three angular velocities). Using data
from multiple vehicles to build road grade maps increasing accuracy is not explicitly
described in any of the previous work.

The term road grade is used in this work to refer to the rate of change in the
road surface altitude along the direction of travel for the road. In the mathematical
models the road grade is expressed as an angle between the roadway and the hori-
zontal plane, measured in radians. It is common, e.g., on road signs to express road
grade in terms of percent. This generally refers to an altitude difference divided by
a corresponding traveled distance. It is sometimes ambiguous whether the traveled
distance is measured along the incline, or if the distance along a virtual horizontal
reference plane should be used. The difference in practice is very small. It does
not reach 1 % of the road grade until a grade of approximately 14 %. In this work
all road grade results are presented as percent, calculated as the ratio of altitude
change divided by the covered distance in the horizontal plane. A 100 % road grade
thus corresponds to an angle of 45 deg The road grade expressed in percent can be
determined from the road plane angle relative to the horizontal plane as

α% = 100 arctan αradians

Expressing changes or intervals of a quantity expressed with the unit % is somewhat
delicate. One has to make the distinction between a 5 % change from a grade of
2.0 % to 2.1 % and a 5 percentage points change from 2.0 % to 7.0 %. When the
distinction is not obvious due to the context the term “% grade” will be used as
shorthand when the intended meaning is a change denoted as percentage points of
road grade.

The previous research within the field is classified by the method that is used
to estimate the road grade. Some proposals include more than one method, and
are then mentioned in multiple categories. Much of the work in the area is done
by car manufacturers or automotive OEMs. Therefore many methods first, or only,
appear in patent applications. The estimation methods are based on the following:

• Road grade sensors: Several ideas for sensors that directly convert the current
road grade into an electric signal have been proposed.

• Dynamic state estimation: Many methods intended to provide information
on the movement of the vehicle give road grade information as an additional
output.

• Linear and vectorized acceleration: When the vehicle is not driving horizon-
tally there is a difference between the speed change and the acceleration de-
tected by an inertial sensor.
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• Driving force and acceleration: The road grade affects the amount of driving
force required to achieve a particular acceleration.

• Absolute position: If the absolute position of the vehicle can be determined
exactly the road grade can be found as the derivative of the altitude.

• Survey methods: Survey engineering is dedicated to accurately determining
absolute positions. This is an accurate but costly way of finding road grades.

• Imaging: By studying the road ahead with an imaging device the relative road
grade compared to the present location can be tracked.

2.6.1 Road Grade Sensors

One common approach for estimation of the instantaneous road grade is to use a
sensor to directly measure the grade. A direct road grade sensor for automotive use
is described in a patent application filed as early as 1971 by (Gaeke, filed 1971).

2.6.2 Dynamic State Estimation

A current survey of vehicle dynamic state estimation methods, focused on sensors
and methods common in automotive practice or research is given by Tin Leung
et al. (2010). Some of the methods produce road grade information as a part of
the estimation result. The authors propose to divide current methods into seven
classes depending on the sensors and estimation methodology applied, as illustrated
in Figure 2.7. The methods developed in this thesis fall into the proposed category
five. Some analysis on the performance differences compared to reduced methods
belonging in categories two and three is also provided.

Vehicle dynamic state estimation using GPS receivers is described in (Bae et al.,
2001). The paper compares a grade estimation method based on a GPS receiver
with three-dimensional velocity output to one using a two-antenna GPS. The three-
dimensional velocity signal is used to calculate the grade as the ratio of the vertical
and horizontal velocities, while the two antenna solution directly gives the grade as
the height difference between the measurement points. The GPS receiver employed
is a high performance model, and satellite reception is flawless during the entire
test segment. Thanks to the high quality grade estimate a precise determination
of the vehicle mass is possible through the use of a driving force estimate and a
vehicle model similar to the one used in this thesis.

2.6.3 Linear and Vectorized Acceleration

If an accelerometer oriented in the longitudinal direction is available in a vehicle
this will give an output that is a combination of the acceleration of the vehicle along
the road and the component of the gravitational acceleration parallel to the road
surface. If the acceleration along the road surface can also be found, e.g., through
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Figure 2.7: Ground vehicle dynamic state estimation categories proposed by (Tin Le-
ung et al., 2010). The categories are (1) numerical integration of INS/sensors mea-
surements; (2) direct measurements from GPS device; (3) direct determination from
a vehicle model; (4) estimation via GPS/INS without considering forces in a vehicle
model; (5) estimation via GPS and vehicle model considering forces; (6) estimation
via INS and vehicle model considering forces; (7) estimation via GPS/INS and vehicle
model

derivation of a speed signal from a wheel speed sensor, these two may be subtracted
to find the road grade. The road grade α, with a small angle approximation, is given
by

α ≈ sin α = aacc − awheel

g
(2.1)

where aacc is the acceleration sensed by the longitudinal accelerometer, awheel is the
acceleration from the wheel speed sensors, and g is the gravitational acceleration.
A brief experimental comparison of this method, with a driving force and wheel
speed based acceleration determination method is given in Ohnishi et al. (2000).
The method is also described and evaluated through experiments in (Kiencke and
Nielsen, 2003, pp. 403–404).

2.6.4 Driving Force and Acceleration

The idea of using vehicle sensor information in combination with a longitudinal road
model to find the road grade has been explored in (Lingman and Schmidtbauer,
2001), where a KF is used to process a measured or estimated propulsion force
or estimated retardation force and a measured speed into a road grade estimate.
Another approach, based on a longitudinal vehicle model, where the grade and
mass are estimated using a “recursive least squares” method has been suggested
in (Vahidi et al., 2005, 2003). The idea is further developed in (McIntyre et al.,
2009). There, a two stage process where the mass is estimated first is used in lieu
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of the recursive method. In Bassho et al. (2005) a model based linear observer
design using pole placement and essentially the same sensors and vehicle model is
described. The estimator is evaluated in a single short steep hill and appears to
be tuned for city driving with a passenger car. Another method, together with a
survey of similar approaches, can be found in (Fathy et al., 2008).

On-line road grade estimation based on accelerometers, calculated driveline
torque and a vehicle model, or other on board sensors is state-of-the-art in today’s
vehicles. A large number of patents describe variations of the idea. These methods
have the advantage of not needing any external signal, such as the GPS, but hence
don’t provide the extra bias compensation or easy inclusion of data from multiple
runs along the road. They are generally used to obtain data to support automatic
gearboxes and other systems that currently use road grade information. In a patent
to Yamada and Ishiguro (filed 1999) a measured driving torque, vehicle driving
resistance model, and measured acceleration are used to estimate both the road
grade and the vehicle weight. The vehicle weight is separated from the influence of
the road grade by only estimating the former at gearshifts from low to second gear,
where a large difference in driving torque, on what can be assumed to be an almost
constant road grade, can be observed. In a patent to Nelles (filed 2002) a similar
vehicle model and driving torque based approach is used with a KF. Here the mass
is separated from the road grade by modeling the former as slow changing and the
latter as fast changing through the adopted process noise covariances.

A novel related idea is described in a patent to Kawasaki (filed 2002). There, no
engine force estimate is used, instead the wheel speeds of four wheels are measured.
The acceleration is continually calculated as a moving average based on the wheel
speeds and the wheel slip ratio of the driving wheels compared to the non-driving
wheels is determined when the acceleration is close to zero. The magnitude of the
wheel slip ratio then indicates the required propulsion force at zero acceleration,
which is in turn related to the road grade. Corrections are made for the air resistance
as a function of speed and for the rolling resistance. A road grade estimate can then
be calculated. Similar, but not as elaborate, solutions are described in two earlier
patents (Aminpour and Reiner, filed 1995; Gramann et al., filed 1993). All vehicles
with an anti-lock brake system already have the required sensors, making this a
very low cost alternative that may work well as long as the weather is constant and
the tires are not worn or changed. However, most such vehicles would also be able
to estimate the engine torque from fuel injection times or throttle opening angle
and operating point. The latter, a more standard approach, is believed to give a
more accurate driving force estimate with fewer parameters that may change after
calibration.

2.6.5 Absolute Position

A barometer may be used to obtain an absolute or relative altitude measurement.
A major problem with this sensor is its sensitivity to weather variations as well as
changes in the local conditions at the sensor location. With expensive hardware and
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proper calibration accurate readings may be obtained, but with the budget available
in automotive mass production the accuracy is limited, and there is generally no
reliable weather dependent pressure information available. The vehicles used for
testing in Chapter 5 were equipped with barometers, but based on results from an
earlier study (Johansson, 2005) it was decided not to use that signal.

The altitude component of the position estimate from a GPS receiver can also be
used to determine the road, but it is too noisy to be used without being combined
with some other sensor. It could potentially be average over a large number of
journeys to provide good enough information on its own.

A variety of methods for combining a barometer or other altimeter with GPS
data to determine the current altitude are proposed in a patent to McBurney and
Braisted (filed 1997). A common trait of the methods is that they aim to minimize
the effect of the bias in the barometer or altimeter by using many GPS readings
taken during good signal conditions, e.g., by switching between calibration and
usage of the barometer or altimeter. Prior art include a patent to Masumoto (filed
1992) where a barometer is only used to obtain relative altitude readings when a
three-dimensional GPS position fix is not possible.

2.6.6 Survey Methods

To determine the road grade accurately from absolute position estimates high accu-
racy data are necessary, since the road grade is approximated by the difference of
two altitude measurements of similar magnitude divided by the horizontal distance
between the measurements. Most consumer grade GPS receiver outputs an alti-
tude estimate, if at least four satellites are tracked. This information is too noisy to
determine a useful road grade estimate based on only one pass along a road section.

Geographical coordinates can be measured with very high precision using cur-
rent GPS based geodetic measurement equipment. With the right sensor and suffi-
cient time, finding the road grade locally is not a hard problem. It becomes much
harder when the problem is scaled to finding the road grade at millions of points
along vast stretches of roadway. When the sensor budget is also reduced to zero the
problem studied in this thesis arises.

The main problem with methods from the survey engineering field is that they
are slow, and therefore costly to apply on a large scale. To obtain the highest
accuracy results, meaning errors on the order of a few millimeters, it is necessary to
use a base station and a mobile rover sensor. The base station is fixed for the entire
measurement and the rover is moved between measurement points. The occupation
time at each point can vary between 20 minutes and a few hours depending on
the circumstances. The local base station is normally placed within a few dozen
kilometers, and its position has to be known with very high precision. The base
station may for example be placed in the area ahead of time such that any error
can be averaged out, or be placed on a pre-surveyed point. Positioning fixes from
this type of survey are generally calculated off-line at the office, using the recorded
sensor data. There are numerous surveying methods that are variations on this
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theme, adapted for different usage scenarios. By sacrificing some of the accuracy
the procedure can be relaxed somewhat. Many methods require a considerable
initialization time before reliable measurements can be obtained. In some methods
significantly shortened occupancy times at each location may be used, and if a live
data link is available between the base station and the rover sensor positions may
be obtained in the field, without post-processing (El-Rabbany, 2006).

A road grade mapping effort based on high precision GPS equipment is described
in (Han and Rizos, 1999), where a road in Australia has been surveyed using moving
geodesy GPS receivers in live contact with stationary base stations for improved
accuracy. A spatial KF with height and road grade states is used to post-process
the data.

Using a network of fixed base stations and correction information broadcast
over satellite or terrestrial radio link it is possible to obtain position fixes accurate
to within less than ten centimeters 95 % of the time with only one moving sensor.
A commercial service that provides this level of accuracy is the OmniSTAR HP
satellite based service provided by OmniSTAR Inc (OmniSTAR, 2011). This type
of system does away with the local base station requirement, allowing continuous
measurements along long roads. The two remaining problems are cost and coverage.
While the accuracy of the absolute position fixes is suitable for vehicle control appli-
cations the sensors that can receive these signals currently cost tens of thousands
of dollars, with annual subscription fees for the correction service of thousands
of dollars. These systems also depend on uninterrupted line of sight contact with
the satellites. If obstructions like trees or overpasses are present, the accuracy is
degraded until a full lock in the signal can be re-acquired (El-Rabbany, 2006). If
the GPS receiver is combined with a high quality INS the output data rate can
be increased, and stability of the position signal can be improved, giving better
relative accuracy between adjacent data points. A GPS/INS system that uses the
corrections described above has been used to record the reference road grade pro-
file in this work, as described in Section 5.1.5. Similar systems are currently being
applied when the major map database providers are out collecting new data for
ADAS maps (Barrett, 2008). An effort at creating a low-cost GPS/INS road ge-
ometry identification system, aided by the wheel speed sensors already mounted in
standard vehicles, is described in (Ogonda, 2009). The work is related to the esti-
mators proposed herein due to assumptions on the geometric properties of the true
road, and the cost limitation on sensors. The implementations do however differ
in that Ogonda uses an external IMU, and focuses on full three-dimensional road
reconstruction at low driving speeds. The system is also described as a surveying
aid rather than an autonomous system.

A common method for surveying large areas is to use an airplane with a radar
or Light Detection And Ranging (LIDAR) device aimed at the ground. By keep-
ing accurate track of the position of the airplane, the range measurements can be
used to build a ground altitude model. Several challenges exist, such as detect-
ing and compensating for trees and buildings hit by the radar, but the method
can yield an accurate three-dimensional terrain model. If this model is combined
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with a two-dimensional road network map, road grades can be obtained. This tech-
nique for obtaining road grade maps is described in e.g. (Hatger and Brenner, 2003;
Zhang and Frey, 2005). Data collected using these techniques are marketed com-
mercially by e.g. Intermap (Intermap, 2011). If an area has already been surveyed,
finding road grades in this manner can be cost efficient. There are however issues
with coverage of areas where no air survey has been conducted, and with updates.
Re-surveying by airplane to update a few roads is not feasible, so supplementary
surveying techniques need to be employed when updating the data.

Survey grade data can provide the accuracy required for producing road grade
maps for ADAS applications, but obtaining it is very costly. Equipment with this
level of accuracy will not be used in production vehicles for a long time. The data
are nevertheless important as a tool for analyzing what accuracy can be achieved
using more cost efficient estimation methods.

2.6.7 Imaging Sensor Based Methods

One way to estimate road grades is to use an imaging sensor to depict the environ-
ment including the road, and then process the signal. This approach is described in
the literature primarily in association with the robotics problem of Simultaneous Lo-
calization and Mapping (SLAM). In autonomous vehicle research and robotics laser
range scanners are commonly used to obtain high quality range and angle informa-
tion about surrounding objects. One method of using such data to identify planar
surfaces is described in (Weingarten et al., 2004). The authors use recorded point
clouds to find an optimally fitting plane. This could be extended into a road grade
estimation system by identification of the relative angle between planes taken from
the road surface ahead of the vehicle. As the vehicle drives along and new planes
are added in sequence. Assuming that the vehicle enters the previously identified
road planes, a continuous road grade profile can be built from the measurements.
Such a method would suffer from drift and a lack of global reference for the true
road grade magnitude. Laser scanners are however currently very expensive, and a
vehicle that would include this type of system would most likely also contains other
sensors that could be fused with the laser ranged estimate.

A similar method can be applied using cameras that identify the movement of
points in an image between frames due to the relative movement of the camera and
the recorded scene. This movement is called the optical flow. By using the geometry
of the vehicle, road, and camera, it is possible to identify the relative location and
orientation of a planar surface based on the optical flow of its constituent points. The
resulting successively identified planes can be used in the same way as discussed in
the laser ranger example above. A vehicle motion and orientation detection method
capable of estimating, among other things, the relative road grade of a road segment
ahead of a vehicle is described in (Suzuki and Kanada, 1999). Front-facing cameras
are becoming common in modern vehicles, but precise optical flow identification is
still a difficult and computationally demanding task. For the purpose of road grade
estimation other sensors provide a more cost efficient solution, but the connection



38 Background

between the detected image and the road grade may still be of importance. A known
future road grade (and possibly other road properties) may be used in image based
object detection algorithms to improve performance and robustness.

2.7 Road Grade Requirements

The road grade information available in the vehicle will of course never be com-
pletely accurate. The effects of errors in the road grade depend on the system
where the information is used. An optimal speed controller is used as an example
of how road grade errors affect control performance. If the actual road grade profile
does not match the assumed profile when an optimal speed profile is calculated
the control action that results will not remain optimal. To illustrate the effect of
moderate errors in the road grade on optimal speed control a Monte Carlo simula-
tion is made for a slightly perturbed simple road profile where the optimal speed
trajectory is known for the nominal case. The results described in this section have
previously appeared in (Sahlholm, 2008).

The road grade error model used is based on a filtered White Gaussian Noise
(WGN) signal. A second order low-pass filter has been applied to the white noise
sequence to obtain a time varying error signal with zero mean but mainly low
frequency components. The resulting vertical error around the critical point of the
nominal road profile is essentially zero mean normally distributed with σ = 0.66 m.
The resulting road profiles are shown in Figure 2.8.

The resulting energy consumption for two different speed profiles is calculated
in the analysis. The reference speed profile is the one that would result from a
standard vehicle cruise controller. This means that as long as a torque contribution
from the engine is required, in order to maintain a speed of at least 85 km/h, the
appropriate torque is applied. If gravity accelerates the vehicle above this speed,
fueling is cut and the vehicle is allowed to accelerate. The brake system is used to
ensure that the vehicle never exceeds 90 km/h. The cruise controller speed strategy
results, when it is applied to the test roads, are shown as a solid line in Figure 2.9.

The second speed profile is based on the optimality results in (Fröberg, 2008).
The allowable speed range is between 80 km/h and 90 km/h, with a set speed for
level road segments of 85 km/h. There is also a requirement that fuel must not be
saved by lowering the average speed. To achieve this, an extra cost corresponding
to the energy required to make up any lost time after the downhill segment is added
to the end result. The resulting strategy involves cutting off fueling at the exact
moment that will give a speed of 80 km/h when the vehicle reaches the point on the
hill where it will start to accelerate solely under the influence of gravity. This point
will be referred to as the critical point. The results of the second speed strategy,
applied to the perturbed roads, are shown Figure 2.9. On level road the coasting
deceleration distance for the test vehicle from 85 km/h to 80 km/h is about 170 m.
On a gradually steeper hill the distance can be much longer, on the nominal test
road it is 320 m.
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Figure 2.8: Road altitude as a function of distance for the 500 test road profiles
(gray, solid) generated by application of a disturbance generated from filtered WGN
to the nominal road grade from the point (983 m) where the two speed strategies start
to differ. The nominal altitude profile is also shown (black, solid).

Figure 2.9: Speed profiles resulting from the randomly disturbed road grade profiles.
Results from the cruise control (dark gray, solid) are shown together with results from
the optimal control (light gray, dashed). The speed profiles based on the nominal
altitude profiles are included as black lines.
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Figure 2.10: Results from the random process grade bias experiment. The ratio of
energy saved when driving a modified road to energy saved when driving the reference
road is shown against the magnitude of the altitude error at the nominal critical point.
A negative altitude error causes the mean realizable energy savings to decrease almost
linearly to about 60 % for an error of −1.6 m. Positive altitude errors have no mean
effect on the energy savings, the average ratio is close to 1 for the investigated range
of positive errors.

The realized energy savings for each disturbed road profile divided by the nomi-
nal energy savings were investigated based on the vertical error at the critical point
of the nominal road profile. The results are shown in Figure 2.10. The ratio of
realized to potential energy savings is essentially 1 for small vertical errors. For
negative errors (the disturbed road has descended further than the reference road)
the realized energy savings decreases almost linearly. When the disturbance causes
a vertical error of −1 m approximately 75 % of the nominal energy savings are real-
ized. This effect can intuitively be attributed to the fact that the vehicle does not
slow down enough to take full advantage of the downhill grade.

For positive errors (the disturbed road has descended less than the reference
road) the effects are less severe. The realized energy savings are essentially identical
to the optimal case. In these cases the vehicle slows down to 80 km/h before the
critical point, and then maintains that speed using the engine. The lost time penalty
applied is not severe enough to cause an increase in the total energy cost.
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2.8 Measurements

An important property of the presented road grade estimation method is that it
only relies on sensors that are commonplace in HDVs, and that will most certainly
be available in vehicles that are to be equipped with map based predictive control.
It is thus suitable for deployment in a large number of vehicles, without significant
hardware costs, given that the computational and data storage requirements can be
met by the vehicle platform. The restriction of creating a method based on existing
mass market sensors limit the accuracy that can be expected from the input data.
The grade estimator is thus constructed to use many measurements from the same
location in the map creation process.

2.8.1 Driveline Sensors

The method relies on two continuous signals to be sensed in the vehicle driveline;
the engine torque and the vehicle speed. Information is also required about the
current gear, when gearshifts occur, and when any of the braking systems present
in the vehicle are activated.

Modern HDVs generally feature a distributed control system, with a number of
interconnected electronic control units. These control units communicate in a net-
work, usually an implementation of the Controller Area Network (CAN) described
in the ISO standard (ISO 11898-1:2003, 2003). The vehicles used in this study
broadcast all the needed signals on their CAN buses.

The speed sensor is a part of the anti-locking brake system. This system monitors
the speed of each individual wheel, to avoid lock-ups during braking. The speed is
determined by counting the number of teeth on a gear passing by a pickup during
a unit of time. The average of the speed sensed on the front wheels is used as the
vehicle speed. The front wheels are generally not driven, except on all-wheel drive
vehicles, and are as such preferable from a slip perspective.

The current gear and gearshift signals are broadcast by the gearbox control unit.
If the vehicle is equipped with a manual gearbox, it does not have such a unit. In
that case the signals can be recreated by using the engine speed and wheel speed
signals that are still present. The ratio between these speeds will either be consistent
with a particular gear, in which case the conclusion is drawn that the indicated gear
is engaged. If the ratio varies or is inconsistent with any gear a gearshift is signaled.

The engine torque is calculated and broadcast by the engine control unit. It is
determined by the engine state, and how much fuel is injected during each cycle. The
amount of injected fuel is in turn governed by how long the fuel injectors stay open.
The opening times required to come as close as possible to providing the torque
requested by the driver are calculated by the control unit before each injection. The
expected engine torque is sent on the communication bus as a percentage of the
maximum torque for the engine.
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2.8.2 Satellite Based Positioning

Satellite based positioning systems are rapidly becoming ubiquitous not only as
personal navigation devices, but also as parts in many more complex products. In
the near future it is anticipated that the majority of HDVs being sold will have at
least one satellite based positioning device built in. These devices will not neces-
sarily provide navigation services to the driver, but rather support other functions
integrated into the vehicle. Various fleet management and remote surveillance ser-
vices are quickly becoming essential for the operation of a modern and competitive
transportation network. A basic set of such services may include periodical status
updates on position, speed, and fuel consumption from a vehicle to the traffic office,
an alert system that triggers if a vehicle leaves its normal operating area and status
updates about the vehicle condition to the function responsible for vehicle main-
tenance. This information stream from the vehicle enables more efficient resource
utilization in fleets, increases safety, and lets the operator schedule maintenance
when it is needed instead of with specific time or distance intervals.

Access to the absolute vehicle position also opens up the possibility of repeated
measurement of a particular road segment using vehicle sensors. In this work we
utilize this to update a road grade estimate each time the vehicle has been driven
along a certain road segment. A GPS device is used both as a sensor in the road
grade estimator, and as the means of synchronizing data sets from multiple runs
along a road.

While there are several, regional, and global, satellite navigation systems avail-
able or entering service, only the GPS system has been used in this project. It is
understood that any such system could be used instead, but only the term GPS will
be used henceforth. Future systems will most certainly improve performance and
introduce new features that can improve the performance of the proposed grade
estimator.

The GPS works by measuring the time it takes for radio signals to travel from
satellites to a receiver on the ground. Knowing the speed that the radio signal
propagates at, it is possible to determine the distance to each of the satellites. The
positions of the satellites themselves are transmitted to the receiver at the same
time as the propagation time is identified, and it is thus possible to determine the
position of the receiver as well. In general the receiver does not have access to a
calibrated time signal, so the current time has to be determined from the satellite
signals as well. To determine the three-dimensional position of the receiver a total of
four unknowns (latitude, longitude, altitude, and time) have to be determined. This
calculation requires four satellites to be visible. A more thorough description of the
satellite navigation systems is beyond the scope of this work, but a good starting
point for a general overview without too much mathematics is (El-Rabbany, 2006).
A thorough treatment of the subject, including the relevant equations, is given
in (Misra and Enge, 2006).

As the European Galileo navigation satellite system becomes operational, in
2014 according to the planned schedule, both the accuracy and reliability of satel-
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lite based positioning will increase (EC, 2010). This does not however change the
fundamental limitations that satellite based positioning systems face. Vehicle based
sensor signals will still play an important role in providing a high quality road grade
estimate in as few passes over the terrain as possible.

GPS Measurement Errors

By their nature GPS receivers output absolute position fixes, with an error that
does not grow over time. This makes well suited to compensate for modeling and
parameter errors that cause static errors. On average, over very long time periods,
the GPS will be very precise. The short term errors of a consumer grade GPS
receiver however, often exhibit large sudden jumps and subsequent slow drifts due
to the internal filtering logic applied.

The accuracy of the position given by the GPS is very important for the correct
functioning of the grade estimator. The error in the vertical position reported by
the GPS will directly influence the estimated road grade, and the horizontal po-
sitioning error will cause grade estimates from different points on the road to be
merged together. Since the proposed system is designed for use in a cost-sensitive
environment a standard low-cost single channel GPS receiver will have to suffice.
Such a receiver delivers what is called a standard positioning service, and has a
typical 10 m horizontal and 15 m vertical accuracy. The accuracy figure is given
as the 95th percentile of the error distribution (Misra and Enge, 2006, page 49).
The error at any given time is dependent on the receiver used as well as the at-
mospherical conditions, the receiver surroundings, and the satellite geometry. The
satellite geometry portion of the error is commonly described by a Dilution Of Pre-
cision (DOP) number. This is broadcast by many receivers as an aid to the user in
determining the quality of a given position estimate.

A particularly troublesome error source is multipath effects, that occur when
both reflected and direct signals from a satellite reaches the receiver antenna. The
receiver will then process the sum of all the signals, and may obtain a satellite
range measurement with a large error. As the vehicle moves the reflections will
change quickly. This can lead to severe noise in the delivered position. Many large
reflective sources, such as mountains and buildings, are stationary and are likely to
cause trouble every time the vehicle passes them.

The major error sources, except multipath, in the GPS system are slow varying,
which means that measurements taken over short time intervals likely will have a
bias as the major error component. Over long periods of time the GPS position
estimates are bias free and the error approximately normally distributed. In our
grade estimation application this means that adjacent GPS measurement points
will likely have a slow varying bias, with a period of several hours. Grade estimates
for a specific location however, will be based on uncorrelated normally distributed
measurements. This is a prime motivation for developing a method for fusion of
many measurements spread over time into one road grade estimate. In the pro-
posed estimators the GPS signal is averaged over many measurements, to provide
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Figure 2.11: The ellipsoid, geoid, and topographic surface of the earth are illustrated.
The mean sea level, without effects of wind and tides, is equal to the geoid.

vehicle model bias compensation. Over short time periods the vehicle model derived
estimates are generally more reliable.

Measuring Altitude Using GPS

The altitude component of the position obtained by calculating distances from GPS
satellites is not related to gravity. It represents the distance from the rotational
center of the earth, minus the distance from that center to an ellipsoid. The ellipsoid
major and minor axes have been chosen to give the ellipsoid surface a distance from
the sea level that is zero on average. The force of gravity though, is not perfectly
evenly distributed around the earth. Therefore the local sea level at many locations
does not match the zero level of the ellipsoid.

To obtain an altitude measurement relative to the local sea level the ellipsoidal
altitude must be adjusted by the geoid height. The different earth models and are
illustrated, and the height measures defined, in Figures 2.11 and 2.12. To determine
the local geoid height N , with high accuracy, based on a geoid model, requires
extensive computations and is not suitable for a handheld battery powered device.
Instead, a lookup table with a grid of correction values is generally used. This
table is not necessarily identical between receivers of different makes and models,
although EGM96 is a commonly used geoid model when generating it.

Due to the changes in geoid height, one may travel horizontally at the same
ellipsoidal height h, but still go up or down in the gravitational field. The road
grade of interest for vehicle control is the angle relative to the gravitational field,
since the effect of gravity is generally the cause for the interest in the road grade.
An implementation of a road grade estimation system using GPS should thus use
orthometric heights rather than ellipsoidal ones. In practice the difference between
an ellipsoid approximation of the earth and the geoid changes very slowly compared
to the changes in the road altitude profile.
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Figure 2.12: The ellipsoidal height from the GPS h, can be used to obtain the
orthometric height H, if the geoid height N , is known.

2.9 Summary

There is a growing need for accurate road grade maps due to advances in vehicle
control technology. Vehicle efficiency and safety, as well as driver comfort, can be
improved in a number of ways using stored road grade information. The use and
distribution of advance digital maps is an active research area, with several recent
European research projects. There is as of yet no standard solution to how these
maps shall be obtained, even though a number of proposals for how the road grade
can be estimated have already been made. Systems for estimating the instantaneous
road grade have been used in vehicles for some time, but these cannot directly
provide the preview information required by the emerging control systems. Maps
created automatically by vehicles, or hand edited maps enhanced by automated
estimation of features, is one potential way of getting good coverage and accuracy
at a low cost.

Many different vehicle control applications that will clearly benefit from access
to accurate road grade maps have been proposed. Due to the large potential for
saving energy, predictive cruise control is anticipated to be an early application of
preview road grade information in HDVs. This application was therefore chosen for
an analysis of the effects of errors in the road grade data. The results indicate that
75 % of the potential gain remains with an altitude error of 1 m after a distance of
320 m.

An important feature of the proposed method is that only standard truck sen-
sors are used in the road grade estimators. This opens up the possibility of mass
deployment of the system, without significant hardware cost. The sensors already
available in vehicles give the signals necessary for the operation of the proposed
estimators, but the accuracy is not sufficient to produce road grade profiles for pre-
dictive control based on only one experiment. The use of a GPS sensor is crucial,
since it gives a stationary, although noisy, absolute altitude measurement. The ve-
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hicle model based estimates will always show some bias, but appropriate use of the
GPS can minimize its effect. Related works contain many of the components used
in the proposed estimators, but the combination of using a vehicle model, driving
event detection, GPS, and many experiments, to create an iteratively improved
road grade map is novel.



Chapter 3

Modeling

“A mathematical model does not have to be exact; it just has to be
close enough to provide better results than can be obtained by common
sense.”

Herbert A. Simon

The first step in developing the methods for road grade estimation investi-
gated in this thesis is to obtain a model that links the observable signals
vehicle speed v, altitude z, and engine torque Te, to the road grade α. This

chapter starts with a description of how a vehicle model is derived from a repre-
sentation of the longitudinal dynamics of an HDV as a function of time. In order
to implement the estimator we also need a model for how the road grade signal
develops, which is provided in Section 3.2. To facilitate merging of measurement
data from multiple runs along the road, the vehicle model is then transformed into
the spatial domain and discretized. Next, the two sub-models are put together into
a complete description of the road-vehicle system, to be used in the road grade es-
timators. A simulation study has been conducted to complement the experiments.
The simulation models are described in Section 3.4. A summary of the modeling
efforts concludes the chapter.

The total system description is given by the state space representation in (3.1).

dv

ds
= fv(v, α, Te)

dz

ds
= fz(α)

dα

ds
= fα(s)

(3.1)

The states are vehicle speed v, the road altitude z, and the road grade α. The
independent variable s, in the final model, is the distance along the road.

47
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Figure 3.1: Powertrain components for a rear-driven diesel powered truck.

3.1 Vehicle Models

A basic vehicle model that describes one-dimensional longitudinal movement and
links engine torque, vehicle speed, and road grade is sufficient to support the road
grade estimation. Only the relatively low frequency dynamics of the vehicle itself is
of interest. Higher frequency phenomena such as driveline oscillations and torsional
vibration in the propeller and drive shafts can thus be ignored. The model is devel-
oped based on straightforward mechanical relations and Newton’s laws of motion.
The development of the vehicle model is done in continuous time. This section pro-
vides an overview of the components included in the vehicle model, and how they
are represented. More details on the various subsystems and their representation
can be found in (Kiencke and Nielsen, 2003).

3.1.1 Powertrain Models

The powertrain of the vehicle includes the engine and a system to transfer power
to the road surface over a broad range of vehicle velocities, while maintaining a
restricted range of possible engine speeds. A powertrain for a rear-wheel–driven
vehicle consisting of engine and a driveline is shown in Figure 3.1. The various
parts of the powertrain are described individually before they are put together to
form a complete model. The notation for torques and angles used in the model is
given in Figure 3.2.

Engine

A typical truck engine runs on diesel fuel and has an operating range of 500–
1900 rpm. Most of the thermodynamic processes of the engine are not important in
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Figure 3.2: Subsystems and notation for the torques and angles used in the power-
train model.

our model, so it will be considered as a black box that generates torque. The one
part of the engine operation that we do care about is how much torque it gener-
ates. An estimate of the generated torque is continually broadcast by the engine
management system, as described in Section 2.8.1. The engine dynamics is the net
result of torque generated from the internal combustion (Tcomb,e), engine friction
and pumping losses (Tfric,e), and the external load from the clutch (Tc). From New-
ton’s second law of motion, using dot notation to indicate derivatives with respect
to time, the model becomes

Jeα̈cs = Te − Tc (3.2)

where Je is the mass moment of inertia of the engine including the flywheel. αcs is
the crankshaft angle and α̈cs is the crankshaft acceleration. The quantity

Te = Tcomb,e − Tfric,e (3.3)

is available as a measurement reported on the vehicle CAN bus, and will be used
as an input signal in the model.

Clutch

A vehicle equipped with a manual gearbox generally has a friction clutch, which
is used to disengage the engine from the rest of the driveline while idling without
moving to neutral and when changing gears. In the current model idling with the
clutch depressed is not distinguished from running in neutral gear, and gearshifts
are considered to be instantaneous. The clutch can thus be considered as a solid
massless shaft, and the torque and angular velocity do not change. This gives the
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model

α̇cs = α̇c (3.4)
Tc = Tt (3.5)

Transmission and Final Drive

The task of the transmission and the final drive is to match the engine speed to
the wheel speed. The gear ratio in the transmission can be varied by shifting gears,
while the ratio in the final drive is fixed for a particular vehicle. In each engagement
of gears there is a small transmission loss incurred as power is transferred. For
our purposes the loss can be modeled as a percentage of the output torque. The
transmission and final drive are considered stiff, and their respective inertias are
neglected. For the transmission we get an expression for the friction loss torque

Tfric,t = (1 − ηt)itTt (3.6)

where it is the current transmission gear ratio and ηt is the torque transfer efficiency
for the current gear. Using this loss model the transmission model can be written
as

α̇c = α̇tit (3.7)
Ttit − Tfric,t = ηtTtit = Tf (3.8)

It is important to consider the angular velocity of the transmission rather than the
angle. Otherwise, there will be an error when switching gears (changing it when
αt ≠ 0).

Between the transmission and the final drive there is a propeller shaft that is
considered stiff. The final drive is described in the same way as the transmission,
but the gear ratio will never change. The friction losses in the final drive are labeled
Tfric,f, and calculated from the efficiency ηf. The final drive model becomes

α̇t = α̇wif (3.9)
Tfif − Tfric,f = ηfTfif = Tw (3.10)

where αw is the wheel rotation angle and Tw is the wheel torque.
The transmission ratio used in the simulation model is chosen based on the

active gear. Neutral gear and open clutch situations require special care, since there
is no fixed ratio between the input and output speeds in the transmission during
these times. Gearshifts without clutch depression are considered to be instantaneous
switches between transmission ratios. Manual gearshifts with the clutch depressed
are treated as a move from the original gear into neutral, and then from neutral
into the new gear. The neutral gear is represented by a zero torque transfer between
the engine and the rest of the driveline.
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Wheels

The driven wheels constitute the contact point where power can be transferred be-
tween the powertrain and the road. Rotation and torque in the powertrain are linked
to longitudinal movement and forces acting on the vehicle through the wheels. A
vehicle model including the effects of both torques and forces acting in the direction
of travel can be created by transforming the powertrain torque into a longitudinal
force. Under the assumption of a rolling condition (no slippage in the contact point
between the tires and the ground)

α̇w = v

rw
(3.11)

the transformation is straightforward. Here rw is the effective wheel radius, α̇w is
the wheel speed, and v is the vehicle speed.

When the vehicle speed changes, the moment of inertia of all the wheels has to
be overcome. For a passenger car the number of wheels is generally four. For HDVs
it can vary between six and twenty, or even more. The rotational dynamics of all
the wheels are given by

Jwα̈w = Tw − Tlong (3.12)

where Jw is the total wheel moment of inertia, and Tlong is the torque induced by
the resisting forces and longitudinal mass inertia of the vehicle. The longitudinal
force Flong, from the powertrain is related to the torque through

Flong = Tlong

rw
(3.13)

Flexibilities and Backlash

The forces affecting an HDV driveline are large, and quite capable of twisting the
driveshafts and the propeller shaft considerably. It is in fact quite possible to break
the drive shafts by accelerating hard in a low gear with a heavy load. Consequently,
an accurate representation of the driveline dynamics would require flexible com-
ponents rather than stiff. This would allow for the representation of the energy
stored in twisted shafts. The driveline flexibilities are however mainly of impor-
tance during quick changes in the transferred torque, and give rise primarily to
high frequency oscillations. The road grade generally changes much more slowly, as
seen in Section 3.2, and we are thus content with excluding these factors.

Play between different parts of the driveline can give rise to backlash effects
when the torque changes rapidly. This also causes high frequency oscillations in the
driveline. Backlash oscillations are ignored, on the same grounds as the torsional
effects of the shafts.

3.1.2 External Forces Acting on the Vehicle

In addition to the influence of the powertrain, the external environment affects the
vehicle in a number of ways. Air drag generates a resisting force, and so does wheel
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Froll

FgravityFairdrag

Fbrake Fpowertrain
α

Figure 3.3: Longitudinal forces acting on the vehicle.

roll friction. The road topology can give rise to either a resisting or assisting force. If
the brakes are applied this is regarded as a longitudinal resisting force, even though
it might just as well have been included with the powertrain torques and considered
as a resisting torque on the wheels.

The most important forces affecting the vehicle and the sign conventions used
are shown in Figure 3.3. The forces are generally time varying; time has been left
out of the equations for clarity of notation. Fpowertrain has been described above.

At highway speeds the air drag can be quite considerable. For the 39 t tractor
and semitrailer combination used in the experiments the air drag accounts for 41 %
of the total modeled resistive force when traveling at 80 km/h on a flat road. The
force

Fairdrag = 1
2

cdAaρav2 (3.14)

is calculated based on the measured vehicle speed v, and the vehicle model param-
eters, air drag coefficient cd, vehicle frontal area Aa, and air density ρa. The true
air density varies with meteorological conditions and the altitude. In this work the
air density is described by a constant, whose value is chosen to be representative
for the test site temperature and altitude ranges.

A first order model and small angle assumption for the road grade α gives the
rolling resistance

Froll =mgcr cos α ≈mgcr (3.15)

where the vehicle mass is m, gravity g, and cr the coefficient of rolling resistance.
Being proportional to the vehicle weight the rolling resistance becomes large for a
fully loaded vehicle. For a very heavy or streamlined vehicle, it will exceed the air
drag at many speeds. For the example vehicle above the rolling resistance accounts
for the remaining 59 % of the resistive force when traveling at a constant speed of
80 km/h on a flat road.

The road grade α is included in the model through the gravity induced force

Fgravity =mg sin α (3.16)
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Even a small road grade generates a considerable force, for our example tractor and
trailer combination, an 1 % uphill grade increases the total resistive force by 84 %,
if the speed is unchanged.

The brake force Fbrake is excluded from the model since it is generally unknown
in a standard HDV. Its effects are considered at a later stage, as described in
Section 4.1.3.

3.1.3 Vehicle Motion

The measured quantities related to the longitudinal vehicle motion are the engine
torque and the vehicle speed. The powertrain equations and the resisting forces
are combined in the model in such a way that the acceleration v̇, is expressed as a
function of the current vehicle speed v, the net engine torque Te, and the vehicle
parameters. By combining the rotational moments of inertia in the powertrain with
the longitudinal mass inertia into a total inertial mass through the gear ratios and
efficiencies already described, the longitudinal force from the powertrain Flong can
be treated as an external powertrain force Fpowertrain, given by

Fpowertrain = itifηtηf

rw
Te (3.17)

The total inertial mass mt for the vehicle is given by

mt =m + Jw

r2
w

+ i2
t i2

f ηtηfJe

r2
w

(3.18)

By using Newton’s second law of motion and the forces described above we get
a time domain model for the changes in the longitudinal vehicle speed, expressed
as

v̇(t) = 1
mt
(Fpowertrain − Fairdrag − Froll − Fgravity) (3.19)

This model, expressed with distance as the independent variable, provides an im-
plementation of dv/ds = fv(v, α, Te) in the state space model (3.1).

3.2 Road Models

In order to estimate the road grade, a model for it is developed. Since roads are fixed
in space, but may be traversed at any speed it is natural to express the road model
in spatial coordinates, i.e., with the distance along the road as the independent
variable. Roads are built according to specifications determined by construction
engineers. For every type of road and legislative region there are regulations that
transcribes into requirements for the design. An efficient way of determining the
road grade could be to request it from the authority that approved the design.
With knowledge of the quality requirements for the constructions process, and the
planned road layout it should, in theory, be possible to get a road grade estimate
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Table 3.4: Maximum allowable road grade α for various road quality classes in Swe-
den. Excerpt of table 13-1 in (Swedish Road Authorities, 2004)

High Standard Medium Standard Low Standard
Countryside 6 % 7 % 8 %

Urban, main road 6 % 7 % 8 %
Urban, intersection 2.5 % 3.5 % 9 %

within a known error interval. Unfortunately reality does not agree with theory
in this case and construction data are rarely readily available. Some benefits can
nevertheless be had from studying road building specifications, since they give a
basic idea of what type of dynamics might be expected in the road grade signal.

The specifications for Swedish roads give a good starting point for a model to
describe highway road grades. The Swedish road authority has published a docu-
ment, “Vägars och gators utformning” (Swedish Road Authorities, 2004), that lists
requirements and guidelines for all current road construction. Some existing roads
may not fully comply with these guidelines, but they will nevertheless serve as a
starting point for our road model. The road grade estimation method described in
this work is focused on estimating highway grades. As seen in Table 3.4 the require-
ments state that a highway should preferably have a road grade below 6 %. The
grade may only exceed 8 % during short periods and due to exceptional circum-
stances (Swedish Road Authorities, 2004, p. 102). The desired road quality has to
be chosen at design time, and is related to the expected traffic load. These numbers
may be higher for highways in other countries, as the topography of for example
the Alps would most certainly be regarded as exceptional circumstances by Swedish
standards.

Furthermore, the document states that vertical road profile should be made up
from segments with constant grade and vertical curves. The vertical curves are to
be carried out as linear transitions, i.e., the altitude profile should be described by a
parabola where the vertical offset is proportional to the square of the distance. The
same model for vertical curves is also used in the guidelines for highway construction
in the United States (AASHTO, 2001, p. 270). Mathematically, concave curves
going into more uphill gradients, are described by the parabola

∆z(l) = l2

2R
(3.20)

where ∆z(l) is the relative altitude, and l is a horizontal distance, measured relative
to the lowest point of the parabola, and R is a design parameter. A vertical tran-
sition curve from a flat road to a constant uphill grade is illustrated in Figure 3.5.
For the magnitudes of l used in this application the parameter R essentially repre-
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Figure 3.5: Road design guidelines state that vertical curves are to be laid out as
parabolas. The figure shows the altitude of a road section with a transition from a
grade of 0 % to a constant uphill grade of 2.5 %, with a radius parameter of R = 20 000.

sents the radius of a circular arc similar to the specified parabola. The part of the
parabola to use is determined by the road grades at the start and end of the vertical
curve. For convex vertical curves, i.e., hilltops, the parabola is flipped upside down.

The designed sizes of the parabolas depend on a number of factors such as traffic
safety, driving dynamics, visibility conditions, terrain, and esthetics. The chosen
vertical arc length and radius parameter have to match the surrounding terrain,
and provide sufficient visibility for drivers to be able to stop before unexpected
obstacles. This is particularly an issue for convex vertical curves, i.e., hilltops. For
a major highway to be considered to have a good visibility standard when designed
for a speed of 110 km/h the minimum radius, as listed in Table 3.6, is R = 16 000 m.
If the arc length is so short that it does not limit visibility the limiting requirement
becomes comfort, and the limit is R = 2 200 m. There are also regulations in place
requiring a certain density of overtaking opportunities. To provide enough sight
distance for overtaking on a convex vertical curve, a radius on the order of R =
100 000 m is required.

For concave vertical curves the constraint on minimum radius for arc lengths
long enough to limit visibility is R = 6 500 m on major highway with a high visibility
standard. If the maximum speed is restricted to 90 km/h it is allowed to design with
R = 4 500 m for high visibility standard, and R = 3 500 m for low visibility standard.
These limitations are based on requirements for headlamps and their illumination
cone. A potential obstacle in a vertical curve must be illuminated in time for the
driver to have a chance to stop before impact. For short arc lengths, which do not
limit visibility, the limits are the same as for convex curves.

Based on the assumption that the vertical road profile can only consist of seg-
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Table 3.6: Minimum convex vertical curve radius R for roads with at least two lanes
with regard to sight distance for passenger cars. High, medium, and low refers to
the chosen visibility standard for the road. Excerpt of table 11-1 in (Swedish Road
Authorities, 2004)

vref [km/h] Environment High [m] Medium [m] Low [m]
50 Urban, main road 1 200 400 300
70 Countryside 3 000 1 800 1 200
70 Countryside 3 000 1 200 1 800
90 Countryside 7 000 6 000 5 000
110 Countryside 16 000 13 000 9 000

ments with constant road grade, or parabolic segments as described above we obtain
a road model with the distance along the road as the independent variable. For the
road grade magnitudes of interest a small angle approximation can be made for
arctan. Letting the altitude of the lowest/highest point of a vertical curve parabola
be given by z0 = z(0) gives an expression for the road grade (in radians) as

α(l) = arctan( d

dl
(z0 ±∆z(l)))

= arctan(± d

dl

l2

2R
)

≈ ± d

dl

l2

2R
= ± l

R

(3.21)

The change in the road grade α can thus be approximated as

dα

dl
≈ ± 1

R
(3.22)

Since the approximation of dα/dl does not depend on l, the distance from the
start of a local parabola l, can be replaced by s, the distance along the road. The
model indexed by s is still only valid locally. Dividing the road into N segments we
then have local models

dαi

ds
= ± 1

Ri
= ci, i = 1, . . . , N (3.23)

for convex and concave vertical curves between the segment end points. At the
junction between two segments different assumptions will be made for different
estimation methods. The methods and associated road model assumptions are de-
scribed in Sections 4.2.2 and 4.2.3.
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Since the true road grade model, assuming the road has been built as prescribed
by today’s standards, varies with distance, the task of choosing a suitable represen-
tation becomes a delicate one. Using a road grade model that includes a piecewise
linear change in the road grade, with unknown knot points between the linear seg-
ments, would introduce the difficulty of finding the knot points in addition to the
grade itself. This would lead to a hybrid continuous/discrete estimation problem.
The change in the true road grade signal is physically limited to be slow, an alter-
native model is thus to adopt a simpler model

dα

ds
= 0 (3.24)

and account for the change in the road grade through a noise term. Both approaches
have been investigated, as described in Chapter 4 and evaluated in Chapter 5.
Equations (3.23) and (3.24) provide two alternative implementations for the third
state equation, dα/ds = fα(s) in the state space model (3.1).

The sensors assumed to be available for this project include a GPS receiver
capable of measuring the absolute altitude. A model for the change in altitude
is adopted to relate the sensed altitude to the other measured signals. From the
trigonometric relationship between the road grade angle α, the altitude z, and the
traveled distance s, the model becomes

dz

ds
= sin α(s) (3.25)

This implementation of the second state equation dz/ds = fz(α) completes the
description of the components of the state space model (3.1).

3.3 Estimation Models

The vehicle and road models of Sections 3.1 and 3.2 need to be combined to relate
all measured signals to the road grade. In this section a complete vehicle and road
model is developed, for use in the road grade estimator.

3.3.1 Spatially Sampled Models

To easily obtain estimates at specific spatial locations rather than time instants
a spatially sampled version of the vehicle model expressed in the time domain is
derived. This is a prerequisite for effortlessly merging road grade estimates from
multiple runs along a road.

After the change of independent variable the model is discretized using the
sample distance ∆s. By resampling measurement data from different runs along the
road to represent common spatial coordinates a consistent merge can be performed.
Successful resampling relies on accurate time stamps in the input signal, as well as
a high quality record of the vehicle position as a function of time. The process used
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for resampling time domain measurements obtained in the experiments is described
in Section 5.1.4.

The vehicle longitudinal motion model given in (3.19), expressed with distance
as the independent variable becomes

dv

ds
= 1

vmt
(Fpowertrain − Fairdrag − Froll − Fgravity) (3.26)

Discretizing the model with the sample distance ∆s, and a one step forward
difference approximation for the derivative, yields

v(s +∆s) − v(s)
∆s

= 1
vmt
(Fpowertrain − Fairdrag − Froll − Fgravity) (3.27)

where the function characteristic of all the quantities on the right hand side has
been omitted. The variables v, mt, Fpowertrain, Fairdrag, and Fgravity are all functions
of the location along the road and the state of the vehicle, as described earlier.

To yield an equation suitable for determining the road grade from measurements
the road grade α is isolated in the vehicle model. Using the vehicle sensors and the
one step forward speed difference approximation for the acceleration, the road grade
αdriveline can be calculated as

αdriveline(s) = arcsin [ 1
mg
( it(s)if(s)ηt(s)ηf(s)

rw
Te(s)

− mt(s)v(s)v(s +∆s) − v(s)
∆s

− 1
2

cwAaρav(s)2 −mgcr)]
(3.28)

In all of the proposed estimation methods the vehicle model based road grade
estimate is further filtered, therefore a one step difference approximation is chosen
over alternatives using more estimates to either side of the current position.

A road grade estimate can also be determined directly from the GPS. This
method gives a very noisy signal for all but very long sample distances. It is therefore
only for illustration and as an average over a long road section. The road grade
estimates obtained by directly differentiating the GPS altitude signal are shown in
Figure 5.30. A central difference approximation is used to obtain a small amount
of filtering. The GPS altitude based road grade estimate αGPS, can be computed
as

αGPS(s) = z(s +∆s) − z(s −∆s)
2∆s

(3.29)

The use of the averaged GPS altitude derivative is described further in Section 4.2.2.

3.3.2 Combining the Road and Vehicle Models

Two of the proposed road grade estimation methods use a KF to estimate the states.
The vehicle speed, altitude, and road grade models are therefore combined into a
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non-linear state-space system model with process noise. One white noise process is
added to each of the model states.

We define a discrete state vector indexed by k

xk =
⎡⎢⎢⎢⎢⎢⎢⎣

vk

zk

αk

⎤⎥⎥⎥⎥⎥⎥⎦
(3.30)

containing the vehicle speed v, the road altitude z, and the road slope α. With the
simplified, constant, road grade model (3.24) the discretized model becomes

⎡⎢⎢⎢⎢⎢⎢⎣
vk+1

zk+1

αk+1

⎤⎥⎥⎥⎥⎥⎥⎦+,,,,,,,,-,,,,,,,,.
xk+1

=
⎡⎢⎢⎢⎢⎢⎢⎣

vk +∆s dvk

ds

zk +∆s sin αk

αk

⎤⎥⎥⎥⎥⎥⎥⎦+,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.
fk(xk,uk)

+
⎡⎢⎢⎢⎢⎢⎢⎣
wv

k

wz
k

wα
k

⎤⎥⎥⎥⎥⎥⎥⎦/
wk

(3.31)

where the state evolution depends on the previous state and the control signal
uk = Tek. The control signal is the engine torque, which is assumed to be measured
or otherwise known. Unmodeled changes in the state variables are accounted for
through the process noise wk.

With the piecewise linear road grade model (3.23), the discretized system model
becomes ⎡⎢⎢⎢⎢⎢⎢⎣

vk+1

zk+1

αk+1

⎤⎥⎥⎥⎥⎥⎥⎦+,,,,,,,,-,,,,,,,,.
xk+1

=
⎡⎢⎢⎢⎢⎢⎢⎣

vk +∆s dvk

ds

zk +∆s sin αk

αk +∆sci

⎤⎥⎥⎥⎥⎥⎥⎦+,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.
fk(xk,uk)

+
⎡⎢⎢⎢⎢⎢⎢⎣
wv

k

wz
k

wα
k

⎤⎥⎥⎥⎥⎥⎥⎦/
wk

(3.32)

where the value of ci corresponds to the linear segment that data point k belongs
to.

In both (3.31) and (3.32) the rate of change in speed is determined based
on (3.27), which with all model parameters inserted yields

dvk

ds
= itifηtηf

rwmt

Tek

vk
− 1

2
cdAaρa

mt
vk − mg

mt

1
vk
(cr + sin αk) (3.33)

Since the transmission ratio and associated efficiency are dependent on the engaged
gear the model changes discretely at gear changes. Additionally, since the driveline
friction always causes an energy loss in the direction energy is flowing, the efficien-
cies ηt and ηf depend on whether the net engine torque Te is positive or negative.
Whenever the power flow from the engine to the wheels is negative, the efficiencies
become the inverse of their nominal values, causing a discrete switch in the system
model. Thus, equations (3.31) and (3.32) are both time-varying discrete models
with traveled distance along the road as the independent variable.
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3.3.3 Linearized Model

To evaluate the influence of the nonlinearity in the vehicle model a piecewise con-
stant linear version of the model (3.31) is also derived. The linear model is changed
at gear changes and when the direction of power flow in the driveline changes. Each
gear and power flow direction will lead to a different mode, denoted by an index
p, added to the relevant variables. For each mode a specific torque is required to
maintain a constant speed, and equilibrium in the model. The linearization point
thus changes as well, when the model parameters change. The linear discretized
model around the equilibrium xp is given by the system transition matrix Fp and
the input matrix Gp according to

x̃k = Fpx̃k−1 +Gpũk +wk (3.34)

where x̃ = x − xp is the state relative to the linearization point and ũ = Te − Tep is
the engine torque difference from the equilibrium torque. The transition matrix is
given by Fp = I + Jf(x)∣xp,up

∆s, where Jf(x)∣xp,up
is the first three columns of the

Jacobian for the nonlinear system transfer function. We also have Gp = Jf(u)∣xp,up
,

where Jf(u)∣xp,up
is the fourth column of the Jacobian. Using the model the system

transfer function based on the constant road grade model, Fp and Gp become

Fp =
⎡⎢⎢⎢⎢⎢⎢⎣

1 + ∂fv

∂v
∣
xp,up

∆s 0 − mg
mtpvp

cos αp∆s

0 1 cos αp∆s

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
(3.35)

Gp =
⎡⎢⎢⎢⎢⎢⎢⎣

itpifηtpηfp

rwmtpvp
∆s

0
0

⎤⎥⎥⎥⎥⎥⎥⎦
(3.36)

where
∂fv

∂v
∣
xp,up

= − itpifηtpηfp

rwmtp

Tep

v2
p

− 1
2
cdAaρa

mtp

+ mg

mtpv2
p

(cr + sin αp)
The equilibrium point xp for the most common mode, cruising under engine power
on the top gear, is obtained by choosing vp = 80 km/h, zp = 0 m, αp = 0 % grade, and
the nominal vehicle specific values for itp, ηtp, and ηf p. The driveline efficiencies
and transmission gear ratio will also directly give mtp. We can now compute the
input torque equilibrium by inserting the equilibrium values into (3.33), setting the
speed change to zero, and solving for Te. We get

Tep = rw
1
2
cdAaρav2

p + rwmg(cr + sin αp)
itpifηtpηfp

(3.37)

for each mode of the linear system.
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3.3.4 Measurement Equation

When the described vehicle and road models are used in a KF, a measurement
equation is needed. Two measured states and the input signal engine torque Te, are
available for estimation of the system model state. The measured states are the
vehicle speed v, and the altitude z. This leads to a linear measurement equation

yk = ⎡⎢⎢⎢⎣
1 0 0
0 1 0

⎤⎥⎥⎥⎦+,,,,,,,,,,,,,,,,,,,,,,-,,,,,,,,,,,,,,,,,,,,,,.
Hk

⎡⎢⎢⎢⎢⎢⎢⎣
vk

zk

αk

⎤⎥⎥⎥⎥⎥⎥⎦/
xk

+ ⎡⎢⎢⎢⎣
ev

k

ez
k

⎤⎥⎥⎥⎦3
ek

(3.38)

which is used with both the linear and non-linear models. The measurement noise
for the two states is described by the white noise processes ev

k and ez
k respectively.

3.4 Simulation Models

The proposed estimation methods have been evaluated in field experiments and
computer simulations. This section describes the simulation models, including the
method for calculating the control signals and the sensor models. The main aim
of the simulations has been to predict the performance of the proposed road grade
estimation scheme when a large body of measurements becomes available. Since
only eleven on-road experiments, with a total of three trucks, are available, many
parameters and statistical properties of the model are uncertain. Model validation
has been performed by estimating parameters based on the six southbound experi-
ments, and then comparing the results to the five northbound experiments. For the
prediction of the estimation performance based on a large number of experiments,
all available data were used to estimate the model parameters.

3.4.1 Vehicle Models for Simulation

The vehicle model used in the simulations is based on the vehicle model described
in Section 3.1. It has been adapted to provide the necessary sensor signals, by the
addition of speed and brake controllers, and sensor models.

Vehicle Speed Model

The simulated vehicle speed is calculated using the same expression as in the es-
timation models (3.33), with the addition of a brake term. The brake force is not
included in the estimation, but it is necessary in the simulation to avoid unreal-
istic overspeed on long downhill road sections. The engine and brake torque’s are
determined by PI-controllers, designed to let the vehicle track a reference speed
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trajectory. The simulation model becomes

vk+1 = vk +∆s( itifηtηf

rwmt

Tek

vk
− 1

2
cdAaρa

mt
vk − mg

mt

1
vk
(cr + sin αk) − 1

rwmt

Tb

vk
) +wv

k

(3.39)
where the notation agrees with the estimation models, and the brake force has been
included with the appropriate sign. The brake force is calculated based on the total
brake torque Tb applied at the center of the wheels, which gives

Fbrakek = Tb

rw
(3.40)

as the brake model discretized in the distance along the road. A process noise term
wv

k has also been included in the simulation model.

Vehicle Speed Control

To follow a particular reference speed profile it is necessary to control the simulated
engine and brake torque. Discrete PI-controllers were used for both tasks. The pa-
rameters of the controllers were adjusted to give response characteristics similar to
those observed in the logged data. A constant speed reference signal of 80 km/h has
been used, unless otherwise noted when a simulation experiment is described. The
controllers used are similar to those applied as engine and brake cruise controllers
in real vehicles.

The engine controller is limited by the torque output available from the engine,
and is often saturated in uphill segments. The brake controller is limited by the
brake torque available at the wheels. Since the speed reference is generally constant,
the brakes are only used to avoid overspeed on long steep downhill segments. The
brake controller was set to prevent speeds above 89 km/h. Anti-windup was used
for both controllers, and no instability issues were observed.

Gearshift Control

A gearshift controller has been implemented for the simulation model, based on the
general behavior of automated manual transmissions in HDVs. The gear selection
logic attempts to keep the engine operating between 1 000 and 1 550 rpm. In some
occasions the gear is changed two steps at once, to ensure that the current speed
can be maintained at the new gear. The implemented controller logic is illustrated
in Figure 3.7. A gear change is modeled as one discrete simulation step with no
connection between the engine and the wheels (no torque transfer).

Driveline Sensor Models

The most important driveline signals, for the road grade estimation, are the vehicle
speed and the engine torque. The high frequency content in the road grade error
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Figure 3.7: The engine speed and the ability to maintain vehicle speed at various
gears are evaluated at each step of the simulation. These factors decide if a gear change
should take place.

signal heavily depends on the random errors in the vehicle speed signal. This is
due to the connection between the vehicle model derived grade estimate and the
acceleration of the vehicle. The road grade estimate depends on the derivative of the
speed, and is thus very sensitive to noise in the speed signal. The one step difference
approximation of the derivative in the discrete representation also contributes to
the sensitivity to speed signal noise.

Analysis of the speed signal from the experiment vehicles indicate that there is
a difference between the vehicles with respect to the filtering applied by the brake
system, before the signal is reported on the CAN bus. In the simulations the true
vehicle speed signal has been corrupted by WGN, with zero mean and an intensity
σv, that yields a noise level in the estimated road grade similar to the one observed
in the experiments. The simulated speed signal recorded for use in the estimation
is given by

vsim
k = vk ⋅ (1 + εv

k), εv
k ∼ N(0, σv) (3.41)

were vk is the true speed of the simulated vehicle, and εv
k is the speed sensor error.

The engine torque signal errors are difficult to model, since there is no good
reference signal available in the experiments. Based on interviews with experts in
the field the random parts of the engine torque error have been neglected. Instead a
multiplicative error, which is constant for each vehicle, has been applied. The error
generated for each vehicle is given by

εTe
∼ N(0, σTe

) (3.42)

where σTe
is the standard deviation of the error. This is used to account for the
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uncertainty in the maximum actual engine torque. The simulated torque signal is
described by

T sim
e k = Tek ⋅ (1 + εTe

) (3.43)

where Te is determined by the PI-controller used in the simulation and T sim
e is the

torque actually applied.

Parameter Values

The vehicle parameters used in the model are based on nominal values for the type
of vehicle considered. Variations in the detailed configuration of a particular vehicle,
as well as the weather and road surface conditions at a particular time can greatly
affect the true parameter values. A commonly quoted engineering estimate of the
accuracy for each parameter is around 10 %. In order to investigate the behavior
of the grade estimator as many measurements are added, reasonable guesses have
been made as to the distribution of errors in the individual parameters, as described
further in Section 6.2.

3.4.2 GPS Signal Models

The modeling of the GPS signal properties is very important for the behavior
of the estimation algorithm. The main benefit of using the GPS as an altitude
sensor is its stability over long time periods. Its main drawback is the large changes
in the altitude error over short time periods. The distribution of GPS errors is
approximately normal over long time periods, but there is significant correlation
between errors in samples taken at short intervals. A simulation model for the
GPS signal has to accurately reproduce all these aspects of the error. Based on
suggestions in the literature, a first order discrete Markov chain model was chosen
to represent the GPS errors (Allerton, 2009, p. 276). The model was identified
based on the difference between the sensed values and the reference values for the
experiments described in Chapter 5. Two different models were identified, one for
the altitude signal, and one for the latitude and longitude signals. Different models
were also used for the simulations with sample distances 10 and 20 m respectively.

Upon analysis of the differences between the measurements and the reference
altitude profile it was observed that errors outside the range [−8, 8]m were uncom-
mon. These outlier errors corresponded to less than 0.4 % of the altitude data, and
less than 0.8 % of the latitude and longitude data. After the outliers had been re-
moved, the remaining data points for each model were divided into m = 50 equally
sized bins. This process yielded a total of 11 state sequences {Xn

p , n = 1, . . . , np} for
p = 1, . . . , 11, with as many entries np, as the number of data points in each of the
experiments, minus the number of outliers. These state sequences were then used
to identify a Markov chain process models for the GPS errors. The observed errors
include both the raw GPS error and any effect added by the processing carried out
to match corresponding data points of the different experiments and the reference
to each other.
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The Markov chain process model identification was carried out as follows. Con-
sider a stochastic process

{Xn, n = 0, 1, 2, . . .} (3.44)

that takes on a finite or countable set M . Let the state space M be {0, 1, 2, . . .}.
Definition 3.4.1. Suppose there is a fixed probability Pij independent of time such
that

P (Xn+1 = j∣Xn = i, Xn−1 = in−1, . . . , X0 = i0) = Pij n ≥ 0 (3.45)

where i0, i1, . . . , in−1, i, j ∈M . Then this is called a Markov chain process.

To identify a model from the data, the observed state sequences {Xn
p , n =

1, . . . , np} for p = 1, . . . , 11, constructed from the binned differences between the ref-
erence and the measurements, were used to find the one step transition frequencies
Fij . This was done by counting the number of transitions in one step from state i
to state j in the sequences. The one step transition matrix was then constructed as
follows:

F =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F11 F12 ⋯ F1m

F21 F22 ⋯ F2m⋮ ⋮ ⋮
Fm1 Fm2 ⋯ Fmm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.46)

From F the one step transition probability matrix P was constructed through
estimation of the individual elements based on the samples as

P =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P11 P12 ⋯ P1m

P21 P22 ⋯ P2m⋮ ⋮ ⋮
Pm1 Pm2 ⋯ Pmm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.47)

where

P = ⎧⎪⎪⎨⎪⎪⎩
Fij

∑m
j=1

Fij
if ∑m

j=1 Fij > 0

0 if ∑m
j=1 Fij = 0

Further details on Markov chain processes, and the estimation method applied can
be found in (Ching and Ng, 2005).

3.4.3 Road Models

The vehicle model has been used for simulations both on short synthetic road
sections, to illustrate the behavior of various vehicles to various road grades, and
on real roads. The majority of the simulations have been carried out using reference
measurements from real roads as the input road grade. These measurements do not
perfectly correspond to either of the road grade models presented in Section 3.2,
but they should provide a good representation of true highway road grade signals.
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For the map generation study presented in Section 6.1.3, artificial road grade
profiles generated from terrain altitude data were used. As a result of the process
by which these profiles were generated they have less high frequency content than
the reference road grade profiles. Effects of this are discussed in Section 7.1.

3.5 Summary

Discrete spatially sampled nonlinear models for the combined system made up of
an HDV on a road have been derived, based on two different road models. The
vehicle model is based on the longitudinal motion of a vehicle with a stiff driveline
as obtained from Newton’s laws of motion. The first road grade model describes
the signal as constant, since the magnitude of deterministic change in the road
grade over one sample distance is very small, even for the sharpest vertical bends
allowed on a highway. The second model is based on highway design guidelines,
and describes the road grade as being a piecewise linear signal. The road altitude
is described as a primitive function for the road grade. A linearized version of the
system model with a constant road grade model is also derived. It is later used to
assess the effect of the nonlinearity in the original model for the data collected in
the field test. Finally a simulation model is developed, which will later be used to
predict the performance of the proposed road grade estimation scheme to a large
fleet of vehicles.



Chapter 4

Estimating the Road Grade

“Practical sciences proceed by building up; theoretical sciences by
resolving into components.”

Saint Thomas Aquinas, Commentary
on the Nicomachean Ethics, 1271.

The models described in Chapter 3 have been used to develop three road
grade estimators. In the first estimator, the constant estimator described
in Section 4.1, logic based on vehicle sensor signals is used to determine

vehicle model parameters and associated signal uncertainty measures for a KF.
The vehicle model, driveline sensor data, and GPS data are then used to compute
an estimated road grade and an associated error covariance. The estimate and
uncertainty information are then used together with auxiliary information on the
location of the data to create or update a road grade map. In this part the same
constant road grade model is applied for the whole data set.

The other two estimators use the piecewise linear road grade model developed
based on road design guidelines, and are detailed in Section 4.2. The first of the
two, the piecewise estimator, uses the measurements and vehicle model directly to
identify a Root Mean Square Error (RMSE) optimal piecewise linear road grade es-
timate. The last estimator, the spline estimator, uses a combination of the constant
estimator and identification of linear segments. These parts are combined in a three
step process to find the road grade. The three developed estimators are compared
to directly filtering the measurements; this is referred to as the nominal estimator.
The chapter concludes with a section that describes the performance criterions used
in evaluating road grade estimates, and a summary.

4.1 Constant Estimator

The road grade is iteratively estimated from sensor signals available on the commu-
nication bus in the vehicle. Messages from the engine management system, gearbox

67
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Figure 4.1: Overview of the data filtering, smoothing, and fusion of the proposed
road grade estimation method.

management system, brake system, and the vehicle GPS receiver are parsed to ex-
tract the necessary measurements. These are used in the filtering logic to compute
road grade and variance estimates, based on the vehicle and constant grade road
models developed in Chapter 3. Since the estimator is designed for batch processing,
after a complete segment has been measured, filter lag can be avoided, by using an
additional filter applied backwards from the end of the data. This is referred to as
the smoothing step in the method. The smoothed estimates are used together with
the existing map to create a new version of the map for the segment. On the next
trip along the same road segment, the updated road grade estimate is broadcast on
the communication bus, and used for vehicle control. Once the next trip is complete,
the estimation process starts over.

Figure 4.1 shows a schematic view of how the available sensor signals are used
together with previously stored road grade information to generate an updated map.
Three signals, the vehicle speed v, the absolute altitude from the GPS z, and the
engine torque Te are used directly with the model and KF to produce road grade
estimates. The selected gear signal is used to choose appropriate values for the time-
varying parameters in the system model. The KF also needs the error covariance
matrices Q and R to be set. These are adjusted based on the number of available
satellites, if the vehicle is shifting gears, or whether the brakes are applied. The
exact choice of Q and R in each situation is detailed in Section 4.1.3.

Once a complete system state trajectory estimate for a road segment has been
computed in the KF, the segment is processed in the smoothing step. This ensures
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that all recorded sensor information is used for the estimation at each distance index.
The smoothed grade and altitude estimates are then fused with any existing data
for the road segment, based on the estimated relative accuracy of the new estimate
and the current map. Finally, the new road grade map segment is stored in the
database. In addition to the road grade, the covariance and location information
from the estimator is needed when processing an estimate. For simplicity of notation
all this information is referred to as a road grade estimate.

4.1.1 Kalman Filtering

Two different KFs are used in the estimator to determine the road grade and other
model states. The non-linear vehicle and road model (3.31) is used together with an
Extended Kalman Filter (EKF), and the linearized model (3.34) with a standard
KF. Using the notation of the previous chapter, the vehicle model to be used in the
filtering with the EKF is given by

xk = f(xk−1, uk) +wk

yk =Hxk + ek

(4.1)

Only the state update is non-linear, the output model simply indicates that two of
the states are directly measurable.

In the EKF the non-linear model is linearized around the current state at every
time step. The obtained transition matrix Fk is then used to complete the steps of
the standard KF recursions. These recursions are described by two update steps: a
time update, or prediction, step and a measurement update. In the time update the
system model is used to predict the future state of the system. Using the notation
x̂k∣k−1 to denote the quantity x̂ at time k based on information available up to time
k − 1 the time update is done according to

x̂k∣k−1 = f(x̂k−1∣k−1, uk)
Pk∣k−1 = FkPk−1∣k−1F T

k +Qk

(4.2)

Similarly to Fm in the piecewise linear model the transition matrix Fk is defined
to be the Jacobian Fk = ∂f

∂x
(x̂k−1∣k−1, uk). Pk∣k−1 is the estimated error covariance,

and Qk = E[w2
k] is the process noise covariance. After the time update the mea-

surement at time k is used in a measurement update to improve the estimate. The
measurement update is described by

Kk = Pk∣k−1HT (HPk∣k−1HT +Rk)−1

x̂k∣k = x̂k∣k−1 +Kk(yk −Hx̂k∣k−1)
Pk∣k = (I −KkH)Pk∣k−1

(4.3)

Here Kk is the Kalman gain, and Rk = E[e2
k] is the measurement noise covariance.
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The piecewise constant linear model is used with a standard KF. At each mode
change between different linearizations of the model the final state of the old filter
is used to initialize the new filter. The linear system model in each mode is

x̃k = Fmx̃k−1 +Gũk +wk

ỹk =Hx̃k + ek

(4.4)

where ỹk = yk −Hxm. This leads to the KF time update equations

x̂k∣k−1 = Fmx̂k−1∣k−1 +Guk

Pk∣k−1 = FmPk−1∣k−1F T
m +Qk

(4.5)

The measurement equations are identical to the EKF case.

Smoothing

By carrying out the road grade estimation off-line, when a complete road segment
has already been recorded, it is possible to use smoothing to compensate for the
filtering delay and include later measurements in the estimate for each data point.
The RTS fixed point smoothing algorithm, introduced in (Rauch et al., 1965), is
used to find x̂k∣N where N is the total number of data points collected during one
run along the road segment. These are the best available estimates at each position
based not only on the measurements up to that position, but on all estimates
collected on the road segment. The smoothing is performed backwards along the
road segment, and uses quantities generated by the KF.

The predicted quantities at the last position of the road segment, where k = N ,
are used to initialize the recursion. This gives access to PN+1∣N and x̂N+1∣N in the
first step of the smoothing recursion. P s

k denotes the smoothed error covariance,
x̂s

k is the smoothed state estimate, and Ks
k is the smoothing gain. The smoothing

backwards recursion is given by

Ks
k = Pk∣kF T

k P −1
k+1∣k

x̂s
k∣N = x̂k∣k +Ks

k(x̂s
k+1∣N − x̂k+1∣k)

P s
k∣N = Pk∣k +Ks

k(P s
k+1∣N − Pk+1∣k)Ks

k
T

(4.6)

4.1.2 Data Fusion

To merge data from many runs along the same road segment a distributed data
fusion method is used. The distributed approach has the important advantage that
the amount of road data that has to be stored does not increase as additional
estimates from known road segments are incorporated into the map. For each road
segment, the map consists of the road related states (altitude z, and grade α) and
the associated estimated error covariance estimates for those states. The vehicle
speed is not of any interest in the map, since it is not a road property. Based on the
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estimated error covariances stored in the map and the estimated error covariances
of a new smoothed estimate an updated map is created each time a new estimate
of a road segment becomes available.

Assuming that the errors in estimates from each run along the road are entirely
uncorrelated, the quantities for the new map can be calculated as follows

P f
k = ((P 1

k )−1 + (P 2
k )−1)−1

x̂f
k = P f

k ((P 1
k )−1x̂1

k + (P 2
k )−1x̂2

k)
(4.7)

where P f
k is the resulting error covariance, x̂f

k is the new state estimate for the map.
The quantities P 1

k , P 2
k , x̂1

k, and x̂2
k are the source estimates and estimated error

covariances. This data fusion method is described in more detail in e.g., (Gustafsson,
2010, p. 30).

The assumption in (4.7) that estimation errors in the two source samples are
uncorrelated is troublesome. Since the estimates are based on repeated measure-
ments using the same method, and of the same realization of a road grade signal,
it is unlikely that this is fully satisfied. This discrepancy will lead to an underesti-
mate of the state error covariances in P f

k . Over time this will lead to new estimates
having little influence on the already stored data. In practice it may very well be
desirable to have the opposite behavior. Roads are occasionally modified, so it may
be good practice to eventually forget very old data, i.e., weight the new estimate
higher than what would be indicated by P f

k .
Another important caveat is that in practice covariance terms between the al-

titude and road grade states, represented by the off-diagonal terms of the source
matrices P 1

k and P 2
k actually degrade the merged result. Uncertainties in the esti-

mation of these quantities in the KF and smoothing steps occasionally cause the
weighting factors to give a combined estimate that is not in the interval [x̂1

k, x̂2
k].

Currently this problem is solved by only using the diagonal elements of P 1
k and P 2

k

in the fusion. The result is that only the estimated covariance of each of the states
will affect how much weight the measurement of that state has in the merge, the
estimated cross correlation between altitude and road grade errors will be ignored.

When a map is first created based on estimates from two runs along the road
both the source sets are smoothed results from individual runs, after that one
source will be the map (based on all previous measurements), and one will be the
new estimate to be incorporated.

4.1.3 Selection of Q and R

One of the main challenges in using the grade estimation method on real data is
that the true noise covariances Q and R are not known. In the estimator they are
instead used as design variables to tune the grade estimation filter to generate an
accurate and reliable estimate, when compared to training data.

To simplify the choice of these design parameters the noise covariance matrices
were chosen to be diagonal. For the measurement noise this seems reasonable since
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the vehicle speed and GPS altitude are obtained through independent sensors mea-
suring different quantities, whose measurement error can be assumed independent.
For the process noise the situation is more complicated. Unmodeled changes in the
road grade are likely to show up also in the running sum of the road grade multiplied
by the sample distance, i.e., the altitude. It is also likely that a road grade error
would have an effect on the speed error as well, since the road grade used in the
speed prediction is then faulty. The magnitudes of these effects are hard to estimate
beforehand, since they depend on the magnitudes of the model errors themselves.
In this work the results when using a diagonal Q matrix are investigated, evaluation
of possible improvements with a full matrix is left as future work.

For normal driving at a fixed gear the process noise covariance matrix Q is
tuned to be as small as possible while still allowing the road grade estimate to
follow the reference road grade closely during unmodeled transitions between flat
road and constant grade inclines, as discussed in Section 3.2. Driving events such
as gearshifts and braking affect the vehicle in ways that are not covered by the
relatively simple vehicle model given in Chapter 3. To account for this the process
variance for the speed state is increased when such events occur. During braking
no useable torque estimate is generally available, so the action taken in the filter
is to reduce the reliance on speed predictions. During gearshifts it can be assumed
that the engine torque that comes through the driveline and affects the vehicle
will be low. With a manual gearbox this is true since the clutch will be depressed
during shifting. With an automated manual gearbox the same holds since the gear-
box controller will take over engine control to achieve matching input and output
transmission speeds as well as zero torque transfer in order to switch gears without
clutch engagement. Driveline oscillations as well as drive and propeller shaft torsion
can cause considerable torques, but the average value of these on the time scale of
interest is limited. The net engine torque during braking is assumed to be zero in
the model, regardless of the value reported from the vehicle.

The measurement noise covariance matrix R is adjusted depending on the num-
ber of GPS satellites available. While other GPS-system related factors also affect
the GPS position accuracy, the number of satellites is the only relevant signal that
is available from the satellite receiver used. When satellite coverage was lost, a very
high variance was set for the altitude measurement. This causes the grade estimate
only to depend on vehicle signals. Even during ideal conditions the noise in the
GPS altitude signal can be considerable, so the error covariance was chosen to be
relatively high all the time. It should be noted that the chosen noise covariance
during nominal conditions for the GPS altitude measurement is large enough to
essentially saturate the influence through the filter equations that it can have on
the estimated grade error covariance [Pk]3,3. Thus, the estimated error covariance
for the grade state does not increase noticeably when satellite loss occurs. With the
covariance levels used for the GPS sensor its main influence is on the long-term av-
erage of the road grade estimate. This causes a decoupling effect, where the vehicle
model is mainly used to detect relatively high frequency road grade signal content.
The main influence of the GPS is to compensate for bias errors in the road grade
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model estimates.

4.1.4 Optimality of the Kalman Filter and Smoothing

The KF in the estimator is known to produce an optimal state estimate in the
minimum mean square error sense, given that the system is linear and, that the
measurement and process noises are truly WGN and have the assumed covariances.
Since we have a non-linear system, with model and sensor errors that most likely
yield somewhat colored process and sensor noises, the estimates will not be optimal.
Furthermore, the KF may not converge to the true value. The RTS smoothing sim-
ilarly provides minimum mean square error estimates of the state at each position
based on all the collected measurements, for systems that fulfill the same assump-
tions as for the KF. As we are using our EKF results as input to the smoothing
recursion, suboptimal and biased estimates may be obtained. A version of the esti-
mator using a linear vehicle model has also been developed, but this merely moves
the non-compliance with assumptions about the model to the assumptions about
the noises. In this case not only the previously existing model errors, but also lin-
earization errors contribute to coloring the noise.

Optimal estimation based on all available experiments would yield a very large
KF that includes two states to describe the road, and one speed state for each ex-
periment. By only fusing the road states based on their estimated error covariances,
the requirement to include models for all the vehicles in the filter is avoided. As
a consequence the estimate will no longer be optimal. The applied fusion method
includes the assumption that the different experiments observe the system with
different realizations of the process noise. In our case this is not true, since the road
realization is the same each time the vehicle passes over it. When the process noise
is correlated between experiments, the distributed fusion will underestimate the
error covariance matrix. As noted in Section 4.1.2 issues with the estimated cross-
correlation between the altitude and slope states further moves the implemented
method away from the theoretical optimum.

4.1.5 Prediction Error

Using a constant road grade model in a KF intended for estimation of a varying
road grade will introduce errors. The influence of the road model, in the road grade
estimator described above, on the final estimation error depends on the sample
distance employed, and the assumptions on the process and noise variance models.
Assuming a smaller variance for the process noise increases the effect of the road
model. Increasing the distance between samples also increases the effect of road
grade model assumptions, as the prediction is carried out over a longer distance.
The grade of a true road with the same rate of change in the road grade will thus
have changed more when the next sample arrives, and the ratio of samples per unit
of prediction error decreases. The effect of the prediction error from the road grade
model is illustrated in Example 4.1.
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Figure 4.2: The prediction error resulting from adopting the model dα/ds = 0 when
the true model is dα/ds = 1/R = 1/6 000 (left) or dα/ds = 1/R = 1/13 000 (right) is
shown as a function of the sample distance (solid). Also included is the expected
standard deviation of the one step ahead prediction error for the KF used for state
estimation in Section 4.1 (dashed). The importance of the model choice increases for
larger sample distances.

Example 4.1. The prediction error from the simplified constant road grade
model (3.24) is compared to the expected prediction standard deviation of the
proposed road grade estimation method. The computation is based on the com-
bined vehicle and road model given in Section 3.3.2, when the vehicle operates
at a constant speed of 80 km/h.

Figure 4.2 shows the prediction error that will result from adopting the
model given by Equation (3.24), in which the road grade doesn’t change, when
the real road has a vertical curve radius R designed according to the SRA guide-
lines in Table 3.6, for the reference speeds 90 km/h (left figure) and 110 km/h
(right figure). The true road is described by

dα

ds
= ± 1

R
(4.8)

where R = 6 000 m in the left figure, and R = 13 000 m in the right figure.

For longer sampling times the modeling error becomes increasingly large com-
pared to the expected prediction standard deviation. The practical influence of the
prediction error on the estimation performance is however limited by the fact that
large parts of the test road have very small changes in the road grade. Using a second
order road grade derivative approximation 15 % of the reference data points on the
highway section used for experiments has a vertical curve radius R < 13 000 m. Only
1 % of the data points have a vertical curve radius R < 6 000 m. The full distribution
of vertical curve radii is shown in Figure 4.3. When the road grade changes slowly
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Figure 4.3: The vertical curve radii for most data points on the highway section used
for experiments are rather large. The figure shows a histogram for the vertical curve
radius R, with logarithmic bin sizes.

the assumption dα/ds = 0 is quite accurate. The vertical curve radius calculation is
sensitive to noise and the result should only be regarded as rough estimate.

4.2 Piecewise Estimators

Based on the background knowledge on road design principles described in Sec-
tion 3.2, and the piecewise linear road grade model (3.23), it is warranted to inves-
tigate if an assumption on piecewise linearity of the road grade signal can be used
to increase estimation performance. Two different methods, which take the back-
ground knowledge into account in the estimation, have been developed and tested
experimentally. The method first described yields a globally optimal piecewise lin-
ear approximation of the road grade. This method results in a road grade profile
with separate linear descriptions in each segment, and no limit on the magnitude of
the difference between the estimated grade at one data point, at the end of one seg-
ment, and the next data point, at the beginning of the next segment. Additionally,
the experimental data show that the real road has features not captured fully by
the piecewise linear model. Therefore another method is developed, where a linear
spline is identified and used as the basis for estimating the road grade. The meth-
ods and their respective implementations are described below; the experimental
validation is detailed in Chapter 5.

4.2.1 Estimation of Piecewise Linear Functions

In the estimators described in Sections 4.2.2 and 4.2.3, two different methods of
estimating a piecewise linear function are used. They differ in the conditions applied
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Figure 4.4: The difference between a spline (dashed) and piecewise linear (dotted)
approximation of the road grade for a part of the southbound profile. The spline
approximation is continuous, but the piecewise linear one isn’t.

at the end of the segments. The method used in the piecewise estimator, described
in Section 4.2.2, produces a series of disconnected linear segments. The method used
in the spline estimator, described in Section 4.2.3, relies on identification of a linear
spline. The difference between the two is illustrated in Figure 4.4, and both types
of piecewise linear functions are formally defined below. Many estimation methods
exist for each type, each with their own merits and shortcomings. A thorough
treatment of the subject is beyond the scope of this thesis, but a few comments on
the implemented methods and possible alternative approaches are given below.

A piecewise polynomial function with disconnected segments is defined as fol-
lows. A piecewise polynomial function P (d) of the distance d with q segments, has
q + 1 locations where the describing polynomial changes (including the start and
the end). Given the q + 1 distinct change points di such that

d0 < d1 < ⋯ < dq−1 < dq (4.9)

a piecewise polynomial function with q segments is defined by

P (d) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

P0(d) d ∈ [d0, d1)
P1(d) d ∈ [d1, d2)⋮ ⋮

Pq−1(d) d ∈ [dq−1, dq]

(4.10)

where each Pi(d) is a polynomial of degree n. When a piecewise polynomial func-
tion is fitted to a set of discrete data points, the value of each of the constituent
polynomials outside the last data points included in the fitting is not considered in
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the cost function. It is thus necessary to be careful if a piecewise polynomial func-
tion, that is fitted to discrete data points, is to be interpolated. Interpolation in the
area between data points belonging to different segments, using the polynomials of
either segment, suffers the same uncertainty as is normally associated with extrap-
olation. All piecewise polynomial functions used in this work have degree n = 1, i.e.,
are piecewise linear.

A spline requires the values at the corresponding ends of each pair of segments to
match. These transition points are called knots, and a spline L(d) with q segments
has the q+1 distinct knots di such that (4.9) still holds. The knot points have knot
values yi and the spline function of degree q is given by

L(d) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

L0(d) d ∈ [d0, d1]
L1(d) d ∈ [d1, d2]⋮ ⋮

Lq−1(d) d ∈ [dq−1, dq]

(4.11)

where each Li(d) is a polynomial of degree n. When a spline approximation of a con-
tinuous function is determined, knot points are generally chosen on the function, i.e.,
once di is fixed, so is yi. When fitting a spline to a set of discrete data points there
is generally no requirement for the knot points to coincide with data points. The
knot locations di can be chosen arbitrarily, and the values yi are often determined
by minimization of a, possibly weighted, least squares criterion. The possible knot
locations can thus not be enumerated. Instead, a continuous cost function must be
minimized even for a discrete data set. There are numerous publications suggesting
methods to find suitable knot locations and spline approximations with a known or
unknown number of polynomial segments.

The linear spline method described in Section 4.2.3 is straightforward and gen-
erates reasonable results from an engineering intuition point of view. It is however
suboptimal both due to a possibility of ending up in local minima in the cost func-
tion, and due to the sub-division of the road. Its main merit is that it provides
a piecewise linear road grade profile with knots instead of the “jumps” produced
by the optimization method described in Section 4.2.2. The absence of jumps is a
desirable quality since the road grade design specification is violated by too large
jumps (larger than 1/R ⋅∆s) between the end of one linear segment and the start
of the next. Limiting the jump between two linear segments in the optimal method
is nontrivial, since necessary properties for reducing the computational complexity
would be lost. Finding the optimal linear spline for a road segment is hard due to
the complexity growth.

The chosen spline estimation method doesn’t limit the slope, i.e., the derivative
of the estimated road grade profile, of any segment. It may thus also produce
estimates that violate the road design principles. Experimentally this has however
been seen to be less of an issue, since it occurs much less frequently than large
jumps between linear segments. The practice of merging closely spaced knot points
also reduces the occurrence of spline segments with slopes in excess of 1/R.
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Alternative Approaches

The field of piecewise linear model identification for discrete data sets is very large.
There are numerous alternative methods that could have been chosen instead of the
ones that were implemented. A survey of different approaches is given in (Keogh
et al., 2004). The main motivation for the method described in Section 4.2.2 is
that it finds the optimal piecewise linear approximation in a least squares sense, in
a computationally efficient manner. The spline identification method, described in
Section 4.2.2, relies on numerical optimization of a cost function based on the knot
locations. Its main merits are that it is very simple to implement and provides a
relatively fast way to find a spline approximation. The results will generally not
be optimal, but compared to the other road grade estimation methods it performs
well for the experimental data.

One alternative way of finding disconnected linear segments would be to use
generalized principal component analysis to cluster the measurements, and find the
best linear representation in each cluster. This method does not only account for the
error in the dependent variable (road grade), but also accounts for the possibility
that there may be an error in the independent variable (position). This method is
described in (Vidal et al., 2005).

In the spline case one alternative would be to use l1 trend filtering, as described
in (Kim et al., 2009). The computational complexity of this method grows linearly
with the number of samples, making it efficient for large data sets. Another advan-
tage is that it only requires one parameter to be set, which makes it easy to use. The
end result is a linear spline with knot points that vary in number and placement
with the input parameter.

For both types of linear segmentation various top-down methods for splitting the
data set into smaller parts until some criterion is met are popular. Alternatively,
a bottom-up approach may be used. In that case the largest possible number of
segments is used as a starting point. These small segments are then merged, until the
chosen criterion is satisfied. A performance comparison between popular methods
can be found in (Keogh et al., 2004).

To define criterions for what is the best method of estimating piecewise linear
functions for this applications is left as future work. Two methods with different
strong and weak points have been tested, with the main aim of investigating under
what conditions there is a potential for improved road grade estimation performance
from using a piecewise linear road grade model. The experimental results indicate
that the main conclusions from the work would not be affected by a different choice
of methods for the linear segmentation.

4.2.2 Piecewise Estimator

Given the road model developed in Section 3.2, the road grade profile of a properly
engineered road should consist of linear segments. It is thus natural to attempt to
estimate the road grade as a set of piecewise linear functions, based on measured
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data. By using only the measurements that belong to a particular segment when
trying to find a linear representation, it is possible to formulate the estimation
problem in such a way that optimal linear segments for a feasibly long road section
can be found, using dynamic programming.

Estimation Method

The road grade data can be regarded as a time series, although the independent
variable in this case represents distance along the road instead of time. Formally
the road grade profile consists of a sequence of N points

(s0, α0), . . . , (sN−1, αN−1) (4.12)

where s, the distance values, are ordered such that si > si−1. A segmentation of the
profile is defined as the sorted set of q + 1 segmentation indices z0, . . . , zq such that
z0 = 0 and zq = N . The profile is divided by the segmentation points into intervals
S0, . . . , Sq−1 defined by the segmentation indices as

Sj = {(si, αi)∣zj ≤ i < zj+1} (4.13)

For each interval S0, . . . , Sq−1, there is an associated linear model Pj(s) = ajs + bj

defined by aj , bj . The total segmentation error is computed from

q−1∑
j=0

V (Sj) (4.14)

where V is the total squared error between the piecewise linear approximation and
the measured data. The squared error V is given by

V (Sj) = min
(aj ,bj)

zj+1−1∑
r=zj

(ajsr + bj − αr)2 (4.15)

Other measures than the squared error, such as the l∞-norm (maximum error) are
also possible in the same framework, by replacing the ∑ operators by max operators.
The RMSE e for the piecewise linear estimate is calculated as

e(q, N) =
-
.../

q−1∑
j=0

V (Sj)/N (4.16)

Finding linear segments in time series data is a problem that arises in many
different fields and that has been extensively studied. When the number of segments
in the data as well as their start and end positions are unknown, finding the optimal
piecewise linear approximation is computationally intensive. Straight on evaluation
of all (N−1

q−1
) possible segmentations of N data points into q subintervals is not
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feasible, even a short data set with N = 200 can be divided into q = 6 segments in
over 2 ⋅109 different ways. Fortunately, there are more efficient algorithms available.

Using a dynamic programming algorithm where the cost function is partially pre-
computed, as presented in (Lemire, 2007) the optimal segmentation and associated
linear segments can be found with computational complexity O(N2q). With this
algorithm, the optimal segmentation can be found for data sets large enough to
provide insights into the performance of piecewise linear road grade estimation
within a few hours of computation time, on a standard office PC. Experiments
with N = 1 200 and q = 40 were used, which gave execution times of 8–10 hours on
a ≈ 2 GHz desktop CPU. The piecewise linear approximations used in this paper
have been determined using a Matlab implementation of the algorithm proposed
in (Lemire, 2007), available through the homepage of the author.

In a large scale implementation of the method, significant performance gains can
be achieved by dividing the road into sections of approximately 10 km. The resulting
piecewise linear road grade profile for the entire road will not be globally optimal
for the chosen number of segments, but the approximation within each section
will. At the cost of an, arguably small, deviation from the optimal solution the
computation complexity for estimating M such sections of X km with qX segments
and NX samples each can be reduced from O(M3N2

XqX) to O(MN2
XqX). On a

100 km road, this gives a solution in only 1 % of the original computation time.

Implementation

As described in Chapter 3 the measured signals yield information about the road
grade in two ways. The vehicle model gives one input, and the altitude measured
by the GPS gives another. As noted in Section 3.3.1 the numerical differentiation of
the GPS altitude signal gives a very noisy signal. It was discovered that this noise
caused problems with the identification of linear segments. The adopted solution
was to average the derivative of the GPS altitude signal over the entire measurement,
and to only use the altitude input to reduce the effect of the bias that was present
in the estimates from the vehicle model. Thus, the input road grade estimate for the
optimal linear segmentation algorithm was calculated using Equation (3.28). After
the piecewise linear estimate α̂v was computed, it was adjusted by the average GPS
altitude derivative obtained from Equation (3.29) according to

α̂p
k = α̂v

k − 1
N

N−1∑
k=0

αGPS
k, k = 0, . . . , N − 1 (4.17)

to arrive at the final piecewise linear road grade estimate α̂p.

4.2.3 Spline Estimator

By studying road grade profiles obtained by high accuracy measurement devices it
becomes evident that the assumption that road grade profiles are always described
by piecewise linear functions does not hold fully in practice. To combine the benefits
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Figure 4.5: In step 1 measurements from a road section are used to generate a first
road grade estimate. In step 2, a piecewise linear road grade model is identified from
the initial estimate. The estimation method in step 3 uses the piecewise linear model
αk+1 = αk + ci and measured data to produce a final estimate.

of a more accurate road model than the no-change assumption αk+1 = αk, with the
flexibility of the KF used in the constant estimator, described in Section 4.1, a three
step estimation method is proposed. This method exploits the piecewise linear road
grade model (3.23), while still allowing the estimated profile to deviate from that
model if the measurements indicate that to be the case. The method is described
on an abstract level in Section 4.2.3. The method has also been implemented and
evaluated experimentally, the implementation is detailed in Section 4.2.3, and the
experimental validation in Section 5.6.

Method Overview

The idea behind the proposed method is to use the background knowledge on
road design described in Section 3.2, while allowing for local deviations from that
assumption. The method is most easily motivated backwards, from the final road
grade estimate. In the final step a piecewise linear road grade model is combined
with the measured data. A trade-off is made between trusting the road grade model
assumption of using nothing but linear segments and the actual measurements. The
final profile is not restricted to be piecewise linear. To perform this trade-off both
a linear piecewise linear road grade model and raw measurement data are needed.

Thus, before the final step a piecewise linear road grade model is created. The
model can be created using one of a large number of methods for estimating piece-
wise linear models without knowledge of the segment end points, for example the
method described in Section 4.2.2. Since no direct measurement of the road grade
is available, this step relies on some form of pre-processing of the measurements
into individual road grade estimates.

The pre-processing of measurements into road grade estimates useable for find-
ing the piecewise linear road grade model is the first step of the proposed method.
Depending on the sensors available this step could be carried out in a large number
of ways, as described in Section 2.6.

In summary, a road grade estimation method that exploits the piecewise linear
nature of the road grade signal without restricting the output to be piecewise linear,
through a three step process, is proposed. The method is illustrated in the block
diagram in Figure 4.5.
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Figure 4.6: The estimated road grade after the first step in the spline estimator
has been completed is shown for a short road segment (×). The reference road grade
profile is shown as well (dash-dotted).

Implementation

In order to evaluate the potential of the proposed method each of the steps il-
lustrated in Figure 4.5 have been implemented and tested in experiments. There
are numerous other choices of methods available for each of the steps. The choices
made are motivated as follows. The implementation of the first and third step was
made as similar to the already described constant estimator as possible. For the
linear segmentation step a method which produces a linear spline was chosen, as a
contrast to the method used in Section 4.2.2 above. The spline method imposes a
restriction on the road grade jumps between linear sections, by joining the linear
segments in knot points rather than identifying them independently of each other,
as is further explained in Section 4.2.1. Optimal spline estimation, with unknown
knot points is not computationally feasible; therefore a sub-optimal method was
chosen.

The first step, creating a first road grade estimate on which to base the identifi-
cation of a piecewise linear model, is carried out by applying the constant estimator
described in Section 4.1. The simple road grade model given in (3.24), without pa-
rameters that need to be identified, is used. In discretized form the model becomes

αk+1 = αk (4.18)

This gives the combined road and vehicle model (3.31). The results obtained for an
example road section are shown in Figure 4.6

In the second step of the method, the first estimate of the road grade is used to
identify a piecewise linear model. This is completed through optimization of the knot
point locations of a linear spline. The optimization is carried out by minimizing the



4.2. Piecewise Estimators 83

0 100 200 300 400 500 600 700 800 900 1000
−4

−3

−2

−1

0

1

2

Distance [m]

Ro
ad

 g
ra

de
 [%

]

Piecewise linear
estimate

Reference

Figure 4.7: In the second step a piecewise linear spline approximation of the road
grade is identified based on the initial road grade estimate shown in Figure 4.6. The
piecewise linear estimate (dashed) is shown together with the reference road grade
profile (dash-dotted).

least squares cost of the difference between the linear spline and the measurements,
as a function of the placement of the knot points. The knot point locations are not
limited to be sample instances, and the linear spline is a continuous function, being
observed at the sample instances.

Unfortunately this is a non-convex constrained optimization problem, with as
many degrees of freedom as knot points between the edges. Distretizing the knot
point locations and performing an exhaustive search of all possible combinations
of knot placements is impossible due to the computational cost, even for rather
short road segments. The solution was instead obtained by dividing the road into
shorter sub-sections, which were each given a maximum number of allowed linear
spline segments. Constrained multivariable non-linear numerical minimization was
then used to find a knot placement within each section. If two knot points ended
up being very close together they were merged into one point. The resulting linear
spline was used as a road grade model. An example result after the second step is
shown in Figure 4.7.

In the third step, the linear spline model is used to find a final road grade
estimate. The implementation is very similar to the one in the first step of the
method, with the difference that the combined road and vehicle model is given by
Equation 3.31. The final result for the example road section is shown in Figure 4.8.
The experimentally determined measurement and process noise covariance matrices
Q and R were modified to reflect added trust in the more accurate road grade
model employed. The results obtained from experimental validation of the method
are described in Section 5.6.
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Figure 4.8: In the third step of the estimation process the linear spline model is used
in the filter based estimation method to obtain a final estimate (∗), shown together
with the reference road grade profile (dash-dotted).

4.3 Performance Metrics

In order to quantify the estimation results for the proposed road grade estimators
some performance metric is required. The basic metric applied to evaluate the road
grade estimates α̂ is the RMSE

RMSE =√E((α̂ − α)2) (4.19)

where the expected value is computed as the mean over the N available samples

E((α̂ − α)2) = 1
N

N∑
i=1

(α̂ − α)2 (4.20)

Figures showing actual errors as a function of time for various estimation schemes
are also employed in the analysis of the estimation performance.

The main focus of this work is on developing and analyzing a method to obtain
road grade information for control, from vehicles in regular service. For each control
application that is going to use the data it is necessary to determine the accuracy
requirements that will need to be satisfied for the particular application. A large
class of applications relies on predictive speed calculations, e.g., energy efficient
highway cruise control, automatic lowering of the speed ahead of changes in the
legal speed limit, and energy efficient stopping at intersections and traffic lights.
The predicted speed is often calculated in open loop, with the engine fueling being
either zero or the maximum possible value. Therefore the error in predicted speed
at a future location that will arise from the error in the road grade profile, if all
other truck and environment parameters are correctly identified and modeled, is of
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interest. This quantity primarily depends on the error between the predicted relative
altitude and the actual relative altitude of a future point on the road versus the
current vehicle position. The relative altitude errors at locations between the point
where the prediction is made and the current point also affect the predicted speed
error, but in a much less significant way, as is illustrated in Examples 4.2 and 4.3.

The relative altitude of a future point, m sample distances ahead of position
index k on the discretized road is determined by

∆zk(m) =∆s
m∑

p=1

sin αk (4.21)

Denoting the thus calculated relative altitude of the reference road grade profile
∆zk(m) and the corresponding relative altitude for the estimated road grade profile
∆ẑk(m) the error in the predicted relative altitude at index k, e∆z

k (m), can be
calculated as

e∆z
k (m) =∆zk(m) −∆ẑk(m) (4.22)

This altitude error will lead to different errors in the predicted vehicle speed de-
pending on vehicle parameters and vehicle speed.

Example 4.2. The error in the predicted speed and altitude at a future lo-
cation is determined through simulation, based on two flawed road grade esti-
mates, for a coasting vehicle traveling on a flat road. The first estimated road
grade profile has a bias of 0.1 % grade, giving a relative altitude error of 1.0 m af-
ter 1 000 m. The second estimated profile has a sinusoidal road grade error with
a period of 500 m, and an amplitude of 0.3 % grade. The prediction is carried
out up to 1 000 m ahead of the vehicle. The vehicle used is the one described
by Table 6.3, and the initial conditions are cruising at 85 km/h on the top gear.
The results are shown in Figure 4.9.

Example 4.3. The same vehicle, initial conditions, and estimation errors as
in Example 4.2 are used, but the road profile is changed. The true road grade
is now a vertical curve with R = 20 000 into a downhill section with a constant−1.5 % grade. The results are shown in Figure 4.10. The altitude prediction error
is unchanged, but the speed prediction error decreases slightly. The potential
energy of the 1 m altitude error corresponds to a smaller speed difference at the
higher final speed, compared to the previous example.

The examples clearly illustrate that a bias in the estimated road grade affects
the predicted speed of the vehicle much more than a sinusoidal zero-mean error.
The road grade RMSE of the bias was only 0.10 % grade, while it was 0.21 % grade
for the sinusoidal error. For applications that rely on speed predictions low-bias
road grade estimates are very important.
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Figure 4.9: Illustration of the effect of a bias error in the estimated road grade. When
coasting for 1 000 m on a flat road, the vehicle speed drops from 85 km/h to about
60 km/h. The results for the true road are shown (solid) together with the results
based on the biased road grade profile (dashed), and the profile with a sinusoidal
error (dotted). The first part of the figure shows the road grade, and the second the
vehicle speed. The third part illustrates the altitude prediction error made by relying
on each of the estimated profiles. The final part shows the resulting speed prediction
error.
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Figure 4.10: Illustration of the effect of a bias error in the estimated road grade.
Coasting for 1 000 m when going into the downhill section leads to an initial speed
loss, followed by an almost constant speed. The results for the true road are shown
(solid) together with the results based on the biased road grade profile (dashed), and
the profile with a sinusoidal error (dotted). The first part of the figure shows the
road grade, and the second the vehicle speed. The third part illustrates the altitude
prediction error made by relying on each of the estimated profiles. The final part
shows the resulting speed prediction error.



88 Estimating the Road Grade

4.4 Summary

Three different road grade estimators based on standard HDV sensors have been
developed. The first estimator, called the constant estimator, uses a model that as-
sumes the road grade to be constant, while the other two are based on the assump-
tion that the road grade is described by a piecewise linear function. The constant
estimator is illustrated in Figure 4.1. It adapts the internal weighting of different
sensors and the vehicle model predictions to driving events, detected through sen-
sor signals and decision logic. Estimation is carried out after a run along one road
segment has been completed and smoothing can thus be used to improve accuracy
and avoid time-lag issues. The estimator produces spatially sampled estimates that
are fused together with the aggregate of previous estimates of the road grade at
that location.

The second estimator, designated the piecewise estimator, computes an optimal
piecewise linear representation for the road grade profile based on driveline sen-
sors and the vehicle models developed in Section 3.1. Biases in the vehicle model
data are then compensated for using averaged GPS altitude derivatives. Despite
being efficiently implemented through dynamic programming this method is still
computationally intensive, and does not allow easy updates to a map when new
measurements become available.

The third estimator, the spline estimator, combines the constant estimator with
a piecewise linear road grade model. This is achieved through a three step process,
where the first step provides merged input data, from the driveline sensors and GPS,
to the piecewise linear model identification. In the second step a linear spline road
grade model is found, which is finally used in a modified version of the first estima-
tor to find a final grade estimate. While being significantly more computationally
intensive than the first estimator, this method also allows for efficient updates to a
map when new data arrives. It also has the same ability to adapt the estimator to
different driving events that affect the quality of the available sensor signals.

For the constant estimator and the spline estimator, the use of data from more
than one experiment, with one or multiple vehicles, is part of the design of the meth-
ods. In the piecewise estimator, inclusion of data from more than one experiment is
more challenging. The chosen approach is to average all measurements mapped to
the same discrete road position, before the road grade estimate is computed. While
this method works for a fixed set of experiments, updates to the estimated road
grade cannot be made if the original data has been discarded. The computation
time for an update also grows with the number of experiments available.



Chapter 5

Experiments

“No one believes an hypothesis except its originator but everyone
believes an experiment except the experimenter. Most people are ready
to believe something based on experiment but the experimenter knows
the many little things that could have gone wrong in the experiment.
For this reason the discoverer of a new fact seldom feels quite so
confident of it as others do. On the other hand other people are
usually critical of an hypothesis, whereas the originator identifies
himself with it and is liable to become devoted to it.”

W. I. B. Beveridge, The Art of Scientific Investigation, 1950.

The proposed road grade estimation algorithms have been tested using ex-
perimental data collected by HDVs driving on a Swedish highway. The road
tests verify the applicability of the estimators, and highlight strong and weak

points of each method. This chapter describes the experiments and the obtained
results. The first section details the experimental setup, including the test road
and the vehicles. Experimental results are given in Section 5.2. This is followed by
results for the nominal estimator in Section 5.3. Results for the constant estimator
are given in Section 5.4. The estimators using the piecewise linear road grade model
are evaluated in the following two sections. Results for the piecewise estimator are
given in Section 5.5. Finally, the experimental results with the spline estimator are
detailed in Section 5.6. The results from the individual estimators are followed by
a discussion on the results from the different vehicles and methods. Finally, the
chapter is concluded with a summary of the main results and conclusions.

5.1 Experimental Setup

The results from the same on-road experiments have been used in three different
road grade estimators, and compared to the nominal case. This section details the
test site, vehicles used, and data gathered. A description of the data processing

89
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Södertälje

Nyköping

Southbound

Northbound

Figure 5.1: Map of the test area. Experiments were conducted on highway E4 be-
tween Södertälje and Nyköping. (Image courtesy of Google)

applied to transform the logged data into equidistantly sampled signals, useable in
the estimators, is also included.

5.1.1 Road Tests

Road tests to gather data for the proposed grade estimation algorithms were carried
out on a part of highway E4 from Södertälje to Nyköping, as shown in Figure 5.1.
The test road contains a mix of hills with road grades between −4 % and 4 % and
flat segments. This gives an opportunity to study how the estimation algorithms
handle various situations such as hill climbing using maximum engine torque, hill
descent with no brakes applied, hill descent while using the brakes, and steady state
driving on relatively flat road.

To illustrate details in the behavior of the road grade estimators results are
presented for the 29 km southbound, and 38 km northbound road segments, as well
as short segments that represent different driving scenarios. Segments have also been
extracted to illustrate the behavior of each estimator in more detail. To effectively
evaluate the obtained road grade estimates a reference grade profile is required.
The reference profile used in this work was obtained from a high quality trajectory
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Figure 5.2: Test vehicles used for road tests of the grade estimation algorithms. Three
vehicle configurations were used. Starting from the left they were a tractor-semitrailer
combination (A), tractor only (B), and rigid truck (C). (Photographs courtesy of
Scania CV AB)

Table 5.3: Key properties and specifications for the test vehicles used to collect
experimental data. The total vehicle weight is given in tons. The last column indicates
in what experiments the vehicle was used.

Vehicle Type Configuration Weight [t] Exp.
A P310LA4x2MNA Tractor & semi-trailer 39 1,2,3
B R420LA4x2MNA Tractor 12 4,5
C R420LB6x2*4MNB Rigid truck 21 6

measurement system capable of recording movements in three dimensions, based
on a tightly coupled GPS and INS, as described in Section 5.1.5.

5.1.2 Test Vehicles

The configuration and important parameters of an HDV can vary substantially.
Therefore, three different vehicles were used to verify the applicability of the grade
estimation methods in each case. The types of test vehicles used are illustrated in
Figure 5.2.

The weight of an HDV in Sweden typically varies between 8 t for a small empty
truck and 60 t for a fully loaded large vehicle combination. On most European
markets the maximum allowable weight is 40 t. The test vehicles weighed from 12 t
to 39 t and had between 2 and 5 axles. Important properties for the test vehicles
are listed in Table 5.3.

The modeled external forces described in Section 3.1.2 depend heavily on the
vehicle parameters used in the equations. Getting reasonable values for these can be
a challenge, especially when they are supposed to describe a vehicle in day to day
operations rather than in a laboratory setting. In this work the vehicle parameters
were chosen as representative values for the vehicle types that were used. They
represent sensible values for the vehicle configurations used, on the day of the
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experiment, but have not been tuned using the experimental data.
A total of six round-trip experiments were conducted on the test road. The

measurement equipment failed on the last northbound experiment. Therefore a
total of six southbound and five northbound sets of data are analyzed. The vehicles
used in each of the experiments are indicated in Table 5.3. The total vehicle weight
in each experiment is assumed to be known in the road grade estimator, so it was
measured using a scale. The different vehicles were driven on different days and
under varying weather conditions, but a nominal air density figure was still used
for all experiments. The experiments with vehicle A were conducted during testing
of a look-ahead vehicle speed controller. This represents a very likely scenario for
a recursive road grade estimation application, since a truck equipped with a look-
ahead speed controller with a self-learning map engine can be assumed to operate
with the controller enabled. There are currently not enough directly comparable
measurements to conclude if estimation while operating with this speed controller
yields results that significantly differ from for example a constant speed controller.
However, the overall accuracy of the estimation results when using the look-ahead
speed controller is likely to be somewhat higher due to the reduction in braking
and gearshifting.

5.1.3 Measurements

The proposed road grade estimation algorithms depend on measurements of a num-
ber of vehicle state variables, and share a common abstract representation, as shown
in Figure 5.4. The vehicle speed v, the current altitude z, and the instantaneous
engine torque Te, shown on the left side in Figure 5.4, are all used directly in the
road grade estimation. They are treated further in Section 5.1.3. In addition to
these a number of signals are needed for proper adaptation of the grade estimators
to changes in the vehicle and the environment, these are shown entering the grade
estimator from the top, and are described in Section 5.1.3. Finally GPS position
information is used during data processing to synchronize the data from different
experiments. The GPS speed signal is used for vehicle speed sensor calibration.
These signals enter the grade estimator from below in the figure, and are further
described in Section 5.1.3. At this level of abstraction the grade estimators have
only one output, the road grade.

Experimental data were collected while the test vehicles were being driven at
normal cruising speed along the highway. A laptop computer with a controller area
network (CAN) bus interface card was used to log both vehicle signals and GPS
data. The setup is illustrated in Figure 5.5.

Grade Estimator Inputs

The vehicle speed measurements are obtained from standard CAN messages trans-
mitted on the vehicle data bus. The measurements originate from the brake system
and represent the mean speed of the wheels on the front axle. The engine torque
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Figure 5.4: The grade estimators described in Chapter 5 depend on two directly mea-
sured states, the speed and the altitude. The engine torque is treated as a measured
input signal. The estimators also rely on auxiliary information about when braking
and gearshifts occur, the currently engaged gear, and the number of tracked GPS
satellites. Finally, additional GPS signals are recorded to enable fusion of road grade
estimates from multiple runs along a road.
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Figure 5.5: During the road tests measurement data were collected using a laptop
computer with a dual channel CAN interface card. Vehicle data were logged through
one of the channels, and the other one was used to collect GPS messages.
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information is sent on the vehicle CAN bus by the engine control unit. It is calcu-
lated based on the control signal governing the opening time of the diesel injectors
and the current engine state. The quality of this signal is usually reasonable, al-
though variations between individual engines and over the life of a single engine
are present. All CAN messages were logged using a Vector CANCardXL (Vector
Informatik, 2010) connected as shown in Figure 5.4.

Each CAN message is time stamped by the receiver board upon arrival. This
timestamp has been used to synchronize all the signals during data post processing.
No special consideration has been given to possibly varying latencies in the different
sensors and processing units that supply the signals.

The altitude measurement comes from a single frequency (L1) GPS receiver
without differential corrections. While there are higher precision GPS options avail-
able, the choice of GPS receiver technology was motivated by the belief that the
accuracy would match what will soon be implemented as standard equipment in ve-
hicles. The GPS altitude signal contains a considerable amount of noise that varies
with the satellite reception conditions, as previously discussed in Section 2.8.2. For
the road tests a Racelogic VBOX receiver was connected to its own channel on
the CAN logger used to record the vehicle CAN signals. The chosen receiver has
three-dimensional velocity measurement capabilities beyond those of regular low-
cost GPS units, but those velocity outputs have not been used in this work. The
specified horizontal error for the receiver is 3 m 95 % Circle Error Probable (CEP)
and the vertical error specification is 6 m 95 % CEP. 95 % CEP is defined as 95 %
of the measurements being within a circle of the given diameter. This absolute po-
sitioning accuracy is comparable to single channel consumer grade GPS receivers
in general. The setup used does not provide any dilution of precision information
from the receiver. As an effect position quality is judged only from the number of
tracked satellites, as described in Section 5.1.3. Detailed information on the GPS
receiver can be found in the user’s manual (Racelogic Limited, 2009).

System Mode Inputs

The road grade estimators with KF are tuned to different operating modes of the
vehicle by adjustments to the assumed measurement and process noise covariances
as discussed in Section 4.1.3. The noise covariances are determined based on the
four signals entering from the top in Figure 5.4.

When the vehicle is braking there is no accurate estimate of the torque transmit-
ted through the wheels. The process noise for the vehicle prediction is then increased,
to reduce the effects of a wrongly predicted speed on the estimated grade.

During manual gearshifts the gearbox is briefly put into neutral and the engine
is disconnected from the drive wheels. This makes our vehicle model invalid, since
the reported engine torque never reaches the driving wheels. During gearshifts with
an automated manual gearbox the engine is controlled to give zero torque transfer
through the transmission, and the new gear is selected without using the clutch.
Due to imperfections in the control during the gearshift there are often transient
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effects in the driveline associated with the shift, so in either case the same action
with regard to the filter covariances is taken as during braking. The experiments 1–5
were carried out using a vehicle with an automated manual gearbox, and experiment
6 was done with a regular manual gearbox. The vehicle model is updated to operate
based on the newly selected gear once the gearshift is complete.

The number of tracked satellites is used together with a look-up table to de-
termine an appropriate measurement noise covariance for the measured altitude
signal.

Data Fusion Inputs

In order to synchronize state estimates from several runs along a road, the latitude
and longitude of the current position are recorded along with each altitude value.
The GPS derived speed signal is also recorded and used to calibrate the front wheel
based vehicle speed. The speed measurement calibration almost completely removes
wheel radius scale factor errors from the speed signal. This in turn makes merging
of data from vehicles with different stock scale factor errors much more precise. The
number of satellites used to determine each position fix is saved for the measurement
noise variance selection.

5.1.4 Data Processing

The recorded sensor data from the experiments have time stamps, added by the
measurement equipment. These time stamps are used to synchronize the various
signals. To apply the road grade estimators it is necessary to resample all the data
with a common sample distance. The average values of the speed recorded from the
GPS and the front wheel sensors, at all times where the difference between them is
small, are used to calibrate the front wheel sensors in each experiment. After this
the average front wheel speed signal is integrated, to obtain a time-distance con-
nection. In the next step start and end points for the southbound and northbound
experiments are determined in the reference road grade profile. The closest points
to these locations in each experiment are then chosen as the start and end points
for that experiment. To improve the matching within an experiment, additional
points are chosen in the reference profile every 10 km, and the best matches in all
experiments found. The distance vectors between the synchronization points, for
each experiment, are adjusted by a scale factor such that the driven distance be-
tween all synchronization points is the same in all experiments. The now obtained
distance vectors are used to resample all signals to a common distance index vector
with a sample distance of 2.5 m. This data set is used to compute the experimental
results for each estimation method.
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5.1.5 Reference Road Grade

In order to evaluate the performance of the proposed road grade estimators, a refer-
ence road grade profile is needed. The profile used was collected by measuring the
road grade with a high accuracy combined GPS and INS measurement unit. The
equipment used was an Oxford RT3040 unit, with a specified road grade estimate
standard deviation of 0.05 % (Oxford Technical Solutions Limited, 2010). A single
experiment was used to compute the reference road grade used for the evaluation
of the constant estimator and spline estimator. The instrument yields a signal sam-
pled at 100 Hz, which was resampled with a sample distance of 2.5 m. It was also
low-pass filtered, using a third-order Butterworth filter with a cut-off frequency
corresponding to a wavelength of 111 m.

The road was later measured additional times using the high accuracy instru-
ment. The extra measurements were used to validate the reference profile. An av-
erage of all GPS/INS measurements of the test roads was also used directly to
evaluate the piecewise estimator. The five measured reference profiles available for
a section of the southbound test segment, and the difference between them, are
shown in Figure 5.6. The Root Mean Square (RMS) differences in grade, between
the measurement used as a reference profile and the other measurements, were
0.03 %, 0.04 %, 0.06 %, and 0.05 %. The accuracy given in the specifications for the
instrument appears to be achieved.

To further validate the measurements, the reference road grade profile for the
southbound test segment is compared to a road grade profile obtained from Navteq.
A section of the two profiles, and the difference signal, are shown in Figure 5.7. The
RMS difference between the signals was 0.07 %. In both comparison between both
the measured signals and the externally sourced signal the differences between them
grow when the grade changes rapidly. This indicates that errors in the positioning
of data points are likely to result in road grade errors.

The differences between all the measurements, and between the reference signal
used and the independent estimate obtain from Navteq are small compared to the
estimation errors in the experiments. It is therefore reasonable to use the reference
signal to analyze the performance of the grade estimators.

5.2 Experimental Results

Example sensor data recorded on a 12 km segment of the southbound test road
are used to illustrate the different input signals used by the state estimators. For
clarity the figures only contain data from one run along the road for each of the
three test vehicles. The chosen experiments are numbers two (solid line, vehicle A),
four (dashed line, vehicle B), and six (dotted line, vehicle C). The grade estimator
inputs are treated in Section 5.2.1, and the system mode inputs are described in
Section 5.2.2.
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Figure 5.6: The reference road grade for a section of the southbound test road
is shown in the top figure, together with four other measurements using the same
equipment. The reference profile (solid, black) agrees very well with the other mea-
surements (solid, colored blue, red, gold, and green). To illustrate the differences a
magnified view of the difference between the reference and the other measurements is
shown in the bottom figure. The measurements are shown as solid lines with the same
colors as above. The estimated standard deviation from the instrument used, during
the measurement of the reference road grade profile is indicated by dashed black lines.

5.2.1 Grade Estimator Inputs

Figure 5.8 shows the recorded mean front wheel speed, GPS altitude, and engine
torque.

Speed

Vehicle A is heavy in relation to its engine power, and has a typical speed profile
for an economically driven HDV. The driver (or in this case the look-ahead cruise
control) has ordered the speed to be lowered ahead of long downhill segments,
thus reducing the amount of braking necessary. This can be seen at 15 km and 25–
26 km. At 23 km the algorithm for some reason does not predict the vehicle behavior
correctly, and braking becomes necessary even though the speed could have been
decreased ahead of time without hitting the lower speed bound (80 km/h in this
case). Vehicle B is very light, more powerful than vehicle A, and was operated
with a constant cruise control system enabled. The speed profile is very flat with
no speed loss in uphill segments, and no run-out in downhill segments. Vehicle C
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Figure 5.7: The top figure shows the reference grade profile (solid, black) and the
profile obtained from Navteq (dashed, red) in the same way as in Figure 5.6. In the bot-
tom figure the difference between the profiles (solid, red) is shown, together with the
standard deviation of the grade estimate indicated by the GPS/INS equiment (dashed,
black). The differences between the Navteq data and the reference is larger than the
differences between the measurements obtained from the GPS/INS equipment, but
still smaller than the differences between the estimates from the investigated methods
and the reference profile.

is heavy enough to gain some extra speed in downhill segment, but was following
slower moving traffic for part of the drive. At 18–19 km there was a roadwork in
one of the lanes, with an associated mandated speed decrease. The speed of vehicle
C was controlled manually. All vehicles are electronically speed limited, and thus
unable to accelerate above 89 km/h by the means of their engine.

Altitude

The effects of loss of satellite coverage can be seen clearly around 24–26 km in the
altitude trace for vehicle B, but short signal loss also occurs with vehicles A and C.
Note the large almost static difference between the altitudes reported by vehicles
B and C, and the one from vehicle A. This difference of approximately 10 m is
common for a GPS system without differential corrections applied. The data is
collected on different days, with variations in atmospheric conditions as well as the
visible satellite constellation. The key advantageous properties of the GPS altitude
signal are that the error changes very slowly, and that its mean is zeros over very
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Figure 5.8: The measured states of the road grade estimators are the vehicle speed
and the GPS altitude. The engine torque in the third sub-figure is treated as a known
input to the vehicle model in the estimators. It is measured as a fraction of the max-
imum available torque for a particular engine, and then multiplied by the maximum
torque. Data are shown for three runs along a road segment ranging from 15 km to
27 km in the southbound data set. The solid line represents experiment 2 (vehicle A),
the dashed line is experiment 4 (vehicle B) and the dotted line is experiment 6 (vehicle
C).
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long time periods.

Engine Torque

The engine torque reported by the engine management system is used as an input
to the longitudinal movement models for the trucks. This signal changes rapidly
and is given as a percentage of the maximum torque for a given engine. It can be
seen in the figure that vehicle A uses its maximum power for long periods of time in
the uphill segment, and applies no engine power in a number of downhill segments.
The almost empty vehicle B never utilizes the full engine power, and rarely has zero
utilization. Vehicle C has to work slightly harder on average than vehicle B, but also
shows a number of gear changes and peak power utilizations during acceleration.
Gear changes can be seen in the torque data as short spikes towards zero.

5.2.2 System Mode Inputs

The signals described above, and shown in Figure 5.8, are used directly in the grade
estimators. In addition to these, a number of auxiliary signals are used to adjust the
parameters of the vehicle model, and the process and noise covariances, as described
in Section 4.1.3. Figure 5.9 shows examples of these signals.

In addition to the signals in Figures 5.8 and 5.9, the absolute position and
vehicle speed are recorded from the GPS for each data point. This information is
not used directly for the grade estimator, but it is necessary in order to synchronize
several source data sets, as described in Section 5.1.4.

Number of Satellites

The number of available satellites is very important to the functioning of the GPS
receiver, and for the equipment used in the experiments this is the best indicator
of GPS altitude signal quality that is available. The number of tracked satellites
by the same receiver can vary substantially, on the same road, due to the constant
movement of the satellites and change in atmospheric conditions. This can be clearly
seen in the first part of Figure 5.9, where the conditions during experiment 2 (solid
line) were significantly worse than during the other two.

Current Gear and Shifting

Not too many gearshifts are available in the test data set. The predictive cruise
controller that controlled vehicle A was configured to minimize gearshifts to con-
serve fuel, and it was quite successful in doing so. Vehicles B and C are overpowered
in the sense that they didn’t need all the available engine power available on the
top gear to climb the hills of the test road, and thus had no need for gearshifts.
The second plot in Figure 5.9 shows a segment where vehicle A needs to downshift
to climb the hill, and vehicle C has to slow down and then accelerate due to the
previously mentioned road work. The third plot is closely related to the second
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Figure 5.9: Auxiliary variables are recorded to facilitate mode switching in the algo-
rithms based on anticipated signal quality and vehicle behavior. The first plot shows
the number of tracked GPS satellites, this signal is correlated with the accuracy of
the GPS altitude measurements. The second plot shows the current gear. The chosen
gear influences the dynamics of the vehicle model. The third and fourth plots indi-
cate where gearshifting and braking has occurred, these events lead to adjustments in
the process noise assumptions. Included are experiments 2 (solid), 4 (dashed), and 6
(dotted).



102 Experiments

Table 5.10: Estimation errors for the nominal estimation method, based on averaged
data over all experiments, for each road section. The results are given in % grade.

Source Direction
Unfiltered Filtered

Mean RMSE Mean RMSE

GPS
South -0.01 0.46 -0.01 0.34
North 0.01 0.71 0.01 0.38

Vehicle model
South -0.15 0.39 -0.15 0.31
North -0.44 0.57 -0.44 0.50

Combined
South -0.01 0.37 -0.01 0.28
North 0.01 0.37 0.01 0.24

one, the shifting signal indicates when the driveline is not operating with a fixed
ratio between the engine and the driving wheels. During this time the longitudinal
vehicle model becomes void, and actions are taken as described in Section 4.1.3.

Braking

It is important to know when any of the vehicles’ brakes are applied, since this leads
to an external, unknown, torque entering the equations of motion. The “braking”
signal indicates when the longitudinal vehicle model should not be trusted for this
reason. Vehicle A applies the brakes to avoid overspeeding, while vehicle C uses
them to avoid running into traffic ahead.

5.3 Nominal Estimator

By applying a central difference approximation to calculate the derivative of the
GPS altitude signal, or solving for the road grade in the vehicle model, nominal
sensor based road grade estimates can be computed. Expressions for the nominal
estimates are given in equations (3.28) and (3.29) in Section 3.3.1. These estimates
can be seen as virtual sensors, and will contain large random errors, due to the lack
of filtering. Low-pass filtering these quantities, forwards and backwards, yields a
simple, phase error free, road grade estimate based on each sensor. It is interesting
to study how each of the proposed road grade estimators perform compared to this
nominal method for obtaining road grade estimates. The RMSE and mean errors
for the nominal method, with and without filtering, are given in Table 5.10. The
estimates were filtered using the same Butterworth low-pass filter as the reference
signal. Small variations of the cut-off frequency produce only marginal changes in
the performance, and large deviations from the frequency used significantly degrade
performance.
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Figure 5.11: The averaged, GPS corrected, and filtered vehicle model based estimate
(solid lines) is shown together with the filtered GPS based estimate (dashed lines) and
the reference road grade profiles (dotted lines). The top figure shows the southbound
profile, and the bottom figure the northbound road grade profile.

As noted earlier, the vehicle model based estimates contain less noise in the fre-
quency band of interest than the GPS, but suffer from bias issues. The GPS derived
estimates are noisy, but stable over long time intervals. To combine the two in the
nominal method the average value of the vehicle model based estimates were cor-
rected using the average value of all available GPS based estimates. This procedure
produces significantly improved estimates compared to both the vehicle model and
GPS based methods, the method is referred to as “combined” in Table 5.10. From
the nominal estimates it is clear that there is significant high frequency noise in the
inputs to the vehicle model that can be removed through low-pass filtering.

The averaged, GPS corrected, and filtered nominal vehicle model based esti-
mates, in each direction, and the reference road grade profiles, are illustrated in
Figure 5.11. This road grade profile corresponds to the combined estimator in Ta-
ble 5.10.

5.4 Constant Estimator

The results from the constant estimator are promising. Even if individual measure-
ments sometimes are far from the true road grade, the merged estimate from few
runs along the road comes quite close over most of the distance. The final result
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based on only data from the six experiments in the southbound direction and five
experiments in the southbound direction, described in Section 5.1, agree very well
with a reference road grade profile. Events such as braking and shifting generally
decreases the quality of the road grade estimate for that experiment, but most of
the time they not occur at the exact same position in all experiments. As a result
of the data fusion described in Section 4.1.2, many segments with lower quality
data can be identified and suppressed in the final estimate. The main performance
criterion used to evaluate the results is the RMSE of the grade estimate compared
to the reference road grade for that location, as described in Section 4.3.

This results section starts with an overview of the estimation results for all
runs along the road for a representative road segment, with vehicle behavior that
adheres to the basic state of the model. This is followed by in-depth studies of how
the algorithm performs during more adverse conditions. The cases highlighted are
when the vehicle is:

• Braking

• Shifting gears

• Losing satellite coverage

To illustrate the operation of the data fusion step in the estimation algorithm
a step by step series of figures is provided. The benefits of a reduced bias in the
estimated road grade from using the GPS receiver as an altitude sensor are illus-
trated by a comparison of estimation results when the altitude signal from the GPS
receiver has been excluded from the estimation and the full input case. Finally a
comparison is made between real world estimation results based on the EKF algo-
rithm and the linearized system with a regular KF.

5.4.1 Aggregate Results

The overall impression of the constant estimator is that it works well and produces
road grade data that should be useable for a number of applications. The estimates
are not free of bias, but the inclusion of the GPS makes the results fair even when the
vehicle parameters are non-ideal, as seen in Section 5.4.5. On the southbound test
road as a whole the RMSE of the estimated road grade was 0.13 % grade, with a bias
error of −0.02 % grade. For the northbound direction the RMSE was 0.15 % grade,
with a bias of −0.06 % grade. The statistical distributions of estimation errors in the
two test roads are illustrated in Figure 5.12, together with normal distributions with
the same standard deviations. It can be seen that the errors are roughly normally
distributed, with the identified bias.

There is a correlation between the road grade estimation errors and the rate
of change in the road grade. When the road grade changes rapidly, the estima-
tion error increases. This is caused by an apparent misalignment of the reference
road grade profile by approximately 12 m. The estimated road grade profile changes
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Figure 5.12: The distribution of road grade estimation errors for the southbound
(top) and northbound (bottom) test roads. A normal distribution with the observed
mean and standard deviation is overlaid for comparison. The observed errors are close
to being normally distributed.

at an earlier position along the road than the reference grade profile. This effect
may be depend on the way the filtering and smoothing steps of the estimation
method works, or on some timing issue in the data processing. The 12 m difference
amounts to about 0.5 s at highway speeds. With knowledge of the reference grade,
the misalignment can be corrected retroactively by finding the distance offset that
minimizes some performance criterion, e.g., the RMSE in the grade estimate. Do-
ing so eliminates the mentioned correlation and reduces the road grade RMSE by
approximately 0.02 % grade, but also sacrifices the ability to apply the complete
method without access to a road grade reference. It has been opted not to correct
the alignment in the analyzed data. It is noted that improved synchronization of
the sensors is likely to improve the end results.

To illustrate the magnitude of the obtained estimation errors during nominal
driving the numerical standard deviation among the six road experiments on the
southbound road is investigated. Figure 5.13 shows the agreement of the final grade
estimate with the reference for a 5 km segment of the southbound test road, together
with the sample standard deviation for each data point.

5.4.2 Comparison with Nominal Estimator

As an alternative to using the proposed road grade estimator, the GPS signal and
the vehicle model could be used directly, as described in Section 5.3. Figure 5.14
shows the performance of such an approach, compared to the proposed constant es-
timator. Using all available experimental data, the nominal method yields a RMSE
that is 115 % higher for the southbound data, and 38 % higher for the northbound
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Figure 5.13: The top figure shows the final grade estimate calculated through data
fusion based on six experiments (solid). It agrees well with the reference grade pro-
file from a specialized measurement vehicle (dashed). The numerical one standard
deviation interval around the final grade estimate at each sample point, based on the
six experiments, is also shown (thin lines). The bottom figure shows the difference
between the fused grade estimate and the reference profile (dashed), as well as the
standard deviation from the top figure (solid).

data. A further comparison of the various estimation methods investigated is given
in Section 5.7

5.4.3 Braking

One of the most challenging situations for the grade estimator is when the vehicle
applies one of the brake systems. Therefore, we shall study one such occasion in
more detail. During braking the engine will generally report a negative net torque
from internal friction when fueling is cut off. This means that the vehicle model
based prediction in the grade estimator will be computed using only the engine
friction as its driveline input, even though there is a braking force present as well.
The roll resistance and air drag will still be correctly modeled. The missing brake
force will then be attributed to the gravity component, aka the road grade. This
should lead to a road grade estimate that is too high (more uphill than in real life).
To avoid this effect, and at the same time raise a flag to the data fusion algorithm
that this data deserves lower trust than the norm, the process noise covariance for
the speed state is increased. This causes the estimator to rely less on the vehicle
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Figure 5.14: The road grade RMSE for the nominal estimator (∗), is compared to
the performance of the proposed constant estimator (◻). The proposed estimator has
better performance for all experiments, and the relative difference is particularly large
when using all data available from a particular road section (denoted by Sb and Nb).

model, and more on past road grade estimates and the GPS measurements. At the
same time the estimated error covariance of the output increases.

The example segment shown in Figure 5.15 represents a comparatively steep
downhill segment, where the heavy vehicle A needs to apply the brakes to avoid
exceeding its set maximum allowed speed. Data are shown for experiments 2 (solid,
vehicle A), 3 (dashed, vehicle A), and 6 (dotted, vehicle C). Vehicle C does not
apply the brakes in this segment. Figure 5.15 shows the key signals of interest
during braking. The first two sub-figures show the speed profiles and GPS altitude
measurements, below that comes the reported engine torque and braking signal.
Vehicle A is pulled down the hill by its weight, and does not need to utilize the
engine until the very end of the segment. Vehicle C, at 21 t, can only coast at
a constant speed for a few hundred meters, and then needs to use engine power
to maintain speed. Braking is required by vehicle A for a total of almost 1 km in
each of the experiments. The resulting road grade error in the fifth part of the
figure shows that experiment 2 yields an overestimate of the grade during the first
brake application, an underestimate during the second, and no visible additional
error during the third application. Experiment 3 yields no significant additional
error during the first application and overestimates of the grade during the second.
The final part of the figure shows the estimated grade error covariance after the
smoothing step in the grade estimator. The estimated error variance almost doubles
during the segments where the brakes are applied.

Somewhat surprisingly the experimental data does not indicate that the inves-
tigated periods of braking severely affect the overall merged road grade estimate.
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Figure 5.15: Signals of interest during braking for a segment of the southbound test
road. Data are shown for experiments 2 (solid), 3 (dashed), and 6 (dotted). In the
fifth part the road grade error of the merged final estimate is shown as well (thick
solid).



5.4. Constant Estimator 109

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Experiment #

rm
se

 [%
 g

ra
de

]

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Experiment #

rm
se

 [%
 g

ra
de

]
Figure 5.16: Estimation results during braking. The road grade estimate RMSE is
shown for the southbound (left figure) and northbound (right figure) test segments.
The value for the entire road segment, based on the experiments up to and including
the index on the x-axis, is shown (solid line) together with the value when only the
sample points where braking occurs in at least one experiment are included (dashed
line). The values for the individual experiments are shown with stars for the entire
segment and squares for the sample points corresponding to the dashed line.

Figure 5.16 shows the RMSE values for the road grade for each experiment, as well
as for the map based on an increasing amount of data. The road grade RMSE of the
entire segment is compared to the RMSE for only those sample points where the
vehicle was braking in at least one of the experiments. Braking occurred primarily
in vehicle A. This led to an increased estimation error for most of the corresponding
experiments. The worst effects were seen in experiment three, with vehicle A. This
was also the experiment that showed the highest errors over the entire segment, out
of those done with vehicle A, as indicated by the third star in the figures. Given
that the same vehicle was used for experiments 1–3 this indicates that the weather
conditions were less in agreement with the parameters used on the day of the third
experiment that for the previous two. A brake system was engaged in at least one of
the experiments in the southbound data set for a total of 2518 m. For these parts of
the road the RMSE in the road grade estimate was the same as the total average of
0.14 % grade. In the northbound direction the effect was more noticeable. A brake
system was used in some vehicle for a total of 1568 m. At these times the RMSE
increased from 0.15 % grade for the entire road segment, to 0.24 % grade.

In the current implementation of the grade estimator there is no way of assessing
the amount of brake torque being applied. If the driver uses the retarder or engine
brake as opposed to the wheel brakes there is a possibility to have some additional
information on the magnitude of the force.
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5.4.4 Shifting Gears

During gearshifts the engine is disconnected from the rest of the driveline, and
the model for the influence of the engine torque becomes void. This is handled by
setting the engine torque input in the grade estimator to 0 while the status signal
“Shifting” is active. The friction losses from the driving wheels to the disconnected
gearbox are assumed to be negligible. After the gearshift the estimation continues,
with a vehicle model suitable for the newly chosen gear. A shift of gears introduces
quite a lot of non-linear and oscillatory behavior in the driveline that is not captured
by the model used. To attempt reduce the negative impact of these effects in the
merged estimate the process variance for the speed prediction is increased during
the gearshift in the same way as during braking.

Example data for a segment with many gearshifts is shown in Figure 5.17. The
segment chosen to illustrate the behavior during gearshifts contains a 2 km long
uphill segment that is steep enough to require downshifting in vehicle A. During
the experiments with vehicle C there was a road work set up at this location, leading
to slow moving traffic, as seen in the first part of the figure. The third and fourth
parts of the figure show the shifting signal and the current gear. The gearshifts in
the two experiments with vehicle A occur close to each other, but do not overlap.
The fifth part of the figure shows the road grade estimation error for the three
studied experiments, as well as for the final grade estimate. It can be seen that the
estimation error generally increases somewhat during the gearshifts. Right before
the 19 km mark the estimation error increases significantly during the upshifts for
vehicle A. This can be explained by a large error in the derivative of the GPS
altitude measurement at that location, as seen parts four and five of Figure 5.18.
As the process variance of the vehicle model is increased during the gearshift, the
influence of the GPS signal grows. There are a fair number of satellites being tracked
at the location, and thus the GPS altitude derivative affects the estimation results.

The large error in all the estimates, and the merged result, around 18 km is due
to the algorithm finding the start of the uphill segment at an earlier position than
it occurs in the reference profile, as seen in part two of Figure 5.18. The drop in
the base level of P3,3 in the fifth part of Figure 5.17 for vehicle C is explained by a
drop in the measurement innovations at that time. The Q and R matrices are only
adjusted during the shift events.

Overall gearshifts, or the driving conditions where gearshifts are performed,
yielded mixed grade estimation results. Figure 5.19 shows the RMSE values for
the road grade for each experiment, as well as for the map based on an increasing
amount of data. The road grade RMSE of the entire segment is compared to the
RMSE for only those sample points where the vehicle was shifting gears in at least
one of the experiments. The road segments where shifting occurred in some of the
experiments generally gave worse estimation results than the test road as a whole.
Again, in the same way as during braking, the third experiment was particularly
severely affected. However, gearshifts took place in experiments 1, 2, and 6 as well,
so gearshifting does not always yield bad grade estimates. In the southbound data
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Figure 5.17: Road grade estimation results during gearshifts. Data are shown for
experiments 2 (solid), 3 (dashed), and 6 (dotted). In the second part the reference
altitude is also included (thick dashed), and in the fifth part the road grade error of
the merged final estimate is shown (thick solid).
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Figure 5.18: The shift signal and GPS data are shown for experiments 2 (solid) and
3 (dashed). The reference grade (thick solid) is included in parts three-five. Parts four
and five show the numerical derivative of the GPS altitude for experiments 2 and 3
respectively. The altitude derivative has a significant difference to the reference road
grade during the second gearshifts before the 19 km mark.
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Figure 5.19: Estimation results during gearshifts. The road grade estimate RMSE
is shown for the southbound (left figure) and northbound (right figure) test segments.
The value for the entire road segment, based on the experiments up to and including
the index on the x-axis, is shown (solid line) together with the value when only the
sample points where shifting occurs in at least one experiment are included (dashed
line). The values for the individual experiments are shown with stars for the entire
segment and squares for the sample points corresponding to the dashed line.

set at least one of the vehicles indicated shifting status for a total of 595 m. During
this time the road grade RMSE rose to 0.26 % grade, from the 0.13 % grade result
for the entire segment. In the northbound direction shifting was indicated for only
218 m. This lead to a road grade RMSE of 0.15 % grade, identical to the error for
the entire data set.

5.4.5 Vehicle Model Bias

Without the GPS altitude measurements the vehicle model and measured signals
give an estimated grade that has a bias due to modeling errors. The bias is reduced
when the GPS altitude measurement is introduced as a vehicle independent low
frequency correction in the filter. Depending on the vehicle parameters the magni-
tude of the drift varies. Figure 5.20 shows the estimated grade and altitude when
the grade estimator has been operated without GPS input data. Table 5.21 shows
the mean grade biases observed in each of the experiments when compared with
the road grade reference. The grade biases range from negligible for vehicle A (ex-
periments 1–3), when using the GPS, to severe for vehicle B (experiments 4–5). It
is evident that results could be improved if the parameters for vehicles B and C
were better calibrated to match the vehicles and environmental conditions they are
supposed to describe.
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Figure 5.20: The top part of the figure shows the estimated road grade without
the GPS input (solid). This signal lies below the reference profile (dashed). As a
result the altitude estimate has a noticeable drift. Since there is no absolute altitude
measurement available in the filter it was initialized to the same starting value as the
reference profile.

5.4.6 Linear System Model

The results from using the piecewise constant linear model instead of the time-
varying non-linear model indicated only marginal changes in the estimated road
grade. A comparison of road grade estimates obtained with the two methods is
shown in Figure 5.22. The main non-linearity in the vehicle model, for the mag-
nitude of road grades considered, is in the speed. The linear model is only valid
for vehicle speeds close to the linearization point of 80 km/h. During most of the
experiments the speed of the measuring vehicle was close to this value. The pro-
posed method is primarily suited for highway estimation, and it would probably
be wise to reject any data sets with large speed deviations, regardless of whether
the linear or non-linear model is used. As noted in the discussion in Chapter 7, the
possible extension of the proposed methods to estimation of city streets remains
future work.

5.4.7 Low Satellite Coverage

While there are very few occasions in the test data where the GPS satellite reception
is completely blocked, there are a few instances where signal blockage and multipath
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Table 5.21: Observed mean bias in estimated road grade, with and without GPS
input, for the south- and northbound test roads. The road grade figures are given in
% grade.

Direction Meas. Vehicle Mean bias w. GPS Mean bias w/o GPS
South 1 A 0.02 0.11
South 2 A -0.00 0.10
South 3 A 0.00 -0.03
South 4 B -0.02 -0.17
South 5 B -0.09 -0.62
South 6 C -0.01 -0.03
South Merged -0.02 -0.12
North 1 A -0.05 -0.27
North 2 A -0.06 -0.31
North 3 A -0.03 -0.29
North 4 B -0.07 -0.59
North 5 B -0.07 -0.58
North Merged -0.06 -0.41
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Figure 5.22: The final grade estimate based on the non-linear vehicle and road model
(solid) with confidence interval (thin lines) is shown together with the one based on the
piecewise constant linearized vehicle and road model (dashed). The reference grade
is also shown (dotted thin line). The differences between the two methods are slight,
and significantly smaller than the deviation from the reference grade.
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effects causes significant degradation of the altitude data accuracy. The effects can
be seen in the GPS altitude data on the road segment shown in Figure 5.23. The
1.5 km segment contains a hilltop where the GPS signal is obstructed in several of
the experiments. In part two of the figure it is evident that the GPS altitude signal
for experiments 2 and 5 contains an unusually large error component. Looking at
the number of tracked satellites we note that very few satellites are being tracked in
both experiments 2 and 3, yet experiment 3 seems to be much less adversely affected.
When three or fewer satellites are tracked the GPS altitude data are disregarded
entirely, four or five tracked satellites lead to a very low trust in the data. The
number of tracked signals in experiment 5 should be adequate for a reliable three-
dimensional position fix, yet the altitude signal is very noisy. From the observation
data it seems likely that there are severe multipath problems with reflected signals
in this segment. This indicates that it would be desirable to use more diagnostic
data about the GPS receiver state in addition to the number of tracked satellites.
The raw GPS altitude is treated by a simple outlier detection scheme the maximum
change between two consecutive measurements is restricted to 1 m (corresponds to
a road grade of 40 %) before it is fed into the road grade estimation.

To make the estimation task even harder, experiment 2 includes gearshifts dur-
ing the satellite signal outages around 1 600 m and 1 900 m, as seen in part four.
During the gearshifts there is no trustworthy data coming from either of the sensors,
this immediately leads to large grade estimation errors. These errors are somewhat
mediated in the data fusion step, since the gearshifts lead to raised estimated grade
error covariances. However, the GPS altitude noise in experiment 5 also leads to a
high error in this grade estimate. Since there are many satellites being tracked this
error is not detected and flagged in the R matrix. As noted in 4.1.3 increases in
GPS altitude measurement noise does not influence the estimated error covariance
for the road grade state by any noticeable amount, due to saturation. This explains
the lack of variation of P3,3 in the sixth part of Figure 5.23.

The experimental data only contains short segments of total loss of satellite
coverage, in the northbound direction it only occurred in at least one experiment
for 313 m. For those grade estimates the satellite signal is effectively left out of the
filter, and it consequently does not matter if the signal is very noisy. Figure 5.24
shows the RMSE values for the road grade for each experiment, as well as for the
map based on an increasing amount of data in the same way as for the braking
and shifting events. The road grade RMSE of the entire segment is compared to
the RMSE for only those sample points where satellite coverage was lost in at least
one of the experiments. There is no indication that the total grade estimate on the
average should be any worse where there are problems with the satellite reception.
This is reasonable since the main effect of the altitude signal, at least while the
vehicle model operates normally, is to provide bias compensation. During short
outages the grade bias component does not have time to grow enough to cause a
noticeable degradation of the estimates. In the southbound data set at least one of
the vehicles indicated loss of satellite coverage for a total of 1328 m. During this
time the road grade RMSE increased to 0.17 % grade, compared to the 0.13 % grade
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Figure 5.23: Road grade estimation performance during loss of satellite coverage.
Several of the experiments show unusually high GPS altitude noise in this segment.
Data are from experiments 2 (solid), 3 (dashed), and 5 (dotted). In part two the
altitude reference is included (thick solid), and in part five the merged road grade
error is shown (thick dashed).
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Figure 5.24: Estimation results during loss of satellite coverage. The road grade es-
timate RMSE is shown for the southbound (left figure) and northbound (right figure)
test segments. The value for the entire road segment, based on the experiments up to
and including the index on the x-axis, is shown (solid line) together with the value
when only the sample points where there is no satellite coverage in at least one experi-
ment are included (dashed line). The values for the individual experiments are shown
with stars for the entire segment and squares for the sample points corresponding to
the dashed line.

result for the entire segment. In the northbound direction loss of coverage was
indicated for 313 m. This lead to a road grade RMSE of 0.13 % grade, compared to
0.15 % grade for the entire data set.

5.4.8 Merged Results

Using data from more than one run along the road and more than one vehicle
improves the reliability of the final grade estimate. The downhill segment from
s = 22150 m to s = 23150 m is one of the hardest parts of the test road to estimate
accurately, it is therefore used as an example of how the data fusion step improves
the quality of the final grade estimate. The grade maps resulting from the progres-
sive inclusion of data from the six experiments can be seen in Figure 5.25. As more
data are added the road grade map is improved. The mean value of all included
grade estimates at each sample point is also shown, to highlight the effect of the
data fusion step. Each figure shows the latest experiment (dashed), the road grade
map based on all experiments added so far (solid) and the reference road grade
(dotted).

Figure 5.26 shows a comparison of the smoothed estimates from all six south-
bound experiments with the final grade estimate and the reference grade profile.
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(a) The first experiment forms a
road grade map by itself. Estimation
errors cause it to differ from the ref-
erence road grade.
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(b) When a second experiment is
added to the one in (a) a new road
grade map is obtained. The large dis-
turbance in experiment two at s =
22100 m has high uncertainty and
thus a low weight in the data fusion.
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(c) The third estimate from vehicle
A does not differ much from the map
based on the previous two runs along
the road.
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(d) The larger difference in the
fourth estimate is probably due to
different model parameter errors in
relation to vehicle B.
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(e) Estimate five is based on vehicle
B, just like the one in (d).
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(f) When the sixth estimate,
recorded with vehicle C, has been
added the map is complete.

Figure 5.25: Iterative road grade estimation results after each iteration. In each figure
the most recently added experiment (dashed), is shown together with the reference
road grade profile (dotted) and the merged estimate based on all experiments added
so far (solid).
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Figure 5.26: The final merged road grade estimate (solid) is shown with the reference
grade profile (dashed) and the mean value of all smoothed estimates (dotted). The
estimates from the individual experiments are also included (thin lines). This is a
magnification of the most challenging part of the test road. The estimate based on
experiment two is particularly at odds with the rest at 22750 m. This is due to a
combination of poor satellite coverage and the effect of the braking. The detrimental
effect on the fused estimate is smaller than on the mean.

5.4.9 Discussion

The road grade estimates based on the constant road grade model have been com-
pared to a reference road grade profile obtained using specialized equipment. Overall
the performance of the proposed method is promising, even though vehicle model
or parameter errors cause a slight bias in the estimated grade. The estimation error
increases during braking, but the error in the final estimate based on experiments
where braking takes place at different locations is not affected as much. The analy-
sis of estimation performance during gearshifts yielded mixed results. Data points
where gearshifts occur in at least one experiment showed higher than average er-
rors, but this did not seem to be entirely due to the gearshifts. Temporary loss of
satellite coverage did not cause any consistent effects on the road grade estimate.
Finally it was noted that the GPS receiver is vital to bias rejection, some experi-
ments showed considerable bias in the estimated road grade when the estimation
was carried out without it. Grade estimates based on the linearized model showed
comparable results to those obtained with the nonlinear model.

5.5 Piecewise Estimator

To test the assumption that road grade profiles are piecewise linear by design, the
piecewise estimator, presented in Section 4.2.2, has been evaluated experimentally.
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The results of the piecewise estimator have been investigated on 15 km subsets,
in both directions, of the experimental data from highway E4. These shorter seg-
ments were used since the dynamic programming optimal segmentation algorithm is
computationally heavy, despite being significantly more efficient than a straight on
optimization for every break point combination. The recorded data were resampled
to one data point every 12.5 m, for the same reason. All the results in this section
are based on the 12.5 m sample distance and indicated subset of the measurements.
The chapter is concluded with an evaluation of a piecewise linear profile for the
entire E4 test road, computed by dividing the road into three parts, and finding
the optimal segmentation of each part.

The presentation of the results is divided into three parts. First the piecewise
linear assumption is analyzed based on the reference road grade profile used for
evaluating the proposed method. Next, the recorded sensor signals are analyzed, to
provide a baseline for the performance of the estimation method. The estimation
results are illustrated using two of the experiments, in addition to aggregate results
for the whole data set. Finally, the tradeoff between storage requirements and road
grade profile accuracy is treated briefly. The estimation results are evaluated mainly
based on the RMSE in the estimated road grade.

5.5.1 Characterizing the Reference

To evaluate the accuracy of the road grade estimation a reference road grade profile
was obtained using a high quality combination INS and GPS receiver. The equip-
ment used to collect the reference was the same as described in Section 5.1.5, but
instead of the using the low-pass filtering described there, more than one measure-
ment from each location was averaged. The northbound reference profile is based
on three passes over the road section, and the southbound profile is based on five
passes. The differences in the reference profiles result in calculated performance
measures for the piecewise estimator to not be directly comparable to those that
refer to the filtered version of the reference road grade profile. The computed RMSE
is likely to be higher using the averaged reference, while the mean error should be
nearly identical for both profiles.

To investigate the hypothesis that the true road grade can accurately be de-
scribed as a piecewise linear function, an optimal piecewise linear representation
was determined, with an increasing number of segments. The RMSE between the
segmented representations and the measured reference road grade profile, as a func-
tion of the number of linear segments used, is shown in Figure 5.27.

It is clearly seen in Figure 5.27 that the additional improvement for each new
segment decreases with an increasing number of segments. Choosing the best num-
ber of segments to use is often referred to as a model order selection problem. There
literature contains a large number of methods to choose from for such problems. A
simple method would be to assign a weight w, to the number of segments k, used
to represent N0 data points, and minimize a summation cost function including
the RMSE e(k, N0), on the form mink C(k) = e(k, N0) + w ⋅ k. Here we are satis-
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Figure 5.27: Difference (RMSE) between the reference road grade measurement and
its piecewise linear approximation. Results for both the northbound (solid line) and
southbound (dashed line) test roads are shown.

fied by noting that k = 20 segments is enough to get an RMSE compared to the
measurement of approximately 0.2 % grade, or 3 % of the range of the road grade
signal. Adding a 21 st segment decreases the RMSE by less than 4 % in both the
experiments. The measured reference road grade for both the north- and south-
bound directions, as well as different piecewise linear approximations and resulting
errors, are shown in Figure 5.28. It can be seen in the RMSE error plots in the
lower part of Figure 5.28 that using only 15 linear segments leads to rather large
errors locally, where there are not enough segments to represent the behavior of the
signal. With 20 segments the situation improves, and the RMSE is 0.19 % grade in
the northbound direction and 0.21 % grade in the southbound direction. Looking
at all the measured reference profiles it becomes clear that this deviation from the
piecewise linear representation is predominantly due to the real road profile not
being exactly described by its piecewise linear model. In this context it should be
noted that strict adherence to the simplified road grade model, i.e., no change in
the road grade, would yield the mean of the reference profile as the estimate. The
RMSE would be 1.46 % in the southbound, and 1.24 % in the northbound direction.

The error between the piecewise linear approximation and the reference profile
itself forms a baseline for the estimation of a piecewise affine road grade profile based
on measured data, as it would be impossible to find a profile with 20 segments that
has a lower estimation error.

5.5.2 Comparison with Nominal Estimator

To relate the performance of the proposed method to the quality of the measure-
ments the measured signals are analyzed in relation to the nominal estimator. Vir-
tual sensors based on the vehicle model and the GPS altitude signal are used, as
described in Section 5.3. The road grade RMS and mean errors compared to the
reference road grade profile, for each of the virtual sensors and conducted experi-
ments, are shown in Figure 5.29. From the figure it is clear that the virtual sensor
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Figure 5.28: The top figures show the reference road grade profile for the northbound
(left) and southbound (right) test road sections (dotted) together with the optimal
piecewise linear approximation with 15 segments (solid) and 20 segments (dashed).
The bottom figures show the RMSE for the approximation with 15 segments (solid)
and 20 segments (dashed).
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Figure 5.29: The error characteristics of the virtual road grade sensors in the nominal
estimator are shown for each of the ten experiments, five in the northbound direction,
and five in the southbound direction. To the right of each experiment series the results
from averaging all measurements in each data point are shown. The vehicle model
based RMSE is indicated by (∗), and the mean error by (△). The GPS based RMSE
is denoted by (×) and the mean error by (◻). The RMSE of the vehicle model based
sensor, with its mean updated to match the GPS based virtual sensor is denoted by
(+). The mean of this combined signal of course coincides with the mean of the GPS
based signal, and is denoted by (◇).

based on the GPS data has a mean error close to zero, while the RMSE is similar
or worse than for the vehicle model based virtual sensor. The mean grade of the
virtual sensor based on the vehicle model has therefore been shifted to match the
mean road grade of the GPS based sensor. The RMS and mean errors of this third
signal have also been included in Figure 5.29.

An illustration of each of the virtual sensor signals for two different experiments
are shown in Figure 5.30. In the first example, representing experiment 4 in the
northbound direction, the vehicle model based sensor signal shows a clear bias.
The measured road grade stays noticeably below both the reference grade and
the average of the GPS based sensor signal. This confirms what could be seen in
Figure 5.29. When comparing the two examples it is apparent that the random noise
in the GPS signal was much worse during experiment 4 in the northbound direction
than during experiment 1 in the southbound direction. The large variations in the
random GPS noise between experiments, which can also be seen clearly in the large
differences in RMSE in Figure 5.29, were dealt with by only considering the average
value of the GPS sensor during each experiment, as described in Section 4.2.2.
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Figure 5.30: Recorded road grade sensor data are shown for experiment 4 in the
northbound direction (left figure) and for experiment 1 in the southbound direction
(right figure). The virtual sensor based on GPS data (dashed) is illustrated together
with the virtual sensor based on the vehicle model (solid). The top parts of the figures
show the road grade, and include the reference road grade (dotted). The bottom parts
of the figures show the deviation of each sample from the reference profile. It can be
clearly seen that the signal quality varies between experiments, and that there is a
noticeable bias in the vehicle model based signal in the left figure.
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Figure 5.31: Estimation RMSE and mean error for source data (+) and estimate
(×). After the five experiments in each direction the results based on averaging all five
measurements at each data point is shown The mean error for the piecewise linear
estimate (◻) and the source data (◇) are almost identical The RMSE for each exper-
iment, and using all available measurements, for the comparison estimation method
described in the text is denoted by (●). Note that the vertical scale of this figure is
different from that of Figure 5.29, to more clearly illustrate the results.

5.5.3 Estimation results

The proposed estimation method generates a piecewise linear approximation that
can be described by only a few dozen parameters instead of the 1200 original data
points, and has a lower RMSE relative to the reference grade profile than the source
vehicle model based road grade virtual sensor, for all the conducted experiments.
The residual error is higher than for the spline estimator, evaluated in Section 5.6,
applied to the same input data. The spline estimator however, only uses the piece-
wise linear model internally, and does not produce a piecewise linear output. Based
on the analysis of the reference road grade above, the majority of results have been
computed for a piecewise linearization using 20 segments. When measurement data
from all five experiments in each direction are averaged at each position before
the linear segment identification, the RMSE of the linear profile is only marginally
better than that of the averaged source data. The RMS errors for the source data
and estimated piecewise linear road grade profile for each of the experiments are
shown in Figure 5.31 together with results for the comparison method, the spline
estimator.

The estimated piecewise affine road grade profiles for the two example experi-
ments discussed above are shown in Figure 5.32. The figure also contains the road
grade estimate obtained from the spline estimator. When comparing the residual
error to the error in the vehicle model based source signal it is apparent that while
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Figure 5.32: Estimation results for the same experiments as sensor data are presented
for above (dashed), compared with reference road grade (dotted) and the result from
the comparison method (dash-dotted). The northbound direction is shown in to the
left, and the southbound to the right. The usage of the GPS signal throughout the
estimation in the comparison method has a positive effect. In particular around 8 000 m
in the right figure the linear representation is clearly sub-optimal. The left figure shows
some examples of over-fitting linear segments to noise in the input signal.
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most of the bias has been removed by the use of the averaged GPS based signal, a
significant low frequency error component still remains. This error is not observed
in the residual obtained when the reference signal is linearized, which leads to the
conclusion that it comes from the source data rather than from difficulties represent-
ing the true road grade profile as a piecewise affine signal. The comparison method
uses the GPS signal throughout the estimation, not just to counteract the vehicle
model bias. The results indicate that despite the noisy character of the GPS signal
it contains more useful information than just the average road grade over 15 km.

The piecewise linearization based on the averaged input data is only a marginally
better approximation of the reference road grade data than the averaged sensor data
itself. For the southbound experiments the estimated profiles from experiments four
and five are better than the profile based on averaged input data, indicating sig-
nificant differences in the measurement noise between experiments. The estimated
road grade profile, and associated residual error, presented in the same manner as
in Figure 5.32, are shown in Figure 5.33.

It can be expected that increasing the number of linear segments used when
fitting the experimental data would improve the agreement with the reference road
grade profile. This is true up to a certain point, after which additional linear seg-
ments end up being fitted to measurement noise rather than true road features.
The experiments showed that the RMS road grade error decreased significantly
when new segments were added up to about 15 linear segments. Additional seg-
ments would not give any significant change to the RMSE for the complete profile.
Additional segments do however sometimes increase the error locally, where lines
previously fitted to a reasonable average of the underlying road grade signal are
split and adjusted to fit measurement errors. The number of linear segments re-
quired before the estimation quality levels out depends on the actual road profile,
and given the relatively modest error increases from choosing too many segments
care should be taken not to use too few segments. The obtained RMSE as a function
of the number of piecewise linear segments used, for each of the ten experiments,
and by using the average of all five measurements at each measurement point, are
shown in Figure 5.34. The piecewise linear segment estimation method does not
show significantly improved results when using input data averaged over multiple
experiments, the results with averaged data are similar to the best individual ex-
periments. In contrast the comparison method produces averaged results that are
better than when data from only one experiment is used.

While the fit compared to the reference road grade does not improve when
using an increasing number of segments above 15, the fit to the data itself naturally
does. The internal fit to the measurement data were significantly better when all
experiments were averaged before the identification of linear segments. The local fit
for both the investigated road sections, based on averaged data, was 0.24 % grade.
This is only about 25 % worse than the local fit of the reference road grade profile.
It can thus be concluded that, on the average, the measured data are almost as well
approximated by a piecewise linear function as the reference data. This is illustrated
in Figure 5.35. Due to modeling and measurement errors there is however a notable
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Figure 5.33: Piecewise linear estimation results based on the average of the five
measurements for each direction, northbound to the left, and southbound to the right.
The piecewise linear profile (dashed) is based on the average sensor value at each
position in the five experiments. The reference road grade (dotted) and result from the
comparison method (dash-dotted) are also included. The results for the northbound
direction show signs of fitting linear segments to measurement noise around 2000 m,
indicating that the optimal number of segments may be lower than 20.
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Figure 5.34: Error compared to the reference profile, as a function of the number of
segments used. The northbound experiment is shown on the left, and the southbound
on the right. The results based on averaged input data are shown (solid line) together
with the individual experiments (thin dashed lines). The values in this figure, when
using 20 segments, correspond to those in Figure 5.31. The individual experiments
yield different final errors, but all indicate that slightly less than 20 linear segments
is probably ideal for these road sections and this method.
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Figure 5.35: Fit error between each piecewise affine estimate and the actual data
points used in that estimate. Northbound experiments (left figure) and southbound
experiments (right figure) are shown, and the results based on averaged input data
(solid line) are compared with the individual experiments (thin dashed lines). Note
that the piecewise linear fit to the averaged data is significantly better than the fit in
any of the individual experiments.
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difference between the identified piecewise linear functions.
The road grade profile obtained from the comparison method consists of 1200

data points that all need to be stored in a map to represent the profile. The piecewise
linear profile with 20 segments only requires the storage of 40 line parameters, and
20 segment start positions. If the comparison method result is downsampled such
that it is represented by 60 equidistantly spaced data points, and then restored using
linear interpolation the resulting RMSE for the northbound profile is 0.39 % grade.
The corresponding error for the southbound profile is 0.37 % grade. The proposed
method based on averaged measurements from all experiments, the most directly
comparable result, yields an RMSE of 0.42 % grade in the northbound direction, and
0.48 % grade in the southbound direction. The comparison method still performs
better, but the difference is much smaller than when ignoring storage requirements.
The remaining performance gap is likely due to a combination of better utilization
of the GPS signal and the added freedom of not being limited to a piecewise linear
representation.

5.5.4 Discussion

An estimation method representing the road grade signal as a piecewise linear sig-
nal, as suggested by road design guidelines, has been evaluated through experiments.
The validity of the piecewise affine assumption has been verified by analyzing ref-
erence road grade data. The proposed method was able to estimate the road grade
of two 15 km test road sections with RMS errors of 0.42 % grade and 0.48 % grade
respectively. The proposed method represents road grade profiles in a compact
way, as parameters describing a piecewise linear function. While both the reference
data and the averaged experimental data can be well described by piecewise linear
functions, the estimation error for the proposed method is larger than that of a
comparison method, which does not require its output to be piecewise linear, using
the same input data. A challenge in the design of the proposed method has been
the use of the GPS signal. While it provides vital bias compensation for the vehicle
model, it is at times very noisy. It was therefore only included as an average over
an entire experiment. It may well be possible to improve the results by adding the
GPS data directly to the estimation of linear segments, after suitable and possibly
adaptive pre-filtering. The number of linear segments used to represent a road sec-
tion must be selected a priori, or determined through some model order selection
method. In the conducted experiments, choosing the number of segments too large
only produces a small increase in the estimation error while choosing to use too
few segments yielded a large increase. The presented method is computationally
intensive, but it is useable if computations can be carried out off-line without real-
time constraints, and the road is divided into approximately 10 km sections before
estimation is carried out.
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Figure 5.36: The spline estimator was evaluated on the same road as the constant
estimator, but data were divided in 30 segments for the analysis. The 15 segments
in each of the directions of travel are shown on the reference road grade profile. The
top part shows the southbound profile, and the bottom part shows the northbound
profile.

5.6 Spline Estimator

The spline estimator described in Section 4.2.3 has been evaluated using the same
experimental data as the other two methods. The estimation results obtained by
using the described implementation of the three step spline estimator are presented
in this section. To use the method the test road had to be divided into sections
for processing. The test sections used for evaluating this method are shown in
Figure 5.36.

The end result of the proposed method, applied to data from multiple exper-
iments, is an estimated road grade based on all the measurements collected from
a specific road section, at all occasions the vehicle has been driven along that spe-
cific section. As an example the final estimated road grade for a short section is
shown in Figure 5.37. The spline estimator is compared to the constant estimator,
described in Section 4.1. These two methods will in this section be referred to as the
proposed and previous methods. For the evaluated segments and sample distances,
the proposed method generally performs better than the previous method, with
an average reduction in the RMSE in the estimation of 6–15 % depending on the
sample distance. Since five measurements are available at each location along the
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Figure 5.37: A road grade estimate from the proposed method (solid) is shown
together with an estimate based the previous method (thin solid) and a reference
road grade measurement (thin dashed). The performance improvement with the new
proposed method is a 16 % reduction in the RMSE compared to the reference for
the left half of the section, and a 1 % reduction in the average RMSE for the right
half. The proposed method is generally better than, or at worst, equal to the previous
method in estimation performance, for the evaluated segments.

road, the estimation performance both for each experiment individually, and when
all available data are used, is analyzed.

5.6.1 Sample Distance

The distance between samples used when estimating the grade affects many factors
that influence the quality of the road grade estimate. An increased sample distance
will for example decrease the influence of the altitude measurement noise in the GPS
on the numerical derivative. As discussed in Section 4.1.5, increasing the sample
distance also makes vehicle and road grade model errors more important, since the
ratio of samples per unit of prediction error decreases. Finally, the error from the
zero-order hold assumption when sampling data for the model based predictions also
increases with increased sample distance. The experimental results have therefore
been evaluated both with a sample distance corresponding approximately to the
rate sensor data is reported by the logging system, and at lower sample rates. The
input data were logged at 10 Hz, which at 90 km/h gives one sample every 2.5 m.
Results have been computed at increasing sample distances up to 100 m. Input data
for a sample distance of 2.5 ⋅ n m have been obtained by simply keeping only every
n:th measurement. Since a total of 30525 sample points have been used for 76 km
of road the random estimation performance differences obtained by using different
samples for different sample distances should be minor.
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Figure 5.38: The proposed road grade estimation method is compared to nominal
estimator. Since five measurements are available at each location along the road, the
nominal results are averaged before the average RMSE for all the studied sections
along the test road is calculated as a function of the sample distance. The resulting
RMSE from the GPS measurements is denoted by (∗). The measurement noise from
the GPS causes large errors in the numerical derivative for short sample distances. For
very large sample distances the estimate is quite good. Direct results from the vehicle
model are denoted by (☆). Due to measurement noise the estimate is bad for the
smallest sample distance. For large sample distances the zero-order hold discretization
error causes bad performance. The results after each of the steps of the proposed
method are similar on the scale of this figure. The results of the previous method,
which is identical to step one of the proposed method, are denoted by (×). The RMSE
of the linear model obtained in step two is denoted by (△). The final result of the
proposed new method is denoted by (♢).

5.6.2 Comparison with Nominal Estimator

The performance of the proposed method has been compared to the quality of the
measurements. The two unfiltered nominal estimates described in Section 5.3 are
used, but here they are evaluated for a range of discretization sample distances.
The absolute road grade RMS errors after each of the three steps of the proposed
estimation method have been completed are shown in Figure 5.38, together with
the RMS errors for the two estimates directly based on the data at each consecutive
pair of sample points. It is clear that a major improvement occurs in the first step
for all sample distances. Using the piecewise linear nature of the road grade signal
by applying steps two and three further improves the estimate, particularly for the
larger sample distances. This can be seen more clearly in Figure 5.39.
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5.6.3 Estimation Results

The experiments show that the proposed method generally decreases the RMS
errors relative to the previous method. As predicted above the improvement grows
with increasing sample distance, and for the smallest studied sample distances the
improvement in this study is small, or in a few cases even negative. The performance
of the spline estimator, compared to that of the constant estimator, as a function
of sample distance, is shown in Figure 5.39.

The results also show that the performance of the piecewise linear model iden-
tification varies considerably between sections of the test road. Figure 5.40 shows
the performance change with the proposed method for each analyzed section. This
result can be explained by the deviations from the assumed model in the reference
road grade profile. In some sections there are obvious features in the reference pro-
file that are not captured by the linear segmentation of measurement data. Since
the piecewise linear model carries a higher trust in the KF than the model predict-
ing no change used in the previous method, larger errors result when short term
peaks that are not included in the piecewise linear model occur.

5.6.4 Discussion

This study gives an indication that it may be worthwhile to investigate methods
to automatically segment a road to obtain a piecewise linear model before making
the final road grade estimation. Due to the performance differences between the
experiments and sample distances, and the increased computational load from the
segmentation, the application has to be carefully evaluated in order to make a choice
between the spline estimator and the constant estimator.

5.7 Comparison and Discussion

In this section the proposed estimation methods are compared under the same
experimental conditions. Due to the differences in the methods, their performance
varies with the situation in which they are applied. In the comparison the sample
distance ∆s = 10 m was used for all methods.

5.7.1 Road Grade Estimation

The entire estimated road grade profiles, for the southbound and northbound test
segments, and each of the three proposed methods, are shown in Figures 5.41
and 5.42. Numerical grade error results for the methods are given in Table 5.43,
and predicted relative altitude errors results are given in Table 5.44.

For the chosen sample distance the constant estimator yields the best estimates.
This is followed by the spline estimator. Restricting the road grade to only be
represented by piecewise linear segments, as in the piecewise estimator, yields the
worst result.
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Figure 5.39: A larger distance between sample points increases the model induced
error when the road grade changes quickly. This can be seen as an increase in the
performance gain for larger sample distances when the piecewise linear road grade
model is used. The average road grade RMSE’s for the investigated sample distances
for the previous method (+) and the new method (◻) are shown together with the
road grade RMSE’s for the fused estimates. The fused error is denoted by (×) for the
previous method and (♢) for the new method with the linear model (top figure). The
relative improvement in percent, as an average for the individual experiments and for
the fused estimates is also shown as a function of the sample distance. The average
improvement for the individual experiments is denoted by (+), and the improvement
in the fused estimate by (×) (bottom figure).
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Figure 5.40: The road grade RMSE for the fused estimate for each road section
based on all experiments is denoted by (×) for the previous method and (♢) for the
proposed method (top figure). The relative RMSE decrease in percent from applying
the new method is denoted by (×) (bottom figure).

5.7.2 Relative Altitude Prediction

The mean error in relative altitude is closely related to the mean error. The relative
altitude prediction errors 1 000 m ahead of the vehicle, for each method, are illus-
trated in Figure 5.45. The performance ordering of the methods is unchanged when
considering the altitude prediction. In Section 2.7 it was seen that at least 75 % of
the potential savings of an optimal speed control algorithm can be realized, for the
example profile, with a vertical error of 1 m. The experimental results indicate that
the constant estimator can be used to obtain road grade profiles useable for map
based predictive speed control.
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Figure 5.41: Each of the three top figures show the result, from the southbound test
segment, of one of the proposed estimators, together with the reference road grade
(black, dotted). From the top the estimators are the constant estimator (blue, solid),
the piecewise estimator (red, dash-dotted), and the spline estimator (gold, dashed).
The bottom figure shows the estimation error for each estimator, using the same line
characteristics as in the top three figures. It is clear that the constant estimator is
able to capture features in the true road grade that are not described by the piecewise
linear model.
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Figure 5.42: Results from the northbound test segment are shown using the same
conventions as in Figure 5.42. From the top the estimators are the constant estima-
tor (blue, solid), the piecewise estimator (red, dash-dotted), and the spline estimator
(gold, dashed). The bottom figure shows the estimation error for each estimator, us-
ing the same line characteristics as in the top three figures. The piecewise estimator
shows large errors locally, due to overfitting of linear segments to measurement noise.
Choosing the right number of segments to use, without access to the true road grade,
is hard.
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Table 5.43: Performance comparison for the four studied road grade estimators. The
road grade α estimate errors in % grade are shown for each estimator and test segment.

Estimator Direction
Grade

Mean RMSE

Nominal
South -0.01 0.28
North 0.01 0.24

Constant
South -0.01 0.16
North -0.06 0.15

Piecewise
South 0.03 0.32
North 0.00 0.28

Spline
South -0.01 0.21
North -0.05 0.21

Table 5.44: Performance comparison for the four studied road grade estimators. The
predicted relative altitude error results 320 m and 1000 m ahead of the vehicle are
shown.

Estimator Direction
Alt. pred 320 m Alt. pred 1000 m

Mean [m] RMSE [m] Mean [m] RMSE [m]

Nominal
South 0.08 0.87 0.25 2.50
North 0.03 0.71 0.09 1.91

Constant
South -0.05 0.47 -0.14 1.13
North -0.19 0.46 -0.57 1.24

Piecewise
South 0.09 0.97 0.28 2.75
North 0.01 0.83 0.05 2.26

Spline
South -0.03 0.60 -0.10 1.37
North -0.16 0.61 -0.50 1.46

5.7.3 Piecewise Linear Road Grade

A piecewise linear function is generally much better than a constant value, as an
approximation of a road grade profile. Yet, the constant estimator performs better
than the other methods. For the piecewise estimator this is explained by the fact
that the deviation between the actual road grade profile and a piecewise linear
function is much larger than the error made from making the constant road grade
model assumption. In the case of the spline estimator the trust in the piecewise
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Figure 5.45: An important application of the estimated road grade data for HDV
control is to predict the altitude a certain distance ahead of the vehicle. The error in
the predicted altitude 1 km ahead is shown for each of the estimators. The first figure
shows the constant estimator performance, the middle figure is generated from piece-
wise estimator data, and the bottom figure represents the spline estimator. While the
filtering based estimators show similar performance, the piecewise estimator exhibits
very large errors in some cases.
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linear model, in the third step of the method, is a design parameter. If the trust
is set to be low, the performance is indistinguishable from that of the constant
estimator. Theoretically there should be some gain from using the more accurate
method, but it is apparently too small to be detected. Increasing the trust in the
model does yield improved results when only very few data points are available. In
that case neither of the methods is able to capture the higher frequency content of
the true signal. The gain from making better predictions in the filter then leads to
better overall results.

If a longer sample distance is chosen the effect of the better road grade model
in the piecewise and spline estimators would decrease the difference. For very long
sample distances the ordering of the methods would change, but then the accuracy
will be rather low.

5.7.4 Implementation

The constant estimator would be the easiest to implement with limited computa-
tional resources. Even with a desktop computer CPU at disposal both the piecewise
linear methods were applied to parts of the test roads at a time. The computed
estimates were then joined into on complete profile. This practice introduced some
additional errors, but it was required due to the computational complexity of the
methods. In a production setting the currently used methods for identification of
linear segments are probably too inefficient. Faster sub-optimal methods need to
be used.

5.8 Summary

Experimental data have been collected in a total of eleven experiments using three
HDVs on a Swedish freeway. Six data sets from the southbound segment and five
from the northbound segment have used to evaluate three different road grade
estimators. The road grade estimates have been compared to a reference road grade
profile obtained using specialized equipment. Overall the performance is promising,
and particularly the constant estimator can likely be used to obtain road grade
information suitable for vehicle control applications.

The constant estimator has been studied in a number of specific driving situ-
ations. The estimation error increases during braking, but the error in the final
estimate based on experiments where braking takes place at different locations
is not affected as much. The analysis of estimation performance during gearshifts
yielded mixed results. Data points where gearshifts occur in at least one experiment
showed higher than average errors, but this did not seem to be entirely due to the
gearshifts. Temporary loss of satellite coverage did not cause any consistent effects
on the road grade estimate. Grade estimates based on a linearized model showed
comparable results to those obtained with the nonlinear model.

The estimators based on the more accurate piecewise linear road grade model
failed to improve on the results of the estimator with the simplified road grade model
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for short sample distances. The results indicate that there is a performance gain to
be had for very long sample distances, or if a very compact data representation is
needed. At high sample rates there is so much sensor data available that deviations
from the piecewise linear model can be detected, using the constant road grade
model.

From the discussion on performance criterions in Section 4.3 it is clear that the
mean error in the estimated relative altitude a significant distance ahead of the
vehicle is an important concern. This is closely related to the mean error, or bias,
in the road grade estimates. The inclusion of the GPS signal in the estimation sig-
nificantly reduces the error due to vehicle or environment parameter errors, making
it vital to obtaining good altitude predictions.





Chapter 6

Estimation through Multiple Vehicles

“You could have a community capability where you took the GPS data
of people driving around and started to see, oh, there’s a new road that
we don’t have, a new route . . . And so that data eventually should just
come from the community with the right software infrastructure.”

Bill Gates, quoted by the OpenStreetMap community.

Road grade estimation through vehicles in normal operation, using standard
sensors, reduces the need for data collection with survey vehicles. The meth-
ods presented in previous chapters do however rely on more than one esti-

mate from each road segment to be available, in order to produce accurate results.
For one vehicle, this can be achieved over time, if the number of distinct roads
being driven is not too large. Using mobile communications technology, estimates
gathered from many vehicles can be transferred to a central location. This enables
gathering of a large number of estimates from a wide area. A comprehensive map
can then be generated and transferred back to the vehicles. Road grade estimation
based on a large number of independent standard vehicles is similar to the crowd-
sourcing appearing in many other domains. The data collection and estimation
work is distributed among the users, instead of being performed by employees.

This chapter presents a simulation study outlining the potential performance
of a road grade estimation system using distributed data collection and estimation.
Predictions are made about the estimation performance of an isolated vehicle versus
a system of connected vehicles. A prototype system for generating a road grade map
from estimated road grade profiles is also presented.

6.1 An Architecture for Multiple Vehicle Road Grade

Estimation

In the simplest implementation of the proposed road grade estimation algorithm a
single vehicle records sensor data, and computes road grade estimates based only on

145
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its own information. Over time the estimates for frequently traveled routes become
rather good, but when using a new road any predictive control systems, based on the
map data, would be unable to operate. When using only one vehicle the estimation
performance is also limited by the single realization of parameter errors available,
i.e., all road grade estimates are influenced by the same errors in the vehicle specific
model parameters.

By adding two-way communication capabilities to the vehicle, it can be made
a part of a collaborative mapping system, where estimates or measured data are
shared with other vehicles. This can either be done through a centralized server,
or through data sharing with other similarly equipped vehicles in the vicinity. If
estimates or measurements are uploaded to a central server, and used to improve a
common map, a range of model parameter errors will be represented. This approach
both increases the number of estimates available for each road, and decreases the
residual error due to parameter biases. The centralized server is a key component
in such a system, which might be economically feasible if the users are charged a
fee for data transfers, and for access to the server’s data.

If vehicle-to-vehicle communication is used, data may be shared between the
databases of vehicles within communication range of each other. The amount of
data that can be shared while in range of another vehicle is likely to be limited. Some
system for determining what data to share, and whether to trust the information
from the other vehicle is needed. This type of system has similarities with the P2P
technologies on the Internet, with the important difference that there is no one
master version anywhere of the file, or road database, being shared. Instead, each
vehicle has a subset of the whole information of the system, but no one has the full
data set.

Simulations have been used to study two issues related to extending road grade
estimation to a fleet of probe vehicles. First, the convergence of the road grade
estimates from the constant estimator is analyzed, under a set of assumptions re-
garding the distribution of the parameter errors and measurement noise. The rate
of convergence, and final error after inclusion of a large number of experiments, are
evaluated for two scenarios. In the first scenario data from only one vehicle is used.
In the second scenario communication facilities are assumed to be available, and
each data set is taken from a distinct vehicle.

In the second study a prototype implementation of a road grade map estimation
scheme, based on freely available two-dimensional map data and road grade esti-
mates from probe vehicles, is developed and tested. Simulated vehicles are driven
on a network of 62 highway sections between cities in southern Sweden, Denmark,
and northern Germany.

6.1.1 Inter-Vehicle Communication Requirements

When evaluating the potential for estimation through multiple vehicle the data
transfer requirements are important. Depending on whether the estimation is done
locally in the vehicles, or at a central processing server, the data that need to
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Table 6.1: Communication requirements from the vehicle to the server for each esti-
mated data point, for distributed and centralized road grade estimation.

Distributed [bits] Centralized [bits]
Longitude 32 32
Latitude 32 32
Altitude 16 16
Road grade 16 -
Grade variance 16 -
Speed - 16
Engine torque - 8
Current gear - 4
Brake in process - 1
Shift in process - 1
Satellites - 4
GPS DOP - 8

∑ 112 122

be transferred vary. Table 6.1 lists the required variables, and estimated size of
each variable for both alternatives. The requirements for each variable are rough
estimates. The distributed scheme appears to require slightly less data to be trans-
ferred, but the difference is not significant. The possible decrease in data transfers
has to be weighed against the potential cost for extra computational power in the
vehicles.

In the most costly scheme, the centralized one, 122 bits are used for each data
point. Restricting ourselves to whole bytes, 16 bytes of information need to be
transferred for each data point. This estimate assumes no compression is applied,
which is conservative. Using differential position and altitude coding, combined with
non-destructive data compression, less than half of that will actually be needed. On
the other hand, no protocol overhead is considered either, so 16 bytes per sample
will be the number used. With a sample distance of ∆s = 20 m, as is used in the
map building simulation study below, this leads to a need to transfer 0.8 bytes per
meter traveled. A standard long haulage HDV travels around 250 000 km per year,
giving a total yearly need to transfer

0.8 ⋅ 2.5 ⋅ 108 bytes = 200 MB (6.1)

of data. With current mobile technologies this should not pose a technological
problem, the cost of the data transfer will however need to be taken into account in
a system design. With local computation of the road grade estimates, and efficient
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data coding, the communication requirements for each vehicle can likely be reduced
significantly from the 200 MB stated above. It should be noted that this estimate
only covers the uplink data.

6.1.2 Estimator Convergence

As measurement data from an increasing number of trips along a road section
become available, and are included in the road grade estimate, the associated es-
timation errors should intuitively decrease. When assuming unbiased normally dis-
tributed uncorrelated estimates with known variances, the variance of the result
formed by weighted averaging can easily be computed. In practice the errors in the
road grade estimates are however not entirely uncorrelated, normal, or unbiased.
This is true in both the simulations and on-road experiments. The convergence of
the constant estimator, described in Section 4.1, has therefore been studied through
a large number of simulations experiments.

The reference road grade profiles used in the simulations contain some relatively
high frequency content that cannot be detected using the proposed method, and
will contribute to a common error in all estimates. This is particularly true for the
reference road profiles obtained by driving down the roads with a high accuracy
GPS and INS system, as described in Section 5.1.5. In other words, the filtering
of the reference signal influences the performance results. Whether the difference
between the true profile and the estimated one is of any importance depends on
the application where the estimates are to be used. Here, that difference will add
a correlated error to the estimated road grade signal in all experiments, which
cannot be removed by averaging. The magnitude of the error depends on the filter
parameters used in the estimator. By increasing the sensitivity to the measurements,
the cut-off frequency can be increased at the expense of higher random errors and
slower convergence.

If only one vehicle is used to collect data, parameter biases will contribute to
similar biases in all estimates. This effect is included in the simulation study. In
on-road experiments factors such as multi-path GPS errors due to reflections from
large buildings or features in the environment may also cause correlated errors.
Multi-path effects are very hard to model correctly, and no attempt has been made
to include such errors in the simulation model.

Hilly road sections where braking and gear changing is required are likely to
be affected by larger errors than flatter sections. Since the brake force is always
ignored in the estimation model, braking produces correlated errors in estimates
from all experiments where it occurs. In the constant estimator such data points
are weighted less than ones without braking, but they will still have some effect on
the result.
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6.1.3 Creating a Road Grade Map

To be able to retrieve estimated road grades when returning to a road, they need
to be stored a map. The work so far has focused on creating road grade estimates
as a sequence of distance-value pairs. Along with each estimated road grade data
point the latitudinal and longitudinal position are also recorded, from the GPS.
This information has previously been used to synchronize multiple measurements
in the experiments. Below, the location information is instead used in a prototype
map creation system.

When a vehicle equipped with one of the proposed estimators is driven, in real
life or in a simulation, road grade estimates are generated at equidistant points
along the road. Estimated latitude and longitude values are saved together with
each data point. After the estimation has been completed for a particular section,
the location information is used to add the data to a map.

Autonomously building a road map from scratch is hard, and outside the scope
of this thesis c.f. (Schroedl et al., 2004; Brüntrup et al., 2005). Instead, an existing
two-dimensional road map has been used, and road grade information added. For
this project, the freely available OSM database has been used as the source of both
the map data model and actual two-dimensional road data (OpenStreetMap, 2010).
OSM data for 62 one-way highway segments in southern Sweden, Denmark, and
northern Germany was exported and used in the study. Other databases may be
used in a similar fashion, as long as they provide a sufficiently rich interface that
allows extraction of road geometries programmatically.

Adding a Third Dimension

One of the main challenges in adding the estimated road grade data to a map is to
decide where a particular data point should be placed. In OSM terminology the map
consists of nodes, ways, and relations. Nodes are the basic building block, and streets
and highways are represented by joining many nodes in a way. Ways may then be
joined by relations. The nodes are placed by the creators of the map, where they
are needed in order to represent the continuous two-dimensional road profile with
desired accuracy. On straight sections of large highways the nodes may be several
hundred meters apart. In this work the existing OSM data was processed to generate
nodes every 20 m along the original road profiles. In a production environment, an
event based sampling scheme where nodes are only added where there is an actual
change in the road grade is likely to be much more storage efficient.

The matching of measured data points to nodes in the map was accomplished
by comparing the estimated location of the data points, and the direction of travel,
with nearby nodes and ways. This method worked very well for the reduced set of
roads available in the prototype. A number of map matching methods of varying
complexity are available in the literature, and given that the matching of data points
for inclusion in the map can be completed off-line, solving the matching problem
in a full map implementation shouldn’t be too hard.
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Once a particular estimate had been tied to an existing map node, the road
grade data for that node was updated using the inverse variance weighted method
described in Section 4.1.2.

6.2 Experimental Setup

The potential performance of the constant estimator has been tested through simu-
lations, using many experiments, with one or many vehicles, to generate the results.
The simulations are based on a standard European long haulage vehicle configu-
ration, and the simulation model described in Section 3.4.1. The same simulation
setup has been used both to directly evaluate the convergence of the estimates from
the proposed method under realistic circumstances, and to generate raw data for
evaluation of the road grade map generation method described in Section 6.1.3.

The reference road grade changes rather slowly, as can be expected from the road
grade model discussed in Section 3.2. The RMSE compared to the original reference
grade profile for a downsampled and then interpolated version of the reference road
grade is very small. When the profile is downsampled by a factor of four (∆s = 10 m),
the reconstruction RMSE for linear interpolation is 0.0016 % grade, for the highway
E4 south of Södertälje. When downsampling by a factor of eight (∆s = 20 m) and the
reconstruction RMSE for linear interpolation is 0.0060 % grade. Motivated by this,
the simulation studies have been performed at sampling distances of ∆s = 10 m for
the convergence study, and ∆s = 20 m for the map building study. The reduction in
simulation time compared to using ∆s = 2.5 m is significant, and the loss of accuracy
is immaterial compared to other uncertainties involved.

6.2.1 Test Roads

The convergence of the output from the constant estimator has been studied for
three different road sections.

• A part of highway E4, from Södertälje to Nyköping, Sweden

• A part of highway E44 from Koblenz to Trier, Germany

• A part of highway E25, from Hamburg to Berlin, Germany

The first two reference road grade profiles were collected on-site, as described in
Section 5.1.5. The road grade profile for E26 was based on filtered satellite altimetry
data, as described in Section 6.2.4. Figure 6.2 shows a map locating the road sections.

The road grade map generation prototype was evaluated on 62 road segments
describing major highways between cities in Sweden, Denmark, and Germany. The
road network used is shown in Figure 6.7. The process of obtaining reference road
information for the roads is described in Section 6.2.4.
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Figure 6.2: Map showing the locations of the road segments used in the estimation
convergence study. The reference road profiles for the segments Södertälje–Norrköping
and Koblenz–Trier are based on experimental data collected on the ground. The
Hamburg–Berlin segment reference grade was determined from NASA SRTM data.
(Image courtesy of Google)

6.2.2 Test Vehicles

The most commonly used type of vehicle for long haulage freight in Europe is a
tractor and semitrailer combination that may be loaded to a maximum weight of
40 t. Such a vehicle combination would typically have an engine that can produce
around 400–450 hp. This configuration has been used for most of the simulation
experiments and illustrating examples in the thesis. It has also been used in both the
road grade estimate convergence and map creation studies. The model parameters
used, and their values, are listed in Table 6.3. For a description of the meaning
and use of each parameter, see Section 3.1. The gearbox transmission ratio for the
simulation vehicle is it = 1 at gear 12, the highest gear, and it = 11.3 at the first gear.
The gearbox efficiency is ηt = 0.99 in the highest gear and decreases to ηt = 0.96 in
the first gear.
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Table 6.3: Nominal vehicle model parameter values used for simulations in the thesis,
unless otherwise noted.

Parameter Symbol Value Unit
Vehicle mass m 40 000 kg
Wheel inertia Jw 65.8 kg m2

Wheel radius rw 0.495 m
Engine inertia Je 3.5 kg m2

Engine max. torque T max
e 2 300 Nm

Final drive ratio if 2.71 -
Final drive efficiency ηf 0.97 -

Rolling resistance coefficient cr 7 ⋅ 10−3 -
Air drag coefficient cw 0.6 -

Front area Aa 10.26 m2

Air density ρa 1.29 kg m−3

Parameter Errors

The parameters in the models for the vehicle, its sensors, and its interaction with
the environment will not match the nominal values exactly. If proper care is taken
in choosing the parameter values one can however reasonably assume that their
errors will belong to some random distribution, with zero mean error. If enough
experiments are performed, the parameter errors are then likely to essentially aver-
age out. The simulation studies have been set up based on this premise. Very little
statistical data are available on the reliability of the various parameter estimates.
This has led to a significant number of assumptions being made based on interviews
with engineers working in the relevant fields.

Some parameters vary mainly between vehicles, while others are largely deter-
mined by the weather or other conditions specific to a certain time or place. In
some cases both the vehicle used and the environmental conditions affect the same
parameters. A key objective of the convergence study has been to determine the
amount of influence from using one or many vehicles in the estimation. The pa-
rameter errors have therefore been divided into two categories, one that is kept
constant for each simulated vehicle, and one that is updated for each experiment.
All parameter errors are kept constant within each experiment.

Vehicle Dependent Parameters

Based on a set of nominal vehicle parameters a number of distinct vehicle real-
izations were created. The parameters have been chosen based on a normally dis-
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Table 6.4: Vehicle dependent parameter error standard deviations used in simula-
tions.

Parameter, p Symbol Standard deviation σp

Vehicle mass m 0.05
Wheel radius rw 0.02

Engine max. torque T max
e 0.05

Rolling resistance coefficient cr 0.05
Air drag coefficient cw 0.15

tributed random process, with zero mean and a specified variance unique for each
type of parameters. The road grade estimation was always carried out using the
nominal parameters, but the values used in the simulated vehicles varied. Each
realization, used in vehicle m of a vehicle parameter pm was determined from the
nominal value p0 as

pm = (1 + εp
m) ⋅ p0, εp

m ∼ N(0, σp) (6.2)

where εp
m is the error coefficient for a particular parameter p and vehicle m, and σp is

the assumed standard deviation for that parameter among vehicles. The parameters
that were modified for each vehicle and their assumed standard deviations are given
in Table 6.4.

Since engine torques are recorded and processed as percentages of the maximum
torque T max

e , an error in T max
e affects all torque values used. For any vehicle pa-

rameter not listed in the table we set pm = p0 for all vehicles. In many cases the
errors in different parameters that would affect the vehicle the same way have been
brought to only one parameter, and been described by a single normal distribution.

Experiment Dependent Parameters

The experiment dependent parameters qn used in experiment n were chosen in the
same way as the vehicle dependent parameters, but changed for each new experi-
ment. The values qn in each experiment n were based on the values, pm, for the
particular vehicle m being used, and computed by taking

qn = (1 + εq
n) ⋅ pm, εq

n ∼ N(0, σq) (6.3)

where εq
n is the error coefficient for a particular parameter and experiment, and σq

is the assumed standard deviation for that parameter. The experiment dependent
parameters used and their assumed standard deviations are given in Table 6.5. For
any model parameter not included in the table the vehicle dependent value was
used directly.
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Table 6.5: Experiment dependent parameter error standard deviations used in sim-
ulations.

Parameter, q Symbol Standard deviation σq

Vehicle mass m 0.10
Wheel radius rw 0.01

Rolling resistance coefficient cr 0.05
Air drag coefficient cw 0.10

6.2.3 Measurements

In addition to the errors introduced by the parameter deviations from the nominal
parameters, simulated sensor noise was added to the measurements. The sensor
models used for generating the noise are described in Sections 3.4.1 and 3.4.2 for
the driveline sensors and the GPS, respectively.

Based on comparisons of the estimation performance using simulated and real
measurement data the standard deviation σv of the WGN in the vehicle speed signal
was set to

σv = 0.045 (6.4)

which yielded a slightly higher random error in the simulation than in the on-road
experiments. The engine torque signal measurement error was modeled through a
parameter error describing the error in the maximum engine torque, and did not
include any time varying component. The standard deviation of the parameter error
is given in Table 6.4.

The simulated sensor noise from the GPS was generated as a realization of a
Markov process model identified from the real experiments. The models used to
generate the GPS errors for the simulations were based on all 11 experiments. The
modeling approach was validated separately using only part of the available data
for identification. Figure 6.6 shows a comparison of the statistical properties of the
southbound experimental GPS altitude errors with a realization from a Markov pro-
cess model based only on the northbound experiments, with a sampling distance
∆s = 10 m. While the histograms appear similar in both cases, the full autocorre-
lation of the true error is not captured by the model. Changes in the number of
tracked satellites have not been included in the error model. This aspect of the
estimator can thus not be evaluated using these simulations. Given the importance
of the GPS error behavior to the convergence and performance of the estimation
method, the GPS error model is identified as an area worthy of future attention.
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Figure 6.6: The identified GPS error model generates a similar error distribution
as the one found in the validation data (top part). The model based realization is
shown with a black outline, the experimental results are shown as shaded bars. The
autocorrelation for large lags in the validation data (dashed line) is slightly higher
than in the data from the model (solid line). This is not surprising, given the low
order of the model (bottom part).

6.2.4 Reference Road Grade

To generate road grade estimates through simulations, reference road grade infor-
mation for the roads to be estimated is needed. One of the motivations for this
project is the present scarcity of high quality road grade information. Local road
authorities in different countries often have accurate road grade information for
some roads, but it is generally not complete and the EU projects in the area show
that data sets from different regions are hard to combine. Commercial providers
probably have the most complete coverage available today, but it is still limited to
only a few countries. The commercial data are also hard to come by in an open and
accessible format.

No authoritative road grade information for a large enough set of roads was
available, so an alternative solution was developed. It was decided that the simula-
tion study was to be based on road grade profiles determined by processing SRTM
altitude data. Road altitude profiles were obtained by interpolating the topographic
data for the locations of the nodes in the OSM data. A visualization of the SRTM
data for the area where the simulation reference road grade map was created is
shown in Figure 6.7.

The SRTM data are rather coarse, with a 90 m grid over Europe. They also suf-
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Figure 6.7: Altitude map of the road grade map generation test site based on SRTM
data. Brighter hues indicate higher terrain. Reference road grades for the map creation
prototype were created based on this altitude data set, interpolated for the road
locations. (Courtesy NASA/JPL-Caltech.)

fer from a high noise level, and relatively low absolute accuracy. This data set is not
useable as a direct estimate of road grades for control purposes. It is however pos-
sible to create a synthetic road grade profile with approximately the right amount
of hills and flat sections based on the data. This was accomplished by filtering the
altitude profile with a low cut-off frequency, and limiting the maximum grade, and
rate of change in the grade, in a post-processing step. The artificial reference pro-
files generated in this way have less high frequency content than the ones obtained
from on-road measurements. This makes the estimation task slightly easier, as seen
in Section 6.3.1. No high quality reference road grade data for a large area were
available for the study, and the described method for reference profile generation
was preferred over using entirely fictional road grade profiles based only on the sta-
tistical properties of the few sections where data were available. Figure 6.8 shows
a comparison of the reference road grade generated by the SRTM based procedure,
and the reference obtained from on-road measurements, used throughout the thesis,
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Figure 6.8: The reference road grade from the SRTM data (solid line) is compared
to the reference recorded on the road (dashed line) , for the southbound E4 test site
south of Södertälje. The profile generated from SRTM data is significantly smoother
than the recorded reference, but they both show the same general hilliness of the road.

for a road section covered by both types of data.

6.3 Experimental Results

Two simulations studies were carried out to investigate the performance of the con-
stant estimator over time. The results of the first study are reported in Section 6.3.1,
and indicate the estimation accuracy achievable after repeated experiments, for
three different reference road grade profiles. The second study expands the number
of reference grade profiles to 62, and includes the construction of a road grade map.
These results are reported in Section 6.3.2.

6.3.1 Estimator Convergence

The convergence of the estimated road grade to the reference profile has been stud-
ied through simulations. The road grade profile estimate and its associated RMSE
were determined using an increasing number of experiments, from 1 to 100. This
process was then repeated 30 times, to yield an estimate of the variations in the rate
of convergence. The experiments were carried out under the conditions of both the
scenarios described in Section 6.1, i.e., with and without communication between
vehicles. As an illustration of the convergence of the estimates Figure 6.9 shows the
RMSE achieved when using an increasing number of experiments.

The estimation performance is consistently higher in the scenario where differ-
ent vehicles parameter errors were used for each experiment, than when the same
parametrization was used for all experiments. The difference when GPS data is
being used in the estimator, as is the case in Figure 6.9, is however rather small
compared to the same difference when excluding GPS data from the estimation.
This is due to the effective bias compensation from the GPS signal. The same phe-
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Figure 6.9: The RMSE in the estimated road grade is shown for the southbound
highway section from Södertälje to Nyköping. The constant estimator has been used
with an increasing number of simulation experiments. The results when only one
vehicle, with a fixed set of vehicle parameter errors, was used (dashed lines), are
only slightly worse than when different vehicles were used for each experiment (solid
lines). The mean RMSE for 30 sets of 1–100 experiments is shown. It is flanked by
narrow lines indicating the sample standard deviation over the 30 sets, for the RMSE
estimates.

nomenon was also seen in the on-road experiments, as described in Section 5.4.5.
The estimation performance difference is illustrated in Figure 6.10.

According to the simulation results, operating the estimator on-board a single
vehicle would produce only slightly worse estimates, after a fixed number of trips,
than using a system where data is shared among vehicles. It is of course likely that
more experiments would be available at a given time in the communication enabled
scenario. However, if convergence to around 0.1 % grade can be realized in under
100 experiments in a single vehicle, communication may be unnecessary in many
applications.

The simulation results show that the properties of the reference road grade
profile are important for the final value of the road grade RMSE after many experi-
ments. The convergence is faster for the smoother road grade profile generated from
SRTM data used for the road E25 from Hamburg to Berlin, than for the reference
profiles measured on the roads. This is likely due to the low-pass properties of the
estimator, which will lead to the removal of high frequency road grade signal con-
tent in a similar way in all experiments. There is also a noticeable difference in the
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Figure 6.10: The combination of GPS and vehicle model data in the road grade esti-
mator significantly reduces the bias in the estimates, compared to relying only on the
vehicle model. The distribution of the mean grade error is shown for 3 000 simulation
experiments on the Södertälje to Nyköping segment, with different error realizations
for the vehicle parameters being used in each experiment. The shaded bars represent
the grade bias from using only the vehicle model. The outlined bars indicate the grade
bias of the output from the estimator.

estimation errors between the two reference profiles measured with the same equip-
ment. The profile recorded on E44 between Koblenz and Trier is not estimated
as precisely as the one from E4 in Sweden. Short sections of the estimated and
reference profiles, for each of the three test roads, are shown in Figure 6.11.

The convergence results, as an increasing number of experiments are used for
estimation, for each of the studied road segments, are shown in Figure 6.12. The
decrease in the RMSE over the first few experiments approximately follows the
theoretical 1/

√
N decline, where N is the number of included experiments. As the

total error decreases the influence of correlation and systematic errors slow the con-
vergence for the two roads based on accurate reference data. Since all simulations
have been conducted with the same vehicle model, but difference reference road
grades, it is clear that the properties of the reference heavily influence the behav-
ior after many experiments. The relatively smooth reference profile created from
SRTM altitude measurements yields a convergence rate very close to the theoretical
one. For the other profiles the convergence rate decreases after a while, and the im-
provement beyond ≈ 100 experiments appears to be very small. The Koblenz–Trier
segment reference profile gives the largest residual error.

The corresponding convergence of the relative altitude prediction error 1 km
ahead of the current position, illustrated in Figure 6.13, shows a similar behavior.
The residual RMS altitude prediction error for the Koblenz–Trier segment, after
100 experiments, is 0.68 m. The Hamburg–Berlin segment with a reference profile
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Figure 6.11: Illustration of the estimated (solid) and reference road grade profiles
(dotted), after 100 experiments, for the three test road sections investigated in simula-
tions. Results from two individual experiment are also shown for each section (dashed).
The top figure shows a part of the Södertälje–Nyköping segment. The middle one
presents a part of E44 between Koblenz and Trier, and the bottom figure shows a
part of the Hamburg–Berlin segment.
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Figure 6.12: The mean RMSE between the estimated map and reference road grade
profile, after an increasing number of experiments have been used is shown for three
road segments; The Södertälje–Nyköping segment (solid), the Koblenz–Trier segment
(dashed), and the Hamburg–Berlin segment (dash-dotted). The nominal decrease of
the RMSE, for uncorrelated normally distributed estimates of a constant quantity, is a
straight line with the slope −1/2 in the log-log diagram. Straight lines with this slope,
starting at the RMSE from a single experiment, are therefore included for comparison
(dotted).

created from SRTM data, has a RMS altitude prediction error of 0.17 m, that is
still decreasing after 100 experiments.

The simulation study indicates that the properties of the true road grade are
very important for the convergence of the estimates. There seems to be a trade-off to
be made between good estimation results after only a few experiments, and the long
term convergence to a low error. If the parameters of the road grade estimator are
adjusted to raise its low-pass cut-off frequency, better convergence may be achieved
for road profiles that contain significant energy at higher frequencies. This will on
the other hand lead to larger estimation errors from sensor noise that has to be
removed by averaging of data from many experiments. The range of frequencies to
be considered for the reference depends mainly on the application for the estimated
data.

6.3.2 Road Grade Map

The map building method, described in Section 6.1.3, was tested through experi-
ments where simulated vehicles drove missions, between 50 and 500 km in length,
on the roads of the extracted OSM data. The road grade for each mission was esti-
mated using the constant estimator. The road grade estimates from each experiment
were then added to the map.

The quality of the road grade estimates depends both on the number of vehicles
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Figure 6.13: The RMS relative altitude prediction error 1 km ahead of the cur-
rent vehicle position, after an increasing number of experiments have been consid-
ered, is shown for three road segments; The Södertälje–Nyköping segment (solid),
the Koblenz–Trier segment (dashed), and the Hamburg-Berlin segment (dash-dotted).
Straight lines, indicating the nominal error decrease, are included for comparison
(dotted). The relative altitude error for the Södertälje–Nyköping segment decreases at
close to the theoretical rate for a larger number of experiments than the road grade
error, while the Koblenz–Trier segment convergence falls off at a similar rate for both
errors.

that have driven along a particular segment, and the estimation accuracy in each
experiment. Figure 6.14 shows the evolution of the estimate quality, as more exper-
iments are included in the generated map. Results are shown for N = 10, 100, and
1 000 experiments. Figure 6.15 shows the number of experiments that have been
used for each location on the map, when the same total number of experiments
have been completed as above. The dots in the figures represent averages over 250
data points each, so that the entire map can be visualized at a zoomed out scale.

6.4 Discussion

The simulation studies indicate that the proposed estimator can successfully be used
to generate high quality road grade information, based on a reasonable number of
trips along major roads. The estimation results are remarkably accurate, given the
low-cost sensors, simple vehicle model, and relatively large model parameter errors.
The accuracy of the estimator makes it appropriate for use as a part of a system
designed to generate road grade maps for vehicle control applications.

The simulation studies show similar estimator performance regardless of whether
a single vehicle, or many different vehicles, are used to collect the measurements.
When a single vehicle is used to collect all data, the bias in the final road grade



6.4. Discussion 163

5 10 15 20
48

50

52

54

56

58

60

Longitude [deg]

La
tit

ud
e 

[d
eg

]

5 10 15 20
48

50

52

54

56

58

60

Longitude [deg]
5 10 15 20

48

50

52

54

56

58

60

Longitude [deg]

 

 

0.05

0.06

0.08

0.10

0.13

0.16

0.20

0.25

0.32

0.40

Malmö

Berlin

Frankfurt
am Main

Oslo

Hamburg

Stockholm

Figure 6.14: The generated road grade map accuracy is illustrated by a scatterplot
with dots representing groups of 250 data points each. The RMS grade error in each
group determines the color, darker dots mean more accurate road grade data. Starting
from the left the figures show the data at different states of the map creation process,
after N = 10, 100, and 1 000 profile estimates from trips between 50 and 500 km each
have been added.

profile depends largely on the properties of the GPS signal. The GPS signal model
used in the simulation studies yields very good bias error compensation. A real
GPS receiver is likely to provide similar performance when operating under close
to ideal circumstances, i.e. with few multipath errors and good satellite visibility.
Unfortunately the intermittent, but important and common, GPS errors from signal
reflections and loss of satellite contact are very hard to model accurately. Since these
errors are not included in the GPS model used, the actual estimator performance
degradation from using data collected with only one vehicle may be higher than
indicated by the simulations.

The data transfer requirements for a system where estimates are shared with
other vehicles through a server are considerable, but not prohibitive, using current
technology. Given the observed convergence rate, a fleet of vehicles would rather
quickly generate a useable map of their shared area of operation. In system with
a centralized server it is easier to validate the data based on external sources, and
possibly disable estimation in vehicles that produce poor results. If a centralized
server is used one can also ensure that the control algorithms applied perform
consistently in all vehicles, a factor that may be important for driver acceptance.

In a scenario where the vehicles on the road act as probes that send informa-
tion to some other party, the ownership of that information becomes important.
Whoever controls the information flow from a large number of vehicles stands to
gain significant advantages from using those data. The legal and privacy concerns
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Figure 6.15: Each vehicle in the simulation study was started at a random location,
and then chose a random turn direction at each highway intersection. Each trip lasted
for a random distance, between 50 and 500 km. The average number of trips recorded
for a group of 250 data points is indicated by the intensity of the corresponding point
in the map. Roads that have not been driven are not printed, and black roads have
been driven at least 50 times. Starting from the left the figures show the data at
different states of the map creation process, after data from N = 10, 100, and 1 000
experiments have been added.

involved in large scale application of a distributed road grade estimation system
are likely to be at least as challenging as the remaining technical aspects. A large
fleet owner, or truck manufacturer, who deploys estimators in many vehicles, may
be able to commercialize the generated road grade data. The economic benefits
may even extend beyond avoiding the licensing costs associated with purchasing
the same information from a provider running traditional road surveys.

Very successful online services have been built around the desire of people to
share data, e.g. Wikipedia, Facebook, and Twitter. If the right tools are created,
the incumbents in the mapping industry may face serious competition. Such a tool
could for example give ordinary users mobile access to high quality map data at
zero cost, in exchange for their recorded traces. The income for the map provider
could, as in the examples above, come from targeted advertising or even donations,
instead of map licenses. The current implementations in the area are too hard to
use for non-enthusiasts, but that may change quickly. Using the methods proposed
in this thesis, road grade information could be included in such maps. The view of
Steve Coast, the founder of the OSM project is clear, in an interview he stated:

The plan is to overtake Tele Atlas and Navteq. It’s coming for them and
it’ll hit them hard like it did for the guys at Encyclopedia Britannica
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when Wikipedia grew. I want OSM to become the biggest mapping
service in the world. (Sung, 2009)

One of the main difficulties in autonomous map creation is getting the topol-
ogy of the information correct. In OSM this task is handled by a large group of
volunteers, each working on a small part of the data. Attracting and keeping these
volunteer manual workers is currently a key factor to the success of OSM. Attaching
sensed and estimated information, such as the road grade, to the roads that are
already present in the map, or even adjusting the position of the roads to increase
the accuracy, can to a large degree be done by automatic methods.

While most personal navigation devices currently lack a connection to vehicle
sensors, this may change as in-vehicle navigation evolves. As an example, Saab has
recently announced a new system that will allow third party developers to write ap-
plications for an on-board device similar to an integrated smartphone, running the
Android operating system. Vehicle signals are going to be made available through
an API (Saab Press Release, 2011). In the long run, this potentially enables third
parties to create the type of crowdsourced high quality digital map service envi-
sioned above, within vehicles of different brands.

The current market leaders in the navigation data field are also involved in
the development towards more user generated content. Many recently launched
navigation devices contain two-way communication links, and are equipped to send
automatic or user initiated map error reports and update requests back to the
manufacturers. The proposed estimators may thus find application also within the
production chain of established map providers. Only the future will tell if the current
model for commercial map data creation will survive, or if it will be replaced by
something else.

6.5 Summary

The performance of the constant grade estimator, when using multiple experiments
and vehicles, has been evaluated. Both the convergence to a reference grade profile
over single road segment, and the accuracy of a generated road grade map have
been investigated. The presented simulations show that highly accurate road grade
estimates can be obtained by using measurements from many different trips along
a road section. While a large scale on-road experimental investigation of the limit
of accuracy attainable by a real life system remains future work, a similar trend
can be observed in the experimental data in Chapter 5.





Chapter 7

Conclusions and Future Work

“The most exciting phrase I hear in science, that heralds new
discoveries, is not ‘Eureka!’ But ‘That’s funny’.”

Isaac Asimov

Access to stored road grade information yields significant advantages in HDV
control. A system for obtaining such information using standard vehicles
in regular operation has been developed and evaluated in this thesis. It

has been shown through experiments that the proposed distributed road grade
estimators generate results that are consistent with reference road grade profiles.
The generated estimates improve when additional measurements are used to create
a profile. The inclusion of data from more than one run along a road segment
reduces the effects of spurious estimation errors on the road grade map. The possible
performance of one of the proposed methods in a large scale application has been
evaluated through simulations. This chapter details the conclusions that can be
drawn from the results, and outlines avenues for future work in the area.

7.1 Conclusions

Recent advances in the development of embedded electronics, and low cost global
positioning, enable new vehicle control systems that use map data to supplement
traditional sensors. These systems rely on digital maps that include accurate road
attributes. Recent work, by numerous authors, indicates that the road grade is an
attribute of particular importance, particularly for HDV control. Using distributed
estimation and crowdsourcing the necessary road grade information can be obtained
by vehicles in regular operation, instead of through traditional road surveys.

Several studies show that predicting the future vehicle speed and adapting the
current speed and engine output to the road ahead can significantly reduce the
energy consumption of long haulage transport (Huang, 2010; Hellström et al., 2010;
Terwen et al., 2004). The control signal is sensitive to road grade errors, since it is
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determined based on an open loop speed prediction over a significant distance. In
Chapter 2 we saw that a relative predicted altitude error on the order of 1 m or less
is desirable in order to realize the potential savings. The vehicle speed can be seen
as an energy buffer, and other energy buffers, such as a hybridized driveline, the
pressurized air system, and engine cooling system may be used in similar ways.

In all these applications the future energy needs, and appropriate use of the
energy buffer, are largely determined by the future road grade and speed profiles.
Commercial providers are beginning to provide maps with road grade data. The
cost for an initial map and regular updates can however be high, and the coverage is
still limited. Local road grade authorities have some data on road grades, but they
are not comprehensive, and it is difficult to combine databases from several regions.
This leaves a need for alternative methods of obtaining road grade information. The
sensor information available in modern HDVs is sufficient to obtain rough estimates
of the current1 road grade. To obtain the accurate information on future road grades
required by emerging control applications, several things need to be accomplished.
Estimates have to be stored in such a way that they can be recalled at the right
time, and the accuracy has to be improved. Both these issues have been addressed
in the thesis.

As described in Chapter 3, vehicle and road models have been developed, that
link the road grade to sensor signals that are generally already available in the con-
trol network of HDVs. In Chapter 4 these models are used to design a distributed
iterative scheme for creating and improving road grade maps, with three alterna-
tive road grade estimator implementations. The estimators use information about
gearshifts, vehicle braking and satellite coverage to adjust to varying sensor signal
uncertainties and weight the influence of new grade estimates being added to the
map.

Based on the experimental results, given in Chapter 5, we can conclude that the
combination of in-vehicle signals and GPS receiver derived altitude generates road
grade estimates with higher and more consistent accuracy than each of the sensors
taken individually. By using location information from the GPS, and storing the
estimates in a map, estimates may be recalled ahead of future trips along the same
road. If a vehicle is stopped in a location, which has previously been driven past,
the road grade can be obtained despite the lack of input for grade estimation at
that time.

The experimental results show that best of the proposed estimators generates
road grade estimates with an average RMSE of 0.14 % grade for the two test road
sections, based on the combination of 5 and 6 experiments respectively for each of
the sections. The RMSE for the predicted relative altitude 320 m ahead is 0.47 m
and the same error 1 000 m ahead of the vehicle is 1.19 m. Braking, gearshifts, and
loss of satellite coverage are handled well, when they occur simultaneously in only
some of the included experiments. From the simulation study in Chapter 2 we

1Due to the processing involved estimates are really only available for positions visited in the
recent past. It is also hard to estimate the grade when standing still.
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conclude that this accuracy is sufficient for e.g. predictive HDV speed control.
In the simulations in Chapter 6 the performance when using data from only

one vehicle, but many experiments, is similar to that when using different vehicle
in every experiments. This indicates that sharing of data between vehicles may not
be necessary from an estimation accuracy standpoint. This result is mainly due to
the bias compensation provided by the GPS signal. It thus depends on the signal
quality of the GPS, and in many practical situations the parameter spread from
using many vehicles will likely still be important. To get a definitive answer on the
need for multiple vehicles a larger field study would be necessary.

From the simulation study it is clear that convergence of the estimates when
using a large number of experiments depends to a large degree on the reference road
grade profile. As seen in Chapter 6, the estimated road grade converges to an error
close to the differences between multiple reference measurement runs, around 0.1 %
RMSE. The proposed estimators have a clear low-pass characteristic, and therefore
cannot accurately track a reference signal with too much energy at high frequencies.
The definition of what is a high frequency depends on the parametrization of the
estimators. Proper parameters should be chosen to cover the road grade signal
frequencies relevant to the considered applications.

The distributed nature of two of the proposed road grade estimators make them
suitable for use in community powered scenarios, where recorded data are shared
between many users. The OSM project has already created a large open database
with road information. If this resource is combined with automated data collection,
as is described in Chapter 6, that database can be extended with high quality road
grade information. The current major map data providers are also moving towards
getting more information from their users. Navigation devices that communicate
with both vehicle sensors and a central server can use one of the proposed estima-
tors, and send road grade estimates back to the supplier. Therefore the proposed
estimation methods can potentially lead to improved both free and commercial road
grade maps. The presented work has led to several patents, and the ideas are being
implemented in future generation control systems for HDVs.

7.2 Future Work

The performance of the road grade estimator developed in this thesis shows that
using data from multiple runs along a road section, as a way of generating accurate
road grade estimates based on standard HDV sensors is feasible. The work has also
generated new questions, where additional research is proposed.

There are several ways that the current system can be expanded. Additional
sensors may be added, as they are introduced in new vehicles. This would poten-
tially increase both the accuracy and the reliability of the system. The basic ideas
of the work may also be applied to estimating other attributes than the road grade.
Candidate attributes include curve radii and statistics on traffic speed. These at-
tributes are also of interest in many vehicle control applications, and many of the
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same motivations as for road grade estimation apply. More refined methods of up-
dating existing map databases based on the estimated attributes also need to be
developed.

The proposed road grade estimation methods are currently tailored to, and only
evaluated in, highway use. They will likely need some modifications to work well in
an urban setting, with much lower average speeds and more prevalent unmodeled
behavior in the driveline. There are also a number of details in the grade estimators
that can likely be tuned to improve the end results. A closer look at the sensors
and how they are modeled may enable their noise characteristics to be estimated
and used directly in the KF, in place of the design parameters currently used. This
can either be done off-line, to provide better design parameters, or on-line during
operation of the estimator. Ideally this would lead to greater confidence that the
grade estimator is operating in the best way possible at any given time.

The vehicle parameters used to compute road grade estimates from the sensor
readings are currently fixed at their nominal values. The experimental results indi-
cate that the error in the predicted total resistive force at a particular speed and
road grade commonly reach 25–35 % of the total force. This error is mainly caused
by wind, vehicle parameter errors, and variations in rolling resistance. These fac-
tors are often slow-varying compared to the road grade signal, and therefore lead
to a bias in the grade estimates. The errors can be detected by comparing the
GPS derived estimate to the vehicle model derived one. If adaptation of the model
parameters were to be introduced, the estimation performance may be improved.
This is particularly true when the GPS coverage disappears, and the bias correction
provided by the merging of the sensors is lost.

Since experimental data from only three different vehicles have been available,
and the total number of distinct experiments is also limited, no clear results on
the distribution of parameter errors over large groups of vehicles are available. The
analysis of the convergence over many experiments and evaluation of the map cre-
ation system are based on best effort models of these distributions, and it would be
interesting to attempt to confirm these through a larger field test.

The final verdict on whether the data quality is good enough will eventually
come from the applications where it is to be used. Many applications envisioned to-
day depend on predictions of the future speed, and in these the ability to accurately
adapt the vehicle model to current conditions is as important as the accuracy of the
road grade information. This ties back to the idea of an adaptive version of the es-
timator described above. A vehicle using the road grade information to predict the
future speed will need to have a good set of parameters describing the present total
resistive force. This parameter estimate can in part be obtained based on previous
road grade estimates. Using previous grade estimates to adapt model parameters
may increase their accuracy, but it is important to also analyze the convergence of
an estimator using such identified parameters for its updates.



Abbreviations

ADAS Advanced driver assistance systems
CAN Controller area network
CEP Circle error probable
DGPS Differential GPS
DOP Dilution of precision
EKF Extended Kalman filter
GDF Geographic data files
GPS Global positioning system
HDV Heavy duty vehicle
INS Inertial navigation system
ITS Intelligent transportation systems
KF Kalman filter
LIDAR Light detection and ranging
OSM OpenStreetMap
RMS Root mean square
RMSE Root mean square error
RTS Rauch-Tung-Striebel
SLAM Simultaneous localization and mapping
SRTM Shuttle radar topography mission
WGN White Gaussian noise
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