
Hybrid Control of Multi-robot Systems
under Complex Temporal Tasks

MENG GUO

Doctoral Thesis
Stockholm, Sweden 2016

TRITA-EE 2015:79
ISSN 1653-5146
ISBN 978-91-7595-720-3

KTH Royal Institute of Technology
School of Electrical Engineering

Department of Automatic Control
SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillstånd av Kungliga Tekniska högskolan framlägges
till offentlig granskning för avläggande av teknologie doktorsexamen i elektro- och
systemteknik fredag den 22 januari 2016, klockan 10:00, i sal F3, Kungliga Tekniska
högskolan, Lindstedtsvägen 26, Stockholm.

© Meng Guo, January 2016. All rights reserved.

Tryck: Universitetsservice US AB

Abstract

Autonomous robots like household service robots, self-driving cars and drones
are emerging as important parts of our daily lives in the near future. They need to
comprehend and fulfill complex tasks specified by the users with minimal human
intervention. Also they should be able to handle un-modeled changes and contingent
events in the workspace. More importantly, they shall communicate and collaborate
with each other in an efficient and correct manner. In this thesis, we address these
issues by focusing on the distributed and hybrid control of multi-robot systems
under complex individual tasks.

We start from the nominal case where a single dynamical robot is deployed in a
static and fully-known workspace. Its local tasks are specified as Linear Temporal
Logic (LTL) formulas containing the desired motion. We provide an automated
framework as the nominal solution to construct the hybrid controller that drives the
robot such that its resulting trajectory satisfies the given task. Then we expand the
problem by considering a team of networked dynamical robots, where each robot has
a locally-specified individual task also as LTL formulas. In particular, we analyze
four different aspects as described below.

When the workspace is only partially known to each robot, the nominal solution
might be inadequate. Thus we first propose an algorithm for initial plan synthesis to
handle partially infeasible tasks that contain hard and soft constraints. We design
an on-line scheme for each robot to verify and improve its local plan during run
time, utilizing its sensory measurements and communications with other robots. It
is ensured that the hard constraints for safety are always fulfilled while the soft
constraints for performance are improved gradually.

Secondly, we introduce a new approach to construct a full model of both robot
motion and actions. Based on this model, we can specify much broader robotic tasks
and it is used to model inter-robot collaborative actions, which are essential for many
multi-robot applications to improve system capability, efficiency and robustness.
Accordingly, we devise a distributed strategy where the robots coordinate their
motion and action plans to fulfill the desired collaboration by their local tasks.

Thirdly, continuous relative-motion constraints among the robots, such as colli-
sion avoidance and connectivity maintenance, are closely related to the stability,
safety and integrity of multi-robot systems. We propose two different hybrid control
approaches to guarantee the satisfaction of all local tasks and the relative-motion
constraints at all time: the first one is based on potential fields and nonlinear control
technique; the second uses Embedded Graph Grammars (EGGs) as the main tool.

At last, we take into account two common cooperative robotic tasks, namely
service and formation tasks. These tasks are requested and exchanged among the
robots during run time. The proposed hybrid control scheme ensures that the real-
time plan execution incorporates not only local tasks of each robot but also the
contingent service and formation tasks it receives.

Some of the theoretical results of the thesis have been implemented and demon-
strated on various robotic platforms.

Sammanfattning

Denna avhandling fokuserar på distribuerad och hybridstyrning av multi-robot-
system för komplexa, lokala och tidsberoende uppgifter. Dessa uppgifter specificeras
av logiska formler rörande robotens rörelser och andra ageranden. Avhandlingen
behandlar ett tvärvetenskapligt område som integrerar reglering av nätverkade
robotsystem och planering baserad på formella metoder. Ett ramverk för hybrid-
styrning av flera dynamiska robotar med lokalt specificerade uppgifter presenteras.
Fyra huvudscenarier betraktas: (1) robot-planering med motstridiga arbetsuppgifter
inom ett delvis okänt arbetsområde; (2) beroende uppgifter för en grupp heterogena
och samverkande robotar; (3) relativa rörelsebegränsningar hos varje robot; samt
(4) robotar med uppgifter som begärs och bekräftas under körning. Numeriska
simuleringar och experiment visas för att validera de teoretiska resultaten.

To Wei.

Acknowledgements

I would like to firstly express my gratitude to my main advisor Prof. Dimos V.
Dimarogonas for your persisting support, guidance and encouragement in both
my life and work. You introduced me to the world of research with the master
thesis project in 2011. I am extremely grateful that you give me the perfect blend
of guidance and independence during this journey. I also would like to thank my
co-advisor Prof. Karl H. Johansson for your great knowledge and enthusiasm. Your
passion for research will continue influencing me later on.

The five years of PhD study at KTH have been the most memorable time in
my life so far. Automatic Control Lab has been such a joyful place to live and
work. I thank Martin A., Håkan, Martin J., Olle, Kuo-yun, Sebastian, Yuzhe, Niclas
B., Niclas E., Burak, Arda, Hamid, Burak, Antonio A., Valerio, Davide, Demia,
Patricio, Euhanna, Christian, José, André, Weiguo, Mohamed, Afrooz, Emma, Adam,
Bart, Davide, Alessandra, Miguel, Kaveh, Assad, Xinlei, Kin, Rong, Giulio, Bart,
Sindri, José Mairton Barros, Pedro L., Pedro P., Adam, Alexandros for being great
colleagues. I thank Jana and Dimitris for helpful discussions and guidance. Special
thanks to Antonio G., I could not ask for a better office neighbor and gym buddy!
Thanks also go to the administrators: Hanna, Kristina, Anneli, Gerd, Silvia and
Karin for always being helpful and creating a pleasant working atmosphere. I also
thank Niclas B. for helping me on the Swedish abstract and Prof. Henrik Sandberg
for reviewing the thesis.

I would like to thank Prof. Magnus Egerstedt for hosting me at the GRITS Lab
at Georgia Tech during April - July, 2015. I have had a great and fruitful time
there and get to know lots of awesome people. Huge thanks to collaborators in EU
RECONFIG project: Alejandro and Michele for great learning experiences on ROS
and computer vision and for being such fun companions during our demo trips;
George, Panos, Babis for being great hosts at NTUA, Athens.

Life is much more than just work, especially for a PhD :) I thank Viktor and
Camille for all the climbing sessions together; Joel and Michael for our enlightening
studies; Yalin and Camille for the adventurous hiking trips...

Finally, I would like to thank my family for always believing in me, and my wife
Wei for your genuine and everlasting love.

Meng Guo
Stockholm, January 2016

ix

Contents

Acknowledgements ix

Contents xi

1 Introduction 1
1.1 Motivating applications . 2

1.1.1 Service robots . 2
1.1.2 Autonomous cars and drones 4

1.2 General problem formulation . 6
1.3 Contributions and outline . 7
1.4 Notation and acronyms . 11

2 Background 13
2.1 Motion and task planning . 13
2.2 Verification and synthesis based on formal methods 14
2.3 Multi-robot systems . 15
2.4 Related work . 16

3 Robot motion and task planning 21
3.1 Abstraction of robot motion . 21

3.1.1 The workspace model . 21
3.1.2 Robot dynamics and navigation controller 22
3.1.3 Control-driven and weighted FTS 24

3.2 Task specification as LTL formulas 25
3.2.1 Syntax and semantics . 25
3.2.2 Problem formulation . 26

3.3 Hybrid controller synthesis . 26
3.3.1 Product Büchi automaton 27
3.3.2 Optimal run search . 30
3.3.3 Control structure . 32

3.4 Case study . 33
3.5 Summary . 36

xi

xii Contents

4 Knowledge transfer in partially-known workspace 37
4.1 Infeasible tasks . 37

4.1.1 Relaxed product automaton 38
4.1.2 Balanced plan synthesis . 40

4.2 Soft and hard specifications . 42
4.2.1 Safety-ensured product automaton 43
4.2.2 Safe plan synthesis . 45

4.3 On-line plan adaptation . 45
4.3.1 Initial plan synthesis . 46
4.3.2 Real-time knowledge update 47
4.3.3 Safety-ensured plan revision 48

4.4 Collaborative knowledge transfer 52
4.4.1 Knowledge transfer protocol 52
4.4.2 On-line plan verification and adaptation 54
4.4.3 Overall structure . 54

4.5 Case study . 56
4.6 Summary . 60

5 Dependent local tasks with collaborative actions 61
5.1 Motion and action planning . 61

5.1.1 Complete robot model . 62
5.1.2 Local task for motion and actions 65
5.1.3 Hybrid control strategy . 65

5.2 Multi-robot systems with dependent local tasks 66
5.2.1 Collaborative actions . 66
5.2.2 Problem formulation . 68
5.2.3 Distributed task coordination 68
5.2.4 Failure detection and recovery 76
5.2.5 Overall structure . 77

5.3 Case study . 78
5.4 Summary . 80

6 Inter-robot relative motion constraints 81
6.1 Potential-field-based hybrid control 81

6.1.1 Problem formulation . 81
6.1.2 Initial optimal plan synthesis 84
6.1.3 Continuous controller design 85
6.1.4 Control mode switching protocol 94
6.1.5 Real-time discrete plan adaptation 99
6.1.6 Case study . 102

6.2 EGGs-based hybrid control . 105
6.2.1 Problem formulation . 105
6.2.2 EGGs design . 107
6.2.3 Local plan synthesis . 115

Contents xiii

6.2.4 Overall structure . 115
6.2.5 Case study . 116

6.3 Summary . 118

7 Contingent service and formation tasks 119
7.1 Problem formulation . 119

7.1.1 System description . 120
7.1.2 Local task with contingent requests 121

7.2 Controller design under prescribed performance 124
7.2.1 Navigation control . 124
7.2.2 Prescribed formation control 125

7.3 Triggering events and communication protocol 127
7.3.1 Real-time event monitoring scheme 128
7.3.2 Protocol for exchanging contingent requests 128

7.4 Discrete plan synthesis and adaptation 129
7.4.1 Initial plan synthesis . 129
7.4.2 Event-based plan adaptation 132

7.5 Overall structure . 136
7.6 Case study . 138
7.7 Summary . 140

8 Software implementation and experiments 141
8.1 Software package P-MAS-TG . 141

8.1.1 Robot control architecture 141
8.1.2 ROS node for planning . 142

8.2 Experiment demonstrations . 144
8.3 Summary . 148

9 Conclusion and future work 149
9.1 Conclusion . 149
9.2 Future work . 150

Bibliography 153

Chapter 1

Introduction

Autonomous robots such as cars, drones and domestic service robots appear
in the popular media more and more frequent. In recent years, the technical

development, manufacturing and installation of industrial and domestic robots have
been boosted by the unprecedented evolution of digital processing. Robots and
embedded computers have become more powerful in terms of speed and capacity,
and at the same time more affordable [148]. An essential feature of autonomous
robots is that they are expected to comprehend daily tasks specified by non-expert
end-users, reason about them, figure out a plan and more importantly execute the
plan to accomplish the tasks without or with minimal human intervention.

Wireless communication technology enables autonomous robots to be connected
with each other and with internal or external sensors. The emerging Internet of
Things [150] will allow robots to have more accurate and up-to-date information
about their operation space. Even better, cloud-computing platforms provide them
on-demand access to computing and storage resources for an enormous amount of
real-time data. These robot-to-infrastructure and robot-to-robot communications
should be tailored specifically for task planning and execution, in order to save
bandwidth and improve efficiency.

Lastly, a group of coordinated autonomous robots can be more efficient and can
achieve more complex tasks than a collection of independent single robots [9]. For
instance, three coordinated robots can carry a heavy object together which can not
be carried by three independent robots; passengers with close-by destinations can
share the same autonomous car through carpooling. The effectiveness of a multi-
robot system is closely related to the complexity and flexibility of the underlying
coordination scheme. Thus the core problem for any multi-robot application is to
design a suitable coordination scheme that can improve the overall performance
while keeping the cost and complexity of coordination low.

All issues mentioned above bring the need for a new framework for the modeling,
design and analysis of interconnected multi-robot systems under complex individual
tasks. In the remainder of this chapter, we provide some motivating applications of
this thesis, which is followed by the main contributions and the thesis outline.

1

2 Introduction

Figure 1.1: Some examples of service robots (left to right, top to bottom): Gostai, TUG,
Pepper, Baxter and Robot Bear (photo courtesy of Gostai robotics, Aethon, Aldebaran,
Rethink robotics and Riken).

1.1 Motivating applications

In this section we provide some real-life applications that motivate the topics
addressed in this thesis.

1.1.1 Service robots

Different from industrial robots that are mostly built for fast, reliable and accurate
repetitions, domestic service robots on the contrary are designed to be safe, easy-to-
use and good at interactions with humans. Since we are living in an aging society,
more and more personal caring services are demanded in hospitals and households.
Furthermore, surveillance tasks are tedious and potentially dangerous for humans.
Compared with human nurses, housekeepers or security guards, autonomous robots
are constantly available, reliable and capable of more than one type of tasks. Some
well-known commercial products on the market are shown in Figure 1.1, including
the Gostai robot [47] designed for telepresence and surveillance tasks for office-
like environments; the service robot from TUG [3] which delivers goods such as
medication, lab specimens, food and linens in the hospital around the clock; the
service robot Pepper [6] which can accompany people, talk to them, and understand
their emotions; the user-friendly ReThink Baxter robot [123] which collaborate with
small-scale family-business owners in their assembly lines; and the robot Bear [125]

1.1. Motivating applications 3

Figure 1.2: Left: a customized guide robot for online users to explore the museum at
night; right: a service robot that can perform daily errands (photo courtesy of Wired
Magazine and TU/e).

which serves as a nurse assistant and provides personal caring for the elderly. In
addition, some customized service robots are designed for more specific purposes.
As shown in Figure 1.2, the custom-made guide robot at Tate Britain museum
allows any ordinary Internet surfer to explore the masterpieces inside the museum
after dark by live-streaming the robot’s vision with commentary [149]; the service
robot Amigo [138] developed at TU/e can be configured to perform various domestic
errands at home and hospital environments. It is estimated in [127] that more than
500,000 units of domestic service robots will be sold worldwide before the year 2020.
Thus it is reasonable to foresee that autonomous service robots will play more and
more important roles in our daily lives.

Now imagine that you have several service robots like those shown in Figure 1.1
in your house and that you want to give them the following commands:

• “Gostai, take photos of the kids in both bedrooms and send them to me”;

• “Baxter, go to the kitchen, make a cup of coffee and bring it back to me”;

• “Pepper, vacuum the living room and turn on the dish washer in the kitchen”;

• “Robot bear, move the table from the balcony to the study”.

The above task specifications are typical as daily household errands, from which
we can easily draw the following characteristics: firstly, they are addressed to each
individual robot separately as the human user normally has a clear idea about
the distinctive motion and actuation capabilities of these robots; secondly, they
are specified as the desired robot actions at certain locations, e.g., “take photos”
at “bedrooms”, “make coffee” at “kitchen”, and “vacuum” the “living room”, and
these actions should happen in a desired temporal sequence, e.g., first “vacuum
the living room” and then “turn on the dish washer”; thirdly, some of the desired
actions can be done by the robot itself like “take photos” and “vacuum the room”,
while some may require collaborations with other robots like “move the table”. Most

4 Introduction

Figure 1.3: Left: the self-driving car by Google; right: the Amazon’s “prime” air delivery
service by autonomous drones (photo courtesy of Google and Amazon).

of the existing solutions are designed for rigid and simple task executions, thus
incapable of handling complex tasks as listed above but much human intervention is
needed. Thus we intend to design a systemic and automated framework that allows
the human users to describe these aforementioned tasks in a concise and formal
way; enables the robot to synthesize its local motion and action plan, and execute
this plan autonomously to fulfill its task; and lastly allows the team of robots to
coordinate and collaborate with each other to fulfill all local tasks.

1.1.2 Autonomous cars and drones
Autonomous cars, also known as self-driving cars, are capable of sensing the traffic
environment and navigating to the desired destination without human guidance. The
last decade has witnessed an increasing interest in autonomous-driving technologies
from both academia and industry. Almost every major car manufacturer around
the world is developing autonomous or driver assistance technology to upgrade its
existing models, e.g., adaptive cruise control, automatic parking, collision avoidance
and high-way platooning. The prototype of Google self-driving car as shown in
Figure 1.3 has been tested on road for over 1 million miles [46]. Self-driving taxis
will begin trails in Japan from next year [32]. It is estimated by IEEE [75] that up to
75% of all vehicles will be autonomous by 2040, which may lead to an extraordinarily
efficient and intelligent transportation system. Particularly, this will allow everyone
to get around easily and safely with just a push of a button, regardless of the ability
to drive. Sometimes we may have complex driving tasks in mind, like:

• “Eventually arrive home, but on the way pass by any supermarket of this store
and the kid’s school, always avoid highways”;

• “Go to any branch of this bank and then that restaurant, park at a close-by
parking area where there is free parking”.

These tasks are clearly much more complex than just “going from A to B”, but still
quite common as our daily driving routine. They all have a temporal characteristic
for different locations to visit and there are properties of interest attached to these

1.1. Motivating applications 5

Figure 1.4: A scenario of several autonomous ground and aerial vehicles coexisting
within the same workspace. Each of them is assigned a local motion and action task to
accomplish. The links represent the constraints and collaborative relations between the
robots, which are also the main issues to be addressed in the thesis.

locations, e.g., “any supermarket of this store”, “any branch of this bank” and
“parking area with free parking”. This means that an extra level of logic reasoning
and planning is required to find a higher-level plan as the sequence of locations to
visit and then merge this plan with the point-to-point navigation technique.

Unmanned aerial vehicles (UAVs), also known as drones, have been used by
Amazon as shown in Figure 1.3 to deliver small packages into customers’ hands in 30
minutes or less [8], by German railway officials to find and track graffiti drawers [137],
and by winemakers in California to monitor grape growth [33]. Even though most
drones nowadays can fly stably without the need for human operators to control
each motor, they still rely on manual inputs for the destinations and the associated
routes. This might be trivial for simple tasks like flying from point A to point B.
However, for many of the practical applications mentioned above, the desired task
may be much more complex, such as:

• “Always if requested, pick up the package from the dispatch station and deliver
it to the specified destination; otherwise stay at the docking station”;

• “Surveil locations A, B and C in any order and take videos there. In case of
detecting a target, sound alarm and notify the control station”.

The temporal tasks above require the robots to be aware of various real-time events

6 Introduction

in the workspace and react to them accordingly, e.g., “pick up the package when
requested” and “sound the alarm when detecting a target”. In other words, a static
plan as a sequence of locations to visit is not adequate anymore, yielding that
another challenge here is to monitor events of interest in the workspace and act
upon them according to the task specification.

Last but not least, imagine that there are more than one autonomous car and
drone being deployed within the same workspace. They potentially become an
air-ground collaboration team, e.g., a car may request the drone to visit a certain
location that is not reachable by itself but critical for its plan execution; or vice
versa, a drone may request a car to inspect the detailed properties of a certain
location, due to its limited resolution; and several drones can form a formation and
patrol around a car for better security. How to achieve these complex inter-robot
interaction and coordination in a systematic, formal and efficient way is another
major issue we address in this thesis.

1.2 General problem formulation

Consider a team of dynamical and heterogeneous robots that are capable of moving
and performing various actions within a common workspace, as shown in Figure 1.4.
Each robot is locally or individually assigned a complex temporal task, which can be
dependent or independent on other robots’ individual tasks. The general problems
we tackle in this thesis include the following aspects:

P1: a local motion and task planning scheme for each robot to fulfill its given task;

P2: an efficient information exchange protocol among the robots regarding real-
time features of the workspace;

P3: a coordination strategy for a team with dependent local tasks where some
sub-tasks require collaborations among the robots;

P4: a hybrid motion control scheme to incorporate additional relative-motion
constraints between the robots;

P5: an on-line plan adaptation algorithm that integrates real-time updates of the
workspace model and contingent task requests from other robots.

The overall goal of addressing the above aspects is to always guarantee the satis-
faction of all local tasks, while at the same time respecting the various constraints.
Particularly, Chapter 3 addresses P1 under the assumption of static workspace.
Chapter 4 solves P1, P2 and P5 for the multi-robot system under partially-known
workspace. Dependent tasks are tackled in Chapter 5 which answers parts of P1
and P3. Then Chapter 6 proposes two different hybrid control strategies that ad-
dresses P1 and P4. At last, Chapter 7 solves P5 partially by considering contingent
service and formation tasks that are exchanged among the robots during run time.

1.3. Contributions and outline 7

Figure 1.5: Illustrations of the contributions and outline of this thesis.

1.3 Contributions and outline

In this section, we summarize the main contributions and outline of this thesis
including the publications each chapter is based upon, as shown in Figure 1.5.

Chapter 2 — Background
Theoretical backgrounds are presented for robot motion and task planning, formal-
methods-based verification and synthesis, and multi-robot systems. After that, we
review some related work to this thesis.

Chapter 3 — Robot motion and task planning
The nominal problem of robot motion and task planning under a complex local
task given as Linear Temporal Logic (LTL) formulas is formulated. Given the robot
dynamics and workspace structure, we propose an automated framework that firstly
synthesizes the discrete motion plan and then constructs the hybrid controller that
drives the robot to execute this plan. It is shown that the robot’s resulting trajectory
satisfies the given task.

Chapter 4 — Knowledge transfer in partially-known workspace
A team of dynamical robots that coexist within the same workspace is considered in
this chapter, where each robot is assigned a local task as LTL formulas for its desired

8 Introduction

motion. Moreover, the robots can exchange information through communication
links. The workspace is however only partially known to each robot, yielding the
nominal solution from the previous chapter inadequate. Thus we first propose a novel
approach to handle partially infeasible tasks that contain hard and soft constraints.
Then we design a distributed and on-line scheme for each robot to update its system
model based on both its real-time measurements and inter-robot communications,
verify and adapt its local plan, and modify its hybrid controller accordingly. It is
ensured that the hard constraints concerning safety are always fulfilled while the
satisfaction for the soft constraints is improved gradually for performance. The
control scheme is distributed as only local interactions are assumed. The above
results have been published in:

• M. Guo and D. V. Dimarogonas. Multi-agent Plan Reconfiguration under
Local LTL Specifications. International Journal of Robotics Research (IJRR),
34(2): 218-235, 2015.

• M. Guo and D. V. Dimarogonas. Distributed Plan Reconfiguration via Knowl-
edge Transfer in Multi-agent Systems under Local LTL Specifications. IEEE
International Conference on Robotics and Automation (ICRA), Hongkong,
China, 2014.

• M. Guo and D. V. Dimarogonas. Reconfiguration in Motion Planning of
Single- and Multi-agent Systems under Infeasible Local LTL Specifications.
IEEE Conference on Decision and Control (CDC), Firenze, Italy, 2013.

• M. Guo, K. H. Johansson and D. V. Dimarogonas. Revising Motion Planning
under Linear Temporal Logic Specifications in Partially Known Workspaces.
IEEE International Conference on Robotics and Automation (ICRA), Karl-
sruhe, Germany, 2013.

Chapter 5 — Dependent local tasks with collaborative actions
In order to specify much broader and more practical robotic tasks, a new algorithm
to construct the complete model of both robot motion and actions (instead of
only motion) is introduced. Based on this model, we specify a local temporal task
as the desired robot motion and actions. Furthermore, inter-robot collaborations
are essential for many multi-robot applications to improve system-wide capability,
efficiency and robustness. Thus we start by constructing a dependency relation
among the robots using collaborative and assisting actions. Then we propose a
distributed and on-line coordination scheme where each robot sends requests to its
neighbors regarding the collaboration it needs, confirms requests from others, and
adapts its motion and action plan to fulfill the confirmed collaboration. All decisions
are made locally by each robot based on local computation and communication
among neighboring robots. This framework is scalable and resilient to robot failures
as the dependency relation is formed and removed dynamically according to the

1.3. Contributions and outline 9

plan execution status and robot capabilities, instead of pre-assigned robot identities.
The above results have been published in:

• M. Guo and D. V. Dimarogonas. Bottom-up Motion and Task Coordination
for Loosely-coupled Multi-agent Systems with Dependent Local Tasks. IEEE
International Conference on Automation Science and Engineering (CASE).
Gothenburg, Sweden, 2015.

• M. Guo, K. H. Johansson and D. V. Dimarogonas. Motion and Action
Planning under LTL Specification using Navigation Functions and Action
Description Language. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Tokyo, Japan, 2013.

Chapter 6 — Inter-robot relative motion constraints

The same multi-robot system is treated in this chapter where each robot is assigned
a local LTL task as its desired motion and actions, but under additional continuous
relative-motion constrains, such as relative-distance constrains and connectivity
maintenance of the underlying communication network. These constraints are closely
related to the stability, safety and integrity of the overall multi-robot system, which
are otherwise often only assumed, not guaranteed, in related literature. We propose
here two different hybrid control approaches to tackle this problem: the first one is
based on potential fields and nonlinear control technique to handle scenarios where
explicit inter-robot communication is limited and costly; the second approach uses
Embedded Graph Grammars (EGGs) as the main tool to specify local interaction
rules and switching control modes for each robot. Both approaches are distributed
and guarantee the satisfaction of all local tasks, while the relative-motion constraints
are respected at all time. The above results have been reported in:

• M. Guo, J. Tumova and D. V. Dimarogonas. Communication-Free Multi-
Agent Control under Local Temporal Tasks and Relative-Distance Constraints.
IEEE Transactions on Automatic Control (TAC), 2015. Conditionally accepted.

• M. Guo, M. Egerstedt and D. V. Dimarogonas. Hybrid Control of Multi-robot
Systems Using Embedded Graph Grammars. IEEE International Conference
on Robotics and Automation(ICRA). Stockholm, Sweden, 2016. Submitted.

• M. Guo, J. Tumova and D. V. Dimarogonas. Hybrid Control of Multi-Agent
Systems under Local Temporal Tasks and Relative-Distance Constraints. IEEE
Conference on Decision and Control (CDC). Osaka, Japan, 2015.

• M. Guo, J. Tumova and D. V. Dimarogonas. Cooperative Decentralized
Multi-agent Control under Local LTL Tasks and Connectivity Constraints.
IEEE Conference on Decision and Control (CDC). Los Angeles, USA, 2014.

10 Introduction

Chapter 7 — Contingent service and formation tasks
Two common cooperative robotic tasks are taken into account in this chapter, namely
service and formation tasks. The service request is a short-term task provided by
one robot to another, while the formation task is a relative deployment requirement
among the robots with predefined transient responses imposed by an associated
performance function. These tasks are requested and exchanged among the robots
during run time, which are unknown a priori. An on-line communication protocol
is designed first for each robot to handle these contingent requests and replies.
Furthermore, we propose a novel plan adaptation scheme such that the updated
plan incorporates not only the robot’s original local task but also its newly received
contingent tasks. Based on the updated plan, the underlying hybrid controller is
then reconstructed such that both local and contingent tasks are satisfied. The
above results have been reported in:

• M. Guo, C. P. Bechlioulis, K. Kyriakopoulos and D. V. Dimarogonas. Hy-
brid Control of Multi-agent Systems with Contingent Temporal Tasks and
Prescribed Formation Constraints. IEEE Transactions on Control of Network
Systems (TCNS), 2015. Submitted.

Chapter 8 — Software implementation and experiments
The software design and implementation for the main algorithms proposed in thesis
are described in this chapter. Then we demonstrate some experimental results over
different robotic platforms to validate the theoretical contributions.

Chapter 9 — Conclusions and future work
The thesis is concluded with a summary and discussion of the results, where some
future research directions are also presented.

Other publications
The following publications are not covered in this thesis, but contain material that
motivates the work presented here:

• M. Guo, M. M. Zavlanos and D. V. Dimarogonas. Controlling the Relative
Agent Motion in Multi-Agent Formation Stabilization. IEEE Transactions on
Automatic Control (TAC), 2013.

• M. Guo and D. V. Dimarogonas. Consensus with Quantized Relative State
Measurements. Automatica, 49(8): 2531–2537, 2013.

• M. Guo and D. V. Dimarogonas. Nonlinear Consensus via Continuous, Sam-
pled, and Aperiodic Updates. International Journal of Control (IJC), 86(4):
567-578, 2013.

1.4. Notation and acronyms 11

• M. Guo, D. V. Dimarogonas and K. H. Johansson. Distributed Real-time
Fault Detection and Isolation For Cooperative Multi-agent Systems. American
Control Conference (ACC), Montreal, Canada, 2012.

• M. Guo and D. V. Dimarogonas. Quantized Cooperative Control Using
Relative State Measurements. IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC), Orlando, USA, 2011.

Contributions by the author

The contributions of the thesis are mainly the results of the author’s own work, in
collaboration with the respective coauthors. Experiments presented in Chapter 8
are conducted with partners in EU Reconfig project, Smart Mobility Lab at KTH
and GRITS lab at Georgia Tech.

1.4 Notation and acronyms

Notations

⊺ Boolean constant True
� Boolean constant False
R Set of real numbers
RN N-dimensional vector space over R
R+ Set of non-negative real numbers
1N Vector of ones with length N
Z Set of integer numbers
det(A) Determinant of matrix A
rank(A) Rank of matrix A
trace(A) Trace of matrix A
v[i] The i-th element of vector v ∈ RN

∥x∥1 `1-norm of vector x: ∑Ni=1 ∣x[i]∣

∥x∥ Euclidean norm of vector x:
√
xTx

λmin(A) Smallest eigenvalue of matrix A
λmax(A) Maximum eigenvalue of matrix A
B(c, r) Circular area {x ∈ R2 ∣ ∥x − c∥ ≤ r}

⊗ Kronecker product
[x] Round function of x ∈ R and [0.5] = 1.
et Natural exponential function
ln(x) Natural logarithmic function

12 Introduction

Acronyms
ADL Action Description Language
BA Büchi Automaton
CTL Computation Tree Logic
EGG Embedded Graph Grammar
FTS Finite Transition System
LTL Linear Temporal Logic
MDP Markov Decision Process
MTL Metric Temporal Logic
RTL Real-time Temporal Logic
NBA Non-deterministic Büchi Automaton
ROS Robot Operating System
sc-LTL Syntactically co-safe LTL
sc-RTL Syntactically co-safe RTL
wFTS Weighted Finite Transition System

Chapter 2

Background

This chapter includes a short introduction to the research background of the
thesis, including the motion and task planning problem of mobile robots,

the model-checking algorithm for verification and synthesis, and the control and
coordination problem of multi-robot systems. Then we provide a review of some
recent work related to the remaining chapters of the thesis.

2.1 Motion and task planning

To begin with, the term “robot” used in this thesis generally refers to the physical
machine that can move around in its workspace, sense the workspace and perform
various actions. Robot motion planning is the problem of finding the appropriate
actuation signals as the control inputs that can drive the robot from an initial state
to a goal state, e.g., move from one location to another, grasp an object of interest
or operate a machine. It is also called planning in the continuous statespace [97] or
a control problem [28]. Despite the fact that the objective of motion planning is easy
to specify, it is not trivial to solve due to the existence of dynamic and kinematic
constraints, external disturbances, and execution or measurement noises [95]. Model-
based methods have attracted lots of attention where the robot’s motion is abstracted
and modeled by ordinary differential or difference equations. Given these models,
analytic solutions with provable correctness can be found such as the navigation
function for sphere workspace and obstacles [87], the potential-field-based control
algorithm for workspace with triangular partitions [103], the sampling-based motion
planning techniques like probabilistic roadmap (PRM) method [81] and rapidly-
exploring random trees (RRT) [79, 96, 99].

On the other hand, robot task planning is the problem of finding a sequence of
robot actions that the robot can follow to accomplish a complex task. For instance,
suppose the robot is asked to make a cup of coffee: first it needs to figure out a plan
as to find a cup, operate the coffee machine, and pour the coffee; then it needs to
execute the plan by successfully accomplish each part of the plan in the desired
sequence. As proposed in [43], each action can be described by (1) the precondition

13

14 Background

that has to be fulfilled before this action can be performed; (2) the effect on the
system state after performing this action. The system under consideration such
as a robot is traditionally modeled as discrete state-transition systems [22]. By
activating one action, the system state can be changed to one or several states.
Consequently, the planning problem is transformed to finding the desired sequence
of actions or essentially a path that leads the system from the initial state to the
goal state. Different representations of the system states may result in various
complexities when solving the planning problem [43]. Logic-based representation
is currently one of the most popular formalisms used by many planning tools, like
STRIPS [37] and PDDL [111]. The solving process is similar to human deliberation
that chooses actions by anticipating their outcomes. Besides, learning has also
emerged as a power tool [92] nowadays due to the abundance of measurement data
and computing resources. The robot can figure out the solution through trial and
error, collecting data from previous examples or watching human demonstrations.
Another interesting solution is proposed in the form of behavior trees [109, 116].
Unlike finite-state machines, a behavior tree controls the flow of the robot’s decision
making by considering real-time measurements and the accumulated information
about the current status of the robot.

The greatest distinction between robot motion and task planning is that the
state space for motion planning is typically continuous and possibly unbounded,
thus yielding it impossible to enumerate all the states explicitly as in the task
planning. Furthermore, the set of allowed actions is also normally infinite due to
the continuous input space, of which the notions of condition and effect are not well
defined since a dynamical system may evolve differently under the same input.

2.2 Verification and synthesis based on formal methods

Formal methods are a particular kind of mathematical techniques that are used in
software and hardware engineering for specifying and verifying system properties,
as part of a more reliable, secure and robust system design [20]. One of the well-
known verification techniques is model checking, also called property checking, which
exhaustively and automatically checks whether a system model satisfies a given
specification that contains the desired system properties [11, 21, 112]. The model
can be an actual hardware or software system or its mathematical abstraction
as a finite transition system. The specification normally involves desired system
properties or security requirements such as absence of bad states, deadlocks or
livelocks. The model-checking algorithm returns either success indicating that all
possible system behaviors satisfy the property, or a counterexample as one possible
behavior that fails the property. Temporal logic languages such as Linear Temporal
Logic (LTL) and Computation Tree Logic (CTL) provide a concise and formal way
to specify both propositional and temporal requirements on the system behavior. A
method for approximate model checking of stochastic hybrid systems with provable
approximation guarantees is proposed in [1]. The stochastic hybrid system is first

2.3. Multi-robot systems 15

approximated by a finite state Markov chain, which is then model checked for
probabilistic invariance.

Model-checking algorithms have also attracted much interest for the purpose of
synthesis rather than verification. In particular, many recent work integrates classic
motion planning algorithms with model-checking techniques to treat complex motion
tasks specified by temporal logics [14, 15, 36, 135] such as LTL and CTL mentioned
above. Compared with the traditional objective of point-to-point navigation, other
control tasks such as reachability, safety and liveness can be described directly by
the above logic formulas. Stochastic dynamical systems are considered in [156] by
first constructing a finite-state abstraction with a given precision, based on which a
control strategy is then synthesized to satisfy LTL specifications. When applying
model-checking algorithms for synthesis rather than verification, the desired outcome
is distinctively different: the purpose of verification is to find any system behavior
that violates the property, which can be then used as counter-example to guide the
system modification to achieve the desired property; for synthesis purpose we are
only interested in the system behavior that satisfies the property and mostly is
optimized regarding certain cost functions.

2.3 Multi-robot systems

It is seldom that one autonomous robot is a stand-alone system, but it often coexists
and interacts with other robots within the same workspace. A multi-robot team
under proper coordination can achieve much more complex tasks than a collection
of independent single robots, e.g., several robots can collaborate on one task that
cannot be done by one robot alone; two robots can switch parts of their tasks
to improve mutual efficiency. However, this also introduces some limitations: one
robot’s behavior is constrained by other robots, e.g., it needs to avoid collision with
others while moving around; the common resources in the workspace are shared
among all robots. Thus both motion coordination and task coordination are crucial
for the performance and functionality of multi-robot systems. Any solution for
the above aspects can lie along the spectrum between being centralized and fully
decoupled. Centralized solutions typically treat the multi-robot system as a large
single system by composing the configuration spaces of all individual robots, while
in the fully-decoupled case plans or motion decisions are generated locally based on
local communication and coordination with nearby robots during run time.

Regarding the motion coordination of multi-robot systems, many related work
can be found on designing motion control strategies to avoid inter-robot collisions
when each robot is moving and executing its own plan within the same workspace.
Three different motion coordination schemes are proposed in [98] given different
assumptions on the robots’ initial paths, while at the same optimizing each robot’s
local performance function. The concept of “reciprocal velocity obstacle” is proposed
in [145] to avoid inter-robot collisions while navigating a large number of robots
within clustered environments, without the need for explicit communication. [24]

16 Background

derives a closed-form feedback control law that ensures collision-free paths while nav-
igating each robot to its goal point. In addition, there has been an increasing interest
on designing distributed control strategies for system-level goals, like alignment with
a team leader [31], relative formation [30] and target containment [77].

On the other hand, regarding the task coordination problem, multi-robot systems
are often deployed for the purpose of distributed problem solving [29], where a
global task is decomposed into smaller subtasks and then assigned to each robot.
This formulation favors a tightly-coupled and top-down approach, where each robot
receives commands from the central planner and executes them in a synchronized
manner [88]. There is another type of problem formulation assuming that each robot
is assigned a local task independently and there is no global task. As a result, each
robot acts according to its plan in order to accomplish its own task, and meanwhile
it interacts with other robots when necessary, in terms of information exchange and
collaborations. This formalism favors loosely-coupled and bottom-up approaches,
which resembles many practical systems where each robot has a clear job assignment.

2.4 Related work

In this section, we provide a review of some recent work related to the following
chapters and compare the proposed solutions.

Model-checking-based control synthesis

The model-checking algorithms have been used for both control and plan synthesis
of dynamic systems. As the first step, various strategies can be found in [7, 44]
to construct finite symbolic abstraction of the dynamic system. An automated
framework for controller synthesis is proposed in [136] for discrete-time linear systems
where the control objective is specified by LTL formulas over the output trajectory,
which is more complex than the traditional goal of system stabilization and output
regulation. Under a similar setup, [10] adds a quadratic function associated with
the cost of satisfying the LTL control objective, which is ought to be minimized.
Discrete-time piecewise affine systems are considered in [84, 154, 155], where the
control task is specified as LTL formulas over linear predicates of the statespace.
Moreover, dynamical systems modeled as Markov Decision Processes (MDP) are
considered in [27] where a dynamic control policy is generated automatically to
satisfy the LTL task specification with maximal probability. A robustness index is
defined and measured for the satisfiability of continuous-time signals under metric
temporal logic (MTL) specifications in [35]. Then control objectives specified as
MTL formulas are considered in [2] where a generic control strategy is proposed.

On the other hand, [36] firstly proposed the complete framework of automated
controller synthesis for autonomous robots under LTL tasks. The robot’s motion is
abstracted by its dynamical transitions within a partition of the workspace, as a
finite transition system. Then a high-level discrete plan as a sequence of regions to
visit is synthesized by the model-checking algorithm, which is then implemented by

2.4. Related work 17

the low-level continuous controller. Graphical tools are developed in [134] for non-
expert end-users to formulate the intended tasks freely, which are then translated
to LTL formulas. Robot manipulation tasks given as LTL formulas are addressed
in [71] with a multi-layered structure of real-time planning and actuation.

Partially-known workspace

A critical assumption of the model-checking-based formalism for control synthesis
mentioned above is that the workspace needs to be perfectly known and correctly
modeled by the finite transition system. Then the discrete plan is normally generated
off-line and is executed by the robot no matter what has changed in the workspace.
As also mentioned in [27], the robot does not react to its actual observations, yielding
that this formalism lacks of reconfigurability and real-time adaptation.

Some existing work takes into account the case when a complete representation of
the workspace is not available. In [27, 151], the robot’s motion within the uncertain
workspace is modeled as nondeterministic Markov decision processes (MDP), where
the LTL task specification is satisfied by the proposed control strategy with maximal
probability. Instead, a two-player General Reactivity GR(1) game between the robot
and the environment is constructed in [91, 153] and a receding-horizon control and
planning scheme is introduced. Then a winning strategy can be synthesized by
exhaustively searching through all allowed combinations of the robot movements
and the admissible workspaces.

Instead of aiming for an off-line plan that covers every situation, we propose in our
work [59], which can be found in Chapter 4, to create firstly a preliminary plan based
on the initially-available knowledge about the robot dynamics and the workspace
model. Then while executing this plan, the robot gathers real-time observations
about the workspace and feedback for the plan execution status, based on which
the plan can be verified and revised to ensure its correctness and feasibility. Similar
ideas appear in [104] by locally patching the invalid transitions, which however can
not handle changes of the regions’ properties. A hybrid motion planning algorithm
is proposed in [108] that refines the workspace model iteratively during run time
based on sensory updates, under task specifications given as co-safe LTL formulas.

Infeasible task

The initial knowledge of the workspace might be partially incorrect, which may
render the intended task infeasible. As also mentioned in [34, 83, 121], the nominal
framework presented above simply reports a failure when the given task specifica-
tion is not realizable. It is desired that users could get feedbacks about why the
planning has failed and how to resolve this failure. [34] and [83] address this problem
systematically by finding the relaxed specification automaton that is closest to the
original one and can be fulfilled by the system. [121] introduces a way to analyze
the environment and system components contained in the infeasible specification,
and identify the possible cause. The main difference between our work [51] and the

18 Background

above references is that we put emphasis on how to synthesize the motion plan that
fulfills the infeasible task the most, instead of analyzing its infeasible parts.

The problem of synthesizing a least-violating control strategy under a set of
safety rules are addressed in [140, 141]. However the level of satisfiability is measured
differently from our approach in [51, 56], as discussed in Chapter 4. In particular, we
not only measure how many states along the plan violate the safety specifications,
but also how much each of those states violates these specifications. [94] proposes a
similar solution to [51] but an additional weighting is enforced to the set of atomic
propositions. Moreover, we introduce in [51, 56] the notion of soft and hard con-
straints as two distinctive parts of the task specification, where the hard constraints
concern safety requirements and soft constraints are for system performances.

Motion and action planning

To specify robotic tasks of practical interest, it is often necessary to include various
actions at different regions. Thus we propose in our work [58] a generic framework
that combines the model-checking-based robot motion planning with action planning
using action description languages (ADL), as described later in Chapter 5. Some
relevant work can be found that integrates the model-checking-based motion planning
with action planning. In [132], since the underlying actions can only be performed
at fixed regions, the specification can be easily restated as regions to visit. Or
independent propositions are created for each action in [91] since the actions can be
activated and de-activated at any time. The above approaches are not be applicable
if some actions can only be performed when the workspace, or the robot itself has
to satisfy certain conditions, or choices have to be made among the allowed actions.

Multi-robot system with temporal tasks

The above motion and task planning framework has also been extended to multi-
robot systems that consist of multiple dynamical robots. Many existing work can
be found on decomposing a global task specification to bisimilar local ones in a
top-down manner, which can then be executed by the robots in a synchronized [85]
and partially-synchronized [26] manner. Uncertainties in traveling time are tackled
in [142] where an optimal path planning algorithm is proposed for multi-robot
systems under a global task specification. [79] formulates the multi-vehicle routing
problem under a global LTL task as a mixed integer linear programming (MILP)
problem and the derived local plans need to be executed in a synchronized fashion
by each robot. There are several drawbacks of this top-down approach: the plans
for the whole team are synthesized by the central unit, with a high computational
complexity subjected to the combinatorial blowup; it is vulnerable to robot failures
and contingencies during run time.

From an opposite viewpoint, we assume that the local task specifications are
assigned locally to each robot and there is no specified global task. Namely we
consider a team of cooperative robots with different, independently-assigned, even

2.4. Related work 19

conflicting individual tasks as considered in our work [51, 52, 56, 57], which can be
found in Chapters 4-6. This loosely coupled bottom-up formulation is particularly
useful for multi-robot systems where the robots have heterogeneous capabilities
and distinctive task assignment. As explained in the remaining chapters, it allows
more flexibility of the system since plans and decisions are made locally by each
robot [52]; conflicts are resolved and collaborations are coordinated during run
time [56, 57]. A similar formalism is adopted in [38] where a decentralized framework
for collaborative feasibility verification is proposed, which however does not include
the way to resolve potentially-conflicting tasks. A receding-horizon algorithm for
distributed coordination is proposed in [139] for multi-robot systems under dependent
LTL task specifications.

Relative-motion constraints

Relative-motion constraints often arise in multi-robot systems as the robots coexist
within the same workspace, such as collision avoidance [25], network connectivity [76,
158], or relative-velocity constraints [62]. As also pointed out in [62, 157, 158], obeying
these constraints is of great importance for the stability, safety and integrity of the
overall multi-robot team, which however are often imposed by assumption rather
than treated as extra control objectives. We address a version of this problem in our
early work [61], where we propose a dynamic leader-follower coordination and control
strategy such that the relative-distance constraints among neighboring robots are
respected. Later in our work [67, 68] as included in Chapter 6, we improve this
scheme by a fully decentralized and communication-free solution that is applicable
to low-cost robotic systems equipped with only range and angle sensors, but without
communication capabilities. Different from [38, 61] where a satisfying discrete plan
is enough, the initial plan synthesis algorithm proposed in [67, 68] minimizes the
bottle-neck cost of a satisfying plan. The proposed motion control scheme guarantees
almost global convergence and the satisfaction of relative-distance constraints at
all time, for an arbitrary number of leaders that are active under different local
goals. Most related literature only allows for a single leader [61, 122] or multiple
leaders with the same global goal [117, 157]. Additionally, three different local
coordination policies are proposed in [67] to incorporate different types of local tasks.
Different from [86], these policies are locally applicable to robots without explicit
communication modules.

Control with Embedded Graph Grammars

As mentioned above, relative-motion constrains are crucial for the safety and stability
of multi-robot systems in general. However, most of related work neglects this aspect,
e.g, inter-robot collision is not handled formally in [56, 139] and connectivity of
the communication network is taken for granted in most cases [57, 143]. We take
advantage of Embedded Graph Grammars (EGGs) in our work [69] as described later
in Chapter 6, to specify local interaction and communication rules among the robots,

20 Background

in order to address simultaneously local LTL tasks and relative-motion constraints.
EGGs have been introduced in [113, 114]. They provide a natural framework to
encode the robot dynamics, local information exchange and switching control modes
in a unified manner. Their successful applications to multi-robot systems can be
found in, e.g., coverage control [114], self-reconfiguration of modular robots [120],
and autonomous multi-robot deployment [131]. Note that only local interactions
or communication are needed for the execution of EGGs, yielding it suitable for
large-scale multi-robot systems.

Contingent service and formation tasks

Two common cooperative robotic tasks, namely service and formation tasks, are
taken into account in our work [63], of which the details are given in Chapter 7.
Service requests are of particular interest as they encapsulate the scenario where one
robot needs another robot’s assistance on a short-term task. The service requests
can only be exchanged among the robots in real-time, which means that each robot
has to react to the received service requests in a contingent way. Similar work on
real-time reactivity for dynamical systems under temporal tasks can be found in [90],
where sensory inputs are included in the General Reactivity GR(1) formulas to
take into account possibly dynamical environments, as well as in [91], where similar
techniques are applied for various single-robot and multi-robot applications. The
local plans of each robot are synthesized off-line to handle all modeled changes in
the environment, which is however not feasible in our formulation as the service and
formation requests are exchanged in real-time under a non-predefined manner.

Another common cooperative robotic task arises when an robot requests from
another one to form a relative configuration to accomplish a collaborative task. We
denote such a requirement in [63] as a formation request. Similar ideas of imposing
formation constraints for multi-robot systems appeared in [107], where however a
global formation task for the whole team is embodied. In the same vein, although
the formation control has been extensively studied for multi-robot systems, e.g.,
in [76, 117, 118], we enforce prescribed performance constraints on the transient
response of the formation process in [63]. The prescribed performance control problem
was originally studied for high-order MIMO nonlinear single-robot systems [13] and
was recently extended to multi-robot systems with single integrator dynamics [80]
and nonlinear dynamics [12]. However, the existing prescribed performance control
technique is enhanced in our work [63] by: (i) considering transient performance
specifications on the overall formation error, in contrast to the relative coordinates
approach in [12], thus simplifying the control design; (ii) combining it with the
high-level discrete planning such that various control modes are activated according
to the real-time execution of the discrete plan.

Chapter 3

Robot motion and task planning

An automated motion and task planning framework for a mobile robot is
introduced in this chapter as the nominal solution. In particular, a finite-state

transition system is constructed to serve as the discrete abstraction of the robot
motion within the workspace. The robot is assigned a complex task which is specified
as temporal logic formulas over this transition system. Through the model-checking
algorithm, we synthesize firstly a discrete motion plan that satisfies the given task
and more importantly minimizes a total cost. Then based on this discrete plan, we
construct a hybrid control strategy that drives the robot such that its final trajectory
satisfies the task specification.

3.1 Abstraction of robot motion

The robot’s motion within a certain workspace is abstracted as a finite-state transi-
tion system (FTS) [11]. This FTS is constructed by integrating two aspects: (i) the
workspace model; (ii) the robot dynamics and its navigation controller.

3.1.1 The workspace model
The workspace we consider is a bounded n-dimensional space, denoted by W0 ⊂ Rn,
within which there exists W smaller regions of interest πi ⊂ W0, ∀i = 1,2,⋯,W .
Denote by Π = {π1,⋯, πW } the set of all smaller regions. We require that Π is a full
partition of the workspace and any two regions πi, πj ∈ Π do not overlap. Namely,
⋃Wi=1 πi =W0 and πi ∩ πj = ∅, ∀i, j = 1,2, . . . ,W and i ≠ j.

Atomic propositions are boolean variables that can be either True or False,
which are denoted by ⊺ and � for brevity. They are used to express known properties
about the state of the robot. Specifically, in order to indicate the robot’s position,
we define the set of atomic propositions APr = {ar,i}, i = 1,⋯,W , where

ar,i =

⎧⎪⎪
⎨
⎪⎪⎩

⊺ if the robot is in region πi,
� otherwise,

(3.1)

21

22 Robot motion and task planning

Figure 3.1: Left: the office-like partition of six rooms and one corridor. Right: after
adding in APp, with two balls (in red) and one basket (in blue).

where ar,i can be evaluated by monitoring the measurements from a localization or
positioning system. The requirement that ⋃ni=1 πi =W0 is important to ensure that
the robot’s position is tracked at all time. Beside the geometric structure of the
workspace, we also would like to express some generic properties within the workspace
that are of interest to potential tasks. Denote by APp = {ap,1, ap,2,⋯, ap,M} the set
of atomic propositions for these properties. For simplicity, we set AP = APr ∪APp
as the set of all atomic propositions.

Definition 3.1. The labeling function L ∶ Π→ 2AP maps a region πi ∈ Π to the set
of atomic propositions satisfied by πi, and ar,i ∈ L(πi) by default, ∀i = 1,⋯,W . ▲

Note that partial satisfaction of a proposition is not allowed. Namely, if only a
part of region πi satisfies a ∈ AP and the other part does not, then πi should be
split into two regions: one satisfies a and the other does not. APp greatly improves
the flexibility when expressing the intended tasks because one generic property can
represent one type of regions without explicitly specify the location of these regions.

Example 3.1. An office-like workspace has six rooms and one corridor, which gives
the partition in Figure 3.1. Two properties are “there is a basket in the region” and
“there is a ball in the region”. ▲

Additionally, since every region is a dense subset of the n-dimensional space, it
is impossible to represent each region by the set of points contained in it. Thus it
is crucial to represent and encode these regions efficiently. For instance, rectangles
can be encoded by its center coordinate, height and width; sphere by its center
and radius; triangular by the coordinates of its corners. There are also automated
partition tools like Delaunay triangulation [100] and Voronoi diagram [97]. Note
that this level of partition is preliminary and not robot-specific.

3.1.2 Robot dynamics and navigation controller

We assume the robot satisfies the following continuous dynamics:

ẋ(t) = f(x(t), u(t)), (3.2)

3.1. Abstraction of robot motion 23

where x ∈ Rn, u ∈ Rm are the position and control signal; f(⋅) is Lipschitz con-
tinuous [82]. Thus the system is deterministic, i.e., given an initial state x(0), a
control input u(t) ∶ R → Rm produces an unique state trajectory. We mainly take
into account the single-integrator dynamics or the unicycle model. However the
proposed framework can be potentially applied to other dynamics.

Given the preliminary partition from Section 3.1.1 and the agent dynamics
by (3.2), we need to abstract the robot’s ability to transit from one region to
another, which is not necessarily the adjacency relation in the geometrical sense.
Instead it is defined in the control-driven fashion.

Definition 3.2. There is a transition from πi to πj if an admissible navigation
controller U ∶ Rn ×Π ×Π→ Rm:

u(t) = U(x(t), πi, πj), t ∈ [t′, t′′] (3.3)

exists that could drive the system (3.2) from any point in region πi to a point in
region πj in finite time. At the same time the robot should stay within πi or πj .
Namely, x(t′) ∈ πi, x(t′′) ∈ πj and x(t) ∈ πi ∪ πj , ∀t ∈ [t′, t′′]. ▲

The above definition is closely related to the implementation of a discrete motion
plan described in Section 3.3.3. Two main navigation techniques are discussed in
the thesis: (i) [103] proposes a potential-field-based feedback control algorithm. It
navigates a differential-driven mobile robot from any point inside a region to an
adjacent region through a desired facet. The partition is based on generalized Voronoi
diagram and a smooth vector filed is constructed over each triangular region; (ii) [87]
provides a provably correct point-to-point navigation algorithm, by constructing an
exact navigation function for sphere workspace and obstacles. It has been successfully
applied in both single [105] and multi-agent [24] navigation control under different
geometric constraints, like single-integrator [106], double-integrator [23] vehicles. By
following the negated gradient of the navigation function, a collision free path is
guaranteed from almost any initial position in the free space to any goal position in
the free space given that the workspace is valid.

It is rarely the case that a navigation technique is applicable to any type of par-
titions. For instance, the potential-filed-based method requires a triangular partition
while the navigation-function-based approach needs all sphere structures. This means
that the preliminary workspace partition might be modified in terms of number,
size and shape of the regions. Example 3.2 shows some cases where the preliminary
partition is modified after incorporating the robot dynamics and navigation tech-
niques. This might lead to an over-approximation or under-approximation [129] of
the actual workspace as some regions are shrunk or expanded during the process. In
some cases, another navigation technique needs to be designed when it is infeasible
to incorporate one navigation technique to a given workspace model.

Example 3.2. As shown in Figure 3.2, the office-like workspace from Figure 3.1 is
further partitioned since the underlying navigation technique relies on triangular

24 Robot motion and task planning

Figure 3.2: Results of workspace abstraction after incorporating the navigation techniques,
as explained in Example 3.2.

partition. The irregular regions in the right image are approximated by circular
areas due to its navigation-function-based construction. ▲

3.1.3 Control-driven and weighted FTS

The robot motion is abstracted as transitions among the regions Π = {π1, ⋯, πN}.
With a slight abuse of notation, we denote by πi = {the robot is at region πi},
i = 1,⋯,N , the states that reflect which region the robot is currently visiting. The
transitions or state changes represent that the robot has moved from one region to
another. Recall that the transition relation is not necessarily the adjacency relation
in the geometrical sense, but by Definition 3.2. Formally the control-driven and
weighted finite-state transition system (FTS) is defined below:

Definition 3.3. The weighted FTS is a tuple Tc = (Π, Ð→c, Π0, AP, Lc, Wc), where
Π = {πi, i = 1,⋯,W} is the set of states; Ð→c ⊆ Π ×Π is the transition relation by
Definition 3.2. For simplicity, πi Ð→c πj is equivalent to (πi, πj) ∈Ð→c; Π0 ⊆ Π is
the initial state, to indicate where the robot may start from; AP = APr ∪APp is the
set of atomic propositions; Lc ∶ Π → 2AP is a labeling function by Definition 3.1;
Wc ∶ Π ×Π → R+ is the weight function as the cost of a transition in Ð→c. ▲

We assume that Tc does not have a terminal state. The successors of state πi
are defined as Post(πi) = {πj ∈ Π ∣πj Ð→c πj}. An infinite path of Tc is an infinite
state sequence τ = π1π2⋯ such that π1 ∈ Π0 and πi ∈ Post(πi−1) for all i > 0. The
trace of a path is the sequence of sets of atomic propositions that are true in the
states along that path, i.e., trace(τ) = Lc(π1)Lc(π2)⋯. The trace of Tc is defined
as Trace(Tc) = ∪τ∈I trace(τ), where I is the set of all infinite paths in Tc. An useful
way to represent an infinite path is to use the ω-operator, to indicate the segment
that has to be repeated infinitely many times [11].

The weighted FTS Tc is fully-known if it reflects the actual workspace model
and robot dynamics; Tc is called static if Tc does not change with time.

3.2. Task specification as LTL formulas 25

3.2 Task specification as LTL formulas

A language is needed to specify a complex task, which on one hand should be
expressive enough to specify various types of tasks, and on the other hand should
be formal enough to avoid ambiguity and misinterpretation. Linear time Temporal
Logic (LTL) provides a concise and formal way to specify both propositional and
temporal constraints on the system behavior.

3.2.1 Syntax and semantics
Linear-time temporal logic (LTL) is defined using the following syntax:

ϕ ∶∶= ⊺ ∣ a ∣ ϕ1 ∨ ϕ2 ∣ ¬ϕ ∣◯ϕ ∣ ϕ1 Uϕ2, (3.4)

where a ∈ AP and ∧ (or), ¬ (not), ◯ (next), U (until). For brevity, we omit the
derivations of other useful operators like ◻ (always), ◇ (eventually), ⇒ (implication)
and refer to Chapter 5 of [11]. An infinite word over the alphabet 2AP is an infinite
sequence σ ∈ (2AP)ω that σ = S0 S1 S2⋯, where Sk ∈ 2AP for all k = 1, 2, ⋯, where
Sk is the set of atomic propositions that are true at time step k.

The semantics of LTL for an infinite word σ is given via a doubly-recursive
definition of the relation (σ, k) ⊧ ϕ, i.e., σ satisfies ϕ at time step k.

Definition 3.4. The semantics of LTL is defined as follows:
(σ, k) ⊧ a ↔ a ∈ Sk

(σ, k) ⊧ ¬ϕ ↔ (σ, k) ⊭ ϕ

(σ, k) ⊧◯ϕ ↔ (σ, k + 1) ⊧ ϕ
(σ, k) ⊧ ϕ1 ∨ ϕ2 ↔ (σ, k) ⊧ ϕ1 or (σ, k) ⊧ ϕ2

(σ, k) ⊧ ϕ1 Uϕ2 ↔ ∃k′ ∈ [k, +∞], (σ, k′) ⊧ ϕ2 and
∀k′′ ∈ (k, k′), (σ, k′′) ⊧ ϕ1 . ▲

Any LTL formula ϕ is satisfied by σ at time step 0 if (σ, 0) ⊧ ϕ (for simplicity
we denote by σ ⊧ ϕ). The words of ϕ is defined as the set of words that satisfy ϕ
at time step 0, i.e., Words(ϕ) = {σ ∈ (2AP)ω ∣σ ⊧ ϕ}. Given an infinite path τ of Tc
and an LTL formula ϕ over AP , trace(τ) is a word over the alphabet 2AP . Thus
we can verify if trace(τ) satisfies ϕ according to the semantics (3.4).

Definition 3.5. An infinite path τ satisfies ϕ, i.e., τ ⊧ ϕ if its trace trace(τ) ⊧ ϕ.
A satisfying path is also called a plan for ϕ. ▲

LTL formulas can be used to specify various robot control tasks, such as safety
(◻¬ϕ1, globally avoiding ϕ1), ordering (◇(ϕ1 ∧ ◇ (ϕ2 ∧ ◇ϕ3)), ϕ1, ϕ2, ϕ3 hold
in sequence), response (ϕ1 ⇒ ϕ2, if ϕ1 holds, ϕ2 will hold in future), repetitive
surveillance (◻◇ ϕ, ϕ holds infinitely often).

Another particular class of LTL we consider in this thesis is the syntactically
co-safe LTL (sc-LTL) [93]. They only contain the ◯, U and ◇ operators and are

26 Robot motion and task planning

written in positive normal form [35]. In contrast, the satisfaction of an sc-LTL
formula can be achieved in a finite time, i.e., each word satisfying an sc-LTL formula
ϕ consists of a satisfying prefix that can be followed by an arbitrary suffix.

3.2.2 Problem formulation
As discussed in the introduction, a single counter example would be enough for
the purpose of verification, i.e., to verify that not all infinite paths of Tc satisfy ϕ.
However for plan synthesis, since the derived plan needs to be implemented by
autonomous robots, we need to find a plan that fulfills certain structure.

Prefix-suffix structure

As a plan is essentially an infinite sequence of states in Tc, it is not convenient to
encode, analyze or manipulate both in theory and software implementation. Thus
we consider the plan with the prefix-suffix structure:

τ = ⟨τpre, τsuf⟩ = τpre [τsuf]
ω (3.5)

where the prefix τpre is transversed only once and the suffix τsuf is repeated infinitely.
A plan with this prefix-suffix structure has a finite representation as (3.5). This
structure is also called lasso-shapeed in [130] with the stem τpre and the loop τsuf.

Definition 3.6. ϕ is called feasible if there exists an infinite path τ of Tc that
satisfies ϕ. ▲

With the above preliminaries in hand, the problem formulation for the nominal
scenario could be stated as follows:

Problem 3.1. Given the control-driven wFTS Tc and an LTL formula ϕ over AP ,
(i) find a plan with the prefix-suffix structure in (3.5); (ii) construct the hybrid
control strategy based on (3.3) to execute the derived plan. ▲

3.3 Hybrid controller synthesis

In this section, we describe in detail how to synthesize the discrete plan that solves
the first part of Problem 3.1.

Büchi automaton

Given an LTL formula ϕ over AP , there exists a Nondeterministic Büchi automaton
(NBA) over 2AP corresponding to ϕ, denoted by Aϕ.

Definition 3.7. The NBA Aϕ is defined by a five-tuple:

Aϕ = (Q, 2AP , δ, Q0, F), (3.6)

3.3. Hybrid controller synthesis 27

where Q is a finite set of states; Q0 ⊆ Q is a set of initial states; 2AP is the alphabet;
δ ∶ Q × 2AP → 2Q is a transition relation; F ⊆ Q is a set of accepting states. ▲

An infinite run of the NBA is an infinite sequence of states that starts from an
initial state and follows the transition relation. Namely, r = q0q1q2⋯, where q0 ∈ Q0
and qk+1 ∈ δ(qk, S) for some S ∈ 2AP , k = 0,1,⋯. Moreover, r is called accepting if
Inf(r) ∩F ≠ ∅, where Inf(r) is the set of states that appear in r infinitely often.
We denote the successors of qm ∈ Q by Post(qm) = {qn ∣∃S ∈ 2AP , qn ∈ δ(qm, S)}.

Definition 3.8. Given an infinite word σ = S0S1S2⋯ over 2AP , its resulting run
in Aϕ is denoted by rσ = q0q1q2⋯, which satisfies: (i) q0 ∈ Q0; (ii) qi+1 ∈ δ(qi, Si),
∀i = 1,2,⋯,∞. Similar statement holds for a finite word σ̄ = S0S1S2⋯SN+1. ▲

Note that since Aϕ is nondeterministic, there may exist multiple resulting runs
of the same world. Denote by Lω(Aϕ) the accepted language of Aϕ, which is the
set of infinite words that result in an accepting run of Aϕ, i.e., Lw(Aϕ) = {σ ∈
(2AP)ω ∣ rσ is an accepting run}.

Lemma 3.1. Lw(Aϕ) = Words(ϕ)

Proof. See proof of Theorem 5.37 in [11] ∎

The translation process from an LTL formula to its corresponding NBA can be
done in time and space 2O(∣ϕ∣) [11]. However, there are fast translation algorithms [41],
which generates NBA with few states and transitions. Furthermore it is tedious
to list all input alphabets for each transition, particularly given a large set of AP .
Thus it is important to represent them in an compact and efficient manner. The
translation algorithm from [41] generates a boolean expression for each transition,
which accepts all alphabets that enable this transition (as shown in Figure 3.3).
Binary decision diagrams (BDD) are well-known for their efficiency to represent and
evaluate boolean functions [4] . As a result, an NBA can be encoded symbolically
and efficiently. More details can be found in Section 8.

Example 3.3. The NBA that corresponds to ϕ = (◻◇ a1) ∧ (◻◇ a2) ∧ (◻◇ a3) ∧
(◻¬a4) is derived from [41] and shown in Figure 3.3. The transition from state q1
to q3 is given by q3 ∈ δ(q1, l) where the boolean expression l = (a2 & ¬a4) encodes
four input alphabets {a2}, {a2, a1}, {a2, a3}, {a2, a1, a3}. ▲

3.3.1 Product Büchi automaton
The automaton-based model-checking algorithm can be found in [147] and Algorithm
11 of [11]. It is based on checking the emptiness of the product Büchi automaton.
Since Words(ϕ) = Lw(Aϕ) and trace(τ) ∈ Trace(Tc), the original problem is
equivalent to finding the intersection Trace(Tc) ∩ Lw(Aϕ), which is actually the
language of the product Büchi automaton Ap = Tc ⊗Aϕ, which accepts all runs that
are valid for Tc and at the same time satisfy ϕ.

28 Robot motion and task planning

q1

init

q2

q3

q1q1 ¬a4

a1 & ¬a4

¬a4

a2 & ¬a4

¬a4

a1 & ¬a4

a2 & a3 & ¬a4

¬a4a1 & a2 & a3 &
¬a4

a3 & ¬a4

a1 & a2 & ¬a4

a1 & a2 & ¬a4

a1 & a2 & a3 &
¬a4

Figure 3.3: The NBA associated with ϕ = (◻ ◇ a1) ∧ (◻ ◇ a2) ∧ (◻ ◇ a3) ∧ (◻¬a4)
(constructed by program from [41]), as explained in Example 3.3.

It is important to mention that unlike the model-checking algorithm for veri-
fication, we do not negate the task specification before generating the associated
NBA and the product automaton. This is because we are interested in the “good”
behavior of the system that satisfies the specification, not the “bad” behavior that
satisfies the negated specification for the purpose of verification.

Definition 3.9. The weighted product Büchi automaton is defined byAp = Tc⊗Aϕ =

(Q′, δ′, Q′
0, F

′, Wp), where Q′ = Π×Q = {⟨π, q⟩ ∈ Q′ ∣∀π ∈ Π, ∀q ∈ Q}; δ′ ∶ Q′ → 2Q
′

.
⟨πj , qn⟩ ∈ δ

′(⟨πi, qm⟩) iff (πi, πj) ∈Ð→c and qn ∈ δ(qm, Lc(πi)); Q′
0 = {⟨π, q⟩ ∣π ∈

Π0, q0 ∈ Q0}, the set of initial states; F ′ = {⟨π, q⟩ ∣π ∈ Π, q ∈ F}, the set of accepting
states;Wp ∶ Q

′×Q′ → R+ is the weight function:Wp(⟨πi, qm⟩, ⟨πj , qn⟩) =Wc(πi, πj),
where ⟨πj , qn⟩ ∈ δ

′(⟨πi, qm⟩). ▲

Since Ap remains a Büchi automaton [11], its infinite run and its accepting
condition can be defined similarly as Aϕ. An infinite run R is called accepting if it
intersects with the accepting set F ′ infinitely often. The successors of q′s are given
by Post(q′s) = {q′g ∣ q

′
g ∈ δ

′(q′s)}. Given a state q′ = ⟨π, q⟩ ∈ Q′, its projection on Π is
denoted by q′∣Π = π and its projection on Q is denoted by q′∣Q = q. Given an infinite
run R = q′0q

′
1q

′
2⋯ of Ap, its projection on Π is denoted by R∣Π = q′0∣Π q

′
1∣Π q

′
2∣Π⋯ and

its projection on Q is denoted by R∣Q = q′0∣Q q
′
1∣Q q

′
2∣Q⋯.

Lemma 3.2. If there exists an infinite path τ of Tc such that τ ⊧ ϕ, then at least
an accepting run of Ap exists.

Proof. See the proof of Theorem 4.63 from [11]. ∎

Lemma 3.3. Given an accepting run R of Ap, then R∣Π ⊧ ϕ.

Proof. By definition, there exists an accepting state q′f ∈ F ′ appearing in R infinitely
often. Thus q′f ∣Q ∈ F appears in R∣Q infinitely often, yielding that R∣Q is an accepting

3.3. Hybrid controller synthesis 29

run. It can be easily shown that R∣Q is one of the resulting runs of the trace of R∣Π.
Thus trace(R∣Π) ∈ Lω(ϕ) = Words(ϕ), which implies R∣Π ⊧ ϕ by Definition 3.5. ∎

Cost of an accepting run

We intended to find an infinite path τ of Tc with the prefix-suffix structure in (3.5),
such that τ ⊧ ϕ. The following lemma is important for the correctness.

Lemma 3.4. If there exists an infinite path τ with the prefix-suffix structure and τ ⊧
ϕ, then at least one accepting run of Ap exists with the prefix-suffix structure.

Proof. Since τ ⊧ ϕ, then σ = trace(τ) ∈ Words(ϕ). Furthermore as Lw(Aϕ) =
Words(ϕ) by Lemma 3.1, σ ∈ Lw(Aϕ), meaning that the resulting run rσ in Aϕ
by Definition 3.8 is an accepting run of Aϕ.

Without loss of generality, let τ = π0π1⋯πi⋯ and rσ = q0q1 . . . qj⋯. Now we prove
that R = ⟨π0, q0⟩⟨π1, q1⟩⋯⟨πi, qj⟩⋯ is an accepting run of Ap. First of all, ⟨π0, q1⟩ ∈
Q′

0 as π0 ∈ Π0 and q0 ∈ Q0. Secondly, ⟨πi+1, qj+1⟩ ∈ δ
′(⟨πi, qj⟩) as (πi, πi+1) ∈Ð→c

and qi+1 ∈ δ(qi, Lc(πi)). At last, since rσ is an accepting run of Aϕ, there exists an
accepting state qf ∈ F that appears in rσ infinitely often. Correspondingly, there
exists at least one ⟨π, qf ⟩ that appears in R infinitely often and ⟨π, qf ⟩ ∈ F

′, where
π may stand for one or several states in Π. Since F ′ is finite, there must be one
accepting state q′f ∈ F ′ that appears in R infinitely often.

Then an accepting run with the prefix-suffix structure can be constructed by
using the segment from ⟨π0, q0⟩ to q′f as prefix and the segment starting from q′f
and back to q′f as the suffix, which completes the proof. ∎

Thus we could focus on the accepting runs of Ap with the prefix-suffix structure:

R = ⟨Rpre, Rsuf⟩ = q
′
0 q

′
1⋯q

′
f [q′f q

′
f+1⋯⋯q

′
n]

ω

= ⟨π0, q0⟩⋯⟨πf−1, qf−1⟩ [⟨πf , qf ⟩⟨πf+1, qf+1⟩⋯⋯⟨πn, qn⟩]
ω
,

(3.7)

where q′0 = ⟨π0, q0⟩ ∈ Q
′
0 and q′f = ⟨πf , qf ⟩ ∈ F

′. Note that there are no correspon-
dences among the subscripts. The prefix part Rpre = (q′0 q

′
1⋯q

′
f) from an initial

state q′0 to one accepting state q′f that is executed only once while the suffix part
Rsuf = (q′f q

′
f+1⋯⋯q

′
n) from q′f back to itself that is repeated infinitely. Given the

finite representation as (3.7), there is a finite set of transitions appearing in R:

Edge(R) = {(q′i, q
′
i+1), i = 0,1⋯, (n − 1)} ∪ {(q′n, q

′
f)}. (3.8)

The structure also allows us to define the total cost of R:

Cost(R, Ap) =
f−1
∑
i=0

Wp(q
′
i, q

′
i+1) + γ

n−1
∑
i=f

Wp(q
′
i, q

′
i+1)

=
f−1
∑
i=0

Wc(πi, πi+1) + γ
n−1
∑
i=f

Wc(πi, πi+1)

(3.9)

30 Robot motion and task planning

P_FFP_IF

Figure 3.4: For every pair of q′0 ∈ Q′
0 (in blue) and q′f ∈ F ′ (in red), the shortest path

from q′0 to q′f and the shortest cycle containing q′f are computed.

where the first summation in (3.9) represents the accumulated weights of transitions
along the prefix and the second the suffix; γ ≥ 0 is the relative weighting on the cost
of transient response (the prefix) and steady response (the suffix).

Problem 3.2. Given the product automaton Ap, find its accepting run with the
prefix-suffix structure that minimizes the cost defined by (3.9). ▲

We denote by Ropt the solution for the above problem, as the optimal accepting
run. Its corresponding plan is given by τopt = Ropt∣Π.
Remark 3.1. τopt might not be the actual optimal plan with the prefix-suffix
structure, whose cost is defined similarly as (3.9). As pointed out in [130], this
optimality loss is due to the simplification during the translation process from LTL
formulas to the corresponding NBA. However there are certain types of tight NBA
such as [19] that preserves this quality. It means that the optimal plan can be found
directly as the projection of the optimal run. But we have not found the software
implementation for this translation algorithm yet. Nevertheless the trade-off between
optimality and computational complexity remains as the tight NBA would certainly
have far more states and edges as shown in the examples of [130]. ▲

3.3.2 Optimal run search
In this part we present firstly two methods to construct the product automaton and
then the graph search algorithm to find the optimal accepting run.

Full construction

Since only static and fully-known workspace is considered, both Tc and ϕ are
time-invariant. Thus Ap can be constructed fully by Definition 3.9. In particular,
given a FTS state πi ∈ Π and a NBA state qm ∈ Q, the composed state ⟨πi, qm⟩ is
added to Q′ if it is not in Q′ already. Then all transitions originated from ⟨πi, qm⟩
can be found by the definition of δ′, namely ∀πj ∈ Post(πi) and ∀qm ∈ Post(qn),
⟨πj , qn⟩ ∈ Post(⟨πi, qm⟩) if qn ∈ δ(qm, L(πi)).

After constructing Ap fully, Algorithm 3.1 takes as input arguments Ap and a
set of starting states S′ ⊆ Q′, which is set to Q′

0 by default, while it generates the
optimal accepting run. Algorithm 3.1 utilizes Dijkstra’s algorithm [97] for computing
the shortest path from a single source node to a set of target nodes within a weighted

3.3. Hybrid controller synthesis 31

Algorithm 3.1 Search for optimal run, OptRun().
Input: Ap, S′ = Q′

0 by default
Output: Ropt
1. If Q′

0 or F ′ is empty, construct Q′
0 or F ′ first.

2. For each initial state q′0 ∈ S′, call DijksTargets(G, q′0, F ′).
3. For each accepting state q′f ∈ F ′, call DijksCycle(G, q′f).
4. Find the pair of (q′0,⋆, q′f,⋆) that minimizes the summed cost defined by (3.9).
5. Optimal accepting run Ropt, prefix: the shortest path from q′0,⋆ to q′f,⋆; suffix: the
shortest cycle from q′f,⋆ and back to itself.

graph. In particular, function DijksTargets(Ap, q′S , Q′
T) computes shortest paths

in Ap from source state q′S ∈ Q to every target state belonging to the set Q′
T ∈ Q′.

Function DijksCycle(Ap, q′S) is used to compute shortest cycle from the source
state q′S back to itself. As shown in Figure 3.4, for each pair of initial and accepting
states (q′0, q

′
f) where q′0 ∈ Q′

0 and q′f ∈ F ′, the shortest path from q′0 to q′f is obtained
from line 1 of Algorithm 3.1 where DijksTargets(⋅) is called while the shortest
cycle containing q′f is obtained from line 2 of Algorithm 3.1 where DijksCycle(⋅) is
called. At last, the pair (q′0,⋆, q

′
f,⋆) that minimizes the total cost defined by (3.9) is

chosen. Then the optimal accepting run is determined by setting its prefix as the
shortest path from q′0,⋆ to q′f,⋆ and its suffix as shortest cycle containing q′f,⋆.

The algorithm to compute Ap has the complexity proportional to the sum of the
number of states and transitions in Ap. The worst-case complexity of Algorithm 3.1
is given by O(∣δ′∣ ⋅ log ∣Q′

0∣ ⋅(∣Q
′
0∣+ ∣F ′∣))) as essentially the Dijkstra algorithm [89, 97]

has to be called over Ap by the number of times equal to ∣Q′
0∣ + ∣F ′∣.

On-the-fly construction

Beside constructing Ap once for all, we would construct Ap on-the-fly along with
the graph search Algorithm 3.1 and even the revision Algorithm 4.4 introduced later.
In other words, the states and transition relations of Ap are built “on demand”.
When the search algorithm visits any state q′s ∈ Q′, it constructs the adjacency
relation of q′s by iterating through all successors of q′s and returns the corresponding
transition q′g ∈ δ′(q′s) along with its weight. Note that each state q′s ∈ Q′ is marked
by the label “visited” or “unvisited”, to indicate if the transitions originated from
q′s have to be constructed. In particular, if q′s is marked “visited”, it means that
they have been constructed before and can be returned directly; if q′s is marked
“unvisited” or πi belongs to Π̂, they need to be constructed by Definition 3.9 ; Π̂ will
be defined in (4.19), which can be treated as ∅ for now. Detailed implementation of
the on-the-fly construction can be found in [48].

The markers “visited” and “unvisited” improve the computational efficiency
as the adjacency relation of states that have been visited before can be returned
directly, meaning that the results from previous planning iterations can be reused
later; Π̂ provides a highly efficient way to maintain and update Ap in case of updates

32 Robot motion and task planning

Size n2 tfull (s) tsyn (s) tfly (s) Size n2 tfull (s) tsyn (s) tfly (s)

25 1.11 0.03 0.82 3025 64.77 2.98 74.53
225 8.85 0.23 6.88 4225 91.65 3.96 101.34
625 14.04 0.56 11.09 5625 118.24 5.44 144.78
1225 24.96 1.12 23.24 7225 150.77 7.00 178.99
2025 42.40 1.87 38.13 9025 187.01 8.95 218.17

Table 3.1: Numerical results for Example 3.4.

in Tc, as later described in Algorithm 4.4 in Section 4.3. Then Algorithm 3.1 can
be easily modified such that it takes the adjacency relation of Ap as an input,
instead of the fully-constructed Ap. Functions DijksTargets(⋅) and DijksCycle(⋅)
still work in the same way since the Dijkstra algorithm only needs the adjacency
relation in the breadth-first structure and the associated weight. Even though the
worst-case computational complexity of Algorithm 3.1 remains the same for these
two different methods to construct Ap, the on-the-fly construction is essential for
the partially-known and dynamic workspace that will be discussed in Section 4.3,
where Tc has to be updated frequently.

Example 3.4. This example shows the general complexity of synthesizing a discrete
motion and task plan using the proposed scheme. The FTS consists of n×n uniform
grids as states and the cost from one region to an adjacent region is set randomly and
uniformly within [0, 1]. The task is to deliver two objects to two different destinations
separately and then return to the base station. The formula can be written similarly
as (3.13). The location of the objects and destinations are chosen randomly. We
keep track of: (i) tfull, the time needed to fully construct Ap by Definition 3.9; (ii)
tsyn, the time taken to find the optimal accepting run by Algorithm 3.1 over the
fully-constructed Ap; (iii) tfly, the time taken to construct Ap on-the-fly along the
optimal search by Algorithm 3.1. They are measured by CPU time in seconds on a
desktop computer (3.06 GHz Duo CPU and 8GB of RAM).

The associated NBA has 75 states and 877 edges. Judging from Table 3.1, given
a fixed transition system and this particular task, these two different approaches
consume almost the same amount of time. The construction of Ap takes almost 95%
of the total time while the graph search algorithm is relatively fast. ▲

3.3.3 Control structure
Assume the optimal run Ropt from Algorithm 3.1 has the following format:

Ropt = ⟨Rpre, Rsuf⟩

= Rpre,1Rpre,2⋯Rpre,Npre[Rsuf,1Rsuf,2⋯Rsuf,Nsuf]
ω
,

(3.10)

where Rpre = Rpre,1⋯Rpre,Npre is the prefix; Rsuf = Rsuf,1⋯Rsuf,Nsuf is the suffix.

3.4. Case study 33

Algorithm 3.2 Plan execution by hybrid control, HybCon()
Input: Ropt, x(t)
Output: u, Rpast, τpast, q′cur
q′cur = q

′
next = Rpre,1, πnext = q′next∣Π, Rpast = [], τpast = []

while True do
if x(t) ∈ πnext confirmed then

q′cur = q
′
next, τpast = τpast + πnext, Rpast = Rpast + q

′
next

q′next = NextGoal(q′cur, Ropt), πcur = q′cur∣Π, πnext = q′next∣Π
u(t) = U(x(t), πcur, πnext)

Thus the robot’s status within the accepting run can be uniquely determined
by the segment (prefix or suffix) and its index within that segment, which are
denoted by seg and k. To generate the infinite plan using Rpre and Rsuf, function
NextGoal(⋅) takes the current product state q′cur = Rseg,k and Ropt as inputs and
generates the next goal product state. Simply speaking, it firstly follows the prefix
until the end of prefix. Then it switches to the suffix and follows it until the end.
After that it restarts from the beginning of the suffix and repeats the same process.
In this way, the suffix is executed infinitely many times.

Algorithm 3.2 executes the derived optimal run Ropt off-line. Initially the agent
starts from q′pre,1; q′cur and q′pre are the current and next product state in Ropt;
πcur and πnext indicate the robot’s current region and the next goal region. πnext
is initialized as τpre,1; Rpast is used to store the sequence of product states that
has been reached in Ropt; τpast is used to store the sequence of regions the robot
has visited; Once a confirmation is acquired that πnext is reached, q′next is added
to Rpast and correspondingly πnext is added to τpast. Then q′next is set to the next
goal state given q′cur. As a result, the controller U(x(t), πcur, πnext) is activated to
drive the agent from πcur to πnext. Algorithm 3.2 can be running for infinitely long
time as the the suffix segment is repeated infinitely many times. Note that the
condition x(t) ∈ πnext holds when the robot belongs to its current goal region.

3.4 Case study

In this case study, we validate the proposed framework above by simulation results,
while experiment results are presented in Chapter 8.

Workspace abstraction

The workspace is a testbed with size 2.4m × 2.1m representing the office envi-
ronment shown in Figure 3.1, consisting of three rooms on each side and one
corridor in the middle. The corridor is partitioned into three smaller segments.
Thus this workspace has nine regions in total “r1,⋯, r6, c1, c2, c3”, represented
by propositions “r1,⋯, r6, c1, c2, c3”. There are one red ball, one green ball and

34 Robot motion and task planning

0 500 1000 1500 20000

500

1000

1500

2000

0 500 1000 1500 20000

500

1000

1500

2000

Figure 3.5: Left: the trajectory that fulfills ϕ1. Right: the trajectory that fulfills ϕ2.

two baskets in different rooms, represented by propositions “rball, gball, basket”.
The rectangular regions are encoded by the center point, width and height. The
horizontally adjacent rooms are separated by vertical walls. The cost of moving
from one region to another is estimated by the Euclidean distance between their
centers. The region name and its labeling function are given by (from bottom to up,
left to right): (r1, {r1}), (r2, {r2,basket}), (r3, {r3,gball}), (c1, {c1}), (c2, {c2}),
(c3, {c3}), (r4, {r4,basket}), (r5, {r5, rball}), (r6, {r6}). The robot we deployed is
a NAO robot [5], which is an autonomous, programmable humanoid robot. Its state
within the workspace is given by (xr, yr, θr), where xr and yr are the coordinate
and θr ∈ [−π,π] is its orientation with respect to the x-axis. It has three basic
control modules as “move_x(⋅)”, “move_y(⋅)” and “turn(⋅)”. Namely, it can move
forward in its local x-axis by the given speed, move sideways in its local y-axis by
the given speed and it can turn itself by the given angular speed. Since they are not
free of actuation noises and disturbances, we design the following turn-and-forward
feedback controller:

u =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

move_x(κ1 ⋅ ∥(xg − xr, yg − yr)∥), if ∣θdif∣ > θ̄
⎧⎪⎪
⎨
⎪⎪⎩

turn(κ2 ⋅ θdif), if θ̄ < ∣θdif∣ ≤ π

turn(− κ2 ⋅ sign(θdif) ⋅ (2π − abs(θdif))), if ∣θdif∣ > π
(3.11)

where (xg, yg) is the goal position; ∥xg − xr, yg − yr∥ is the relative distance; θref =
arctan(yg − yr, xg − xr) is the relative angle between the robot’s position and the
goal position; θdif = θref − θr is the difference between robot’s orientation and the
desired orientation; θ̄ < π is a design parameter deciding when the robot should
move forward; κ1, κ2 > 0 are design parameters as the proportional gain. Thus the
robot would keep turning until it is facing the the goal position. The time interval
to update u is also an important tunning parameter. It is verified by the simulation
and experimental results that the proposed controller is effective. Then the generic
controller U(x(t), πi, πj) in (3.3) can be obtained by setting the way point in (3.11)

3.4. Case study 35

0 500 1000 1500 20000

500

1000

1500

2000

0 500 1000 1500 20000

500

1000

1500

2000

Figure 3.6: Left: the trajectory that fulfills ϕ3. Right: the trajectory that fulfills ϕ4.

as the center of the next goal region, which guarantees the robot’s transition from
one region to an adjacent one, except when there are walls in between. Based on this
transition relation, we could construct Tc that consists of 9 regions and 16 edges. In
the simulation, we add Gaussian noises to the actuation signal generated by (3.11).

Simulation results

We illustrate the effectiveness of the proposed framework by considering four different
task specifications.

Case I : the robot has to pick up the red ball, drop it to the one of the baskets and
then stay at room one. It is specified as the LTL formula: ϕ1 =◇(rball∧◇basket)∧
◇◻ r1, which can be interpreted as “eventually pick up the red ball. Once it is done,
move to one basket and drop it. At last come back to room one and stay there”. It
took 0.03s for Algorithm 3.1 to find the optimal plan: “r1 c1 c2 r5 c2 r2 c2 c1 r1 (r1)ω”,
with the prefix cost 581 and suffix cost 1. Then the optimal plan is constructed and
executed off-line by Algorithm 3.2 and the final trajectory is shown in Figure 3.5.

Case II : same delivery task as in Case I, but now it has to deliver two objects
and is not allowed for the robot to carry two objects simultaneously. The task is
specified by the LTL formula:

ϕ2 = ◇ (rball ∧ ◇basket) ∧◇(gball ∧◇basket) ∧ ◇◻ r1
∧ ◻(rball⇒◯(¬gball U basket))
∧ ◻(gball⇒◯(¬rball U basket)),

(3.12)

where we add in the constraints that another ball can be picked up only after the
robot has dropped the ball in hand. It took 0.86s for Algorithm 3.1 to find the
optimal plan: “r1 c1 c2 c3 r3 c3 c2 r2 c2 r5 c2 r2 c2 c1 (r1)ω”, with the prefix cost 1021
and suffix cost 1. The final trajectory is shown in Figure 3.5. It can be seen that the
robot picks up the green ball first, drop it in the basket in r2, picks up the green
ball, and drop it in the basket in r2, which fulfills the imposed task.

36 Robot motion and task planning

Case III : same delivery task as in Case II, but now we require that the red ball
has to be delivered to the basket in r2 while the green ball has to the basket in r4.
Now the task can be specified by:

ϕ3 = ◇ (rball ∧◇ (basket ∧ r2)) ∧ ◇(gball ∧◇ (basket ∧ r4))
∧ ◻(rball⇒◯(¬gball U basket))
∧ ◻(gball⇒◯(¬rball U basket)) ∧ ◇◻ r1,

(3.13)

where the location for each basket is specified. It took 1.39s for Algorithm 3.1 to
find the optimal plan: “r1 c1 c2 r5 c2 r2 c2 c3 r3 c3 c2 c1 r4 c1 (r1)ω”, with the prefix
cost 1021 and suffix cost 1. The final trajectory is shown in Figure 3.6. It shows
that the robot picks up the red ball first, drop it in the basket in r2, picks up the
green ball, and drop it in the basket in r4.

Case IV : given a surveillance task, the robot needs to inspect rooms r3, r4 and r6
infinitely often. It can be written as the LTL formula: ϕ4 = (◻◇ r3)∧(◻◇ r4)∧(◻◇
r6). It took 0.01s for Algorithm 3.1 to find the optimal plan: “r1 c1 r4 c1 c2 c3 r3 c3
(r6 c3 c2 c1 r4 c1 c2 c3 r3 c3)ω”, with the prefix cost 1021 and suffix cost 1. The final
trajectory is shown in Figure 3.6. It can be seen that the robot patrols these three
rooms as required.

3.5 Summary

In this chapter, we presented the framework to synthesize the hybrid control strategy
for a mobile robot to fulfill a high-level temporal task. We started from constructing
the finite abstraction of the robot’s motion within the workspace. Then we proposed
an automated scheme to synthesize the discrete motion and task plan. At last, a
hybrid control strategy was designed for the robot to execute this discrete plan such
that its resulting trajectory satisfies the given task.

Chapter 4

Knowledge transfer in partially-known
workspace

The framework presented in Chapter 3 assumes that the workspace is fully-
known in priori and remains static. As a result, the discrete motion plan is

synthesized once off-line and executed by the hybrid controller regardless of the
actual measurements of the robot during execution. However in many real-life
applications, the workspace may only be partially known or even dynamic. In
order to address this issue, we firstly propose a new synthesis algorithm for the
discrete motion plan that maximally satisfies a partially infeasible task with soft
and hard constraints. Moreover, while executing this plan, the robot may gather
new observations about the workspace. Thus a real-time plan adaption algorithm is
proposed to ensure that the hard constraints for safety are always fulfilled while
the satisfaction for the soft constraints is improved gradually for performance. At
last, we extend this scheme to multi-robot systems where the robots share their
knowledge about the workspace through local interaction with each other. Numerical
studies are provided in the end to validate this framework.

4.1 Infeasible tasks

We follow the same notation as in Chapter 3. The initial task ϕ assigned to the robot
might be infeasible by Definition 3.6, e.g., either the task is actually infeasible or the
task is feasible but the initial workspace model Tc is incomplete or incorrect. The
nominal solution proposed in Chapter 3 would simply returns failure. An intriguing
question to ask is as follows:

Problem 4.1. Assume the task specification is infeasible, how should the speci-
fication be relaxed and more importantly how to synthesize the discrete plan that
satisfies the original specification as much as possible?

The work by [83] partially answers the above problem. It generates a relaxed
specification automaton A′ϕ which is close to Aϕ and feasible over Tc, see Section III-

37

38 Knowledge transfer in partially-known workspace

C of [83]. Then the discrete plan can be synthesized by following the procedure
as described in Section 3.3. However there are often more than one accepting run
within Tc ⊗A′ϕ and they may fulfill the original specification to different extents.
Instead we aim to firstly find the discrete plan that fulfills the task the most by
certain criterion, based on which then the specification automaton is relaxed.

4.1.1 Relaxed product automaton
By Definition 3.6, ϕ is infeasible when the standard PBA Ap does not have an
accepting run. Thus we need to relax the constraints imposed by Aϕ to allow more
transitions within Ap, by the relaxed PBA below.

Definition 4.1. The relaxed PBA Ar = Tc×Aϕ = (Q′, 2AP , δ′, Q′
0, F

′, Wr) is
defined as: Q′ = Π × Q = {⟨π, q⟩ ∣∀π ∈ Π, ∀q ∈ Q}; 2AP is the alphabet: AP =

{a1, a2,⋯, aK}; δ′ ∶ Q′ → 2Q
′

. ⟨πj , qn⟩ ∈ δ
′(⟨πi, qm⟩) if and only if (πi, πj) ∈Ð→c

and ∃ l ∈ 2AP such that qn ∈ δ(qm, l); Q′
0 = Π0 ×Q0 and F ′ = Π ×F are the initial

and accepting states; Wr ∶ Q
′ ×Q′ → R+is the weight function to be defined. ▲

Two differences between Ar and Ap from Definition 3.9 are: (i) the constraint
“qn ∈ δ(qm, Lc(πi))” when defining δ′ is relaxed to “∃ l ∈ 2AP such that qn ∈ δ(qm, l)”
here; (ii) the weight function Wr is defined differently from Wp. We firstly introduce
the evaluation function Eval ∶ 2AP → {0, 1}K :

Eval(l) = ν ⇐⇒ [νi] =

⎧⎪⎪
⎨
⎪⎪⎩

1 if ai ∈ l,
0 if ai ∉ l,

(4.1)

where i = 1,⋯,K; l ∈ 2AP and ν ∈ {0, 1}K . Namely, each subset of 2AP is mapped
to a K-dimensional Boolean vector. Then a distance function between two input
alphabets ρ ∶ 2AP × 2AP → N is defined as:

ρ(l, l′) = ∥ν − ν′∥1 =
K

∑
i=1

∣νi − ν
′
i ∣, (4.2)

where ν = Eval(l), ν′ = Eval(l′) and l, l′ ∈ 2AP . ∥ ⋅ ∥1 is the `1 norm. Then we could
define the distance between an element l ∈ 2AP to a set χ ⊆ 2AP (χ ≠ ∅) [16]:

Dist(l, χ) =
⎧⎪⎪
⎨
⎪⎪⎩

0 if l ∈ χ,

minl′∈χ ρ(l, l′) otherwise.
(4.3)

Note that Dist(l, χ) is not defined for χ = ∅. An example of computing Dist(⋅) is
given in Figure 4.1. Now we give the formal definition of Wr:

Wr(⟨πi, qm⟩, ⟨πj , qn⟩)

=Wc(πi, πj) + α ⋅ Dist(Lc(πi), χ(qm, qn)),
(4.4)

4.1. Infeasible tasks 39

L(π)

x

Dist(L(π), x)

L(π’)

L(π)

x

X_r

Figure 4.1: Left: the distance of Lc(π) to a set of input alphabets χ (the solid line).
Right: the input alphabets are revised by adding more elements.

where ⟨πj , qn⟩ ∈ δ
′(⟨πi, qm⟩); α ≥ 0 is a design parameter;

χ(qm, qn) = {l ∈ 2AP ∣ qn ∈ δ(qm, l)} (4.5)

consists of all input alphabets that enable the transition from qm to qn in Aϕ. By Defi-
nition 4.1 there always exists l ∈ 2AP that qn ∈ δ(qm, l), thus χ(qm, qn) ≠ ∅ is ensured.
Wc(πi, πj) is the cost of the transition from πi to πj in Tc; Dist(Lc(πi), χ(qm, qn))
measures how much the transition from πi to πj violates the constraints imposed by
the transition from qm to qn. The design parameter α reflects the relative penalty
on violating the original specification, and also the user’s preference on a plan that
has less cost or that fulfills the task more.

Example 4.1. Consider the NBA in Figure 3.3 and the transition from state q1 to q3,
χ(q1, q3) = {{a2}, {a2, a1}, {a2, a3}, {a2, a1, a3}}. Then Dist({a1}, χ(q1, q3)) =
ρ({a1}, {a1, a2}) = 1; Dist({a2}, χ(q1, q3)) = ρ({a2}, {a2}) = 0; Dist({a2, a3},
χ(q1, q3)) = ρ({a2, a3}, {a2, a3}) = 0. ▲

Balanced accepting run

Since Ap does not have an accepting run, we instead search for an accepting run
within Ar. However the existence of an accepting run alone is not enough because:
(i) they have different implementation costs; (ii) we would like to measure how much
they violate the original specification. Thus we still consider the accepting runs with
the prefix-suffix structure by (3.7):

R = q′0 q
′
1⋯q

′
f−1[q

′
f q

′
f+1⋯⋯q

′
n]ω

= ⟨π0, q0⟩⋯⟨πf−1, qf−1⟩ [⟨πf , qf ⟩⟨πf+1, qf+1⟩⋯⋯⟨πn, qn⟩]
ω
,

(4.6)

where q′0 = ⟨π0, q0⟩ ∈ Q
′
0 and q′f = ⟨πf , qf ⟩ ∈ F

′. Its total cost is calculated differently:

Cost(R, Ar) = costτ + α ⋅ distϕ , (4.7)

where the accumulated implementation cost of the motion plan τ = R∣Π is

costτ = (
f−1
∑
i=0

+γ
n−1
∑
i=f

)Wc(πi, πi+1); (4.8)

40 Knowledge transfer in partially-known workspace

the accumulated distance of τ to Aϕ is

distϕ = (
f−1
∑
i=0

+γ
n−1
∑
i=f

)Dist(Lc(πi), χ(qi, qi+1)); (4.9)

the design parameter γ ≥ 0 represents the relative weighting on the cost of transient
response (the prefix) and steady response (the suffix).

Problem 4.2. Find the accepting run of Ar that minimizes the cost by (4.7). ▲

We call the solution to Problem 4.2 the balanced accepting run of Ar, denoted
by Rbal. The corresponding balanced plan is τbal = Rbal∣Π.
Remark 4.1. As mentioned in Section 3.3, each transition of the NBA is encoded
by a boolean expression accepting all alphabets that enable this transition. This
expression can be represented as a binary decision diagram (BBD) such that the
distance function by (4.3) can be easily integrated. The idea is that for operator “∨”
it returns the minimal distance of its left and right branches, while for operator “∧”
it returns the summed distance of them. Thus it is not necessary to enumerate all
input alphabets to evaluate the distance. More details can be found in Section 8. ▲

4.1.2 Balanced plan synthesis
Given the values of α and γ, Ar can be either constructed fully by Definition 4.1
or on-the-fly as before. But the weight function is computed based on the distance
function from (4.3). Consequently, given the value of α, γ, Algorithm 3.1 can be
called with respect to the full or on-the-fly construction of Ar, to derive the balanced
accepting run Rbal. Then the corresponding balanced plan is τbal = Rbal∣Π.
Remark 4.2. Although Ar allows more transitions compared ro Ap, any balanced
plan is a valid path of Tc, i.e., the transition relation of Tc is never relaxed when
constructing Ar. Thus τbal is always implementable. ▲

Furthermore, given Rbal, Tc and Aϕ, we can easliy computes the associated
costτ , distϕ and the relaxed specification automaton A′ϕ. While iterating through
the transitions along Rbal, we can construct A′ϕ by adding new transitions to Aϕ;
compute costτ and distϕ as defined in (4.8) and (4.9). It can be verified that
the obtained A′ϕ is a valid relaxation [83] of Aϕ. Note each Rbal corresponds to a
balanced plan τbal and a revised specification automaton A′ϕ.

Lemma 4.1. If distϕ = 0, then τbal ⊧ ϕ.

Proof. Since Dist(⋅) ≥ 0 by (4.3), the accumulated distance distϕ = 0 implies
qn ∈ δ(qm, Lc(πi)) for all transitions (⟨πi, qm⟩, ⟨πj , qn⟩) along Rbal. Since Ap and
Ar have the same states with the same sets of initial and accepting states, Rbal is
also an accepting run for Ap by Definition 3.9. Then its corresponding plan τbal
satisfies ϕ by Lemma 3.3. ∎

4.1. Infeasible tasks 41

π1

π2

π3

{a2,a3}

{a1}

{a2}

30

40 20

10
{Φ}

π0 a1qq1

a1

¬ a2 & ¬ a3
¬ a2 & ¬ a3

q05 5

Figure 4.2: Left: the FTS Tc with labels and weights. Transitions are labeled by the
costs. Right: the NBA Aϕ associated with ϕ =◇◻ a1 ∧ ◻¬(a2 ∧ a3).

However it may not be trivial to determine the appropriate value of α for
the desired balance between the cost and distance to the task. As an extension,
Algorithm 3.1 could be called under different α to generate various balanced accepting
runs, among which the unique ones are saved as the candidates. They can be
compared regarding the associated costτ and distϕ. The chosen τopt can be
executed off-line by constructing the hybrid controller as proposed in Algorithm 3.2.

Theorem 4.2. If ϕ is feasible over Tc, the balanced plan τbal satisfies ϕ if α > α,
where α is given by (4.10).

Proof. If ϕ is feasible over Tc, Algorithms 3.1 return the optimal accepting run Ropt
with the total cost (under the same γ) by (3.9):

Cost(Ropt,Ap) = α. (4.10)

Clearly, Ropt is also a valid accepting run of Ar since Ap and Ar have the same
states with the same sets of initial and accepting states. Moreover, under the
same γ, Cost(Ropt,Ap) = Cost(Ropt,Ar). Assuming that τbal does not satisfy ϕ,
then distϕ ≥ 1 by (4.9). As a result, the total cost of Rbal by (4.7) satisfies:
Cost(Rbal, Ar) > α ⋅ distϕ > α. Since α > α = Cost(Ropt,Ap) = Cost(Ropt,Ar), it
implies Cost(Rbal,Ar) > Cost(Ropt,Ar). However by the definition of the balanced
run, Rbal is the accepting run of Ar with the least total cost, i.e., Cost(Rbal,Ar) ≤
Cost(Ropt,Ar), which leads to a contradictory. Thus the proposed method can be
applied directly when ϕ is feasible over Tc but choosing α > α. Algorithm 3.1 will
automatically select the accepting run that satisfies ϕ, i.e., distϕ = 0. ∎

Example 4.2. As shown in Figure 4.2, the robot has to go from region π0 to π3
and stay there, meanwhile avoid all regions satisfying properties a2 or a3. Three
alternative plans are obtained by varying α (γ = 5), as shown in Figure 4.3: (i) when
the penalty on violating ϕ is low, Aϕ is revised by adding q1 to δ(q0, ∅), q1 to
δ(q1, ∅) and the balanced plan is [π0]

ω (black hexagram, costτ 30, distϕ 6); (ii)
when the penalty is increased, Aϕ is revised by adding q1 to δ(q0, {a2, a3}), where
the balanced plan is π0 π1 [π3]

ω (blue square, costτ 65, distϕ 2); (iii) when the
penalty is severe, Aϕ is revised by adding q1 to δ(q0, {a2}), where the balanced plan

42 Knowledge transfer in partially-known workspace

0 5 10 15 20 25 30
30

40

50

60

70

80

90

100

110

120
Cost of the Optimal Accepting Path

T
o

ta
l C

o
st

 b
y

(7
)

30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

Cost to implement

D
is

ta
nc

e
to

 th
e

sp
ec

ifi
ca

tio
n

Potential Motion Plans

Plan1: (
0
)

Plan2:
0 1

(
3
)

Plan3:
0 2

(
3
)

Figure 4.3: Left: the total cost of the balanced runs when γ = 5 under different α. Right:
the unique balanced runs, located by their costτ (x-axis) and distϕ (y-axis).

is π0 π2 [π3]
ω (cyan triangle, costτ 85, distϕ 1). Note that in (iii) the robot passes

through π2 which satisfies only a2, instead of π1 which satisfies both a2 and a3. ▲

4.2 Soft and hard specifications

The previous section presents how to synthesis a balanced motion and task plan
that satisfies the potentially-infeasible task as much as possible. However, sometimes
a specification contains two distinctive parts: one part for hard constraints that
concerns safety or security and should not be violated for all time; another part
for soft constraints and additional achievement that should be satisfied as much as
possible. In this section, we propose a solution that meets these requirements.

Problem formulation

The robot’s finite transition system is still denoted by Tc from Definition 3.3. Its task
specification remains an LTL formula over AP , but with the following structure:

ϕ = ϕsoft ∧ ϕhard, (4.11)

where ϕsoft and ϕhard are “soft” and “hard” sub-formulas; ϕhard could include safety
constraints like collision avoidance: “avoid all obstacles” or power-supply guaran-
tee: “visit the charging station infinitely often”; ϕsoft could include performance
requirements like “collect as many objects” but the location of some objects is
not known. Introducing soft and hard specifications is due to the observation that
the partially-known workspace considered in Section 4.3 might render parts of the
specification infeasible initially and thus yield the needs for them to be relaxed,
while the safety-critical parts should not be relaxed during the process.

Problem 4.3. Given the task specification by (4.11), how to synthesize the motion
and task plan such that ϕhard is satisfied fully, while ϕsoft is satisfied the most? ▲

4.2. Soft and hard specifications 43

4.2.1 Safety-ensured product automaton
Now there are two levels of specifications by ϕhard and ϕsoft, with respect to which
the property of a plan can be stated more specifically.

Definition 4.2. An finite or infinite path τ = π1π2⋯ of Tc is called: (i) valid if
(πi, πi+1) ∈Ð→c, for i = 1,2,⋯; (ii) safe if τ ⊧ ϕhard; (iii) satisfying if τ ⊧ ϕ. ▲

Let Ahard = (Q1, 2AP , δ1, Q1,0, F1) and Asoft = (Q2, 2AP , δ2, Q2,0, F2) be the
NBA associated with ϕhard and ϕsoft, respectively. Detailed definition can be found
in Section 3.3. The functions χ1(⋅) of Ahard and χ2(⋅) of Asoft are defined analo-
gously as (4.5). Now we propose a way to construct the relaxed but safety-ensured
intersection of Ahard and Asoft.

Definition 4.3. The relaxed intersection of Ahard and Asoft is defined by:

Ãϕ = (Q, 2AP , δ, Q0, F), (4.12)

where Q = Q1×Q2×{1, 2}; Q0 = Q1,0×Q2,0×{1}; F = F1×Q2×{1}; δ ∶ Q×2AP → 2Q,
with ⟨q̌1, q̌2, ť⟩ ∈ δ(⟨q1, q2, t⟩, l) when three conditions hold: (1) l ∈ χ1(q1, q̌1); (2)
χ2(q2, q̌2) ≠ ∅; (3) qt ∉ Ft and ť = t, or qt ∈ Ft and ť = mod (t, 2) + 1, where t ∈ {1, 2}
and mod is the modulo operation. ▲

Algorithm 4.3 constructs Ãϕ by Definition 4.3. Note that Ãϕ remains a Büchi
automaton. We relax the requirement that there should exist a common input
alphabet that enables the transitions from qi to q̌i for i ∈ {1, 2}, compared with the
standard definition of Büchi automata intersection (see Chapter 4.3 of [11]). An
accepting run r of Ãϕ intersects with the accepting set F infinitely often. The last
component t ∈ {1,2} in Q ensures that r has to intersect with both F1 ×Q2 × {1}
and Q1 ×F2 × {2}. This fact is used in the proof of Theorem 4.3 below. Denote by
r∣Q1 and r∣Q2 the projection of r onto the states of Ahard and Asoft, respectively.

Theorem 4.3. Given an accepting run r of Ãϕ, r∣Q1 is an accepting run of Ahard.
Moreover, Lω(Ãϕ) ⊆ Lω(Ahard).

Proof. By definition, at least one of accepting states in F should appear in r infinitely
often. The projection of F onto Q1 is F1, therefore one of the accepting states in
F1 is visited infinitely often by r∣Q1 . Secondly, since l ∈ χ1(q1, q̌1) is ensured by
Definition 4.3, all transitions along r are valid for Ahard. As a result, r∣Q1 is an
accepting run of Ahard. For the second part, given any infinite word σ ∈ Lω(Ãϕ), σ
results in an accepting run of Ãϕ by Definition 3.8, denoted by rσ. It has been proved
that rσ ∣Q1 is also an accepting run of Ahard, which implies that σ ∈ Lω(A

hard). Thus
for any σ ∈ Lω(Ãϕ), σ ∈ Lω(A

hard) holds, namely Lω(Ãϕ) ⊆ Lω(Ahard). ∎

Since we need to guarantee that ϕhard is fulfilled fully and ϕsoft is satisfied as
much as possible, we rely on the relaxed product automaton proposed previously to
handle both feasible and potentially infeasible specifications.

44 Knowledge transfer in partially-known workspace

Algorithm 4.3 Relaxed intersection, RelaxInt()
Input: Asoft, Ahard

Output: Ãϕ
foreach q1 ∈ Q1, q2 ∈ Q2, t ∈ {1, 2} do

qm = ⟨q1, q2, t⟩ ∈ Q
If (q1 ∈ Q1,0, q2 ∈ Q2,0, t ∈ {1}), then qm ∈ Q0
If (q1 ∈ F1, t ∈ {1}), then qm ∈ F
foreach q̌1 ∈ Post(q1), q̌2 ∈ Post(q2), ť ∈ {1, 2} do

qn = ⟨q̌1, q̌2, ť⟩ ∈ Q
if (q1 ∉ F1, t ∈ {1}, ť ∈ {1}) or (q2 ∉ F2, t ∈ {2}, ť ∈ {2}) or
(q1 ∈ F1, t ∈ {1}, ť ∈ {2}) or (q2 ∈ F2, t ∈ {2}, ť ∈ {1}) then

qn ∈ δ(qm, l), ∀l ∈ χ1(q1, q̌1)

return Ãϕ

Definition 4.4. The safety-ensured and relaxed product Büchi automaton Ãr =
Tc × Ãϕ = (Q′, δ′, Q′

0, F
′, Wp) is defined as follows: Q′ = Π × Q = {⟨π, q⟩ ∣∀π ∈

Π, ∀q ∈ Q}; δ′ ∶ Q′ → 2Q
′

. ⟨πj , qn⟩ ∈ δ
′(⟨πi, qm⟩) if and only if (πi, πj) ∈Ð→c and

qn ∈ δ(qm, Lc(πi)); Q′
0 = Π0 ×Q0 and F ′ = Π×F are the initial and accepting states;

Wr ∶ Q
′ ×Q′ → R+ is the weight function:

Wr(⟨πi, qm⟩, ⟨πj , qn⟩)

=Wc(πi, πj) + α ⋅ Dist(Lc(πi), χ2(q2, q̌2))
(4.13)

where ⟨πj , qn⟩ ∈ δ′(⟨πi, qm⟩); qm = ⟨q1, q2, t⟩; qn = ⟨q̌1, q̌2, ť⟩; α ≥ 0 is a design
parameter; function Dist(⋅) is defined in (4.3). ▲

The weight function consists of two parts: Wc(πi, πj) measures the implemen-
tation cost of the transition from πi to πj ; Dist(Lc(πi), χ2(q2, q̌2)) measures how
much this transition violates the constraints imposed by Asoft; α reflects the relative
penalty on violating the soft specification.

Theorem 4.4. Assume R is an accepting run of Ãr. Its projection on Π, τ = R∣Π,
is both valid and safe for Tc and ϕ by Definition 4.2.

Proof. Firstly, τ is valid since every transition in δ′ corresponds to a valid tran-
sition within Ð→c. Then since R is an accepting run of Ãr = Tc×Ãϕ, then trace(τ) ∈
Lω(Ãϕ), i.e., trace(τ) ∈ Lω(Ahard) by Theorem 4.3. Since Words(ϕhard) = Lω(Ahard)
by Lemma 3.1, trace(τ) ∈ Words(ϕhard), i.e., τ ⊧ ϕhard, thus τ is safe. ∎

Same as before, to measure the implementation cost of different accepting runs
of Ãr and how much they violate the soft specification, we consider the accepting

4.3. On-line plan adaptation 45

runs with the prefix-suffix structure by (4.6). However its total cost is defined by:

Cost(R, Ãr) =
f−1
∑
i=0

Wr(q
′
i, q

′
i+1) + γ

n−1
∑
i=f

Wr(q
′
i, q

′
i+1) = costτ + α ⋅ distϕsoft , (4.14)

where γ ≥ 0; the implementation cost of τ = R∣Π is costτ = (∑
f−1
i=0 +γ∑

n−1
i=f)

Wc(πi, πi+1); the accumulated distance of τ with respect to Aϕsoft is distϕsoft =

(∑
f−1
i=0 +γ∑

n−1
i=f) Dist(Lc(πi), χ2(q

′
i∣Q2 , q

′
i+1∣Q2)), where q′i∣Q2 and q′i+1∣Q2 are the

projection of q′i and q′i+1 onto Q2.

Problem 4.4. Find the accepting run of Ãr that minimizes the cost by (4.14). ▲

We call the solution to Problem 4.4 as the safe accepting run of Ãr, denoted by
Rsafe. The corresponding safe plan is τsafe = Rsafe∣Π.

4.2.2 Safe plan synthesis
Given the values of α and γ, Ãr can be either constructed fully by Definition 4.1 or
on-the-fly construction. But now the distance d reflects whether the input alphabet
violates the hard specification and the distance to the set of input alphabets for
the soft specification. Then the safe accepting run Rsafe can be obtained in the
prefix-suffix format by calling Algorithm 3.1 with respect to Ãr. By Theorem 4.4, its
corresponding plan τsafe is always valid and safe no matter how α and γ are chosen.

Same as in Section 4.1, the value of α could be tuned by calling Algorithm 3.1
under different α to generate candidates of Rsafe. The associated costτ and distϕsoft

can be computed similarly. After deciding the safe accepting run, its corresponding
plan τsafe can be implemented by the hybrid control strategy following Algorithm 3.2.

Lemma 4.5. If distϕsoft = 0, then τsafe ⊧ ϕ.

Proof. By Lemma 4.1, if distϕsoft = 0, Rsafe is an accepting run for the un-relaxed
product Tc ×Aϕ by Definition 4.1, where Aϕ is the un-relaxed intersection [11] of
Aϕsoft and Aϕhard . Thus its corresponding plan τsafe satisfies ϕ by Lemma 3.3. ∎

4.3 On-line plan adaptation

It is rarely the case that the system model, i.e., the transition system, is consistent
with the actual workspace and robot dynamics. It means that the motion and
task plan synthesized off-line may not be executed as expected. As a result, a
real-time on-line control framework is needed, where the planning and execution
are interleaved as shown in Figure 4.4. If the actual workspace is different from
the workspace model, it is crucial to put the planner on-line and make it dynamic,
such that it can monitor the plan execution, update the system model based on the
real-time observation, and validate or revise the current plan.

46 Knowledge transfer in partially-known workspace

Figure 4.4: Diagram for the on-line planning and execution module.

Thus we discuss here how the FTS could be updated based on the robot’s
observations that come from both its sensing or communication functionality. We
denoted by T tc the transition system at time t ≥ 0, particularly

T tc = (Π, Ð→tc, Π0, AP, L
t
c, W

t
c), (4.15)

where the superscript indicates the time. Note that (i) the set of regions Π is
static, meaning that no new regions are added or existing regions are removed; (ii)
the set of initial states Π0 and the set of known atomic propositions AP are also
static as before. Furthermore, its task specification consists of hard and soft parts:
ϕ = ϕsoft ∧ ϕhard, as introduced in (4.11), which is invariant after the system starts.
Denote by Ãϕ the relaxed intersection automaton from Algorithm 4.3.

Problem 4.5. Assume the workspace is partially-known. The following problems
are posed: (i) how to model the robot’s sensing and communication functionalities;
(ii) how to update the transition system accordingly; (iii) how to guarantee the
motion and task plan is always valid and safe. ▲

4.3.1 Initial plan synthesis

At t = 0, the initial motion and task plan can be obtained by the method proposed
in Section 4.2, given the initial transition system T 0

c and ϕ. Denote by Rt, τ t = Rt∣Π,
Ãtr the obtained safe accepting run, the safe plan and the relaxed product automaton
at time t ≥ 0. In this section, we assume that Ãtr is constructed on-the-fly and Rt is
obtained by Algorithm 3.1 for Ãtr. Note that the soft specification may be infeasible
initially but it is guaranteed by Theorem 4.4 that τ0 is safe and valid for T 0

c .

4.3. On-line plan adaptation 47

4.3.2 Real-time knowledge update

The robot we consider has both the sensing ability to discover the workspace and the
communication functionality to communicate with external sources. In this section,
we discuss how these functionalities can be modeled.

Denote by Senset as the set of sensing information obtained at time t ≥ 0. Note
that this information might be gathered when a robot reaches a region or during
the transition from one region to another. It has the following format:

Senset = {((π, S, S¬), E, E¬)}, (4.16)

where π ∈ Π stands for a perceived region; S ⊆ AP is the set of propositions satisfied
by this region; S¬ ⊆ AP is the set of propositions not satisfied by this region;
(πi, πj , w) ∈ E if (πi, πj) needs to be added to Ð→tc with weight w or its weight
is updated to w; (πi, πj) ∈ E¬ if (πi, πj) needs to be removed from Ð→tc. Sense

t

reflects the actual workspace at time t.

Example 4.3. The sensing info ((π1,{a1, a3},{a2}), (π1, π2, 10), (π1, π3)) ∈ Senset
is received if it is observed that region π1 satisfies proposition a1 and a3 but not
a2; (π1, π2, 10) ∈ E if the transition from π1 to π2 is allowed with the cost 10;
(π1, π3) ∈ E¬ if the transition from π1 to π3 is invalid. ▲

This sensing function can be modeled by assigning a sensing radius h > 0, such
that all regions intersecting with the sphere {y ∈ Rn ∣ ∣y−x(t)∣ ≤ h} are visible, where
x(t) ∈ Rn is the robot’s position at time t. Different post-processing techniques
might be used to abstract the essential information for (4.16) from raw sensing data.

Besides, communication with external sources is another important mean to
retrieve information. This source can be another robot, a control base station, or
even an on-line database. Whenever this robot communicates with the external
source at time t, it sends the following request message:

Requestt = ϕ∣AP , (4.17)

which informs the external source the set of workspace properties this robot is
interested in. The reply message it gets has the following format:

Replyt = {(π′, S′, S′¬)}, (4.18)

where S′ ⊆ (ϕ∣AP) and S′¬ ⊆ (ϕ∣AP); S′ and S′¬ can not both be empty; π′ ∈ Π is the
region that satisfies S′ but not S′¬. Note that S′ and S′¬ only contain propositions
that are relevant to the task ϕ. Depending on the actual communication protocol,
the external source can decide how often it replies to the robot’s request.

Example 4.4. The reply information (π1, {a1}, {a2}) ∈Replyt is received if region
π1 satisfies proposition a1 but not a2. ▲

48 Knowledge transfer in partially-known workspace

Transition system update

Thus at time t, the robot might obtain new knowledge from Senset and Replyt as
described before, based on which it needs to update its own system model. Denote
by T t

−

c and T t
+

c as the transition system before and after the update at time t.
Recall that (π, S, S¬) ∈ Senset or Replyt indicates that the region π ∈ Π satisfies
S but not S¬. Then Lt

+

c (π) = Lt
−

c (π) ∪ S ∖ S¬, where Lt
+

c (π) and Lt
−

c (π) are the
labeling function of π before and after the update. Regarding E,E¬ ∈ Senset, new
transitions are added or some existing transitions’ weight is updated based on E
while transitions in E¬ are removed. For brevity, Π̃ ⊆ Π is used to store the set of
regions within Π of which the labeling function is changed during the update; Π̂
stores the set of regions of which the adjacency relation needs to be reconstructed.
Note that if both Senset and Replyt are empty, T t

+

c remains the same as T t
−

c .

4.3.3 Safety-ensured plan revision

Since T tc might be updated as described in previous part, the motion and task
plan from the initial synthesis in Section 4.2 needs to be evaluated regarding their
validity, safety and optimality.

Product automaton update

Denote by Ãt
−

r and Ãt
+

r as the relaxed product automaton corresponding to T t
−

c and
T t

+

c , respectively. To update Ãtr, a brute-force approach would be to reconstruct
the complete Ãtr from scratch by Definition 4.4 using Ãϕ and T t

+

c , or to re-evaluate
all transitions within Ãt

−

r that are relevant to the latest changes in T t
+

c as proposed
in [59]. However, both methods have the complexity proportional to the number of
transitions within Aϕ and more importantly most of the updated transitions of Ãt

+

r

might not be used by the plan revision Algorithm 4.4 later.
Thus we propose to incorporate the update information including Π̃, E and E¬

into the adjacency relation function of Ãtr. For any region πi ∈ Π̃ whose labels or
adjacency relation has been changed, they are stored in a new set Π̂, namely

Π̂ = Π̃ ∪ {πi ∣ (πi, πj) ∈ E, or (πi, πj ,w) ∈ E¬}. (4.19)

Thus all the transitions originated from q′s whose projection onto Π belongs to Π̂, i.e.,
q′s∣Π ∈ Π̂, have to be re-constructed. In this way, the update information is used only
when q′s is revisited by the revision Algorithm 4.4 and then δ′(q′s) is re-constructed.

Given the updated transition system T t
+

c and the current plan τ t, two natural
questions arise: (i) is τ t still valid or safe? (ii) if not, how can we modify τ t such
that it remains valid and safe for T t

+

c and ϕ?

4.3. On-line plan adaptation 49

Verifying validity and safety

Recall that the current accepting run Rt has a finite set of transitions appearing in
it, i.e., Edge(Rt) by (3.8). By checking Edge(Rt), we could validate if the current
plan τ t is still valid or safe.

Definition 4.5. Given the updated transition system T t
+

c , any transition (⟨πi, qm⟩,

⟨πj , qn⟩) ∈ Edge(Rt) is called: (i) invalid if (πi, πj) ∉Ð→t
+

c ; (ii) unsafe if Lt
+

c (πi) ∉
χ1(qm∣Q1 , qn∣Q1). ▲

Recall that Q1 is the set of states of Ahard. We use Ξ and ℵ to store the invalid
and unsafe transitions in Rt, respectively. They are obtained by iterating through
each transition (⟨πi, qm⟩, ⟨πj , qn⟩) within Edge(Rt) and checks if (πi, πj) has been
removed from T t

+

c or if the changed label Lt
+

c (πi) would make this transition unsafe.

Theorem 4.6. Assume Rt is an accepting run of Ãt
−

r ; T t
−

c is updated to T t
+

c ; Ξ, ℵ
are the sets of invalid and unsafe transitions from above. Then (i) τ t remains valid
if and only if Ξ = ∅; (ii) τ t remains safe if ℵ = ∅.

Proof. Since Rt is an accepting run of Ãt
−

r , τ t is both valid and safe for T t
−

c by
Theorem 4.4. If Ξ = ∅ and ℵ = ∅, Edge(Rt) does not contain any invalid or unsafe
transitions. Thus Rt remains an accepting run of Ãt

+

r . “If” part of (i): by Theorem 4.4,
τ t is valid since Rt remains an accepting run of Ãt

+

r . “Only if” part of (i): if Ξ ≠ ∅,
τ t contains at least one invalid transition, thus not valid by Definition 4.2. “If” part
of (ii): by Theorem 4.4, τ t is safe since Rt remains an accepting run of Ãt

+

r . ∎

Plan revision

If Ξ or ℵ are not empty, τ t might be invalid or unsafe. A plan revision scheme is
needed to guarantee its validity and safety: one straightforward approach could be
to recall Algorithm 3.1 with respect to T t

+

c and Aϕ, but using the robot’s current
region πcur from Algorithm 3.2 as the initial region. Let the derived accepting run
and corresponding plan be Rnew and τnew. In the following, we show that even
though τnew is valid and safe as proved in Theorem 4.4, it can not guarantee the
actual safety if we take into account the robot’s past trajectory. Given the robot’s
past trajectory τpast and past run Rpast from Algorithm 3.2, its complete trajectory
is obtained by concatenating τpast with τnew, namely τcomp = τpast + τnew. Note that
τcomp remains the suffix-suffix format. A key observation is that the safety property
of τnew does not ensure the safety of the robot’s complete trajectory starting from
time 0. In fact, this is because when analyzing the corresponding runs of τpast and
τnew in Ãt

+

r , the product state q′cur (the last state of Rpast) from Algorithm 3.2 may
not be the same as the first product state in Rnew. As a result, these two segments
can not be concatenated into an accepting run of Ãt

+

r .

50 Knowledge transfer in partially-known workspace

Figure 4.5: Locally revise the invalid transitions in Rt. The sequences of states in dashed
line represent the corresponding runs given the robot’s past trajectory.

Problem 4.6. Assume Ξ or ℵ are not empty. Given the robot’s past trajectory τpast,
how to find the new plan τnew such that its complete trajectory above is guaranteed
to be valid and safe. ▲

Before stating the solution, we need to define the set of corresponding product
runs given the robot’s past trajectory. As pointed out in Definition 3.8, the resulting
run of an infinite or finite words in Aϕ may not be unique because of the non-
determinism of Ãϕ. In other words, given the finite past trajectory τpast, its trace
may result in a set of runs in Ãϕ, denoted by rτpast :

rτpast = {rσ̄ by Def. 3.8 for Ãϕ ∣ σ̄ = trace(τ̄past)}, (4.20)

where τ̄past = τpast[1 ∶ (∣τpast∣−1)], i.e., the segment from the first state to the second
last state of τpast; rτpast is finite because τpast is finite and the number of states in
Ãϕ is finite. Consequently, the finite set of corresponding runs in Ãt

+

r is given by

Rτpast = {R ∣R∣Π = τpast, R∣Q ∈ rτpast}, (4.21)

where each finite run R is the synchronized product of τpast and any run belonging
to rτpast by (4.20). Since Rτpast may contain multiple finite runs in Ãt

+

r , πcur may
correspond to multiple states in Ãt

+

r , which is denoted by

Q′
τpast

= {last(R) ∣R ∈ Rτpast}, (4.22)

where last(R) is the last state of R within Rτpast . Clearly, Rpast ∈ Rτpast and
q′cur ∈ Q

′
τpast

; Q′
τpast

is derived as the reachable states in Ãt
+

r given τpast.
To solve Problem 4.6, we propose an algorithm that is similar to Algorithm 5 in [59].

Denote by Rt
−

, Rt
+

, τ t
−

, τ t
+

the accepting run and corresponding plan before and
after the revision, respectively. Moreover, Rt

−

pre and Rt
−

suf are the prefix and suffix of
Rt

−

, while Rt
+

pre and Rt
+

suf are the prefix and suffix of Rt
+

. Given the invalid or unsafe
transition (q′s, q

′
s+1) in Rt

−

, it belongs to either Rt
−

pre or Rt
−

suf. In Algorithm 4.4,
it firstly tries to locally finds a “bridging” segment that make up this transition
by breadth-first search (as shown in Figure 4.5). tail(q′s+1,R

t−

pre) is the segment

4.3. On-line plan adaptation 51

Algorithm 4.4 Revise the current plan, Revise()
Input: Ξ, ℵ, Rt

−

, Ãt
+

r , Q′
τpast

Output: Rt
+

forall the (q′s, q
′
s+1) ∈ (Ξ ∪ ℵ) do

if (q′s, q
′
s+1) ∈ R

t−

pre then
bridge=DijksTarget(Ãt

+

r , q′s−1, tail(q′s, Rt
−

pre))
if bridge ≠ ∅ then

Rt
−

pre = head(q′s−1, Rt
−

pre)+bridge+tail(last(bridge), Rt
−

pre)
else

Rt
+

= OptRun(Ãt
+

r , Q′
τpast

)
return Rt

+

if (q′s, q
′
s+1) ∈ R

t−

suf then
same as the first case, but replace Rt

−

pre by Rt
−

suf

return Rt
+

= ⟨Rt
−

pre, R
t−

suf⟩

of Rt
−

pre after q′s, not including q′s; head(q′s−1,R
t−

pre) is the segment of Rt
−

pre before
q′s−1, not including q′s−1; last(bridge) is the last state on the path bridge. Func-
tion DijksTarget(Ãt

+

r , q′S , Q′
T) is defined similarly as function DijksTargets(⋅)

in Algorithm 3.1, which returns shortest path from the source state q′S ∈ Q′ to
any target state belonging to the set Q′

T ⊆ Q′. Thus it returns the shortest path
once one of the targets is reached. At last, if function DijksTarget(⋅) returns an
empty path bridge, it means that the accepting state last(Rt

−

pre) is not reachable
from q′s−1. Then OptRun(⋅) from Algorithm 3.1 is called to search for the balanced
accepting run of Ãt

+

r , but using Q′
τpast

as the set of initial states (instead of the
default Q′

0). Note that in Algorithm 4.4 above, Rt
−

is revised iteratively and the
condition (q′s, q

′
s+1) ∈ R

t−

pre or Rt
−

suf is also checked iteratively.

Theorem 4.7. The new plan τnew can be obtained from Algorithm 4.4 such that
τcomp is valid and safe, if there exists one.

Proof. If a new plan τnew exists such that the complete path τcomp is valid and
safe, by Lemma 3.2 there exists an accepting run of Ãt

+

r whose projection onto Π
is τcomp. Given the invalid or unsafe transitions in Rt

−

(in prefix or suffix), firstly
Algorithm 4.4 tries to revise Rt

−

by looking for the bridging segments. If no such
segments exist, it means that the current accepting state is not reachable from q′s−1.
Instead it searches for the accepting run that starts from any of the product states
in Q′

τpast
and consists of a cycle containing at least one of accepting states in Ãt

+

r . It
means that an accepting run that starts from one of the initial states and obeys the

52 Knowledge transfer in partially-known workspace

robot’s past trajectory exists only if a bridging segment is found for the revision in
Line 3 or a new accepting run starting from Q′

τpast
is found in Line 8. ∎

The overall structure of the on-line planning scheme is given in Algorithm 4.6
later, where the accepting run Rt is updated by both the revision Algorithm 4.4 and
the optimal search Algorithm 3.1. More details about the algorithms can be found
in [48]. The next goal region for the hybrid controller also changes accordingly.

4.4 Collaborative knowledge transfer

Now assume that a team of autonomous robots coexist within the same workspace
and each of them has an individual local task specified as LTL formulas. If the
local task of each robot relies on only its local propositions, the team of robots
are independent that their plans can be synthesized and executed independently
from each other. However since the robots are usually located at different locations
within the workspace, about which they have up-to-date knowledge. Those local
knowledge, if shared among the team, might benefit each member such that they can
make better and more informed plans. In the following, we propose a collaborative
knowledge transfer scheme for a multi-robot system with independent local tasks.

Formally, we consider a team of autonomous robots with unique identities i ∈ N =
{1,2,⋯,N}, which coexist within the common but partially-known workspace W.
Robot i’s possible motion within W is abstracted as a weighted FTS:

T ti = (Πi, Ð→
t
i, Πi,0, APi, L

t
i, W

t
i), (4.23)

which is defined similarly as (4.15). The superscript t ≥ 0 indicates that the workspace
is partially known and might be updated after the system starts. Each robot i ∈ N
has a locally-assigned task specification ϕi = ϕsofti ∧ ϕhardi , where ϕsofti and ϕhardi

are the “soft” and “hard” constraints as before from (4.11).

Initial synthesis

At t = 0, for each robot i ∈ N , the initial motion and task plan can be obtained as
the safe plan by following the framework proposed in Section 4.2, regarding the
initial transition system T 0

i and ϕi. We assume here the on-the-fly construction is
used. Note that the soft specification may not be feasible initially and is relaxed
by the balanced accepting run. Denote by Ãtr,i the relaxed product automaton of
robot i at time t; Rti, τ ti as the balanced accepting run and the associated plan.

4.4.1 Knowledge transfer protocol
In Section 4.3, we describe how a single robot could update its transition system
through its sensing and communication ability to inquire and retrieve knowledge
from external sources. Belonging to the same multi-robot system, the other robots
could be the external source. In other words, they could share and transfer their

4.4. Collaborative knowledge transfer 53

Algorithm 4.5 Transfer Knowledge to other robots, TranKnow()
Input: Senseti, Request

t0
j,i

Output: Replyti,j
forall the (π, S, S¬) ∈ Senseti do

forall the Requestt0j,i received at t0 < t do
Requesttj,i = (j, ϕj ∣APj , i)

if j ∈ N t
i then

S′ = S ∩ (ϕj ∣APj), S′¬ = S¬ ∩ (ϕj ∣APj)
if S′ ≠ ∅ or S′¬ ≠ ∅ then

add (π, S′, S′¬) to Replyti,j

return Replyti,j

knowledge about the workspace collectively in real-time. Now we explain how to
design the knowledge transfer protocol and more importantly how to combine it
with the real-time planning scheme from Section 4.3.

The communication network represents how the information flows among the
robots. Each robot i has a set of neighboring robots, denoted by Ni ⊆ N . Robot i
can send messages directly to any robot belonging to Ni. We take into account two
different ways to model the communication network: (1) global communication with a
fixed topology; (2) limited communication with a dynamic topology. In the first case,
Ni is pre-defined and fixed after the system starts. In the second case, each robot has
a communication range, denoted by Ci ≥ 0. Robot i can only send messages to robot j
if their relative distance is less than Ci, i.e., ∣xj(t)−xi(t)∣ ≤ Ci where xj(t), xi(t) ∈ Rn
are the positions of robots j and i at time t. Then N t

i = {j ∈ N ∣ ∣xj(t) − xi(t)∣ ≤ Ci}
is the time-varying neighboring set of robot i at time t.

Robot i is interested in all the propositions appearing in ϕi, namely ϕi∣APi .
We propose a subscriber-publisher mechanism to reduce the communication load.
Whenever robot j communicates with robot i ∈ N t

j for the first time at time t, it
follows the subscribing procedure: robot j sends a request message to robot i:

Requesttj,i = (j, ϕj ∣APj , i), (4.24)

which informs robot i the set of propositions robot j is interested. Each robot has
a subscriber list, containing the request messages it has received. Note that each
robot also keeps track of the robots which it has subscribed to, such that it sends a
request to any of its neighboring robots only once.

The sensing update of robot i is denoted by Senseti, the structure of which is
given in (4.16). Then the publishing phase of each robot follows an event-driven
approach: whenever (π, S, S¬) ∈ Senseti is obtained, it checks its subscriber list
whether the content might be of interest to any of the subscribers regarding some
propositions. If it is of interest to robot j regarding some propositions in in ϕj ∣APj ,

54 Knowledge transfer in partially-known workspace

then robot i checks if j ∈ N t
i . If so, it publishes a reply message to robot j that

Replyti,j = {(π, S′, S′¬)}, (4.25)

where S′ = S ∩ (ϕj ∣APj) and S′¬ = S¬ ∩ (ϕj ∣APj); Note that since S′ and S′¬ only
contain propositions that are relevant to robot’s task ϕ, every reply message should
contain useful knowledge. The above procedure is summarized in Algorithm 4.5.
Note that through this communication mechanism, any request only needs to be sent
once and every reply message contains useful knowledge. This subscriber-publisher
scheme can be easily implemented by multicast or unicast wireless protocols.

4.4.2 On-line plan verification and adaptation
Upon receiving Senseti and Reply

t
j,i from j ∈ N t

i , robot i could update its transition
system Ti accordingly. Regarding its current motion and task plan τ ti , the validity
and safety of τ ti needs to be verified as before. Moreover, in case τ ti is falsified, i.e.,
either invalid or unsafe, Algorithm 4.4 is called to revise τ ti such that it becomes
valid and safe, where Π̃t

i, ℵti, Ξti stand for the set of regions in T ti with modified
labeling functions, the set of unsafe transitions and invalid transitions in Rti.

Algorithm 4.4 provides a way to locally revise the invalid or unsafe plan, which
guarantees validity and safety by Theorem 4.4. However it does not maintain the
cost optimality of the safe accepting run compared with Algorithm 3.1. The general
problem of computing and maintaining the shortest path in a graph where the edges
are inserted or deleted and edge weights are increased or decreased is referred to
as the dynamic shortest path problem (DSPP) in [17] and [115]. As pointed out in
both papers, it is inefficient to re-compute the shortest path “from scratch” using
the well-known static solution like Dijkstra algorithm each time the graph changes.

Thus we propose an event-based criterion [72] to ensure the optimality check.
Denote by Υt

i the accumulated number of number of changes in T ti at time t;
Υt+

i = Υt−

i + ∣Π̂t
i ∣ and Υ0

i = 0. Denote by Ti the last time instant when Algorithm 3.1
is called. Let the thresholds N call

i , T call
i ≥ 0 be chosen freely by robot i ∈ N . Then

whenever one of the conditions holds: (1) Υt
i ≥ N

call
i ; (2) t−Ti ≥ T call

i , Algorithm 3.1
is called with respect the latest T ti to derive the safe plan, but using Q′

τpast
as the

initial states. Afterwards, Υt+

i is reset to zero and Ti to the current time.

4.4.3 Overall structure
The overall architecture is summarized in Algorithm 4.6, where the detail description
of each function can be found in [49]. When the system starts, each robot synthesizes
its own initial motion and task plan. It sends requests to neighboring robots. Then it
checks if it receives any reply, sensing or request messages, based on which it replies
to its subscribers, and updates its transition system. At last, it decides whether
the revising algorithm or the optimal synthesis algorithm should be called by the
triggering condition. It is worth mentioning that the next goal region πi,next changes

4.4. Collaborative knowledge transfer 55

Algorithm 4.6 Cooperative on-line planning for each robot i ∈ N
Input: T 0

i , Ãϕi , Ã0
r,i, xi(t)

Output: Rti, τ ti , Υt
i, T ti

R0
i = OptRun(Ã0

r,i)
q′i,cur = q

′
i,next = R

0
i,[pre,1], πi,next = q

′
i,next∣Πi , Ri,past = [], τi,past = []

while True do
send Requestti,g
check Replyth,i, Request

t0
j,i and Senseti

Replyti,j = TranKnow(Senseti, Request
t0
j,i)

send Replyti,j
(T t

+

i , Π̃t
i, Π̂t

i) = UpdaT(T ti , Sense
t
i, Reply

t
h,i)

Ãt
+

r,i = AdjProd(T t
+

i , Π̂t
i, Ãϕi)

(ℵti, Ξti) = ValidRun(Ãt
+

r,i, Rti, Π̃t
i, E¬)

Υt
i = Υt

i + ∣Π̂t
i ∣

Q′
i,τpast

= CorProd(Ãt
+

r,i, τi,past)
if Υt

i ≥ N
call
i or t − T ti ≥ T call

i then
Rt

+

i = OptRun(Ãt
+

r,i, Q′
i,τpast

)
Υt
i = 0, T ti = t, q′i,next = Rt

+

i,[pre,2]

else if ℵti ≠ ∅ or Ξti ≠ ∅ then
Rt

+

i = Revise(Ãt
+

r,i, Rti, ℵti, Ξti, Q′
i,τpast

)
q′i,next = R

t+

i,[seg,k]

if x(t) ∈ q′i,next∣Πi confirmed then
q′i,cur = q

′
i,next

τi,past = τi,past + πi,next, Ri,past = Ri,past + q′i,next
q′i,next = R

t+

i,[seg,k] = NextGoal(q′i,cur, R
t+

i)

πi,cur = q
′
i,cur∣Πi , πi,next = q′i,next∣Πi

ui = U(xi(t), πi,cur, πi,next)

automatically whenever: (i) the accepting run Rti is updated by either the revision
Algorithm 4.4 and the optimal search Algorithm 3.1; (ii) the current goal region is
confirmed to be reached.

Theorem 4.8. For each robot i at any time t ≥ 0, its plan τ ti derived by Algorithm 4.6
is always valid and safe for T ti and ϕi. Moreover, for any t′ ≥ 0, there exists time
t ∈ [t′, t′ + T call

i] such that τ ti corresponds to the safe accepting run.

Proof. The first part follows from Theorems 4.6 and 4.7. Moreover τ ti is the safe
plan for Ãt

+

r,i given Q′
i,τpast

whenever Algorithm 3.1 is called. Due to the triggering

56 Knowledge transfer in partially-known workspace

1

2
3

5

6

7

9

10

11

12

8

4

1

2 3

4

Figure 4.6: Left: Initial workspace and the the preliminary motion and task plan. Right:
actual workspace and the final trajectory.

condition, it is called at least once within any time period of length T call
i . ∎

4.5 Case study

In this part, we present two different case studies for planning under partially-known
workspaces: one for controlling a single unicycle robot under the task of surveilance;
another for a team of autonomous robots under complex local tasks.

Single-robot system
Consider a unicycle robot that satisfies: ẋ0 = v cos θ, ẏ0 = v sin θ, θ̇ = w, where
p0 = (x0, y0)

T ∈ R2 is the center of mass, θ ∈ [0, 2π] is the orientation, and v,w ∈ R
are the transition and rotation velocities.

Workspace model

The workspace we consider is shown in Figure 4.6, which consists of 12 polygonal
regions. The continuous controller that drives the robot from an region to any
geometrically adjacent region is based on [103], which is built by constructing vector
fields over each cell for each face. The controller design is omitted here for brevity.
There are three regions of interest and one regions is occupied by obstacles. The
surveillance task is given by “visit region 2, 3, 4 infinitely often and avoid all possible
obstacles”. The LTL formula is given by “ϕ = (◻◇a1)∧(◻◇a2)∧(◻◇a3)∧(◻¬a4)”
and its associated NBA is shown in Figure 3.3.

Simulation results

The preliminary workspace is initialized as obstacles free and the associated T 0
c is

constructed by Definition 3.3. The actual workspace is shown in Figure 4.6, where
region 9 is occupied by obstacles and there are walls between some regions. The robot
is capable of perceiving obstacles within a region and walls between adjacent regions.
A preliminary motion plan is generated by Algorithms 3.1 and 3.2 (arrowed red line

4.5. Case study 57

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

Figure 4.7: Left: the actual workspace as described in Section 4.5. Right: the final
motion plan for aerial vehicles, which corresponds to the final optimal plan in Figure 4.9.
It satisfies both ϕhard

Ar_i and ϕsoft
Ar_i, since all base stations (in yellow) are surveiled and

non-fly areas (in cyan) are avoided.

in Figure 4.6), but it is not valid for the actual workspace as it intersects with the
obstacle region 9. The robot moves according to the motion plan and reaches region
12, where it obtains the following information: E¬ = {(π4, π11), (π11, π4)} and
(π9, {a4}, ∅), namely region 9 satisfies a4. The updated motion plan is illustrated
by the arrowed red lines in Figure 4.6. Then the robot follows this updated motion
plan. At region 6 and 3, it obtains the information: E¬ = {(π6, π8), (π8, π6)} and
E¬ = {(π7, π3), (π3, π7)}, respectively. In both cases 32 transitions are removed.
But the motion and task plan remains valid because its corresponding accepting
run remains valid. The final trajectory is shown in Figure 4.6.

Multi-robot system

In this case study, we consider a team of 15 autonomous robots: five of them are
aerial vehicles that surveil over base stations; the rest are ground vehicles that
collect food and water resources to supply the base stations.

Workspace model and robot description

As shown Figure 4.7, the workspace we consider is a 10 × 10m2 square which is
approximated by B5([0, 0]), where [0, 0] is the origin and 5 is the radius. There
are 7 base stations with size 1 × 1m2 (in yellow, denoted by “b1”,⋯,“b7”). Besides,
there are numerous no-fly zone (in cyan, denoted by “nfly”) and sphere obstacles
(in red, denoted by “obs”) at various locations with different sizes. Food (in green,
denoted by “food”) and water (in blue, denoted by “water”) resources of various
size are scattered in the free space.

58 Knowledge transfer in partially-known workspace

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

Figure 4.8: The final motion plan for robots Gw_i (left) and for robots Gf_i (right).
It is shown that water (in blue) or food (in green) are fetched before any base station
(in yellow) and all base stations are supplied infinitely often, while obstacle (in red)
avoidance is always ensured.

Five aerial vehicles (denoted by Ar_1,⋯, Ar_5) start randomly from one of the
base stations. For aerial vehicles, “b1”,⋯, “b7”, “nfly”, “water”, “food” are their
known propositions, which does not include “obs”. It means that aerial vehicles
cannot detect obstacles on the ground. Initially, they know the location of some base
stations and some no-fly zones, but not the water and food resources. They have an
average speed 0.1m/s and a sensing radius of 2m in the x-y coordinate. They have the
hard specification “repetitively visit at least one of the base stations, while avoiding
all no-fly zones”, and soft specification “visit all base stations infinitely often”. In
LTL formulas, the specifications are given as ϕhardAr_i = (◻¬nfly) ∧ (◻◇ (ϕone)), and
ϕsoftAr_i = (◻(◇b1∧◇b2∧⋯∧◇b7)), where ϕone ≜ b1∨b2∨⋯∨b7 and i = 1,⋯, 5. The
NBA associated with ϕhardAr_i has 2 states and 4 edges by [41], while the one with
ϕsoftAr_i has 8 states and 43 edges.

The other ten robots are ground vehicles: five of them (denoted by Gf_1,⋯,
Gf_5) collect food and the rest (denoted by Gw_1, ⋯, Gw_5) for water, to supply
the base stations. For ground vehicles, “b1”, ⋯, “b7”, “obs”, “water”, “food” are
known propositions, which does not include “nfly”. Thus ground vehicles cannot
recognize “nfly” zones. Initially, they start randomly from one base station and
only knows the location of one water (or food) resource, but not the obstacles and
other base stations. They have an average speed 0.05m/s and a sensing radius
of 1m in the x-y coordinate. For ground vehicles, the hard specification is “avoid
all obstacles and repetitively collect water (or food) resources to at least one base
station” and the soft specification is “supply all base stations infinitely often”. In LTL
formulas, the hard and soft tasks for Gw_i are given by ϕhardGw_i = (◻◇¬obs) ∧ ϕorder,
ϕsoftGw_i = (◻(◇b1 ∧ ◇b2 ∧ ⋯ ∧ ◇b7)), where ϕorder ≜ (◻ ◇ water) ∧ (◻(water ⇒
◯(¬waterU (ϕone))) ∧ (◻((ϕone) ⇒ ◯(¬(ϕone)Uwater)), which says that water

4.5. Case study 59

0 20 40 60 80 100
Time (s)

0

1000

2000

3000

4000

5000

6000

To
ta

l C
os

t

[5
522]

[3
319]

[3
132]

[1
39]

[1
39]

[5
522]

[3
319]

[1
134]

[3
41]

[2
41]

[1
39]

[7
512]

[0
318]

[3
130]

[1
39]

[6
520]

[0
227]

[0
135]

[1
39]

[8
520]

[2
133]

[2
40]

[1
39]

Ar_1
Ar_2
Ar_3
Ar_4
Ar_5

0 50 100 150 200
Time (s)

0

1000

2000

3000

4000

5000

6000

To
ta

l C
os

t

[11
525]

[11
258]

[12
168] [7

152]

[8
59] [8

51]

[11
525]

[9
146]

[8
51]

[10
525]

[8
152]

[8
59]

[8
59] [8

51]

[12
525]

[9
152]

[9
59] [8

51]

[12
525]

[10
149]

[10
53]

[8
51]

Gf_1
Gf_2
Gf_3
Gf_4
Gf_5

Figure 4.9: The evolution of the plan total cost of robots Ar_i (left) and Gf_i (right).
For Ar_1, the initial plan has a total cost 5220 ([5, 521]), when it only knows two base
stations. Its final plan has a total cost 391 ([1, 39]), as shown in Figure 4.7. For Gf_1,
the initial plan has a total cost 5268 ([12, 526]), when it only knows the location of
one base station and one food resource. Its final plan has the total cost 610 ([3, 60]),
as shown in Figure 4.8.

must be fetched and supplied to at least one base station infinitely often. ϕsoftGw_i is
the same as for Ar_i, requiring that all base stations be supplied infinitely often. The
NBA associated with ϕhardGw_i have 10 states and 30 edges by [41], while the one for
ϕsoftGw_i has 8 states and 43 edges. The soft and hard specifications ϕhardGf_i and ϕsoftGf_i for
Gf_i can be defined in a similar way by replacing proposition “water” with “food”.

Clearly, for each robot the soft specification is impossible to fulfil initially as they
have no complete knowledge about the location of all base stations. However, since
“b1”, “b2”,⋯, “b7” belong to all vehicles, meaning that any relevant information can
be shared within the group. Moreover, since the propositions “water” and “food”
also belong to aerial vehicles, they could help the ground vehicles to discover relevant
knowledge within a shorter time. Regarding the communication network, a dynamic
topology where each robot has a communication radius (set to 5m for all robots).

Simulation results

Initially each robot has very limited knowledge, considering that they only know
the location of one base station and none of the obstacle regions. We choose α to
be 1000 and γ to be 10 as the task specifications focus on repetitive tasks. We set
N call
i and T call

i to be (3, 60s) for aerial vehicles and (3, 100s) for ground vehicles.
The system was simulated for 600s and it took 200s for the workspace to be fully
discovered by all robots. Figures 4.7 and 4.8 show the trajectories corresponding to
the suffix part of the optimal run, for the three groups Ar_i, Gf_i, Gw_i. It can be
seen that both soft and hard specifications are fulfilled by all robots.

Figure 4.9 and 4.10 shows how the optimal plans of Ar_i, Gw_i and Gf_i evolve

60 Knowledge transfer in partially-known workspace

0 50 100 150 200
Time (s)

0

1000

2000

3000

4000

5000

6000

To
ta

l C
os

t

[7
513]

[6
42]

[5
43]

[5
43]

[11
513]

[6
46]

[6
46]

[5
43]

[6
516]

[5
42]

[5
42]

[10
513]

[5
45]

[5
42]

[10
513]

[5
45]

[5
42]

Gw_1
Gw_2
Gw_3
Gw_4
Gw_5

0 10 20 30 40 50 60
Time

0

2

4

6

8

10

12

14

of

Me
ss

ag
es

Ar_1
Ar_2
Ar_3
Ar_4
Ar_5

Gw_1
Gw_2
Gw_3
Gw_4
Gw_5

Gf_1
Gf_2
Gf_3
Gf_4
Gf_5

Figure 4.10: Left: the evolution of the plan total cost of robots Gw_i. For robot Gw_1,
the initial plan has a total cost around 5147 ([11, 513]), when it only knows the location
of one base station and one water resource. Its final plan has a total cost 456 ([6, 45]),
as shown in Figure 4.8. Right: the number of messages (including both request and
reply messages) received by each robot under the dynamic communication topology.

with time. In particular, under the proposed scheme, the total cost of the optimal
plan for each robot decreases gradually until its workspace model is complete. It
can be seen that the planner incorporates the knowledge update into the optimal
plan, such that the soft task specification is satisfied more. Figure 4.10 illustrates
the number of messages received by each robot under the dynamic communication
topology. Due to the subscriber-publisher scheme, the number of messages being
exchanged among the robots decreases over time.

4.6 Summary

In this chapter, we discussed about the motion and task planning problem for both
single and multiple robot systems within a partially-known workspace. In particular,
we first presented the method to synthesize the balanced plan for the potentially
infeasible task with hard and soft constraints. Then we proposed an on-line scheme
for plan adaptation and revision to guarantee the safety and feasibility of the current
plan at all time. At last, we extended this framework to multi-robot systems with
independent individual tasks by introducing the knowledge transfer protocol.

Chapter 5

Dependent local tasks with collaborative
actions

Robots are deployed to move around within the workspace and more impor-
tantly to perform various actions to interact with it. Thus in this chapter, we

first introduce a new method to construct the model of both robot motion and
actions. Based on this model, we can specify a local temporal task as the desired
robot motion and actions. Then a planning scheme for both robot motion and
actions is proposed as an extension to the nominal solution presented in Chapter 3.
Furthermore, inter-robot collaborations are essential for many multi-robot applica-
tions to improve system capability, efficiency and robustness. Thus we start from
defining a dependency relation among the robots using collaborative and assisting
actions. Then a distributed and on-line coordination scheme is proposed where
each robot sends requests to its neighbors for collaborative tasks, confirms others’
requests and adapts its local plan to fulfill the confirmed collaboration. All decisions
are made locally by each robot based on local computation and communication
between neighboring robots. This scheme is scalable and resilient to robot failures
as the dependency relation is formed and removed dynamically according to the
plan execution status and robot capabilities, instead of pre-assigned robot identities.
Numerical simulations are provided in the end to validate the proposed scheme.

5.1 Motion and action planning

The task specifications considered so far only involve a sequence of regions to visit.
However, for practical problems it is often necessary to perform various actions
at different regions. In other words, the purpose of “going somewhere” is to “do
something”. The resulting plan is clearly a combination of transitions among different
places and performing sequential actions. It would be inadequate to carry out the
motion planning and action planning independently since the motion plan and
action plan are closely related, i.e., “where to go” is motivated by “what to do
there” and “what to do now” depends on “where it has been”. Another observation

61

62 Dependent local tasks with collaborative actions

is that some actions can only be performed when certain conditions are fulfilled
and as a result certain state variables might be changed. Moreover, we propose to
separate the domain-specific knowledge [146] such as the workspace model and the
robot’s mobility in the workspace, from the domain-independent knowledge such as
the action map based on the actions the robot is capable of. One advantage is the
increased modularity that our framework is adaptable whenever the workspace is
modified or the task specification is changed.

5.1.1 Complete robot model
The complete robot model is derived by composing the abstraction of robot mobility
and the model of robot actions.

Abstraction of robot motion

Firstly, in order to distinguish the FTSs for mobility and action, we replace the
FTS Tc in Definition 3.3 withM as the abstraction of robot’s mobility:

M = (ΠM, σM, Ð→M, ΠM,0, ΨM, LM, WM), (5.1)

of which the notations are similar to Tc; σM stands for the control strategy (3.3)
symbolically; ΨM = Ψr ∪Ψp where Ψr = {Ψr,i}, i = 1,⋯,N , is the set of propositions
as region names; Ψp = {Ψp,1,⋯,Ψp,I} is the finite set of propositions as interested
properties, some of which are relevant to robot’s actions discussed later. For instance,
“this room has product A” is a property relevant to the action “pickup A”.

Model of robot actions

Action description language [42] provides an intuitive and powerful way for describ-
ing the preconditions and effects of different actions. Classic planning formalisms,
like STRIPS [37, 119] provide an intuitive way to describe high-level actions the
robot is capable of. Given a set of system states and actions, each action is described
by specifying its precondition and effect on the states. Assume that the robot is
capable of performing K different actions {σB,1,⋯, σB,K}, implementable by the cor-
responding low-level controllers {Kk}, k = 1,⋯,K. Denote by ΣB = {σB,0,⋯, σB,K},
where σB,0 ≜ None indicates that none of these K actions is performed. Moreover, we
introduce another two sets of propositions: (i) Ψs = {Ψs,j}, represents the internal
states of the robot, j = 1,2⋯, J , e.g., “the robot has product A”; (ii) Ψb = {Ψb,k},
where Ψb,k = ⊺ if and only if action k is performed, k = 0,1,⋯,K. We assume that
any two actions cannot be concurrent, i.e., at most one element of Ψb can be true.
The subscripts of Ψs and Ψb stand for the “state” and “behavior”. Then each action
in ΣB is described by its precondition and effect functions:

The precondition function:

Cond ∶ ΣB × 2Ψp × 2Ψs Ð→ True/False, (5.2)

5.1. Motion and action planning 63

takes one action in ΣB, subsets of Ψp and Ψs as inputs and returns a boolean value.
Namely in order to perform that action, the conditions on the workspace properties
and the robot’s internal states have to be fulfilled. For instance, the action “pickup
A” can only be performed if “the room has product A”. While some actions like
“take pictures” might be performed without such constraints and the condition is ⊺.
Note the condition for σB,0 is ⊺ by definition.

The effect function:

Eff ∶ ΣB × (2Ψs ×Ψb)Ð→ (2Ψs ×Ψb), (5.3)

represents the effect of the actions. As a result of performing action σB,k, the robot’s
internal states Ψs might be changed and Ψb is changed to indicate which action
is performed. More specifically, (i) Eff(σB,0,ws,Ψb,k) = (ws, Ψb,0), where ws ⊆ 2Ψs

and ∀Ψb,k ∈ Ψb. Performing σB,0 does not change the robot’s internal state and all
elements in Ψb except Ψb,0 are set to �; (ii) Eff(σB,k, ws, Ψb,l) = (w′

s, Ψb,k), where
ws, w

′
s ⊆ 2Ψs and Ψb,l, Ψb,k ∈ Ψb, is the effect function of σB,k for k ≠ 0. For example,

once the action “pickup A” is performed, the propositions “the robot has A” and
“‘pickup A’ is performed” become true. Note that the effect functions can not modify
the properties of the workspace.

Given Ψp, Ψs, Ψb and ΣB, Cond, Eff, the action map is defined as a tuple

B = (ΠB, ΣB, Ψp, ↪B, ΠB,0, ΨB, LB, WB), (5.4)

where (i) ΠB ⊆ 2Ψs × Ψb is set of all assignments of Ψs and Ψb; (ii) Ψp serves as
the input propositions, and 2Ψp is the finite set of possible input assignments; (iii)
the conditional transition relation ↪B is defined by πB × αB × 2Ψp × π′B ⊆↪B if the
following conditions hold: (1) αB ∈ ΣB, πB, π′B ∈ ΠB; (2) Cond (αB, 2Ψp , πB) = ⊺; (3)
π′B ∈ Eff (αB, πB); (iv) ΠB,0 ⊆ 2Ψs × Ψb,0 is the initial state; (v) ΨB = Ψs ∪ Ψb is
the set of atomic propositions; (vi) LB(πB) = {πB}, i.e., the labeling function is the
state itself; (vii) WB ∶↪B→ R+ is the weight associated with each transition and
WB(πB, αB, 2Ψp , π′B) is estimated by the cost of action αB.
Remark 5.1. The set of states ΠB is defined as 2Ψs × Ψb instead of 2Ψs × 2Ψb

because only one element in Ψb can be true. ▲

Ψp can be viewed as external inputs [11] to the action map, i.e., within different
regions the transition relations might be different due to their different properties.
Moreover, B is nondeterministic in the sense that at each state πB any action whose
associated condition function is evaluated to be true, can be performed. It is worth
mentioning that the action map is constructed independently of the structure of the
workspace where the robot will be deployed. Furthermore, given an instance of the
workspace property Ψp, the action map B is equivalent to a wFTS as all conditional
transition relations can be verified or falsified.

Complete functionality model

As mentioned earlier, the mobility abstractionM from (5.1) and the action map B
from (5.4) are adequate for the controller synthesis within certain problem domain.

64 Dependent local tasks with collaborative actions

…...

||
|

M

B
…...

R

Figure 5.1: The action map B is composed with each region ofM, giving a complete
description R of robot’s functionalities.

However, in order to consider richer and more complex tasks involving both robot
motion and actions, we need a complete model of robot’s functionalities that combines
these two parts. We propose the following way to composeM and B as a FTS:

R = (ΠR, ΣR, Ð→R, ΠR,0, ΨR, LR, WR), (5.5)

where (i) ΠR = ΠM × ΠB is the set of states; (ii) ΣR = σM ∪ ΣB is the set of
actions; (iii) Ð→R ⊆ ΠR × ΣR × ΠR is the transition relation, defined by the fol-
lowing rules: (1) ⟨πM, πB⟩

σM
ÐÐ→R ⟨π′M, π′B⟩ if πM

σM
ÐÐ→M π′M and πB

σB,0
ÐÐ→B π

′
B;

(2) ⟨πM, πB⟩
αB
Ð→R ⟨πM, π′B⟩ if πB × αB × LM(πM) × π′B ⊂↪B, where αB ∈ ΣB.

(iv) ΠR,0 = ΠM,0 × ΠB,0 contains the robot’s initial region and initial internal
state; (v) ΨR = ΨM ∪ΨB is the complete set of atomic propositions including Ψr,
Ψp, Ψs and Ψb; (vi) LR ∶ ΠR → 2ΨR is the labeling function, LR(⟨πM, πB⟩) =
LM(πM) ∪ LB(πB); (vii) WR ∶Ð→R→ R+, is the weight function on each tran-
sition, defined as: (1) WR(⟨πM, πB⟩, σM, ⟨π′M, π′B⟩) = WM(πM, σM, π′M); (2)
WR(⟨πM, πB⟩, αR, ⟨πM, π′B⟩) =WB(πB, αR, π

′
B), if αR ∈ ΣB.

Remark 5.2. Note that ↪B, σB,0 is released automatically whenever the controller
(3.3) is activated. Because whenever the robot moves to a new region, it indicates
that no actions within σB,k are performed as we assume non-concurrent actions. ▲

Figure 5.1 illustrates the idea behind the process of parallel composition defined
above. Blue squares represent the states of M and red cycles encode the states
of B. Loosely speaking, when composing them into R, N copies of B are first
made, corresponding to the N regions within the workspace. At the same time, the
conditional transition relations in these copies are verified or falsified by verifying
the conditions on the properties of each region.

5.1. Motion and action planning 65

5.1.2 Local task for motion and actions

The composed system R is a wFTS over the set of atomic propositions ΨR. Recall
that ΨR = Ψr ∪Ψp ∪Ψs ∪Ψb. Among them, Ψr, Ψp are commonly seen in related
work [15, 85, 132], but Ψs, Ψb allow us to express richer requirements on the robot’s
internal states and actions directly, as for example where these actions are desired
and the preferred sequence. For instance, the task “eventually always drop A at
region 1” can be expressed as ϕ = ◻◇ (Ψr,1 ∧Ψb,2), where Ψr,1=“{the robot is in
region 1”} and Ψb,2={“drop A” is performed}. Notice that we do not even need to
specify where the robot should perform “pickup A”.

5.1.3 Hybrid control strategy

We now state the problem we consider in this section:

Problem 5.1. Given the full robot functionality R and the task ϕ, find its motion
and action plan that minimizes the cost defined by (3.9) and construct the hybrid
control strategy that executes this plan. ▲

Since R is a standard finite transition system like Tc from Definition 3.3, the
framework proposed in Chapter 3 can be applied directly to find the infinite optimal
motion and action sequence that has a finite representation and minimizes the
cost by 3.9. Namely, denote by Ropt the optimal accepting run of the product
R × Aϕ from Algorithm 3.1, which can be projected onto R as the motion and
action plan τopt = Ropt∣ΠR . For each pair of sequential states (πR,s, πR,s+1) in τopt
there exists an action αR ∈ ΣR such that (πR,s, αR, πR,s+1) ∈Ð→R from (5.5).
Thus the underlying low-level control strategy can be synthesized by sequentially
implementing the continuous controller associated with the actions along τR, in a
similar way as Algorithm 3.2. In particular, if αR = σB,k, the controller {Kk} that
implements the action σB,k is activated. If αR = σM, the navigation controller (3.3)
is applied to drive the robot from the starting region to one point in the goal region.

The overall framework has four steps: (i) construct the mobility abstractionM
and action map B; (ii) construct the full functionality R by composingM and B;
(iii) synthesis optimal the motion and action plan τopt; (iv) execute the plan by the
hybrid control strategy.

It is worth mentioning thatM and B are constructed only once for the robot
within a certain workspace and ϕ can express any task specification in terms of
required motions and actions. Steps (ii)-(iv) are performed in an automated way.
Whenever a new task specification is given, the complete functionalities model R
remains unchanged and steps (iii)-(iv) are repeated to synthesize the corresponding
plan. Whenever the workspace is modified, onlyM needs to be re-constructed but
the action map B remains the same and can be reused.

66 Dependent local tasks with collaborative actions

5.2 Multi-robot systems with dependent local tasks

We have discussed in the previous section about how to construct a motion and
action plan for a single robot when its individual local task can be fulfilled by itself.
But what if one robot needs other robots’ collaboration to accomplish one action
in its plan, namely whether one robot can accomplish its local task depends on
other robots’ collaboration. In this section, we address this issue by considering a
multi-robot system of N robots with identities i ∈ N = {1,2,⋯,N}, as described in
Section 4.4, with heterogeneous capabilities and dependent local tasks.

5.2.1 Collaborative actions
In this part, we construct the complete robot model for both motion and actions,
where the abstraction for robot motion is similar to Section 5.1.1 but the model of
robot actions is different, due to the existence of collaborative and assisting actions.

Same as before, the workspace consists of M partitions as the regions of interest,
denoted by Π = {π1, π2,⋯, πM}. We assume that these symbols are assigned a
priori and the workspace is fully-known by all robots. Robot i’s motion within the
workspace is modeled as a wFTS:

Mi ≜ (Π, Ð→iM, Πi
M,0, Ψi

M, LiM, T iM), (5.6)

where Ð→iM⊆ Π ×Π is the transition relation; Πi
M,0 ∈ Π is the initial region robot k

starts from; LiM ∶ Π→ 2Ψi
M is the labeling function, indicating the properties held

by each region; T iM ∶Ð→iM→ R+ estimates the time each transition takes. A path of
Mi is a sequence of regions π0π1⋯πP , where (πn, πn+1) ∈Ð→

i
M, ∀n = 0,1,⋯, P − 1.

Note thatMi might be different between the robots due to heterogeneity. Moreover,
each robot i has a set of neighboring robots, denoted by Ni ⊆ N and robot i can
exchange messages directly with any robot j ∈ Ni.

Action model

Besides the motion ability, robot i is capable of performing a set of actions denoted
by Σi ≜ Σil ∪ Σic ∪ Σih, where

• Σil is a set of local actions, which can be done by robot i itself;

• Σic is a set of collaborative actions, which can be done by robot i but requires
collaborations from other robots;

• Σih is a set of assisting actions, which robot i offers to other robots to accomplish
their collaborative actions.

In other words, Σil and Σic contain active actions that can be initiated by robot
i, denoted by Σia = Σil ∪ Σic, while Σih contains assisting actions only to assist other
robots. By default, σ0 = None ∈ Σi

l means that none of the actions is performed.

5.2. Multi-robot systems with dependent local tasks 67

Moreover, denote by Σ∼i
h the set of external assisting actions robot i depends on,

which can only be provided by some of its neighbors in Ni, i.e., Σ∼i
h ⊆ ∪i∈NiΣi

h.
Table 5.1 shows the action sets of the robots that will be simulated in Section 5.3.
The action model of robot i is modeled by a six-tuple:

Bi ≜ (Σi, Ψi
Σ, L

i
Σ, Condi, Durai, Depdi), (5.7)

where Σi is the set of actions defined earlier; Ψi
Σ is a set of atomic propositions related

to the robot’s active actions; LiΣ ∶ Σi → 2Ψi
Σ is the labeling function. LiΣ(σh) = ∅,

∀σh ∈ Σi
h and LiΣ(σa) ⊆ Ψi

Σ, ∀σa ∈ Σi
a; Condi ∶ Σi × 2Ψi

M → ⊺/� indicates the
set of region properties that have to be fulfilled in order to perform an action;
Durai ∶ Σi → R+ is the time duration of each action. Durai(σ0) = T0 > 0 is a
design parameter; Depdi ∶ Σi → 2Σ∼i

h is the dependence function. Depdi(σs) = ∅,
∀σs ∈ Σi

l ∪ Σi
h and Depdi(σc) ⊆ Σ∼i

h , ∀σc ∈ Σi
c. Namely each collaborative action

depends on a set of assisting actions from its neighbors. This is useful for defining
complex collaborations involving multiple robots.
Remark 5.3. Compared with defining dependency directly on robot identities, our
action model allows more flexibility since their identities need not be known a priori
and new or existing robots can be added or removed. Moreover, different from (5.4),
the action model by (5.7) can model both local and collaborative actions. ▲

Definition 5.1. A local or assisting action σs ∈ Σi
l ∪Σi

h is done at region πv ∈ Π
if two conditions hold: (i) Condi(σs, LiM(πv)) = ⊺; (ii) σs is activated for period
Durai(σs). For a collaborative action σc ∈ Σic, another condition is needed: (iii) all
assisting actions in Depdi(σc) are done by other robots at the same region πv. ∎

Complete robot model

A complete robot model of robot i, denoted by Ri, refers to the finite transition
system that models both its motion and actions.

Definition 5.2. GivenMi and Bi, robot i’s complete model can be constructed as
follows: Ri = (Πi

R, Ð→
i
R, Πi

R,0, Ψi
R, L

i
R, T

i
R), where Πi

R = Π ×Σi. πR,s = ⟨πt, σn⟩ ∈

Πi
R, ∀πt ∈ Π, ∀σn ∈ Σi; Ð→iR⊆ Πi

R ×Πi
R. (⟨πs, σm⟩, ⟨πt, σn⟩) ∈Ð→

i
R if (i) σn = σm =

σ0, πs Ð→iM πt; or (ii) σm = σ0, σn ≠ σ0 and πs = πt, Condi(σn, LiM(πs)) = ⊺; or (iii)
σm ∈ Σi, σn = σ0 and πs = πt; Πi

R,0 = Πi
M,0 × σ0 is the initial state; Ψi

R = Ψi
M ∪Ψi

Σ;
LiR ∶ Πi

R → 2Ψi

. LiR(⟨πs, σm⟩) = LiM(πs) ∪ L
i
Σ(σm); T iR ∶Ð→iR→ R+. For case (i)

above, T iR(⟨πs, σm⟩, ⟨πt, σn⟩) = T iM(πs, πt); for case (ii), T iR(⟨πs, σm⟩, ⟨πt, σn⟩) =
Durai(σn); for case (iii), T iR(⟨πs, σm⟩, ⟨πt, σn⟩) = T0. ∎

Note that when defining Ð→iR above, the condition of performing an action is
verified over the properties of each region. Thus Ri is a standard FTS by [11]. Its
finite path is denoted by τi = πR,0πR,1⋯πR,P , where πR,s ∈ Πi

R, πR,0 ∈ Πi
R,0 and

(πR,s, πR,s+1) ∈Ð→
i
R, ∀s = 0,⋯, P − 1, of which the trace is given by trace(τi) =

LiR(πR,0)L
i
R(πR,1) ⋯L

i
R(πR,P).

68 Dependent local tasks with collaborative actions

Robot Σil Σic Σih Σ∼i
h

R1 lA, uA lB , uB ∅ hB

R2 s ∅ hB , hC1 , hF ∅

R3 ∅ oM hC2 , hF hM

R4 s aC hM , hF hC1 , hC2

R5 mD ∅ hB , hC1 , hC2 ∅

R6 oE cF hB , hM hF

Table 5.1: Action sets (except σ0) described in Section 5.3.

5.2.2 Problem formulation
The local task of robot i, denoted by ϕi, is given as an sc-safe LTL formula over the
set of atomic propositions Ψi

R from Definition 5.2. Thus ϕi can contain requirements
on robot’s motion, local and collaborative actions. The syntax and semantics of
sc-LTL can be found in Section 3.2. As also mentioned there, an sc-safe LTL formula
can be fulfilled by a finite prefix. In particular, given a finite path τi of Ri, then
τi fulfils ϕi if trace(τi) ⊧ ϕi where the satisfaction relation is defined there. One
special case is that when ϕi ≜ ⊺, robot i does not have a local task and serves as an
assisting robot. In summary, we address the following problem in this section:

Problem 5.2. Given Ri and its locally-assigned task ϕi that depends on other
robots’ collaboration, design a distributed control and coordination scheme such that
ϕi is fulfilled for all i ∈ N . ▲

5.2.3 Distributed task coordination
This section contains the main contribution as the bottom-up motion and task
coordination scheme for multi-robot systems with dependent local tasks. It includes
the off-line initial plan synthesis, the on-line request and reply messages exchange
protocol, the real-time plan adaptation algorithm and the failure recovery mechanism.

Initial plan synthesis

Given the complete robot model and its local task, we can first synthesize an initial
motion and action plan for each robot, which happens off-line and serves as a
starting point for the real-time coordination and adaptation scheme in Section 5.2.3.
We intend to find a finite path of Ri whose trace satisfies the co-safe formula ϕi as
described in Section 5.2.2. Let Aϕi be the NBA associated with ϕi from Section 3.2,
i.e., Aϕi = (Qi, 2Ψi

G , δi, Q
i
0, Fi). The product automaton Ap,i is defined as follows:

Ap,i =Ri ⊗Aϕi = (Qp,i, δp,i, Qp,i,0, Fp,i, Wp,i), (5.8)

where Qp,i = Πi
R ×Qi; (⟨πR,s, qm⟩, ⟨πR,k, qn⟩) ∈ δp,i if it holds that πR,s Ð→iR πR,k

and (qm, L
i
R(πR,s), qn) ∈ δi ;Qp,i,0 = Πi

R,0×Q
i
0 is the set of initial states; Fp,i = Πi

R×

5.2. Multi-robot systems with dependent local tasks 69

F i is the set of accepting states; Wp,i ∶ δp,i×Qp,i → R+. Wp,i(⟨πR,s, qm⟩, ⟨πR,k, qn⟩)
= T iR(πR,s, πR,k), where ⟨πR,k, qn⟩ ∈ δp,i(⟨πR,s, qm⟩).

There exists a finite path of Ri satisfying ϕi if and only if Ap,i has a finite
path from an initial state to an accepting state. Then this path could be projected
back to Ri as a finite path, the trace of which should satisfy ϕi automatically [11].
Let Rip = qip,0q

i
p,1⋯q

i
p,P be a finite path of Ap,i, where qip,0 ∈ Qp,i,0, qip,P ∈ Fp,i,

qip,l ∈ Qp,i and (qip,l, q
i
p,l+1) ∈ δp,i, ∀l = 0,1,⋯, P − 1. The cost of Rip is defined by

Cost(Rip, Ap,i) = ∑
P−1
l=0 Wp,i(q

i
p,l, q

i
p,l+1), which is the summed weights along Rip.

The lth element is given by Rip[l] = qip,l and the segment from the lth to the kth
element is Rip[l :k] = qip,lqip,l+1⋯q

i
p,k, where l ≤ k ≤ P .

Problem 5.3. Find a finite path Rip of Ap,i with the above structure that minimizes
its total cost. ▲

Denote by Rip,init the solution to the above problem. Algorithm 1 in [58] solves
the above problem, which is also restated in Algorithm 3.1. It utilizes Dijkstra’s
algorithm for computing the shortest path from any initial state in Qp,i,0 to every
reachable accepting state in F ip and checks if there is cycle back to qp,P . The worst-
case complexity [89, 97] is O(∣δp,i∣ ⋅ log ∣Qp,i∣ ⋅ ∣Qp,i,0∣). By projecting Rip,init onto Πi

R,
it gives the initial motion and action plan τ iR,init = Rip,init∣Πi

R

that fulfils ϕi.
Remark 5.4. The initial plans are synthesized locally by each robot instead of by
a central unit [18] or within a cluster [51]. ▲

The plan τ iR,init can be executed by activating the motion or actions in sequence.
However since τ iR,init may contain several collaborative actions from Σic to satisfy ϕi,
the successful execution of τ iR,init depends on other robots’ collaboration, which
however is not guaranteed since τ iR,init is synthesized off-line and locally. We resolve
this problem by a real-time coordination and adaptation scheme in the following.

On-line collaborative task coordination

There is no guarantee that the initial plan τ iR,init can be executed successfully if it
contains collaborative actions. In this part, we propose a distributed and on-line
coordination scheme which involves four major parts: (i) a request and reply exchange
protocol driven by collaborative actions in a finite horizon; (ii) an optimization and
confirmation mechanism, by solving a mixed integer program given the replies; (iii)
a real-time plan adaptation algorithm given the confirmation; (iv) an robot failure
detection and recovery scheme along with the plan execution.

Planned motion and actions in horizon

Denote by πiR,t ∈ Πi
R the state of robot i at time t. After the system starts, assume

πiR,t is the lth element in τ iR,init, namely, πiR,t = τ iR,init[l]. Each robot i ∈ N is given
a bounded planning horizon 0 < Hi < ∞, which is the time ahead robot i checks

70 Dependent local tasks with collaborative actions

Algorithm 5.7 Plan in horizon and request, Request()
Input: τ iR,init, πiR,t, Hi

Output: τ iR,H , Requesti

τ iR,init[l] = π
i
R,t, s = 0, Tm = 0, Requesti = ∅

while (T <Hi) and (l + s ≤ ∣τ iR,init∣) do
s = s + 1, Tm = Tm + T iR (τ iR, init[l], τ

i
R,init[l + s])

⟨πv, σm⟩ = τ iR,init[l + s]

if Requesti = ∅ and σm ∈ Σic then
forall the σd ∈ Depdi(σm) do

add (σd, πv, Tm) to Requesti

k = l + s, τ iR,H = τ iR,init[l :k]
return τ iR,H , Requesti

its plan. Similar approach can be found in [153] for a single dynamic system. Then
the sequence of states robot i is expected to reach within the time Hi, denoted by
τ iR,H , is the segment τ iR,H = τ iR,init[l :k], where the index k ≥ l is the solution to
this optimization problem: min k, subject to ∑ks=l T iR (τ iR, init[s], τ

i
R,init[s + 1]) ≥Hi.

It can be solved by iterating through the sequence of τ iR,init and computing the
accumulated cost, which is then compared with Hi. If it does not have a solution,
it means Hi is larger than the total cost of the rest of the plan τ iR,init[l :], then
k = ∣τ iR,init∣, see Algorithm 5.7. This time horizon avoids coordinating on collaborative
actions that will be done within a long time from now.

Request to neighbors

Given τ iR,H as the motion and actions in horizon, robot i needs to check whether
it needs others’ collaboration within τ iR,H . This is done by verifying whether a
collaborative action needs to be performed to reach the states in τ iR,H . More
specifically, for the first state ⟨πv, σm⟩ ∈ τ iR,H satisfying σm ∈ Σi

c, robot i needs to
broadcast a request to all robots within its communication network Ni regarding
this action. This request message has the following format:

Requesti = {(σd, πv, Tm),∀σd ∈ Depdi(σm)}, (5.9)

where Depdi(σm) is the set of external assisting actions that σm depends on by (5.7);
πv ∈ Π is the region where σm will be performed; Tm ≥ 0 is the time when σm will be
performed from now. Assume that ⟨πv, σm⟩ is the kth element of τ iR,H . Then Tm =

∑
k
s=l T

i
R (τ iR,H[s], τ iR,H[s + 1]) , see Algorithm 5.7. Each element (σd, πv, Tm) ∈

Requesti contains the message that “robot i is requesting the assisting action σd at
region πv in the time Tm from now”. The request message from robot i to each robot

5.2. Multi-robot systems with dependent local tasks 71

Algorithm 5.8 Reply to request by robot j, Reply()
Input: Requestij , R̂

j
p,−, Ap,j , T j

Output: Replyji , P̂
forall the (σd, πv, Tm) ∈Requestij do

if T j is 0 then
(R̂jp,+, b

j
d, t

j
d) = EvalReq(R̂jp,−, (πv, σd, Tm), Ap,j)

if bjd is ⊺ then
P̂ (σd) = R̂

j
p,+, add (σd, b

j
d, t

j
d) to Replyji

add (σd, �, 0) to Replyji
Return Replyji , P̂

j ∈ Ni, denoted by Requestij , is the same as Requesti, i.e., Requestij =Request
i,

∀j ∈ Ni.
Remark 5.5. The request message is sent only for the first collaborative action in
τ iR,H within the time horizon Hi (see Algorithm 5.7), as the outcome of this request
would greatly affect the second collaborative action in τ iR,H . ▲

Request evaluation and reply

Upon receiving the request, robot j ∈ Ni needs to evaluate this request in terms of
feasibility and cost, in order to reply to robot i. Specifically, the reply message from
robot j to robot i has the following format:

Replyji = {(σd, b
j
d, t

j
d), ∀(σd, πv, Tm) ∈Requestij}, (5.10)

where σd is the requested assisting action by robot i; bjd is a boolean variable
indicating the feasibility of robot j offering action σd at region πv; tjd ≥ 0 is time
when that can happen. We describe how to determine bjd and tjd below.

Denote by T j ≥ 0 the finishing time of the current collaboration robot i is engaged
in. It is initialized as 0 and updated in Section 5.2.3. As shown in Algorithm 5.8,
(I) if T j > 0, it means robot j is engaged in a collaboration. Then Replyji =

{(σd, �, 0), ∀(σd, πv, Tm) ∈ Requestij}, meaning that robot j would reject any
request before its current collaboration is finished. (II) If T j = 0, it means robot j is
available to offer assisting actions. Then for each request (σd, πv, Tm) ∈Requestij ,
robot i needs to evaluate it in terms of feasibility and cost to determine bjd and tjd.
Clearly, robot j needs to potentially revise its current plan to incorporate the request,
i.e., to offer the assisting action σd at region πv by time Tm. Denote by τ j

R,t− the
plan of robot j before the potential revision, of which the corresponding accepting
run is Rjp,t− . Assume that robot j’s current state qjp,t is the lth element of Rjp,t− and
the accepting state qjp,f is the last and fth element. Then the segment from qjp,t to

72 Dependent local tasks with collaborative actions

Algorithm 5.9 Evaluate the request, EvalReq(⋅)
Input: R̂jp,−, (πv, σd, Tm), qjp,t, Ap,j
Output: R̂jp,+, bjd, t

j
d

qjp,t = R̂
j
p,−[1], qjp,f = R̂

j
p,−[-1]

Compute Sd, Sc
c̄ = Cost(R̂jp,−,Ap,j)
(P1, C1) = DijksTA(Ap,j , qjp,t, Sd, Sc)
(P2, C2) = DijksTA(Reverse(Ap,j), qjp,f , Sd, ∅)

forall the qjp,r ∈ Sd do
if P1(qjp,r) and P2(qp,r) exist then

C3(q
j
p,r) = ∣C1(q

j
p,r) − Tm∣ + αj(C1(q

j
p,r) +C2(q

j
p,r) − c̄)

Find the qj,⋆p,r ∈ Sd that minimizes C3(q
j
p,r)

if qj,⋆p,r ≠ ∅ then
P = P1(q

j,⋆
p,r) + Reverse(P2(q

j,⋆
p,r))

Return R̂jp,+ = P , bjd = ⊺, t
j
d = C1(q

j,⋆
p,r)

Return R̂jp,+ = ∅, bjd = �, t
j
d = 0

qjp,f is given by R̂jp,− = Rjp,t−[l :f]. We intend to find another segment R̂jp,+ within
Ap,j from qjp,t to q

j
p,f , such that by following R̂jp,+: (i) robot j should reach state

⟨πv, σd⟩; (ii) the time to reach ⟨πv, σd⟩ should be close to Tm; (iii) the additional
cost of R̂jp,+ compared to R̂jp,− should be small. We enforce those conditions below.

Firstly, the set of product states in Ap,j corresponding to ⟨πv, σd⟩ is given by
Sd = {qp ∈ Q

j
p ∣ qp∣Πj

R

= ⟨πv, σd⟩}. Consider R̂jp,+ with the following structure:

R̂jp,+ = q
j
p,t⋯q

j
p,r⋯q

j
p,f , (5.11)

where qjp,r ∈ Sd, meaning that it passes through at least one state within Sd. Thus
the corresponding plan would contain ⟨πv, σd⟩, which fulfils the condition (i) above.
Regarding conditions (ii) and (iii), we define the balanced cost of R̂jp,+:

BalCost(R̂jp,+, Tm, Ap,j)

= ∣
r−t

∑
s=1

W j
p (R̂

j
p,+[s], R̂

j
p,+[s + 1]) − Tm∣

+ αj (Cost(R̂jp,+, Ap,j) − Cost(R̂jp,−, Ap,j)),

(5.12)

where the first part stands for the time gap between the requested time Tm by robot
i and the actual time based on R̂jp,+ (for condition (ii)); the second term is the
additional cost of R̂jp,+, compared to R̂jp,− (for condition (iii)); αj > 0 is a design
parameter as the relative weighting.

5.2. Multi-robot systems with dependent local tasks 73

Problem 5.4. Given R̂jp,−, Sd and Ap,j, find the path segement R̂jp,+ that mini-
mizes (5.12). ▲

Algorithm 5.9 solves the above problem by the bidirectional Dijkstra algorithm.
It utilizes the function DijksTA(⋅) that computes shortest paths in a weighted graph
from the single source state to every state in the set of target states, while at the same
time avoiding a set of states. It is a simple extension of the classic Dijkstra shortest
path algorithm [97]. DijksTA(Ap,j , qjp,t, Sd, Sc) determines the shortest path (saved
in P1) from qjp,t to every state in Sd while avoiding any state belonging to Sc and the
associated costs (saved in C1), where Sc is the set of all product states associated with
a collaborative or an assisting action: Sc = {qp ∈ Qp,j ∣ qp∣Πj

R

= ⟨πj
R
, σn⟩, σn ∈ Σjc∪Σjh}.

Then DijksTA(Reverse(Ap,j), qjp,f , Sd, ∅) is called to determined the shortest path
(saved in P2) from qjp,f to every state in Sd within the reversedAp,j and the associated
distances (saved in C2); Reverse(Ap,j) is the directed graph obtained by inverting
the direction of all edges in G(Ap,j) while keeping the weights unchanged, where
G(Ap,j) is the directed graph associated with Ap,j [11]. For each state qjp,r ∈ Sd,
the balanced cost of the corresponding R̂jp,+ by (5.12) is computed. The one that
yields the minimal cost is denoted by qj,⋆p,r. At last, R̂

j
p,+ is formed by concatenating

the shortest path from qjp,t to qj,⋆p,r and the reversed shortest path from qjp,f to qj,⋆p,r.
Last but not least, if qj,⋆p,r returns empty, it means that robot i could not offer the
requested collaboration thus bjd = � and tjd = 0. The complexity [89, 97] of function
DijksTA(⋅) over Ap,j is O(∣δp,j ∣ ⋅ log ∣Qp,j ∣); reversing Ap,j has the complexity linear
to O(∣δp,j ∣), where ∣Qp,j ∣, ∣δp,j ∣ are the number of states and transitions in Ap,j .

Remark 5.6. Note that R̂jp,+ is the potentially-revised run, i.e., robot j does not
change its current plan but saves R̂jp,+ in P̂ (see Algorithm 5.8) and waits for the
confirmation from robot i, which will be discussed in Section 5.2.3. ▲

It is worth mentioning that in case robot i receives requests from multiple robots,
it needs to reply to one robot first and wait for the confirmation before it replies
to the next robot. Table 5.2 shows the request and reply messages regarding two
collaborative actions in Section 5.3.

Lemma 5.1. If bjd = ⊺ from Algorithm 5.9, action σd can be done at the time tjd by
robot j following R̂jp,+.

Proof. Since the first segment of R̂jp,+ from qjp,t to qj,⋆p,r is derived by DijksTA(⋅) of
Algorithm 5.9, it does not contain any collaborative or assisting actions except σd.
Thus it can be accomplished by robot j itself with only motions and local actions,
of which the time is tjd. ∎

74 Dependent local tasks with collaborative actions

Request R1, (hB , r4,11) R4, (hC1 , r5,14) R4, (hC2 , r5,14)
R1 −− (hC1 ,�,0) (hC2 ,�,0)
R2 (hB ,⊺,13.1) (hC1 ,⊺,14.6) (hC2 ,�,0)
R3 (hB ,�,0) (hC1 ,�,0) (hC2 ,⊺,16.2)
R4 (hB ,�,0) −− −−

R5 (hB ,⊺,15.7) (hC1 ,⊺,15.4) (hC2 ,⊺,15.4)
R6 (hB ,⊺,18.2) (hC1 ,�,0) (hC2 ,�,0)

Table 5.2: Request and reply messages exchanged for collaborative actions oM and aC
in Section 5.3, regarding assisting actions hB and hC1 , hC2 .

Confirmation

Based on the replies from j ∈ Ni, robot i needs to acknowledge them by sending
back confirmation messages:

Confirmi
j = {(σd, c

j
d, fm),∀σd ∈ Depdi(σm)}, (5.13)

where σd is the requested assisting action; cjd is a boolean variable, indicating whether
robot j is confirmed to provide σd; fm is the time to finish action σm. The choices
of {cjd, j ∈ Ni} should satisfy two constraints: (i) exactly one robot in Ni can be the
confirmed collaborator for each action σd ∈ Depdi(σm); (ii) each robot in Ni can be
confirmed for at most one action in Depdi(σm). Meanwhile, the finishing time fm
should be as early as possible.

Let ∣Ni∣ = N1 and ∣Depdi(σm)∣ = N2. Without loss of generality, denote by
Ni = {1,⋯,N1} and Depdi(σm) = {σ1,⋯, σN2}. The problem of finding {cjd} and fm
can be readily formulated as an integer programming problem [152]:

min fm

s.t. fm =maxd{cjd ⋅ t
j
d, Tm}

N2

∑
d=1

bjd ⋅ c
j
d ≤ 1, ∀j ∈ {1,⋯,N1},

N1

∑
j=1

bjd ⋅ c
j
d = 1, ∀d ∈ {1,⋯,N2},

(5.14)

where (σd, b
j
d, t

j
d) ∈ Replyji from (5.10). Any stand-alone integer programming

solver can be used to obtain {cjd} and fm once (5.14) is formulated, e.g., “Gurobi”
and “CVXOPT”. Then ∀j ∈ Ni and ∀σd ∈ Depdi(σm), consider two cases: (I) if (5.14)
has a solution, both {cjd} and fm exist. If cjd is ⊺, add (σd, ⊺, fm) to Confirmi

j ;
otherwise, add (σd, �, 0) to Confirmi

j ; (II) if (5.14) has no solutions, add (σd, �, 0)
to Confirmi

j . It means that σm can not be fulfilled according to the current replies.
Then how robot i needs to delay σm and revise its plan will be given in Section 5.2.3.

5.2. Multi-robot systems with dependent local tasks 75

Algorithm 5.10 Delay collaboration, DelayCol()
Input: R̂ip,−, qip,t, ⟨πv, σd⟩, Ap,i, Σ̂ic
Output: R̂ip,+
Compute Sd given ⟨πv, σd⟩, Sc
qip,t = R̂

i
p,−[1], qip,f = R̂ip,−[-1]

(P1, C1) = DijksTA(Ap,i, qip,t, Sd, Sc)
(P2, C2) = DijksTA(Reverse(Ap,i), qip,f , Sd, ∅)

forall the qip,d ∈ Sd do
if C1(q

i
p,d) > Tm +Di and P2(q

i
p,d) exists then

R̂kp,+ = P1(q
i
p,d) + Reverse(P2(q

i
p,d))

Return R̂ip,+

Remark 5.7. The optimization problem (5.14) is solved locally by robot i regarding
the requested collaborative task σm, with ∣Ni∣ ⋅ ∣Depdi(σm)∣ Boolean variables. ▲

Plan adaptation

After sending out the confirmation messages, robot i checks the following: (I) if (5.14)
has a solution, it means that σm can be fulfilled and Rip,t remains unchanged. T i is
set to fm to indicate that robot i is engaged in the collaboration until the time fm;
(II) otherwise, it means that according to the current replies σm can not be done as
planned in Rip,t. Thus robot i needs to revise its plan by delaying this collaborative
action σm. Algorithm 5.10 revises Rip,− and delays σm by time Di, where Di > 0 is
a design parameter. Function DijksTA(⋅) from Algorithm 5.9 is used to find a path
from qip,t to one state in Sd whose cost is larger than Tm +Di and at the same time
reachable to the accepting state qip,f . Such a path can always be found as the action
σ0 that takes time T0 can be repeated as many times as needed.

On the other hand, upon receiving Confirmi
j , each robot j ∈ Ni checks the

following: (I) if bjd = ⊺, it means robot j is confirmed to offer the assisting action
σd. As a result, it modifies its plan based on the potential set of plans P̂ from
Algorithm 5.9. In particular, the plan segment R̂jp is set to R̂jp,+ and T j is set to
fm; (II) if robot bjd = �,∀σd ∈ Depdi(σm), it means robot j is not confirmed as a
collaborator. Then Rjp remains unchanged and T j is set to 0. Afterwards, robot i
and all confirmed collaborators in Ni would execute its plan by following the motion
and action in sequence. They would reject any further request as described in
Section 5.2.3 until the collaboration for action σm is done.

Theorem 5.2. If (5.14) has a solution, the time of accomplishing action σm is fm.

Proof. Since each assisting action σd ∈ Depdi(σm) has been assigned exactly to one
robot j ∈ Ni, then σd can be accomplished by robot j at time tjd by Lemma 5.1.

76 Dependent local tasks with collaborative actions

0 5 10 15 20 25 30 35 40
Time (s)

0

1

2

3

4

5

6

7

Ag
en

ts

Req Neg_Rep Pos_Rep

0 5 10 15 20 25 30 35 40
Time (s)

0

1

2

3

4

5

6

7

Ag
en

ts

Req Neg_Rep Pos_Rep Fail

Figure 5.2: Messages exchanged for both scenarios of Section 5.3. Blue square stands for
request messages by (5.9) while red triangles and green dots stand for reply messages
by (5.10) with bjd being � and ⊺. Black stars indicate the robot failure.

Thus σm can be accomplished by robot i at the time fm, which is the latest time
for all actions by (5.14). ∎

Since each robot has a finite plan as a finite sequence of motion and actions,
when one robot finishes executing its plan, it would become an assisting robot by
setting its task ϕi ≜ ⊺. Then it would stay at one region unless it is confirmed to
collaborate with others.

5.2.4 Failure detection and recovery

Due to the unavoidable characteristics and constraints of physical robots, any robot
may fail (stop being functional) at anytime. Detection of this type of failure is
particularly important for collaborations involving several robots.

We propose an inquiry and acknowledgment mechanism as follows: robot i that
has confirmed on its collaborative action σm would continuously monitor the status
of its confirmed collaborators for each assisting action σd ∈ Depdi(σm) until σm
is done. If, for instance, robot h ∈ Ni who is confirmed to offer action σd fails to
acknowledge robot i’s inquiry for a limited time, robot i may assume that robot h has
failed. As a result, robot i needs to re-assign the assisting action σd to another robot
in Ni, as follows: (i) send a new request {(πv, σd, Tm)} to all neighbors within Ni
and wait for the reply; (ii) based on the replies {(σd, b

j
d, t

j
d)},∀j ∈ Ni}, choose the

new collaborator ĥ ∈ Ni for action σd as follows: ĥ = argminj∈Ni
{∣fm − tjd ⋅ b

j
d∣}, where

fm is the previously confirmed time from (5.14). Namely, it chooses robot ĥ that can
offer action σd at the time closest to fm; (iii) send the confirmation {(σd, ⊺, fm)}

to robot ĥ; (iv) robot ĥ adapts its plan and be engaged in the collaboration on σm
as described in Section 5.2.3.

5.2. Multi-robot systems with dependent local tasks 77

Loosely-coupled system

As mentioned earlier, we aim to apply this distributed coordination scheme to
loosely-coupled multi-robot systems, where collaborations among the robots are (i)
local in the sense that only neighboring robots are needed; (ii) sparse in the sense
that they are needed infrequently compared with the total number of activities of
all robots required by their local tasks, which imposes the following assumption:

Assumption 5.1. There exists a finite time T > 0 such that for each robot i ∈ N and
any collaborative action σm requested by robot i initially at time tm > 0, problem (5.14)
for σm will have a solution within time tm +T. ▲

Namely, the above assumption indicates that any collaborative action required
by each robot i ∈ N in order to satisfy the local task ϕi should always eventually be
provided in finite time by robot i and its neighbors.

5.2.5 Overall structure
During the real-time execution, each robot executes its plan and checks first if
any request is received. If so, it replies to them by Algorithm 5.8, waits for the
confirmation and adjusts its plan accordingly. Otherwise, it sends out requests by
Algorithm 5.7, waits for reply, sends confirmation back by (5.14) and at last adapts
its plan by Algorithm 5.10. The correctness of the proposed scheme is guaranteed
by Theorem 5.3 below:

Theorem 5.3. Under Assumption 5.1, the proposed coordination scheme solves
Problem 5.2. Namely, all local tasks ϕi can be accomplished in finite time, ∀i ∈ N .

Proof. Starting from the initial plan τ iR,init for robot i ∈ N , motion and local
actions in τ iR,init can be accomplished locally by an robot itself. If τ iR,init remains
unchanged for robot i, we only need to show that collaborative actions in τ iR,init
can be accomplished. The fact that τ iR,init remains unchanged indicates that robot
i’s requests for each collaborative action σm are fulfilled, i.e., (5.14) for σm has a
solution. By Theorem 5.2, action σm can be accomplished in finite time fm. Since
τ iR,init is a finite sequence, ϕi can be satisfied in finite time as every motion and
action inside can be done in finite time. On the other hand, if τ iR,init has to be
adapted in real-time, the reasons are: (i) robot i is confirmed to assist its neighbor
j on one collaboration; (ii) robot i has made a request for a collaborative action
σm and it is delayed by Algorithm 5.10 as (5.14) has no solution. For case (i),
Algorithm 5.9 guarantees that after the assistance its updated run R̂ip,+ still satisfies
ϕi in finite time. For case (ii), by Assumption 5.1, (5.14) will have a feasible solution
within at most time T, meaning that σm will be done within finite time. ∎

78 Dependent local tasks with collaborative actions

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
(m

)

r4

r5 r6

r7

r0

r1 r2

r3

r8

Robot 1
Robot 2

Robot 3
Robot 4

Robot 5
Robot 6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
(m

)

r4

r5 r6

r7

r0

r1 r2

r3

r8

Robot 1
Robot 2

Robot 3
Robot 4

Robot 5
Robot 6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
(m

)

r4

r5 r6

r7

r0

r1 r2

r3

r8

Robot 1
Robot 2

Robot 3
Robot 4

Robot 5
Robot 6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
(m

)

r4

r5 r6

r7

r0

r1 r2

r3

r8

Robot 1
Robot 2

Robot 3
Robot 4

Robot 5
Robot 6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
(m

)

r4

r5 r6

r7

r0

r1 r2

r3

r8

Robot 1
Robot 2

Robot 3
Robot 4

Robot 5
Robot 6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
(m

)

r4

r5 r6

r7

r0

r1 r2

r3

r8

Robot 1
Robot 2

Robot 3
Robot 4

Robot 5
Robot 6

Figure 5.3: Snapshots of collaborations on lB , oM , uB , cF and aC in Section 5.3.

5.3 Case study

In the case study, we present a simulated example of six autonomous robots with
heterogeneous capacities. The proposed algorithms are implemented in Python 2.7.

System description

The workspace of size 4m × 4m is given in Figure 5.3, within which there are nine
rectangular regions of interest r0, r1, r2,⋯, r8 (in gray). The regions are labelled by
the objects of interest, like A, B, C, M, E, F. Denote by the six robots R1,R2,⋯,R6.
They all satisfy the single-integrator dynamics, i.e., ẋ = u, where x,u ∈ R2 are the
2-D position and velocity. The robots have velocities between 0.6m/s and 1m/s.
Besides, the action sets of each robot are shown in Table 5.1. Robot R1 can load
and unload (lA, uA) a light object A; load and unload (lB, uB) a heavy object B
with others’ assisting action hB. Robot R2 can take pictures (s); help load and
unload (hB) B; help assemble (hC1) C; help charge (hF) F. Robot R3 can operate
(oM) machine M with assisting action hM ; help assemble (hC2) C; help charge (hF)
F. Robot R4 can assemble (aC) C with assisting actions hC1, hC2; help operate
(hM) M; help charge (hF) F. Robot R5 can maintain D, help assemble (hC1, hC2)
C, and help load and unload (hB) B. Robot R6 can operate object (oE) E, charge
object (cF) F with assisting action hF , help operate (hM) M and help load and
unload (hB) B. We assume all actions have duration 10s and the time horizon Hi is
set to 20s uniformly. Any two robots can exchange messages directly. “Gurobi” for

5.3. Case study 79

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
(m

)

r4

r5 r6

r7

r0

r1 r2

r3

r8

Robot 1
Robot 2

Robot 3
Robot 4

Robot 5
Robot 6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
(m

)

r4

r5 r6

r7

r0

r1 r2

r3

r8

Robot 1
Robot 2

Robot 3
Robot 4

Robot 5
Robot 6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
(m

)

r4

r5 r6

r7

r0

r1 r2

r3

r8

Robot 1
Robot 2

Robot 3
Robot 4

Robot 5
Robot 6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
(m

)

r4

r5 r6

r7

r0

r1 r2

r3

r8

Robot 1
Robot 2

Robot 3
Robot 4

Robot 5
Robot 6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
(m

)

r4

r5 r6

r7

r0

r1 r2

r3

r8

Robot 1
Robot 2

Robot 3
Robot 4

Robot 5
Robot 6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
(m

)

r4

r5 r6

r7

r0

r1 r2

r3

r8

Robot 1
Robot 2

Robot 3
Robot 4

Robot 5
Robot 6

Figure 5.4: Snapshots of collaborations on lB , oM , uB , cF and aC for Section 5.3. Note
that R2 failed at t = 5s, instead R5 is re-assigned to assist R1 on lB , uB .

Python is used as the mix integer programming solver.
Each robot is assigned a local task as follows: robot R1 has to deliver A to r2

and B to r3. Then ϕ1 = ◇(lA ∧◇(r2 ∧◯uA)) ∧◇(lB ∧◇(r3 ∧◯uB)); Robot R2
has to surveil regions r7, r8 and take pictures there. ϕ2 =◇(r7 ∧◯s) ∧◇(r8 ∧◯s);
Robot R3 has to operate M and visit r6. ϕ3 =◇(oM ∧◇r6); Robot R4 has to take a
photo in r7, assemble C and visit r6. ϕ4 =◇(r7 ∧◯s) ∧◇(aC); Robot R5 needs to
maintain D and back to region r0. ϕ5 =◇(mD ∧◇r0); Robot R6 needs to operate
E first and then charge F. ϕ6 =◯(oE ∧◇cF).

Simulation results

All robots start form the center (2m, 2m). The synthesized initial plan of each
robot is as follows: r0r4 lB r3 uB r1 lA r2 uA for R1; r0 r8 s r7 s for R2; r0 r8 oM r6 for
R3; r0 r5 aC r7 s for R4; r0 r7mD for R5; r0 r1 oE r3cF for R6. We simulate first one
nominal scenario and another with R2’s failure since t = 5s. The messages exchanged
during both scenarios are shown in Figure 5.2.

Nominal scenario. The system is simulated for 70.3s before all robots accom-
plish their tasks, during which five collaborations among the robots are accomplished.
As shown in Figure 5.3, robot R1 firstly sends the request on action hB and the reply
messages are shown in Table 5.2. R2 is confirmed as the collaborator and changes
its plan to r0 r4 hB r8 s r7 s. R1 finishes action lB at t = 14.3s At the same time,
R4 is chosen to help R3 on action oM , which is done at t = 21.1s. Afterwards, R1

80 Dependent local tasks with collaborative actions

finishes uB at t = 28.4s with R2 offering hB . Robot R6’s request for action cF keeps
getting delayed until t = 21.1s, as R2, R3, R4 are engaged in other collaborations.
Afterwards robot R4 is confirmed to offer action hF and cF is done at t = 38.0s.
After that, robot R4 sends the request for aC regarding hC1 and hC2 . The reply
messages are shown in Table 5.2. After solving (5.14), R2 and R3 offer actions hC1

and hC2 , which are done at t = 54.1s. The simulation video is online [54].
Failure recovery. To illustrate the effectiveness of our approach for handling

robot failures, we stop simulating robot R2 since t = 5s whereas the other robots
remain the same. As shown in Figure 5.4, initially robot R2 is confirmed to offer hB
to R1. However since R2 fails at t = 5s, R1 detects that by the inquiry and acknowl-
edgment mechanism described in Section 5.2.4 and resends a request regarding hB ,
for which R5 is confirmed as the new collaborator. Then lB is done at t = 22.3s.
Afterwards, again with the help of R5, R1 finishes uB at t = 37.8s. R3 finishes oM
with the help of R4 at t = 29.7s. Before this time, robot R6 has to delay its action
cF as both R3 and R4 are engaged in oM and R2 has failed. Then R3 offers hF to
R6 at t = 36s. After that, R4 finishes aC with the help of R3 and R5 at t = 68.9s. At
last, each robot fulfills its local task by t = 76.5s. The simulation video is online [55].

5.4 Summary

In this chapter, we first presented an automated framework for a single robot to
fulfill its local task given as the desired motion and actions. Then we introduced a
novel method to define the dependency relations within multi-robot systems using
collaborative and assisting actions. Based on this dependency, a bottom-up motion
and task coordination scheme was proposed where the collaborative sub-tasks are
coordinated and executed successfully during run time.

Chapter 6

Inter-robot relative motion constraints

Relative-motion constraints, such as relative-distance constraints, collision
avoidance and connectivity maintenance of the communication network, are

closely related to the stability, safety and integrity of the overall multi-robot system.
Thus this chapter is focused on the actual robot dynamics and the relative-motion
constrains among the robots when moving within the same workspace. Particularly,
we provide two different control strategies to handle these inter-robot constrains
along with the local LTL tasks of each robot. The first approach integrates the
potential-field-based controller design with the discrete plan coordination; the second
uses Embedded Graph Grammars (EGGs) as the main tool. Both approaches are
distributed and can guarantee the satisfaction of all local tasks while obeying the
relative-distance constraints at all time. Numerical simulations are provided in the
end to validate both control approaches.

6.1 Potential-field-based hybrid control

In this section, we firstly formulate the problem where each robot with a single-
integrator dynamics is required to fulfill a local LTL task and simultaneously subject
to the relative-motion constraints. Then we propose a hybrid control strategy that
relies on the potential-field-based continuous controller design and a distributed
task coordination scheme.

6.1.1 Problem formulation
Consider again a team of N autonomous robots with identities i ∈ N = {1,2,⋯,N}.
Each robot i ∈ N satisfies the single-integrator dynamics:

ẋi(t) ≜ ui(t), i ∈ N , (6.1)

where xi(t), ui(t) ∈ R2 are the respective state and the control input of robot i at
time t > 0. Let xi(0) be the given initial state. The robots are modeled as point
masses without volume, i.e., inter-robot collisions are not considered.

81

82 Inter-robot relative motion constraints

Moreover, each robot has a sensing radius r > 0, which is assumed to be identical
for all robots. Namely, each robot can only observe another robot’ state if their
relative distance is less than r. Thus, given {xi(0), i ∈ N}, we define the embedded
graph G0(t) ≜ (N ,E0(t)), where (i, j) ∈ E0(t) if ∥xi(t) − xj(t)∥ < r. We assume
that G0(0) is connected initially and one of the control objectives is to ensure that
G0(t) remains connected for all time t ≥ 0.

Task specifications over services

Within the 2D workspace, each robot i ∈ N has a set of Mi ≥ 1 regions of interest,
denoted by Πi ≜ {πi1,⋯, πiMi}. These regions can be of different shapes, such
as spheres, triangles, or polygons. For simplicity of presentation, πi` ∈ Πi is here
represented by a circular area around a point of interest: πi` = B(ci`, ri`) = {y ∈ R2 ∣
∥y − ci`∥ ≤ ri`}, where ci` ∈ R2 is the center; ri` ≥ rmin is the radius and rmin > 0
is the minimal radius for all regions. Other shapes than spheres would require an
under-approximation of these shapes as spheres first, in order to apply the proposed
solution. We assume the following:

Assumption 6.1. (I) ∥ci`∥ < cmax, ∀i ∈ N and ∀πi` ∈ Πi, where cmax > 0 is a given
constant. (II) ∥ci`i − cj`j∥ > 2 rmin, ∀i, j ∈ N , ∀πi`i ∈ Πi and ∀πj`j ∈ Πj. ▲

Moreover, there is a set of atomic propositions known to robot i, denoted by
APi. Each region of interest is associated with a subset of APi through the labeling
function Li ∶ Πi → 2APi . Without loss of generality, we assume that APi ∩APj = ∅,
for all i, j ∈ N such that i ≠ j. We view the atomic propositions Li(πi`) as a set of
services that robot i can provide when being present in region πi` ∈ Πi. Hence, upon
the visit to πi`, the robot i chooses among Li(πi`) the subset of atomic propositions
to be evaluated as true, i.e., the subset of services it provides among the available
ones. These services are abstractions of action primitives that can be executed
in different regions, such as manipulation tasks or data gathering. Some services
within APi may depend on the other robots’ collaborations, meaning that they can
be provided only if the other robots are around.

We denote by xi(T) the trajectory of robot i during the time interval [0, T),
where T > 0 and T can be infinity. The trajectory xi(T) is associated with a
unique finite or infinite sequence, called a path, pi(T) ≜ πi1πi2 . . . of regions in
Πi that robot i crosses, and with a finite or infinite sequence of time instants
t′i0ti1t

′
i1ti2t

′
i2⋯ when i enters or leaves the respective regions. Formally, for all k ≥ 1:

0 = t′i0 ≤ tik ≤ t
′
ik < tik+1 < T , xi(t) ∈ πik, for πik ∈ Πi, ∀t ∈ [tik, t

′
ik], and xi(t) ∉ πi`,

∀πi` ∈ Πi and ∀t ∈ (t′ik−1, tik). However, robot i may choose to provide services only
at some regions along the path pi. Denote by pi(T) = πi`1πi`2 . . . the effective path
as a subsequence of pi such that `k < `k+1, ∀k ≥ 1 and πi`k

∈ pi(T), ∀πi`k
∈ pi(T).

The word produced by robot i is given by the provided services along the sequence
of regions in pi. In particular, at region for πi`k

∈ pi(T), robot i chooses to provide
a set of services w`k

, where w`k
≠ ∅ and w`k

⊆ Li(πi`k
) is a subset of services

available at region πi`k
. Namely the produced word tracei(T) = w`1w`2⋯ complies

6.1. Potential-field-based hybrid control 83

with pi(T) if ∅ ⊂ w`k
⊆ Li(πi`k

), ∀πi`k
∈ pi(T). Thus an robot’s behavior is fully

determined by its trajectory, its effective path and the word it produces.
The local task of each robot i ∈ N is specified as a general LTL or an sc-LTL

formula ϕi over APi and captures requirements on the services to be provided by
robot i. In this work, we do not focus on how the service providing is executed by
an robot; we only aim at controlling an robot’s motion to reach the regions where
these services are available. Given the trajectory xi(T) of robot i, the satisfaction
of its task formula ϕi is defined as follows:

Definition 6.1. Robot i’s trajectory xi(T) satisfies ϕi if there exists an effective
path pi(T) and a compliant word wordi(T) such that wordi(T) ⊧ ϕi. ▲

Cost of an effective path

Since we are interested in the quantitative cost of satisfying a local task, we
propose the following way to measure the cost of an effective path. The motion of
robot i within the workspace is estimated through a weighted transition system [11]:
Ti ≜ (Π′

i, Ð→i, Li, APi, π
′
i,0, Wi), where Π′

i ≜ Πi ∪ {πi0}. πi0 ≜ xi(0) represents the
robot’s initial position symbolically; Ð→i≜ Π′

i ×Π′
i is the transition relation, which

is the full Cartesian product; Li and APi are the labelling function and the set of
propositions for services defined earlier; π′i,0 ≜ πi0 is the initial state; Wi ∶Ð→i→ R+

approximates the cost of each transition, Wi(πi`1 , πi`2) ≜ ∥ci`1 − ci`2∥ − ri`1 − ri`2 ,
∀(πi`1 , πi`2) ∈Ð→i, where πi`1 , πi`2 ∈ Πi; and Wi(πi0, πi`) ≜ ∥xi(0) − ci`∥ to evaluate
the distance from the robot’s initial position to any region πi` ∈ Πi.

Consider that one of robot i’s effective path is given by pi(T) = πi`1πi`2
Then this effective path is assigned with a cost. In this work, the cost is de-
fined as the maximal distance traveled between two consecutive regions along
the path. Formally, denote by ϑ the set of consecutive regions in pi(T), i.e., ϑ =
{(π′i0, π`1), (π`k

, π`k+1), ∀k = 1,2, . . .}. Its cost is defined as:

cost(pi(T)) ≜ max
(πs, πg)∈ϑ

{Wi(πs, πg)}, (6.2)

which is still valid when T =∞. Namely, we want to minimize the maximal distance
travelled between two consecutive regions in the effective path. This is due to the
consideration that for services-related specifications it is of great interest to ensure
the frequency at which a service is provided. The standard cost definition as the
cumulative cost can be used instead by incorporating the synthesis algorithms
proposed in [56, 78]. Formally the problem we consider is stated below:

Problem 6.1. Given a team of N robots defined above and their task specifications as
in Section 6.1.1, design a distributed control law ui, the associated effective path pi(T)
and its corresponding word wordi(T), ∀i ∈ N , such that for T =∞: (1) wordi(T)
satisfies ϕi; and (2) pi(T) has minimal cost by (6.2); and (3) ∥xi(t) − xj(t)∥ < r,
∀(i, j) ∈ E0(0), ∀t ∈ [0, T). ▲

84 Inter-robot relative motion constraints

Note that the task specifications ϕi, ∀i ∈ N need not be the same type among
the robots, i.e., ϕi can be either a syntactically co-safe or a general LTL formula.
More details can be found in Section 6.1.4.

The proposed solution consists of four layers: (i) an offline synthesis scheme
for the initial discrete plan of each robot, i.e., the effective path of progressive goal
regions and the sequence of services to be provided; (ii) a distributed continuous
control scheme that guarantees that one of the robots reaches its progressive goal
region in finite time while the relative-distance constraints are fulfilled at all time;
(iii) a hybrid control layer that coordinates the discrete plan execution and the
continuous control law switching, to ensure the satisfaction of each robot’s local
task; (iv) a real-time plan adaptation algorithm to improve each agent’s discrete
plan, given its updated position and its plan execution status.

6.1.2 Initial optimal plan synthesis

We aim to find an effective path for each robot i ∈ N such that (i) there exists
a compliant word satisfying ϕi and (ii) the effective path is optimal for the cost
function from (6.2). Let Aϕi be the NBA associated with ϕi from Section 3.2,
i.e., Aϕi = (Qi, 2APi , δi, Qi,0, Fi). Firstly, we build a product automaton Ap,i =
Ti ⊗Aϕi = (Qp,i,2APi , δp,i,Qp,i,0,Fp,i,Wp,i) as described in Section 3.3.1, with a
slight change in δp,i reflecting the form of the words compliant with the effective
paths: ((s, q), σ, (s′, q′)) ∈ δp,i if (s, s′) ∈Ð→ and q′ ∈ δ(q, σ), where ∅ ⊂ σ ⊆ L(s).
An accepting run %i of Ap,i over an input word wi projects onto a run τi of Ti, such
that w complies with the effective path pi(T) and satisfies ϕi, while for any word
wi that satisfies ϕi and is compliant with the path pi(T), there exists an accepting
run of Ap,i that projects onto a run τi of Ti that is compliant with w.

In Algorithm 6.11, we modify the Dijkstra’s algorithm (see, e.g., [97]) to find the
finite paths from a state v ∈ Qp,i to all the other states minimizing the bottleneck
weight, where the bottleneck weight of a path is defined as the maximal weight of
the individual edges on the path. The output of the MinBot(v) algorithm is the
distance function Dv ∶ Qp,i → R+, where Dv(u) gives the minimal bottleneck weight
from v to the state u ∈ Qp,i, and the predecessor function Pv ∶ Qp,i → Qp,i, where
Pv(u) gives the predecessor of u ∈ Qp,i on the minimal-bottleneck path. Then we
can synthesize the optimal effective path of Ap,i and the associated word as follows:

(I) For all v0 ∈ Qp,i,0, compute (Dv0 ,Pv0) = MinBot(v0); (II) For all vf ∈ Fp,i,
compute (Dvf

,Pvf
) = MinBot(vf); (III) Find the pair (v0, vf), where v0 ∈ Qp,i,0 and

vf ∈ Fp,i that minimizes the term max {Dv0(vf),max(v,vf)∈δp,i
{Dvf

(v),Wp,i(v, vf)}},

where Dv0(vf) is the minimal bottleneck from v0 to vf ; and the second term is the
minimal bottleneck from vf back to itself. Note that v is any predecessor of vf given
by δp,i. Denote the optimal pair as (v⋆0 , v⋆f); (IV) The computed accepting run of Ap,i
is in the prefix-suffix form %i = %i,pre (%i,suf)

ω, where %i,pre is the minimal-bottleneck
path from v⋆0 to v⋆f , computed based on Pv⋆0 ; %i,suf is the minimal-bottleneck cycle
from v⋆f back to itself, computed similarly based on Pv⋆

f
.

6.1. Potential-field-based hybrid control 85

Algorithm 6.11 Minimum bottleneck path, MinBot(v)
Input: Product automaton Ap,i and v ∈ Qp,i
Output: Dv,Pv
S ∶= Qp,i; Dv(v) ∶= 0
forall the u ∈ Qp,i do

if u ≠ v then
Dv(u) ∶=∞; Pv(u) ∶= None

while S ≠ ∅ do
u ∶= argminu∈S{Dv(u)}
remove u from S
forall the u′ ∈ δp,i(u) do

b ∶= max {Dv(u),Wp,i(u,u
′)}

if b ≤ Dv(u′) then
Dv(u′) ∶= b; Pv(u′) ∶= u

return Dv,Pv

The accepting run %i of Ap,i is naturally projected onto Ti as follows, which re-
sults into the initial plan: τi(0) = τi,pre(τi,suf)ω, where τi,pre = (πi1,wi1)⋯(πiki ,wiki)
is the plan prefix, and τi,suf = (πiki+1,wiki+1)⋯(πiKi ,wiKi) is the periodical plan
suffix; (πik, wik) is called the progressive goal region; πik ∈ Πi and ∅ ⊂ wik ⊆ Li(πik),
∀k = 1,⋯,Ki. Thus the word corresponding to τi(0) is given by its projection onto
APi, namely wordi(T) = τi(0)∣APi = wi1⋯wiki(wiki+1⋯wiKi)

ω; then the effective
path pi is given as the projection of τi(0) onto Πi, namely pi(T) = τi(0)∣Πi =
πi1⋯πiki(πiki+1⋯πiKi)

ω. We denote by pi,pre(T) = πi1⋯πiki the prefix of the effec-
tive path and by pi,suf(T) = πiki+1⋯πiKi the suffix. For general LTL formulas ϕi,
the plan τi indicates the desired effective path pi(T) and the infinite sequence of
services wordi(T); for sc-LTL formulas ϕi, τi,pre indicates the desired effective path
pi(T) and the finite sequence of services wordi(T). Moreover, any trajectory that
satisfies the prefix with an arbitrary extension would satisfy ϕi. The computational
complexity [89, 97] of the above algorithm is O(∣δp,i∣ ⋅ log ∣Qp,i∣ ⋅ ∣Qp,i,0∣ ⋅ ∣Fp,i∣) in the
worst case, where ∣Qp,i∣, ∣δp,i∣ are the number of states and transitions in Ap,i.

6.1.3 Continuous controller design

As stated previously, each robot synthesizes its initial plan as a sequence of goal
regions to reach and a set of services to provide there. However, these goal regions of
different robots can be at different locations and potentially far away. Furthermore,
the relative-distance constraints require the neighboring robots to stay close. The
state-of-the-art motion control technique for multi-robot systems under relative-
distance constraints can only handle a single leader [122] or multiple robots with a
global objective, e.g., formation [117, 157]. Here we propose a distributed motion

86 Inter-robot relative motion constraints

control scheme that allows an arbitrary number of active robots with individual
goals and guarantees almost global convergence to one active robot’s goal, while
ensuring the relative-distance constraints at all time.

Before stating the control scheme, let us first introduce the notion of connectivity
graph, which allows us to handle the relative-distance constraints. Recall that each
robot has a limited sensing radius r > 0 as mentioned in Section 6.1.1. Let κ ∈ (0, r)
be a given constant. Then we define the connectivity graph G(t) as follows:

Definition 6.2. Let G(t) ≜ (N ,E(t)) denote the undirected time-varying con-
nectivity graph at time t ≥ 0, where E(t) ⊆ N × N is the set of edges. (I)
G(0) = G0(0); (II) At time t > 0, (i, j) ∈ E(t) iff one of the following conditions
hold: (i) ∥xi(t) − xj(t)∥ ≤ r − κ; or (ii) r − κ < ∥xi(t) − xj(t)∥ ≤ r and (i, j) ∈ E(t−),
where t− < t and ∣t − t−∣→ 0. ▲

Note that the condition (II) guarantees that a new edge will only be added
when the distance between two previously-unconnected robots decreases below r −κ.
Namely, there is a hysteresis effect when adding new edges to the connectivity graph.
Consequently, each robot i ∈ N has a time-varying set of neighbors Ni(t) = {j ∈
N ∣ (i, j) ∈ E(t)}. Let the progressive goal region of robot i ∈ N at time t be given
by πig = B(cig, rig) ∈ Πi. We propose the following two different control modes:
(1) the active mode:

Cact ∶ ui(t) ≜ −di pi − ∑
j∈Ni(t)

hij xij , (6.3)

(2) the passive mode:

Cpas ∶ ui(t) ≜ − ∑
j∈Ni(t)

hij xij , (6.4)

where xij ≜ xi − xj ; pi ≜ xi − cig; and the coefficients are

di ≜
ε3

(∥pi∥2 + ε)2 +
ε2

2 (∥pi∥2 + ε)
; hij ≜

r2

(r2 − ∥xij∥2)2 , (6.5)

where ε > 0 is a key design parameter to be appropriately tuned. We show in detail
how to choose ε in the sequel. Both controllers in (6.3) and (6.4) are nonlinear and
rely on only locally-available states, particularly, xi(t) and xj(t), j ∈ Ni(t).

Assume that G(Ts) is connected at time Ts > 0. Moreover, assume that there
are 1 ≤ Na ≤ N robots that are in the active mode obeying (6.3) with its goal region
as πig = B(cig, rig) ∈ Πi; and the rest Np = N −Na robots that are in the passive
mode obeying (6.4). For simplicity, denote by the group of active and passive robots
Na, Np ⊆ N , respectively. In the rest of this section, we show that under arbitrary
number of active robots, by following the control laws (6.3) and (6.4), exactly one
active robot can reach its goal region within finite time Tf ∈ (Ts, +∞), while the
relative distance ∥xi(t) − xj(t)∥ < r, ∀(i, j) ∈ E(Ts) and ∀t ∈ [Ts, Tf].

6.1. Potential-field-based hybrid control 87

Relative-distance maintenance

In this part, we show that the relative-distance constraints are always satisfied under
the control laws (6.3) and (6.4). We consider the potential-field function below:

V (t) ≜
1
2 ∑i∈N

∑
j∈Ni(t)

φc(xij) + bi ∑
i∈N

φg(xi) (6.6)

where φc(⋅) is an attractive potential to robot i’s neighbors:

φc(xij) ≜
1
2

∥xij∥
2

r2 − ∥xij∥2 , ∥xij∥ ∈ [0, r − δ); (6.7)

while φg(⋅) is an attractive force to robot i’s goal, defined by:

φg(xi) ≜
ε2

2
∥pi∥

2

∥pi∥2 + ε
+
ε2

4
ln(∥pi∥2 + ε), (6.8)

where function ln(⋅) is the natural logarithm; bi ∈ B indicates the robot i’s control
mode. Namely, bi = 1, ∀i ∈ Na and bi = 0, ∀i ∈ Np. Clearly V (t) is lower-bounded
by Na ln(ε)ε2/4. Moreover, it can be verified that

∇xiV =
∂V

∂xi
= bi di pi + ∑

j∈Ni(t)

hij xij = −ui. (6.9)

Theorem 6.1. G(t) remains connected and no existing edges within E(Ts) will be
lost, namely E(Ts) ⊆ E(t), ∀t ≥ Ts.

Proof. Assume that the network G(t) remains invariant during the time period
[t1, t2) ⊆ [Ts, ∞), i.e., no edges are added or removed. Thus the neighboring sets
{Ni, i ∈ N} also remain invariant and V (t) is differentiable for t ∈ [t1, t2). Then the
time derivative of V (t) is given by

V̇ (t) = ∑
i∈N

(∇xiV)T ui = −∑
i∈N

∥bi di pi + ∑
j∈Ni(t)

hij xij∥
2
≤ 0, (6.10)

meaning that V (t) is non-increasing, ∀t ∈ [t1, t2). Thus V (t) ≤ V (Ts) < +∞ for
t ∈ [t1, t2). On the other hand, assume a new edge (p, q) is added to G(t) at t = t2,
where p, q ∈ N . By Definition 6.2, ∥xpq(t2)∥ ≤ r − κ and φc(xpq(t2)) = (r−κ)2

κ(2r−κ) < +∞

since 0 < κ < r. Denote by Ê ⊂ N ×N the set of newly-added edges at t = t2. Let V (t+2)
and V (t−2) be the value of V (t) before and after adding the set of new edges to G(t)

at t = t2. We get V (t+2) = V (t−2) +∑(p, q)∈Ê φc(xpq(t2)) ≤ V (t−2) + ∣Ê∣ (r−κ)2

κ(2r−κ) < +∞,

where we use the fact that ∣Ê∣ is bounded as Ê ⊂ N ×N . Thus V (t) < +∞ also
holds when new edges are added at time t2. Similar analysis can be found in [76].
As a result, V (t) < +∞ for t ∈ [Ts, ∞). Note that V (t) is non-increasing when G(t)

88 Inter-robot relative motion constraints

remains unchanged and increases when new edges are added. By Definition 6.2, one
existing edge (i, j) ∈ E(t) will be lost only if xij(t) = r. It implies that φc(xij)→ +∞
and V (t)→ +∞ by (6.6). By contradiction, we can conclude that new edges might be
added into E(t) but no existing edges within E(t) will be lost, namely E(Ts) ⊆ E(t),
∀t ≥ Ts. If G(Ts) is connected, then G(t) remains connected for all t ≥ Ts. ∎

Convergence analysis

In this part, we analyze in detail the convergence properties of the closed-loop
system, i.e., the multi-robot system under the control laws (6.3) and (6.4) for any
number of active and passive robots. We have shown that the potential function V (t)
is lower-bounded and non-increasing when G(t) remains invariant by Theorem 6.1
above. Since no existing edges can be lost and the number of robots is finite, we first
show that the graph G(t) becomes complete and thus invariant afterwards when
the system converges to the set of critical points defined in the sequel. By LaSalle’s
invariance principle [82] we only need to find out the largest invariant set within
the set {xi, ∀i ∈ N ∣ V̇ (t) = 0}. By enforcing V̇ (t) = 0, it implies:

bi di pi + ∑
j∈Ni(t)

hij xij = 0, ∀i ∈ N . (6.11)

Then we can construct one N ×N diagonal matrix D that D(i, i) = bi di, ∀i ∈ N and
D(i, j) = 0, i ≠ j and i, j ∈ N . and another N ×N matrix H that H(i, i) = ∑j∈Ni

hij ,
∀i ∈ N and H(i, j) = −hij , i ≠ j and ∀(i, j) ∈ E(t) while H(i, j) = 0, ∀(i, j) ∉ E(t).
Note that hij > 0 as ∥xij∥ ∈ [0, r) by (6.9), ∀(i, j) ∈ E(t). As a result, H is the
Laplacian matrix of the graphG(t) = (N ,E(t), h), where h(i, j) = hij , ∀(i, j) ∈ E(t).
Then (6.11) is equivalent to:

H⊗ I2 ⋅ x +D⊗ I2 ⋅ (x − c) = 0, (6.12)

where ⊗ is the Kronecker product [73]; x is the stack vector for xi, i ∈ N and x[i] = xi;
I2 is the 2×2 identity matrix; c is the stack vector for cig and c[i] = cig if i ∈ Na and
c[i] = 02 if i ∈ Np, where 02 is a 2 × 1 zero vector. Let C be the set of critical points
of V (t) that satisfy (6.12), i.e., C ≜ {x ∈ R2N ∣H⊗ I2 ⋅ x +D⊗ I2 ⋅ (x − c) = 0}. Now
we show that at the critical points within C the relative distances between any two
robots can be made arbitrarily small by reducing ε and as a result the underlying
network becomes a complete graph.

Lemma 6.2. For all critical points xc ∈ C, (I) ∥xij∥ can be made arbitrarily small by
reducing ε, ∀(i, j) ∈ E(t); (II) there exists ε0 > 0 that if ε < ε0, then the connectivity
graph G(t) is complete.

Proof. (I) For a critical point xc ∈ C, ∑(i,j)∈E(t) hij∥xij∥
2 = xTc ⋅ (H⊗ I2) ⋅ xc. holds.

6.1. Potential-field-based hybrid control 89

Combining it with (6.12), we get

∑
(i,j)∈E(t)

hij∥xij∥
2 = −xTc ⋅ (D⊗ I2) ⋅ (xc − c)

= −(xc − c)T ⋅ (D⊗ I2) ⋅ (xc − c) − cT ⋅ (D⊗ I2) ⋅ (xc − c)
= −∑

i∈N

bi di (∥pi∥
2 + cTi` pi) ≤ ∑

i∈N

bi ∥ci`∥di∥pi∥.

Since it can be verified that di ∥pi∥ < ε
√
ε for ∥pi∥ ≥ 0 and ∥ci`∥ < cmax is given

in Assumption 6.1, we get ∑(i,j)∈E(t) hij∥xij∥
2 < Na cmax ε

√
ε ≤ N cmax ε

√
ε, where

we use the fact that bi = 0, for i ∈ Np and Na ≤ N . Thus ∀(i, j) ∈ E(t), it holds
that hij∥xij∥2 < N cmax ε

√
ε ≜ ς. It can be verified that hij∥xij∥2 is monotonically

increasing as a function of ∥xij∥. This implies that ∀(i, j) ∈ E(t), ∥xij∥2 ≤ r2 ς, or
equivalently ∥xij∥

2 ≤ ε
√
ε ξ, where ξ ≜ r2N cmax. Thus ∥xij∥ can be made arbitrarily

small by reducing ε. (II) Moreover, let ε0 satisfy the condition

(N − 1)
√
ε0

√
ε0 ξ < r − δ. (6.13)

If ε < ε0, then for any pair (p, q) ∈ N ×N , ∥xpq∥ satisfies ∥xpq∥ = ∣xp − x1 + x1 − x2 +

⋯−xq ∣ ≤ (N−1)
√
ε
√
ε ξ < r−δ, because there exists a path in G(t) of maximal length

N from any node p ∈ N to another node q as G(t) remains connected for t > Ts by
Theorem 6.1; and ∥xij∥ ≤ ε

√
ε ξ from above, ∀(i, j) ∈ E(t). By Definition 6.2 this

implies (p, q) ∈ E(t). Thus G(t) is a complete graph when x(t) ∈ C. ∎

Namely, at the critical points, the graph G(t) is complete and thus remains
invariant afterwards. Before stating the convergence property, we need to define the
following set for each active robot i ∈ Na:

Si ≜ {x ∈ R2N ∣ ∥x − 1N ⊗ cig∥ ≤ rS(ε)}, (6.14)

where rS(ε) ≜
√

3N ε +
√

(N − 1)ε
√
ε ξ. Loosely speaking, Si represents the neigh-

bourhood around the goal region center of an active robot i ∈ Na. Furthermore, let
S ≜ ∪i∈NaSi and S¬ ≜ R2N ∖ S. In the following, we analyze the properties of the
critical points of V (t) within the regions S and S¬. More specifically: by Lemma 6.3
there are no local minima but saddle points within S¬; by Lemma 6.4 these saddle
points are non-degenerate; by Lemmas 6.5-6.7 all critical points within S are local
minima. To explore these properties, we compute the second partial derivatives of
V (t) with respect to xi, which are given by

∂2V

∂xi∂xi
= bi di ⊗ I2 + bi d

′
i pi ⋅ p

T
i + ∑

j∈Ni(t)

(hij ⊗ I2 + h
′
ij xij ⋅ x

T
ij), (6.15)

∂2V

∂xi∂xj
= −hij ⊗ I2 − h

′
ij xij ⋅ x

T
ij , ∀j ≠ i, (6.16)

where
d′i =

−4 ε3

(∥pi∥2 + ε)3 +
− ε2

(∥pi∥2 + ε)2 , and h
′
ij =

4 r2

(r2 − ∥xij∥2)3 .

90 Inter-robot relative motion constraints

Lemma 6.3. There are no local minima of V within S¬.

Proof. We prove this by showing that if a critical point xc ∈ S¬ there always exists
a direction z ∈ R2N at xc such that the quadratic form zT∇2V z is negative semi-
definite. Given a critical point xc ∈ C and xc ∈ S¬, then by definition ∥x−1N ⊗ ci`∥ >
rS(ε), ∀i ∈ Na. Besides, for any i ∈ Na, we can bound ∥x − 1N ⊗ ci`∥ as follows:

∥x − 1N ⊗ ci`∥ = ∥x − 1N ⊗ xi + 1N ⊗ (xi − cig)∥

≤
√
∑
j∈N

∥xij∥2 +
√
N ∥pi∥ ≤

√
(N − 1)ε

√
ε ξ +

√
N ∥pi∥,

where we use the fact that ∥xij∥
2 ≤ ε

√
ε ξ at xc, ∀(i, j) ∈ E(t) by Lemma 6.2. By

comparing it with rS(ε) which is the lower bound, we get ∥pi∥ ≥
√

3 ε, ∀i ∈ Na.
Choose z ≜ 1N ⊗ z, where z ∈ R2 and ∥z∥ ≜ 1. Then zT ∇2V z is evaluated by
using (6.15)-(6.16): zT∇2V z = ∑i∈N bi di z

T z + bi d
′
i z
T pi p

T
i z ≜ zTMz, where M ≜

∑i∈Na
(di ⊗ I2 + d

′
i pi p

T
i) is a 2× 2 Hermitian matrix. The trace of M is computed as

trace(M) = ∑
i∈Na

2di + d′i ∥pi∥2 = ε3
∑
i∈Na

3ε − ∥pi∥
2

(∥pi∥2 + ε)3 < 0,

as we have shown that ∥pi∥ ≥
√

3ε above, ∀i ∈ Na if xc ∈ S¬. On the other hand,
denote by pi = [pi,x, pi,y] the coordinates of pi. The determinant of M is given by

det(M) = −(∑
i∈Na

d′i pi,x pi,y)
2 + (∑

i∈Na

di + d
′
i p

2
i,x)(∑

i∈Na

di + d
′
i p

2
i,y)

≥
1
2 ∑
i, j∈Na

[(di + d
′
i∥pi∥

2)(dj + d
′
j∥pj∥

2)] > 0,

since d′i∥pi∥2 < −di for ∥pi∥ >
√

3ε, ∀i ∈ Na; and (pi,xpi,y − pj,xpj,y)
2 ≤ ∥pi∥

2∥pj∥
2 by

Cauchy-Schwarz inequality [73]. Denote by λ1 and λ2 the eigenvalues of M , where
λ1, λ2 ∈ R as M is Hermitian. Since trace(M) < 0 and det(M) > 0, then M is
negative definite and both eigenvalues are negative [73], i.e., λ1, λ2 < 0. Thus for any
vector z ∈ R2, zTMz < 0. Namely, for any vector z = 1N⊗z where z ∈ R2, zT∇2V z < 0.
To conclude, for any xc ∈ C, if xc ∈ S¬ then xc is not a local minimum. ∎

Lemma 6.4. There exists ε1 > 0 such that if ε < ε1, all critical points of V in S¬
are non-degenerate saddle points.

Proof. To show that V is Morse we use Lemma 3.8 from [126], which states that
the non-singularity of a linear operator follows from the fact that its associated
quadratic form is sign definite on complementary subspaces.

Let Q = {v ∈ R2N ∣ v = 1N ⊗z, z ∈ R2}. In Lemma 6.3, we have shown that for any
vector v ∈ Q, vT∇2V v < 0. Let P = {v ∈ R2N ∣ v = eN ⊗z, eN ⊥ 1N , eN ∈ RN , z ∈ R2}.
Firstly, it can be easily verified that P is the orthogonal complement of Q. In the

6.1. Potential-field-based hybrid control 91

following, we show that ∇2V is positive definite in P. Let z ∈ P, i.e., z ≜ eN ⊗ z ≜
[zT1 , z

T
2 ,⋯, z

T
n]T , where z ∈ R2, eN ∈ RN , eTN ⊥ 1N , zi ∈ R2, ∀i ∈ N . The quadratic

form zT ∇2V z at xc can be computed explicitly using (6.15)-(6.16):

zT∇2V z = ∑
i∈Na

(di ∥zi∥
2 + d′i ∣p

T
i zi∣

2)

+ ∑
(i, j)∈E(t)

(hij ∥zi − zj∥
2 + 2h′ij ∣(xi − xj)T (zi − zj)∣2)

≥ ∑
i∈Na

(di ∥zi∥
2 + d′i ∣p

T
i zi∣

2) + ∑
(i, j)∈E(t)

hij ∥zi − zj∥
2

≥ ∑
i∈Na

(di + d
′
i∥pi∥

2)∥zi∥
2 + zT (H⊗ I2)z,

where we use the fact that h′ij > 0, d′i < 0 and ∣pTi zi∣ ≤ ∥pi∥∥zi∥. It can be verified
that di + d′i∥pi∥2 > −0.1ε for ∥pi∥ ≥

√
3ε, ∀i ∈ Na. Moreover, the second term can be

lower-bounded by zT (H⊗ I2)z = (eN ⊗z)T ⋅ (H⊗ I2) ⋅ (eN ⊗z) = (eTN ⋅H ⋅eN) ∥z∥2 ≥
λ2(H) ∥z∥2, where we apply the Courant-Fischer Theorem [73]: mineN⊥1N

{eTN ⋅H ⋅
eN} = λ2(H) ∥eN∥2 > 0, since H is the Laplacian matrix defined in (6.12), which
is positive semidefinite with λ1(H) = 0, of which the corresponding eigenvector is
1N ; and the second smallest eigenvalue λ2(H) > 0. In addition, since hij > 1/r2 and
G(t) is a complete graph at xc by Lemma 6.2, it holds that λ2(H) > N/r2 by [45].
This implies that zT∇2V z ≥ ∑i∈Na

(N
r2 + di + d

′
i∥pi∥

2)∥zi∥
2 ≥ ∑i∈Na

(N
r2 − 0.1ε)∥zi∥2.

Thus if ε < N/(0.1r2), it holds that the quadratic form zT∇2V z > 0, ∀z = eN ⊗ z
where eN ⊥ 1N , z ∈ R2. To conclude, ∇2V ∣Q is negative definite by Lemma 6.3 and
∇2V ∣P is positive definite, given that ε satisfies the conditions below:

ε < min{ε0,
N

0.1r2 } ≜ ε1. (6.17)

By applying Lemma 3.8 from [126], ∇2V is non-singular at the saddle points xc ∈ S¬.
Thus all critical points within S¬ are non-degenerate saddle points if ε < ε1. ∎

Now we focus on showing that all critical points within S are local minima. First
we need the following two lemmas stating that when the system is at a critical point
belonging to Si of any active robot i ∈ Na, then all the other robots are within this
goal region πig and away from their own goal region center by at least distance rmin.

Lemma 6.5. There exists ε2 > 0 that if ε < ε2, the following statements hold: (I)
Si ∩Sj = ∅, ∀i ≠ j and i, j ∈ Na; (II) If xc ∈ Si for any i ∈ Na, then xj ∈ πig, ∀j ∈ N
and ∥xj − cjg∥ > rmin, j ≠ i, ∀j ∈ Na.

Proof. Let ε2 be given as the solution of

rS(ε2) ≜
√

3N ε2 +
√

(N − 1)ε2
√
ε2 ξ ≜ rmin, (6.18)

where rmin is given in Assumption 6.1. Note that ε2 is unique as the left-hand side
is a function of ε2 that monotonically increases and has the range [0, ∞). Assume

92 Inter-robot relative motion constraints

that xc ∈ Si⋆ for some i⋆ ∈ Na, i.e., ∥xc−1N ⊗ci⋆g∥ ≤ rS(ε2). Then ∀j ≠ i⋆, j ∈ Na, it
holds that (I) ∥xc−1N ⊗cjg∥ = ∥xc−1N ⊗cig+1N ⊗cig−1N ⊗cjg∥ ≥

√
N ∥cig−cjg∥−

∥xc−1N ⊗cig∥ ≥ 2
√
N rmin−rS(ε), due to that ∥cig−cjg∥ > 2rmin by Assumption 6.1.

Since ε < ε2, then rS(ε) < rS(ε2) = rmin. Thus ∥xc − 1N ⊗ cjg∥ > 2
√
N rmin − rmin >

rmin = rS(ε2), implying that xc ∉ Sj . (II) ∥xj − ci⋆g∥ < ∥xc − 1N ⊗ ci⋆g∥ < rmin < ri⋆g,
meaning that xj ∈ πi⋆g, ∀j ∈ N . Thus, for each active robot j ∈ Na, it holds that
∥xj − cjg∥ = ∥xj − ci⋆g + ci⋆g − cjg∥ ≥ ∥ci⋆g − cjg∥− ∥xj − ci⋆g∥ ≥ 2rmin − rmin > rmin. ∎

Lemma 6.6. There exists ε6 > 0 such that if ε < ε6, then for any critical point
xc ∈ Si, i ∈ Na, then it holds that ∥pi∥ <

√
0.4ε.

Proof. Without loss of generality, let xc ∈ Si⋆ , where i⋆ ∈ Na. By summing (6.11) for
all i ∈ N , we get di⋆ pi⋆ = −∑j≠i⋆,j∈Na

dj pj . Consider the scalar function f(∥pj∥) =
dj(∥pj∥)∥pj∥ for ∥pj∥ ≥ 0. It is monotonically increasing for ∥pj∥ ∈ [0, 3.2

√
ε) and

decreasing for ∥pj∥ ∈ [3.2
√
ε, ∞). If xc ∈ Si⋆ for i⋆ ∈ Na, then ∥xc−1N⊗ci⋆g∥ ≤ rS(ε2).

Moreover, ∥x − 1N ⊗ ci⋆`∥ ≥ ∥1N ⊗ xi⋆ − 1N ⊗ ci⋆g∥ − ∥x − 1N ⊗ xi⋆∥ ≥
√
N ∥pi⋆∥ −√

(N − 1)ε
√
ε ξ. This implies ∥pi⋆∥ ≤

√
3 ε + 2

√
ε
√
ε ξ. Moreover by Lemma 6.5,

∥pj∥ > rmin , ∀j ≠ i⋆, j ∈ Na. Thus if rmin > 3.2
√
ε, namely ε < 0.07 r2

min ≜ ε3, it
holds that dj ∥pj∥ < 0.5ε2/rmin, ∀j ≠ i⋆, j ∈ Na. Thus di⋆ ∥pi⋆∥ < 0.5(Na − 1)ε2/rmin.
If the following two conditions hold: (i)

√
3 ε + 2

√
ε
√
ε ξ < 3.2

√
ε; (ii) 0.5(Na −

1)ε2/rmin < dj(
√

0.4ε)
√

0.4ε, then ∥pi⋆∥ <
√

0.4ε since it is shown earlier that
function dj(∥pj∥)∥pj∥ is monotonically increasing for ∥pj∥ ∈ [0, 3.2

√
ε). Condition (i)

above implies that ε < 4.1/ξ2 ≜ ε4 and condition (ii) holds for any Na ≤ N if
ε < 0.8 r2

min/(N − 1)2 ≜ ε5. To conclude, if ε < ε6, where

ε6 ≜ min{ε3, ε4, ε5}, (6.19)

then xc ∈ Si⋆ implies ∥pi⋆∥ <
√

0.4ε. ∎

With the above two lemmas, we can now show that all critical points of V (t)
within S are local minima.

Lemma 6.7. There exists εmin > 0 such that if ε < εmin, all critical points of V
within S are local minima.

Proof. A critical point xc ∈ S can only belong to one set Si of an active robot
i ∈ Na by Lemma 6.5. Let xc ∈ Si⋆ , where i⋆ ∈ Na. Let z ∈ R2N and ∥z∥ = 1. Set
z = [zT1 , z

T
2 ,⋯, z

T
n]T , where zi ∈ R2, ∀i ∈ N . Then zT ∇2V z at xc is computed as:

zT∇2V z = ∑
i∈Na

(di ∥zi∥
2 + d′i ∣p

T
i zi∣

2)+

∑
(i, j)∈E(t)

(hij∥zij∥
2 + 2h′ij ∣xTij zij ∣2).

(6.20)

where zij ≜ zi − zj . Since ∣pTi zi∣ ≤ ∥pi∥∥zi∥, di > 0 and d′i < 0, it holds that di ∥zi∥2 +
d′i ∣p

T
i zi∣

2 ≥ (di + d
′
i∥pi∥

2)∥zi∥
2,∀i ∈ Na. It holds that for j ≠ i⋆ and ∀j ∈ Na,

6.1. Potential-field-based hybrid control 93

dj + d
′
j∥pj∥

2 > ε2ĝ where ĝ ≜ −2/r2
min, since ∥pj∥ > rmin by Lemma 6.5; and di⋆ +

d′i⋆∥pi⋆∥
2 > 0.08ε since ∥pi⋆∥ >

√
0.4ε by Lemma 6.6. Regarding the second term

of (6.20), since Lemma 6.2 shows that G(t) is a complete graph at xc with hij > 1/r2

and h′ij > 0, we get∑(i, j)∈E (hij ∥zij∥
2+2h′ij ∣xTij zij ∣2) ≥ ∑j∈N ∥zi⋆j∥

2/r2. Thus (6.20)
can be bounded by

zT∇2V z ≥ ∑
i∈Na

(di + d
′
i ∥pi∥

2)∥zi∥
2 + ∑

j∈N

hi⋆j ∥zi⋆j∥
2

≥ 0.08 ε∥zi⋆∥2 − ε2
∑

j≠i⋆,j∈Na

∣ĝ∣∥zj∥
2 +

1
r2 ∑

j∈N

∥zi⋆j∥
2

≥ ∑
j∈Na

(
1
r2 +

0.08ε
N

)∥zi⋆∥
2 + (

1
r2 − ε

2∣ĝ∣)∥zj∥
2 −

2
r2 z

T
i⋆ zj ,

as 1 ≤ Na ≤ N . If the following condition holds:

(
1
r2 +

0.08ε
N

)(
1
r2 − ε

2∣ĝ∣) > (
1
r2)

2
, (6.21)

it implies zT∇2V z > (∣zTi⋆ zj ∣ − z
T
i⋆ zj)/r

2 ≥ 0, ∀z ∈ R2N , i.e., ∇2V is positive definite
at xc ∈ S. Equation (6.21) is equivalent to ε2 + N

0.08 r2 ε −
1

r2∣ĝ∣
< 0. Since ε > 0, this

implies that

0 < ε <

√
(N

0.08 r2)2 + 4
r2∣ĝ∣

− N
0.08 r2

2
≜ ε7. (6.22)

To conclude, if
ε < min{ε1, ε2, ε6, ε7} ≜ εmin, (6.23)

where ε1, ε2, ε6 and ε7 are defined in (6.17), (6.18), (6.19) and (6.22) and are all
positive, then all local minima within S are stable. ∎

By summarizing Lemmas 6.3-6.7, we can derive the following convergence result
for the controlled closed-loop system:

Theorem 6.8. Assume that G(Ts) is connected and ε < εmin by (6.23). Then
starting from anywhere in the workspace except a set of measure zero, there exists
a finite time Tf ∈ [Ts,∞) and one robot i⋆ ∈ Na, such that xj(Tf) ∈ πi⋆g, ∀j ∈ N ,
while at the same time ∥xi(t) − xj(t)∥ < r, ∀(i, j) ∈ E(Ts) and ∀t ∈ [Ts, Tf].

Proof. First of all, the second part follows directly from Theorem 6.1 which guaran-
tees that all edges within E(Ts) will be reserved for all t > Ts. Secondly, we have
shown that V (t) by (6.6) is lower-bounded and non-increasing after G(t) becomes
complete by Lemma 6.2. By LaSalle’s invariance principle [82], we only need to find
out the largest invariant set within V̇ (t) = 0. Lemmas 6.3 to 6.7 ensure that the
potential function V (t) has only local minima inside S and saddle points outside S.
These saddle points have attractors of measure zero by Lemma 6.4. Thus starting
from anywhere in the workspace except a set of measure zero, the system converges

94 Inter-robot relative motion constraints

to the set of local minima. Part (I) of Lemma 6.5 shows that a local minimum can
not belong to two different Si simultaneously. Thus the system converges to the set
of local minima within Si⋆ for one active robot i⋆ ∈ Na. By part (II) of Lemma 6.5,
all robots would be inside πi⋆g at a critical point within Si⋆ , i.e., xj ∈ πi⋆g, ∀j ∈ N .
Consequently, by continuity, there exists a finite time Tf < ∞ that xj(Tf) ∈ πi⋆g,
∀j ∈ N , for exactly one active robot i⋆ ∈ Na. ∎

Remark 6.1. Note that Theorem 6.8 above holds for any number of active robots
that 1 ≤ Na ≤ N . In other words, independent of the number of active robots within
the team, one of the active robots will reach its goal region first within finite time,
while the whole team fulfills the relative-distance constraints at all time. ▲

6.1.4 Control mode switching protocol
In this part, we propose three different switching protocols for each robot to decide
on its own activity or passivity under there different cases, such that all robots can
fulfill their local tasks and at the same time satisfy the relative-distance constraints.
Through these protocols, we can integrate the discrete plan execution from Sec-
tion 6.1.2 and the continuous control laws from Section 6.1.3 into a hybrid control
scheme, which monitors the plan execution and motion control online. This hybrid
scheme is fully decentralized and only relies on local relative-state measurements.

Switching protocol for sc-LTL

Let us first focus on a case where each local task ϕi, i ∈ N is an sc-LTL formula.
As introduced in Section 6.1.2, the discrete plan τi for robot i can be represented
by a finite satisfying prefix of progressive goal regions and the set of services to
provide at each region: τi,pre = (πi1,wi1)⋯(πiki ,wiki), where πi1, πi2,⋯, πiki ∈ Πi

and wi1,wi2,⋯,wiki ∈ 2APi . We propose the following activity switching protocol for
each robot i ∈ N , which is referred by Psc in the sequel:

(I) At time t = 0, robot i sets κi ∶= 1 and itself as active and sets πig ∶= πiκi ,
namely the first goal region by τi. The active controller (6.3) is applied to
robot i, where the progressive goal region is πig, i.e., cig = ci`1 .

(II) Whenever robot i reaches its current progressive goal region πig = πiκi and
κi < ki, it provides the prescribed set of services wiκi by τi and it sets κi ∶= κi+1
and πig ∶= πiκi . Then the controller (6.3) for robot i is updated accordingly by
setting cig = ci`k+1 .

(III) Whenever robot i reaches its last progressive goal region πig = πiki , it provides
the set of services wiki by which it finishes the execution of its finite discrete
plan τi. Afterwards it remains passive and controller (6.4) applies to robot i.

Theorem 6.9. By following the switching protocol Psc above, it is guaranteed that
∀i ∈ N , ϕi is satisfied by xi(T), and ∥xi(t) − xj(t)∥ < r, ∀(i, j) ∈ E0(0) and ∀t ≥ 0,
where T =∞.

6.1. Potential-field-based hybrid control 95

Proof. At t = 0, all robots are active and following the controller (6.3). By Theo-
rem 6.8, all robots converge to one robot’s goal region at a finite time t1 > 0. Denote
by i ∈ N this robot. Then either by step (II) of the protocol robot i updates its
active control law by setting πig = πi2, or by step (III) robot i has completed its plan
τi,pre and becomes passive. Since all robots’ plans are finite and Theorem 6.8 holds
for any number of active robots, we obtain that there exists a finite time instant
Tfj , such that one of the robots j ∈ Na finishes executing its plan τj,pre, i.e., such
that ϕj becomes satisfied. Then by step (III), this robot is passive and following
the controller (6.4) for all times t ∈ [Tfj ,∞). Inductively, we conclude that there
exists a time instant Tf , by which all robots complete their plans and all formulas
are satisfied. All robots are passive for all t ∈ (Tf ,∞) and by controller (6.4) they
all converge to one point. The second part follows directly from Theorem 6.8. ∎

Switching protocol for general LTL

As introduced in Section 6.1.2, if the task specification ϕi is given as a general LTL
formula, then the plan τi is represented by an infinite sequence of goal regions and
services in the prefix-suffix form: τi = τi,pre(τi,suf)ω = (πi1,wi1)(πi2,wi2)⋯, where
τi,pre = (πi,wi1)⋯(πiki ,wiki), for ki > 0 and τi,suf = (πiki+1,wiki+1)⋯(πiKi ,wiKi),
where the same as before πi1, πi2,⋯, πiKi ∈ Πi is the sequence of goal regions and
wi1,wi2,⋯,wiKi ∈ 2APi is the associated sequence of services.

The main challenge in this case is to ensure that each robot executes its plan
suffix infinitely often. The activity switching protocol Psc from Section 6.1.4 could
not be applied here since all robots should remain active at all time due to the infinite
discrete plan. Besides, it is possible that the team may repetitively converge to πig
for one robot i ∈ N while never visiting the other robots’ progressive goal regions.
Hence, we aim here to design a “fair” protocol that enforces a progressive satisfaction
towards each robot’s local task. Thereto, we first introduce a communication-free
reaching-event detector that enables an robot to monitor its neighbors’ plan execu-
tions, particularly to detect when one of its neighbors has reached that neighbor’s
progressive goal region. As we have shown in Lemma 6.2, the connectivity graph is
complete when the system is at any critical point. Thus every robot could monitor
all the other robots’ plan execution by the reaching-event detector:

Reaching-event detector . Robot i ∈ N can detect when it reaches its own
progressive goal region πig by checking if xi(t) ∈ πig. However it is also essential
that it can detect when another robot j ∈ N reaches πjg. Since the connectivity
graph is complete, it is sufficient for robot i to detect when a neighboring robot
j ∈ Ni(t) reaches πjg. Given that the robots satisfy the dynamics by (6.1) and that
each robot i ∈ N can measure xi(t) − xj(t), ∀j ∈ Ni(t) in real time, we assume
that the robot i can measure or estimate [40] uj(t), ∀j ∈ Ni(t). Let Ωi(j, t) ∈ B be
a Boolean variable indicating that robot i detects its neighboring robot j ∈ Ni(t)
reaching the goal region πjg at time t > 0. We propose a reaching-event detector
below inspired by [110]. Simply speaking, the detector checks if within a short
time period [t −∆t, t], there exists j ∈ Ni(t), such that uj(t) has changed from a

96 Inter-robot relative motion constraints

relatively small value (below a given ∆u) by a difference larger than certain ∆d. If
so, it indicates that the robot j has reached its progressive goal region πjg. This
design is motivated by the following facts: By Theorem 6.7, the system is at a local
minimum whenever an active robot is in its progressive goal region. Thus, when the
robot j reaches πjg at time t, all control inputs ui(t) are close to zero for all i ∈ N
by (6.11). Afterwards, our switching protocol guarantees that only robot j switches
its control law either to (6.3) to navigate to the next goal region or to (6.4) to
become passive. This change is lower-bounded by ∆d derived using control law (6.3)
and Lemmas 6.5, 6.6 as ∆d ≜ ∣f(rmin) − f(

√
0.4ε)∣, where f(∥pj∥) = dj(∥pj∥)∥pj∥ is

a scalar function and dj(∥pj∥) is defined by (6.5). In contrast, for the other robots
i ≠ j, i ∈ N , the control input ui(t) remains unchanged and close to zero.

In this protocol, an robot i ∈ N becomes passive if it has made a certain
progress towards the satisfaction of its specification, hence giving the other robots
an opportunity to advance in execution of their plans. However, once every robot
has achieved certain progress, robot i becomes active again to proceed with its
infinite plan. We define a round as the time period during which each robot has
reached at least one of its goal regions according to their plans.

Definition 6.3. For all m ≥ 1, the m-th round is defined as the time interval
[T↺

m−1
, T↺

m
), where T↺0

= 0, T↺
m−1

< T↺
m
and for allm ≥ 1, T↺m

is the smallest
time satisfying the following conditions for all i ∈ N : wordi(T↺m

) = wi1wi2⋯wi` for
some ` ≥ 1 and wordi(T↺m

) ≠ wordi(T↺m−1). ▲

This notion of a round is crucial to the protocol design below. We fistly introduce
two local variables χi ≥ 0 that indicates the starting time of the current round and
Υi ∈ ZN a vector to record how many progressive goal regions each robot has reached
within one round since χi. Then the activity switching protocol for each robot i ∈ N ,
referred by Pge in the sequel, is as follows:

(I) At time t = 0, Υi ∶= 0N , χi ∶= 0, κi ∶= 1. The robot i is active and follows
control law (6.3), where πig ∶= πiκi .

(II) Whenever the robot i reaches its current progressive goal region πig = πiκi ,
it provides the prescribed set of services wiκi by τi and updates the current
progressive goal region accordingly: If κi <Ki then κi ∶= κi + 1, and if κi =Ki

then κi ∶= ki + 1. Furthermore, πig ∶= πiκi , and finally Υi[i] ∶= Υi[i] + 1.
Generally speaking, the robot i decides to stay active or to become passive
based on the probability function:

Pr(bi = 1) =
⎧⎪⎪
⎨
⎪⎪⎩

fprob(⋅) if fcond(⋅) = ⊺,

0 otherwise,

where fprob(⋅) ∈ [0, 1] and fcond(⋅) ∈ {⊺, �} are functions of time t and the
local variables Υi and χi, subject to the following: given that the current round
is the m-th one, there exists a time T ∈ (T↺m−1 , T↺m

), such that fcond(⋅) = �

6.1. Potential-field-based hybrid control 97

for all t ∈ [T, T↺m
). Whenever bi = 1, the robot i keeps following the control

law (6.3) with the updated πig. Otherwise, it becomes passive and the control
law (6.4) is applied.

(III) Whenever robot i detects that Ωi(j, t) = ⊺, for some j ≠ i ∈ N , it sets
Υi[j] = Υi[j] + 1.

(IV) Whenever it holds that Υi[j] ≥ 1, ∀j ∈ N , i.e., all elements of Υi are positive,
then robot i sets Υi ∶= 0N , χi ∶= t and follows the active control law (6.3) to
its goal region πig.

A straightforward choice of the function Pr(⋅) is fcond = �, for all t ≥ 0. Then
the robot i always becomes passive once it visits πig and it becomes active again
after the current round is completed by step (IV). In this case, the number of
active robots gradually decreases within each round. However, a different choice may
allow trading the fairness of activity switching with the increased efficiency of plan
executions. The switching to passive control mode may be temporarily postponed
and as a result, the visits to progressive goal regions may become more frequent.
Examples of such a case are given in Section 6.1.6.

Lemma 6.10. The round [T↺m−1 , T↺m
) is finite, ∀m ≥ 1.

Proof. Let t = T↺m−1 = 0, and thus Υi[j] = 0, for all i, j ∈ N by step (I). By
Theorem 6.8, one of the robots reaches its progressive goal region in finite time at
t1 ≥ T↺j−1 . Since there are only finite number of robots and due to the required
properties of fcond, there exists a finite time Tfj ≥ 0, when either the step (IV)
applies or when one of the robots j ∈ Na necessarily becomes passive by the function
Pr(⋅) in step (II) and remains passive till the end of the round. In the former case,
T↺m

= Tfj , i.e., we directly obtain that the first round is finite. In the latter case,
the same argument can be applied to the N − 1 active robots such that one of them
will become passive in finite time. By repeating this process, we obtain that there
exists a finite time instant Tf , such that step (IV) applies, i.e., such that T↺m

= Tf .
Again, we derive that the first round is finite. Inductively, let m > 1, t = T↺m−1 , and
Υi[j] = 0, for all i, j ∈ N by step (IV). Using analogous arguments as above, we
derive that the mth round [T↺m

, T↺m+1] is finite. ∎

Theorem 6.11. By following the switching protocol Pge above, it is guaranteed
that ∀i ∈ N , ϕi is satisfied by xi(T) and ∥xi(t) − xj(t)∥ < r, ∀(i, j) ∈ E0(0) and
∀t > 0, where T =∞.

Proof. The satisfaction of ϕi follows directly from the correctness of each robot’s
discrete plan and the fact that each round is finite by Lemma 6.10. At last, the
distance constraints are always maintained as shown in Theorem 6.8. ∎

98 Inter-robot relative motion constraints

Switching protocol for mixed task specifications

As stated in Section 6.1.1, the tasks {ϕi, i ∈ N} can be of different types. Namely,
some tasks are given as sc-LTL formulas (denoted by this set of robots Nsc ⊆ N)
and some are given as general LTL formulas (denoted by Nge ⊆ N).

We firstly show that a new switching protocol is needed for this case, i.e., simply
applying the protocol Psc for robots in Nsc and the protocol Pge for robots in
Nge is not a valid solution. The reason is that when one robot j ∈ Nsc has finished
executing its plan, it would switch to being passive indefinitely by step (III) of
Psc. After that for all robots i ∈ Nge, one round may never finish in finite time
since step (IV) of Pge will not be reached as Υi[j] = 0 holds always. Thus it is also
important for robot i ∈ Nge to detect when one of its neighbors j ∈ Ni belonging Nsc
has already finished executing its plan and switched to being passive indefinitely.
To that end, we propose another event detector as follows:

All-passive detector . Let Ψi(t) ∈ B be a Boolean variable which indicates
that robot i ∈ Nge detects that all of its neighboring robots are in the passive
mode at time t > 0. As discussed earlier, when all robots within N are passive and
following the controller (6.4), the closed-loop system dynamics can be described
by ẋ = −(H ⊗ I2)x, where the matrix H is defined in Section 6.1.3. It has been
shown that H is positive semidefinite with only one zero eigenvalue. As a result,
all robots would asymptotically converge to one rendezvous point [122]. In other
words, xij(t) = xi(t) − xj(t) → 0 and ui(t) → 0 as t → +∞, ∀(i, j) ∈ N ×N . Thus
we propose that Ψi(t

′) becomes ⊺ if robot i detects that ∣uj ∣ < ∆c holds, ∀j ∈ Ni
and ∀t ∈ [t′ −∆p, t

′], where ∆c > 0 is the upper bound on the control input and
∆p > 0 is the monitoring period. Given the appropriately chosen ∆c and ∆p, Ψi(t

′)
becomes ⊺ only when all robots are passive at time t = t′. Without loss of generality,
assume there is at least one robot being active in the team at time t = t′. Since
∣ui∣ < ∆c holds for all time t ∈ [t′ −∆p, t

′], it means the system stays at the critical
point of V (t) associated with one of the active robots for at least the time interval
[t′ −∆p, t

′]. By the analysis of V (t) from Section 6.1.3, this violates the fact that
all active robots should navigate to their individual goal regions by following (6.3).
Thus Ψi(t) becomes ⊺ only when all robots are passive at time t.

Then the activity switching protocol for this case, denoted by Pmx, is designed as
follows: for any robot i ∈ Nsc, it simply follows the switching protocol Psc. Namely,
it traverses the sequences of goal regions and provides the set of services there
according to its finite plan τi,pre. After it finishes the execution, it remains passive
indefinitely. On the other hand, for any robot i ∈ Nge, we introduce a new variable
Ni,sc(t) ⊆ Ni(t) to save the set of robot i’s neighbors belonging to Nsc, which is
initialized as empty and maintained locally by robot i. For any robot i ∈ Nge, the
steps (I)-(III) of protocol Pge remain the same, but (IV) should be modified as
follows, and an additional step (V) needs to be added:

(IV) Whenever it holds that Υi[j] ≥ 1, ∀j ∈ N and j ∉ Ni,sc, then robot i sets
Υi ∶= 0N , χi ∶= t and follows the active control law (6.3) to its goal region πig.

6.1. Potential-field-based hybrid control 99

(V) Whenever robot i detects that Ψi(t) = ⊺, then for each j ∈ N , if Υi[j] = 0, add
j to Ni,sc.

Namely, by step (IV) above, each robot i ∈ Nge would reset Υi to 0 and start a
new round once every robot has made a progress in its plan execution, except those
belonging to Ni,sc, i.e., the robots with sc-LTL formulas and that have accomplished
their tasks. Then when Ψi(t) = ⊺, it means that all robots are in the passive mode. If
the neighbor j ∈ Ni also belongs to Nge, by step (II) of protocol Pge in Section 6.1.4
robot j must have reached its goal region at least once, i.e., Υi[j] ≥ 1. Thus if
Υi[j] = 0 for some neighbor j ∈ Ni when Ψi(t) = ⊺, it implies j ∈ Nsc and moreover
robot j has finished executing its finite plan according to step (II) of protocol Psc,
and it remains passive afterwards with Υi[j] being constantly zero. Thus robot i
adds j to Ni,sc by step (V) above.

Theorem 6.12. By following the switching protocol Pmx above, it is guaranteed
that ∀i ∈ N , ϕi is satisfied by xi(T) and ∥xi(t) − xj(t)∥ < r, ∀(i, j) ∈ E0(0) and
∀t > 0, where T =∞.

Proof. Similar to the proof of Theorem 6.11, we only need to show that in this
case one “round” is also finite. Note that now the definition of round differs slightly
from Definition 6.3 as here it is only defined for all robots in Nge. Before any robot
j ∈ Nsc finishes executing its plan, one round is clearly finite as it ends once every
robot has reached at least one of its progressive goal regions. Consider that one or
more robots within Nsc (denoted by N1 ⊆ Nsc) have finished executing their plans
and become passive. All robots within Nge will reach their goal regions at least once
before they become passive in finite time as shown in Lemma 6.10, i.e., Υi[j] ≥ 1,
∀j ∈ Nge, while the robots in N1 remain passive since last round, i.e., Υi[j] = 0,
∀j ∈ N1. According to step (V) above, each robot i ∈ Nge would detect that all
robots are passive and add all robots in N1 to Ni,sc. Then by step (IV), all robots
i ∈ Nge would reset Υi and start a new round, since Υi[j] ≥ 1, ∀j ∈ N and j ∉ Ni,sc,
i.e., all neighbors except those in Ni,sc have made a progress in plan execution.

The above procedure repeats itself until all robots in Nsc finish their plan
execution and become passive. Then it holds that Ni,sc = Nsc, ∀i ∈ Nge and the
results from Theorem 6.11 apply directly, meaning each robot in Nge can satisfy its
local task. As a result, all robots in both Nsc and Nge will satisfy their local tasks
while fulfilling the relative-distance constraints for all time. ∎

It is obvious that the above three protocols have different applicabilities. Thus
considering three cases separately is important such that the users can choose the
suitable protocol accordingly.

6.1.5 Real-time discrete plan adaptation
In the aforementioned approaches, the discrete plan of each robot is synthesized
only once initially from Section 6.1.2 and executed according to the hybrid control

100 Inter-robot relative motion constraints

scheme in real-time, regardless of the robots’ actual trajectories. However, due to
the relative-distance constraints, one robot’s actual trajectory may be different
from the planned one, i.e., it may detour to other robot’s goal region as stated
in Section 6.1.3. Thus given the robot’s updated position, its initial plan τi might
be inefficient in terms of cost defined by (6.2). Thus we propose a discrete plan
adaptation algorithm along with the hybrid control scheme proposed earlier, which
ensures that the updated plan always fulfills the given task and has the minimal
suffix cost for any robot i with a general LTL formula defined as follows:

cost(pi,suf(T)) ≜ max
(πs, πg)∈ϑ

{Wi(πs, πg)} (6.24)

where ϑ = {(πi0, π`1), (π`k
, π`k+1), ∀π`k

, π`k+1 ∈ pi,suf(T)}; and pi,suf(T) is the suffix
part of the effective path pi(T). Recall that the plan suffix τi,suf will be repeated
infinitely often to satisfy a general LTL formula ϕi. Now assume that at time t0 > 0,
robot i finishes executing its current plan suffix τi,suf once. Denote by τ−i,suf(t0) the
plan suffix before the plan update at time t0 > 0 and τ+i,suf(t0) the plan suffix after
the update. Denote by word−i (0, t0) the past sequence of services provided by robot i
during the time period [0, t0]. Since the corresponding word suffix of τ+i,suf(t0) is
given by τ+i,suf(t0)∣APi , the planned sequence of services by robot i during the time
period [t0, T) is given by word+i (t0, T) = τ+i,suf(t0)∣APi , where T = ∞. Denote by
word⋆i (T) the complete word from t = 0 to t = T , which is the complete sequence
of services provided by robot i. Given the updated plan τ+i (t0), word⋆i (T) can be
computed by concatenating the word during time t = [0, t0] and the word during
time t = [t0, T) as follows:

word⋆i (T) = word−i (0, t0)word+i (t0, T). (6.25)

On the other hand, τ+i,suf(t0) determines the suffix of an effective path after time t0
by p+i,suf(t0) = τ+i,suf(t0)∣Πi , of which the suffix cost is given by (6.24). Formally, we
consider the following problem:

Problem 6.2. Find an updated plan suffix τ+i,suf(t0) for robot i such that: (I)
word⋆i (T) by (6.25) satisfies ϕi; (II) the effective path suffix p+i,suf(t0) has the
minimal cost by (6.24). ▲

The solution consists of two main steps: (I) we compute the set of all product
states Q′

P,i,t0
⊆ Qp,i that are reachable from the initial states Qp,i,0 given the past

effective path p−i (0, t0) and the past sequence of services word−i (0, t0) provided by
robot i during time [0, t0). In particular, it can be computed by iterating through
the sequence of input word by word−i (0, t0) and computes the set of successors
recursively, while at the same time ensuring that it is compliant with the robot’s
past effective path by p−i (0, t0). Note that Q′

P,i,t0
can be maintained by each robot

along with the plan execution procedure described in Section 6.1.1; (II) we compute
firstly the intersection F ′ = Fp,i ∩ Q

′
P,i,t0

, which is always non-empty as Q′
P,i,t0

contains at least one accepting state in Fp,i as robot i has finished executing its plan

6.1. Potential-field-based hybrid control 101

suffix once at t = t0. Then the graph search algorithm described in Section 6.1.2
is applied with slight modifications to compute the minimal-bottleneck prefix and
cycle, where Qp,i,0 is replaced by Q′

P,i,t0
and Fp,i is replaced by F ′. Denote by

%i,suf the minimal-bottleneck cycle from v⋆f back to itself, which is computed based
on Pv⋆

f
. Then τ+i,suf(t0) is determined by the projection of %i,suf onto Ti and thus

p+i,suf(t0) is given as the projection of τ+i,suf(t0) onto Πi. Its worst-case computational
complexity [89, 97] is ∣δp,i∣ ⋅ log ∣Qp,i∣ ⋅ ∣Qp,i,0∣ ⋅ ∣Fp,i∣ ⋅ ∣Qp,i∣), where ∣Qp,i∣, ∣δp,i∣ are the
number of states and transitions in Ap,i.

Lemma 6.13. τ+i,suf(t0) derived above solves Problem 6.2.

Proof. For part (I) of Problem 6.2: by how the reachable set Q′
P,i,t0

is computed,
we know that for any state q′s ∈ Q′

P,i,t0
, there exists a path in Pi from one initial

state q′0 ∈ Qp,i,0 to q′s, which corresponds to word−i (0, t0). Furthermore, τ+i,suf(t0) is
generated by enforcing its word word+i (t0, T) corresponds to a path in Pi which
starts from one state q′f ∈ Q′

P,i,t0
∩ F ′ and cycles back to itself. By concatenating

word−i (0, t0) and word+i (t0, T) as in (6.25), it is guaranteed that the complete word
word⋆i (T) corresponds to a path in Pi from the initial state q′0 to an accepting state
q′f and then back to itself, which is an accepting path of Ap,i by definition. As a
result, the complete word word⋆i (T) satisfies ϕi. Regarding part (II): following the
synthesis above, we know that τ+i,suf(t0) corresponds to the minimal-bottleneck suffix
in Ap,i that minimizes the cost by (6.24). In particular, the first term Wi(π

′
i0, π`1)

corresponds to the bottleneck Dv0 for v0 ∈ Qp,i,0 and Wi(π`k
, π`k+1), ∀π`k

π`k+1 ∈
pi,suf(T) corresponds to the bottleneck Dvf

for vf ∈ F ′. The total cost by (6.24) is
minimized by choosing the best pair of (v0, vf), which gives the updated plan suffix
τ+i,suf(t0) and the effective path suffix p+i,suf(t0) with the minimal suffix cost. ∎

Now we discuss how to integrate the above plan adaptation scheme with the
switching policies described earlier. We consider here only the policy Pge from
Section 6.1.4 and policy Pmx from Section 6.1.1. We propose that each robot with
a general LTL task specification updates its plan whenever it finishes executing
its plan suffix once, by executing the adaptation algorithm above to compute the
updated plan suffix τ+i,suf. To be more specific, for policy Pge, every robot follows
the switching protocol and updates its plan suffix whenever it finishes executing
its current plan suffix; for policy Pmx, all robots follow the protocol but only the
robots within Nge update its plan suffix whenever it finishes executing its current
plan suffix. Then the continuous controller and the switching protocol are updated
accordingly given the updated plan suffix.

Lemma 6.14. For all robot i ∈ N , the final execution word wordi(T) satisfies ϕi
for T =∞, after applying the plan adaptation scheme described above.

Proof. For policy Pge, since the plan adaptation is performed by every robot i ∈ N
when it finishes executing its suffix once, Lemma 6.13 guarantees that τ+i,suf(t0)
is a cyclic suffix containing an accepting state of Ap,i after the update at t = t0.

102 Inter-robot relative motion constraints

Thus at least one accepting state of Ap,i is visited between two consecutive plan
updates. Moreover, as shown in Lemma 6.10 and Theorem 6.12, any plan suffix
has finite length and can be executed in finite time. The set of accepting states of
Ap,i will be visited infinitely many times as T =∞. Since the number of accepting
states in Ap,i is finite, at least one of the accepting states will be visited infinitely
often by word⋆i (T) as T = ∞. Thus word⋆i (T) satisfies ϕi when T = ∞, ∀i ∈ N .
For policy Pmx, as any robot i ∈ Nsc does not update its plan, the result from
Theorem 6.12 still holds, while for any robot i ∈ Nge, the analysis from the previous
case holds. ∎

Theorem 6.15. When combining the plan adaption scheme above with the switching
protocol Pge or Pmx, it is guaranteed that ∀i ∈ N , the local task ϕi is satisfied by
xi(T) and ∥xi(t) − xj(t)∥ < r, ∀(i, j) ∈ E0(0) and ∀t > 0, where T =∞.

Proof. A detailed proof is omitted here as the first part regarding the task satisfaction
is a direct extension of Lemma 6.14 above, while the second part regarding relative-
distance constraints can be shown in a similar way as in Theorems 6.11 and 6.12. ∎

6.1.6 Case study
In this case study, we simulate a team of four autonomous robots N = {R1,⋯,R4}
subject to the dynamics (6.1) in a bounded, obstacle-free workspace of 40×40 meters
(m). Each robot Ri is given a local task specified as sc-LTL or LTL formulas ϕi.
The simulation stepsize is set to 1ms.

Workspace description

As shown in Figure 6.1a, the regions of interest are placed in top-left, top-right,
bottom-right and bottom-left corners of the workspace and they all satisfy Assump-
tion 6.1 with cmax = 40 and rmin = 2.

(i) Regions of interest. Robot R1 is an aerial vehicle with four regions of interest,
denoted by Π1 = {π1tl, π1tr, π1br, π1bl} shown in red; robot R2 is a ground vehicle
with three regions of interest Π2 = {π2tl, π2tr, π2bl} shown in green; robot R3 is also
a ground vehicle with Π3 = {π3tr, π3br, π3bl} shown in blue; robot R4 is an aerial
vehicle with Π4 = {π4tl, π4tr, π4br, π4bl} shown in cyan. Note that we only consider
the planar position of all robots. (ii) Services. Robot R1 is capable of providing two
kinds of services, i.e., surveillance over an area (denoted by σ11) and assistance for
ground operations (denoted by σ12). Thus its set of atomic propositions is given
by Σ1 = {σ11, σ12}. Robot R4 can provide the analogous kind of services as R1,
denoted by Σ4 = {σ41, σ42}. Moreover, robot R2 is capable of providing three kinds
of services, i.e., food delivery (denoted by σ21), water delivery (denoted by σ22),
and transportation (denoted by σ23). Thus its set of atomic propositions is Σ2 =
{σ21, σ22, σ23}. Robot R3 can provide the analogous kind of services as R2, denoted
by Σ3 = {σ31, σ32, σ33}. (iii) Region labeling. The aerial assistance service is available
at two regions of interest of R1 while the surveillance service is available at the

6.1. Potential-field-based hybrid control 103

other two regions. Namely, L1(π1tl) = L1(π1br) = {σ11} and L1(π1tr) = L1(π1bl) =
{σ12}. Similar statements hold for robot R4, i.e., L4(π4tl) = L4(π4tr) = {σ41},
L4(π4bl) = L4(π4br) = {σ42}. While for robot R2, the food delivery, water delivery
and transportation services are available at its regions of interest, respectively.
Namely, L2(π2tl) = {σ21}, L2(σ2tr) = {σ22}, L2(π2bl) = {σ23}. Similar statements
hold for robot R3, i.e., L3(π3tr) = {σ31}, L3(π3br) = {σ32}, L3(π3bl) = {σ33}. (iv)
Network graph. The robots have a uniform neighboring radius as r = 8m and the
design parameter needed in Definition 6.2 is κ = 0.5m. They start from [25,15],
[20, 15], [15, 20] and [20, 25] in the 2D workspace. Thus the initial edge set of G(0)
is given by E0(0) = {(R1,R2), (R2,R3), (R3,R4)}. The upper bound by (6.23) is
ε < εmin ≈ 0.031 and we choose ε = 0.03.

Task specification and simulation results

We consider two cases of the robot task specifications: one with sc-LTL formulas
and one with general LTL formulas.

(I) sc-LTL Task Specifications. The finite-time local task for robot R1 or R4
is to first provide the surveillance, assistance service to the ground vehicles and
then another surveillance service in this sequence to regions required. Namely,
ϕs1 =◇(σ12 ∧◇(σ11 ∧◇σ12)) and ϕs4 =◇(σ42 ∧◇(σ41 ∧◇σ42)). On the other hand,
the finite-time local task for robot R2 or R3 is to first deliver food or water and
then provide transportation service, which is formalized as ϕs2 =◇(σ21 ∨σ22)∧◇σ23
and ϕs3 =◇(σ31 ∨ σ32) ∧◇σ33.

The synthesized discrete plans derived by the algorithm described in Section 6.1.2
are as follows: robot R1 needs to provide surveillance at region π1bl, assistance at
region π1tl and then surveillance at region π1bl, i.e., τ1 = (π1bl,{σ12})(π1tl,{σ11})
(π1bl,{σ12}); robot R2 would supply food at region π2tl and transportation at
region π2bl while robot R3 would supply food at region π3tl and transportation at re-
gion π3bl. Namely, τ2 = (π2tl,{σ21})(π2bl,{σ23}) and τ3 = (π3tr,{σ31})(π3br,{σ33});
At last, robotR4 needs to provide surveillance at region π4bl, assistance at region π4tl
and then surveillance at region π4bl, i.e., τ4 = (π4br,{σ41})(π4tr,{σ42})(π4tl,{σ41}).
It can be verified that they all satisfy the respective local tasks. At t = 0, the switch-
ing policy Psc from Section 6.1.4 is applied. It takes around 9s for all robots to
accomplish the execution of their local plans. The complete robot trajectories are
shown in Figure 6.1a, where the distances between the neighboring robots along
with times of reaching the robots’ respective progressive goal regions are also plotted.
In addition, the time instants when each robot reaches their goal regions are shown
to illustrate the progressive plan execution.

(II) General LTL task specifications. In this case, all robots’ local tasks
are specified as general LTL formulas over the services. The task of robot R1
is to periodically provide both the surveillance and assistance services σ11 and
σ12 at the required regions, which is represented by φ1 = ◻ ◇ σ11 ∧ ◻ ◇ σ12; the
task of robots R2 and R3 are similar, which is to periodically provide either food,
water supply or transportation service at desired regions, which is formalized

104 Inter-robot relative motion constraints

0 5 10 15 20 25 30 35 40
x (m)

0

5

10

15

20

25

30

35

40

y
(m

)

R1
R2

R3
R4

0 2000 4000 6000 8000 10000
Time (s)

1

0

1

2

3

4

5

6

7

8

Di
st

an
ce

 (m
)

d12
d23
d34

0 2000 4000 6000 8000 10000
Time (ms)

0

1

2

3

4

5

Re
ac

h e
ve

nt
s

R1
R2
R3
R4

(a)

0 5 10 15 20 25 30 35 40
x (m)

0

5

10

15

20

25

30

35

40

y
(m

)

R1
R2

R3
R4

0 5000 10000 15000 20000
Time (ms)

1

0

1

2

3

4

5

6

7

8

Dis
tan

ce
 (m

)

d12
d23
d34

0 5000 10000 15000 20000
Time (ms)

0

1

2

3

4

5

Rea
ch

eve
nts

R1
R2
R3
R4

(b)

0 5 10 15 20 25 30 35 40
x (m)

0

5

10

15

20

25

30

35

40

y
(m

)

R1
R2

R3
R4

0 5000 10000 15000 20000
Time (ms)

1

0

1

2

3

4

5

6

7

8

Dis
tan

ce
 (m

)

d12
d23
d34

0 5000 10000 15000 20000
Time (ms)

0

1

2

3

4

5

Rea
ch

eve
nts

R1
R2
R3
R4

(c)
Figure 6.1: (a) Top: robots’ respective regions of interest in red, green, blue and cyan
respectively and their trajectories under policy Psc. All robots accomplish their sc-LTL
tasks after 9s. Middle: the evolution of pair-wise distances ∥x12∥, ∥x23∥, ∥x34∥, which
all satisfy the distance constraints (below 7.5m). Bottom: the time instants when the
robots reach their goal regions and provide the set of planned services. (b) robots’
trajectories under policy Pge with general LTL tasks. (c) robots’ trajectories under
policy Pge with general LTL tasks, after incorporating the plan adaptation algorithm.
The bottom figure can be compared with Figure 6.1b).

as φ2 = ◻ ◇ (σ21 ∨ σ22 ∨ σ23) and φ3 = ◻ ◇ (σ31 ∨ σ32 ∨ σ33); at last, the task of
robot R4 is to periodically provide both the surveillance and assistance services at
the required regions, which is represented by φ4 = ◻◇ σ41 ∧ ◻◇ σ42.

The synthesized discrete plans from Section 6.1.2 are as follows: robot R1 would
provide assistance at region π1bl and then surveillance at region π1tl, which is
repeated infinitely often, i.e., τ1 = ((π1bl,{σ12})((π1tl,{σ11}))

ω; robot R2 would
supply food at region π2tl repetitively and robotR3 would provide transportation ser-
vice at region π3bl repetitively. Namely, τ2 = (π2tl,{σ21})

ω and τ3 = (π3bl,{σ33})
ω;

at last, robot R4 would provide surveillance at region π4br and then assistance at
region π4tr, which is repeated infinitely often, i.e., τ4 = ((π4br,{σ41})(π4tr,{σ42}))

ω.
The simulation results for the activity switching protocol Pge from Section 6.1.4

are illustrated in Figure 6.1b. The functions fprob and fcond were chosen by Pr(bi =
1) = e−αiΥi[i](t−χi) if Υi[i] ⋅ (t − χi) < χ̄i; and Pr(bi = 1) = 0 if Υi[i] ⋅ (t − χi) ≥ χ̄i,
where χ̄i = 5 and αi = 1. The probability of remaining active decreases with the
increasing time elapsed since the current round started and with the increasing

6.2. EGGs-based hybrid control 105

number robot Ri’s own progressive goal region was visited. Note that there exists a
finite T ∈ (T↺m−1 , T↺m

), such that Υi[i] ⋅ (t − χi) ≥ χ̄i for all t ∈ [T, T↺m
], hence

each robot Ri is guaranteed to be switched to passive control mode eventually.
At last, to demonstrate the effectiveness of the local plan adaptation technique

proposed in Section 6.1.5, we combine the switching protocol Pge and the real-time
adaptation algorithm. The results are shown in Figure 6.1c, which is significantly
different from the results in Figure 6.1b: Robot R4 adapts its plan to visit π4tl with
service σ42 while robot R1 is reaching π1tl with service σ11. Then robot R4 adapts
its plan to visit region π4bl and provide the surveillance service there and robot R2
adapts its plan to visit region π2bl and supply water there while robot R1 is reaching
the region π1bl. Consequently, the robots reach their goal regions much more often
than before when the real-time adaptation algorithm is not applied, which can be
confirmed by comparing from the time instants when each robot reaches its goal
region in Figures 6.1b and 6.1c, respectively.

6.2 EGGs-based hybrid control

In this section, we consider again a team of robots but with the unicycle dynamics,
each of which is given a local LTL task as the desired motion and actions. Besides,
dynamic constraints with neighboring robots are addressed, including the inter-robot
collision avoidance and connectivity maintenance of the communication network.
We propose a distributed and cooperative motion and action control scheme which
integrates two main components: Embedded Graph Grammars (EGGs) to specify
the local interaction rules and switching control modes of the robots; and the discrete
plan synthesis for desired motion and actions. It is ensured that all local tasks are
satisfied while the dynamic constraints are obeyed at all time.

6.2.1 Problem formulation
Consider a team of N autonomous robots with identities i ∈ N = {1,2,⋯,N}. Now
each robot i ∈ N satisfies the unicycle dynamics [97]:

ẋi = vi cos(θi), ẏi = vi sin(θi), θ̇i = wi, (6.26)

where si = (xi, yi, θi) ∈ R3 is the continuous state of robot i containing its coor-
dinates pi = (xi, yi) and orientation θi; and ui = (vi, wi) ∈ R2 is the control input
as linear and angular velocities, which are bounded by vmax and wmax. Moreover,
robot i has a reference linear velocity Vi < vmax and a reference angular veloc-
ity Wi < wmax. Each robot occupies a disk area of {p ∈ R2 ∣ ∥p − pi∥ ≤ r}, where r > 0
is the radius of its physical volume. A safety distance d > 2r is predefined as the
allowed minimal inter-robot distance to avoid collisions. Each robot i ∈ N can only
communicate with another robot j ∈ N if ∥pi − pj∥ < d, where d > d is the predefined
communication radius.

106 Inter-robot relative motion constraints

Definition 6.4. Robots i, j ∈ N are: in collision if ∥pi(t) − pj(t)∥ ≤ d; neighbors
if ∥pi(t) − pj(t)∥ ≤ d. ▲

Given the robot states, an embedded graph γ(t) is defined as γ(t) = (G(t), p(t)),
where G(t) = (N , E(t)) with (i, j) ∈ E(t) if ∥pi(t) − pj(t)∥ < d, ∀i, j ∈ N , i ≠ j;
p(t) is the stack vector of all pi(t). Then we define the set of allowed embedded
graphs Γd as follows:

Definition 6.5. An embedded graph γ(t) = (G(t), p(t)) is allowed that γ(t) ∈ Γd
if (i) ∥pi(t) − pj(t)∥ > d, ∀i, j ∈ N , i ≠ j; (ii) the graph G(t) is connected. ▲

Embedded Graph Grammars (EGGs)

Here we review the basics of EGGs. For a detailed description, we refer the readers
to [113, 114]. Let Σ be a set of pre-defined labels. A labeled graph is defined as
the quadruple G = (V, E, l, e), where V is a set of vertices, E ⊂ V × V is a set of
edges, l ∶ V → Σ is a vertex labeling function, and e ∶ E → Σ is an edge labeling
function. Then consider a labeled graph consisting of N robots as its nodes with
identical continuous state space X. Then an embedded graph is given by γ = (G, x),
where G is a labeled graph and x ∶ V →X is a realization function. We use Gγ , xγ
to denote the labeled graph and continuous states associated with γ. The set of
all allowed embedded graphs is denoted by Γ. Furthermore, an embedded graph
transition is a relation A ⊂ Γ × Γ such that (γ1, γ2) ∈ A implies xγ1 = xγ2 and
Gγ1 ≠ Gγ2 . The associated rules and conditions are called grammars.

Task specification

For each robot i ∈ N , there is a set of points of interest in the workspace, denoted
by Zi = {zi1, zi2,⋯, ziMi}, where zi` ∈ R2, ∀` = 1, 2,⋯,Mi, where Mi > 0. Each point
satisfies different properties. Furthermore, it is capable of performing a set of actions,
described by the action primitives Σi = {a1, a2,⋯, aKi}. Each action has conditions
on the workspace property that should be satisfied to perform it and also an effect
on the workspace after performing it. By Section 5.1.1, we can derive a complete
motion and action model for robot i as a wFTS Ri = (Πi,Ð→i,Πi,0,APi, Li,Wi),
where Πi = Zi × Σi is the set of states; APi is the set of atomic propositions of
interest and the other notations are similar to (5.5). Moreover, the local task for each
robot i ∈ N is specified as an LTL formula ϕi over APi, with syntax and semantics
described in Section 3.2. Particularly, the satisfaction of task ϕi is defined as follows:

Definition 6.6. The task ϕi is satisfied if there exists a sequence of time instants
ti0 ti1 ti2⋯ and a sequence of states πi`0πi`1πi`2⋯ such that: πi`k

= (zi`k
, ai`k

) where
zi`k

∈ Zi and ai`k
∈ Σi, ∥pi(tik) − zi`k

∥ ≤ ci where ci > 0 is a given threshold for
reaching a point of interest and the action ai`k

is performed at zi`k
, ∀k = 0,1,2,⋯;

and Li(πi`0)Li(πi`1)Li(πi`2)⋯ ⊧ ϕi. ▲

6.2. EGGs-based hybrid control 107

Some examples of the task specification are: “Infinitely often pick up object A
in point 1 and then drop it to point 2”; “Surveil points 3 and 4 by taking pictures
there”; “Go to point 5 and operate machine M, then go to point 5 and charge the
battery”, which all involve motion and actions.

Problem 6.3. Design a distributed motion control scheme such that ϕi is satisfied,
∀i ∈ N , while at the same time γ(t) ∈ Γd, ∀t ≥ 0. ▲

The proposed solution consists of two major parts: the embedded graph grammars
(EGGs) design and the local task coordination, of which the details are given in the
sequel. Then we combine them as the complete hybrid control structure, where we
also prove the correctness formally.

6.2.2 EGGs design
The design of EGGs involves three components: (i) the workspace discretization, (ii)
the graph transition rules, and (iii) the associated control modes.

Workspace discretization

The 2-D workspace is discretized into uniform grids by a quantization function,
through which we transform the collision avoidance and connectivity constraints
into relative grids positions.

Definition 6.7. Given a point (x, y) ∈ R2, its grid position is given by the function
Grid ∶ R2 → Z2:

(gx, gy) ≜ Grid(x, y) ≜ ([
x

d
], [

y

d
]), (6.27)

where [⋅] is the round function that returns the closest integer ([0.5] = 1) and d is
the safety distance introduced earlier. ▲

Given that pi(t) = (xi(t), yi(t)) at time t > 0, the grid position of robot i is given
by gi(t) ≜ (gxi (t), g

y
i (t)) = Grid(xi(t), yi(t)). Now consider two robots i and j

whose grid positions are given by gi(t) and gj(t).

Definition 6.8. The collision function Collide ∶ Z2 ×Z2 → B satisfies:

Collide(gi(t), gj(t)) ≜ �,

if it holds that ∣gxi − g
x
j ∣ ≥ 2 or ∣gyi − g

y
j ∣ ≥ 2; otherwise, Collide(gi(t), gj(t)) ≜ ⊺.

The neighboring function Neighbor ∶ Z2 ×Z2 → B satisfies:

Neighbor(gi(t), gj(t)) ≜ ⊺,

if it holds that ∥(∣gxi − g
x
j ∣ + 1, ∣gyi − g

y
j ∣ + 1)∥ ≤ λd, where λd ≜ d/d > 1; otherwise,

Neighbor(gi(t), gj(t)) ≜ �. ▲

108 Inter-robot relative motion constraints

Lemma 6.16. By Definition 6.4 robots i and j are collision-free at time t > 0
if Collide(gi(t), gj(t)) = �; they are connected if Neighbor(gi(t), gj(t)) = ⊺.

Proof. For pi(t), pj(t) ∈ R2, by (6.27) it holds that if ∣gxi (t)−gxj (t)∣ ≥ 2, then ∣xi−xj ∣ >
d and ∥pi(t) − pj(t)∥ ≥ ∣xi − xj ∣ + ∣yi − yj ∣ > d, i.e., robots i and j are collision-free by
Definition 6.4. The same arguments hold when ∣gyi −g

y
j ∣ ≥ 2. For any pi(t), pj(t) ∈ R2,

by (6.27) it holds that ∣xi − xj ∣ < d ⋅ (∣g
x
i − g

x
j ∣ + 1) and ∣yi − yj ∣ < d ⋅ (∣g

y
i − g

y
j ∣ + 1).

Then ∥pi(t)−pj(t)∥ = ∥(xi −xj , yi −yj)∥ < d ⋅ ∥(∣g
x
i − g

x
j ∣+1, ∣gyi − g

y
j ∣+1)∥ < d ⋅λd = d,

implying that robots i and j are neighbors by Definition 6.4. ∎

Building blocks

We first introduce the set of labels for the embedded graph. Then we present some
building blocks for the graph transition rules. At last, we state the set of transition
rules that are executed locally.

(I) Labels on vertices and edges. The first building block is the modified
embedded graph γ(t) = (G(t), p(t)) where G(t) = (N , E(t), l, e), where l and e
are the vertex and edge labeling functions. Each vertex has a label with three
named fields {id, mode, data}, where id is the robot ID; mode is the robot status,
including {check, static, move}; and data stores data for the execution, which
has three sub-fields {nb, pt, gi}, where nb saves the a set of other robots’ IDs; pt
saves a tentative path; and gi saves a positive gain parameter. Moreover, the edge
between neighbors has the named field id, i.e., the edge from robot i to j has the
ID (i, j). For brevity, we omit the definitions of l and e that map N and E(t) to
the set of labels, which is a cartesian product of the named fields defined above. We
use dot notation to indicate the value of label fields. For instance, “i.mode = move”
means that robot i has the mode being move. We call an robot static if its mode is
static and active if its mode is move.

To start with, we need the notion of a local sub-graph for robot i ∈ N , denoted
byGi(t) = (Vi(t), Ei(t)), where (i) Vi(t) = {i}∪Ni(t), whereNi(t) = {j ∈ N ∣ (i, j) ∈
E(t)}; (ii) (j, k) ∈ Ei(t) if (j, k) ∈ E(t), ∀j, k ∈ Vi(t). Clearly, Gi(t) is a sub-graph
of G(t) and it can be constructed locally by robot i. Clearly if G(t) is connected,
then Gi(t) is connected, ∀i ∈ N .

(II) Neighbor marking scheme. The second building block is the mechanism
to maintain graph connectivity while the robots are moving. The main idea is
to choose locally some robots to be static and the others be active; and more
importantly ensure that the active robots remain connected to its static neighbors
while moving. The most straightforward way is to allow only one robot move at a
time, which is extremely inefficient as a system. Here we propose a local marking
scheme to choose static and active robots, which allows more robots being active
simultaneously. Assume that robot i ∈ N satisfies i.mode = active. Given its local
graph Gi(t) at time t > 0, robot i can communicate with its neighbor j ∈ Ni(t)
regarding its mode. We denote by N s

i (t) = {j ∈ Ni(t) ∣ j.mode = static} the set of
static neighbors; N a

i (t) = {j ∈ Ni(t) ∣ j.mode = move} the set of active neighbors; and

6.2. EGGs-based hybrid control 109

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

a0

a1

a2

a3

a4

a5

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

a0

a1

a2

a3

a4

a5

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

a0

a1

a2

a3

a4

a5

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

a0

a1

a2

a3

a4

a5

Figure 6.2: Examples of marking schemes for robot a0 locally: (a) Local graph G0, con-
sisting of neighbors a1, a2, a3, a4, a5; (b) one allowed marking scheme where a1, a3, a4
are marked, with the associated marked sub-graph of Gm0 ,Gm2 ,Gm5 ; (c) another al-
lowed marking scheme where a2, a5 are marked; (d) an not-allowed marking scheme
where a3, a4 are marked as a1 is neither marked nor connected to a marked robot.

the others are in the check mode. A marking scheme of robot i at time t > 0 marks
a subset of its neighbors, denoted by Nm

i (t) ⊆ Ni(t), as the potential robots to
become static. Then a marking scheme should satisfy the following:

Definition 6.9. The marked set of neighbors Nm
i (t) is allowed if: (i) for any

neighbor j ∈ Ni(t), it holds that either j ∈ Nm
i (t) or there exists g ∈ Nm

i (t)
that (j, g) ∈ Ei(t); (ii) N s

i (t) ⊆ N
m
i (t) and Nm

i (t) ∩N a
i (t) = ∅. ▲

The first condition requires that any neighbor is either marked or directly
connected to a marked robot, while the second condition says that all static and
no active neighbors should be marked. Examples of different marked schemes are
shown in Figure 6.2. Given the set of marked robots Nm

i (t) ⊆ Ni(t), the marked
sub-graph of Gi(t) is defined as:

Definition 6.10. The marked sub-graph Gmi (t) ≜ (V mi (t), Emi (t)) has V mi (t) =
{i} ∪ Nm

i (t) and (j, k) ∈ Emi (t) if (j, k) ∈ Ei(t), ∀j, k ∈ V mi . ∎

(III) Potential path synthesis. The third building block is the synthesis
algorithm to derive a local path for an active robot i ∈ N to move towards its point
of interest zi` = (zxi`, z

y
i`) ∈ Zi while keeping connected and collision-free to all its

marked neighbors in Nm
i . Denote by pi the tentative discrete path of robot i with

length Li ≥ 1 that obeys the following structure:

pi = q0
i q

1
i⋯q

l
i⋯q

Li

i (6.28)

where qli = (sli, t
l
i, v

l
i) is a 3-tuple with the desired state sli = (xli, y

l
i, θ

l
i) ∈ R3, the

approximated time tli when sli will be reached, and the linear velocity vli at qli
when heading towards ql+1

i , ∀l = 0,1,⋯, Li. Notice that q0
i ≜ (si(t), 0, Vi) initially,

where Vi is the reference linear velocity. Moreover, the position pli = (xli, y
l
i) of

sli should correspond to the center of a grid gli = Grid(pli) and two consecutive
positions pli, pl+1

i correspond to two adjacent grids, ∀l = 0,1,⋯, Li − 1. Given the
current state si(t) of robot i, the potential cost of pi is defined as:

Cost(pi) ≜
Li−1
∑
l=0

(∥pli − p
l+1
i ∥ + α ⋅ ∣θli − θ

l+1
i ∣), (6.29)

110 Inter-robot relative motion constraints

where the first term is the total traveled distance and the second term is the total
turned angles; α > 0 is the chosen weight on turning cost. To synthesize the tentative
path pi, we consider the following optimization problem:

minpi ∥(pLi

ix − z
x
i`, p

Li

iy − z
y
i`)∥ + β ⋅Cost(pi)

s.t. Gmi (t) remains connected if pi = pli,
Collide(gli, gj(t)) = �,
∀l = 0,1,⋯, Li and ∀j ∈ Nm

i (t),

(6.30)

where the first term is the tentative progress as the distance from pLi

i = (pLi

ix , p
Li

iy)

to (zxi`, z
y
i`); and β > 0 is a tuning parameter; along pi robot i should remain

connected and collision-free to all robots in Gmi .
The above problem can be solved in four steps: (i) determine the general search

area. Given the positions of the marked robots, the general search area Si ⊂ Z2

satisfies that gs = (gxs , g
y
s) ∈ Si if Neighbor(gb, gj(t)) = ⊺, for at least one neigh-

bor j ∈ Nm
i (t); (ii) remove any grid gs ∈ Si that Gmi (t) is not connected if gi = gs

or Collide(gs, gj(t)) = ⊺ for any neighbor j ∈ Nm
i (t). Thus all elements of pi

should belong to this general search area; (iii) the augmented-graph construction.
Construct a graph Ξ = (ni, ei, wi) where ni = Si × {0,±π

2 ,π} is the set of nodes;
ei ⊂ Si × Si is the set of edges (n1, n2) ∈ ei if n1 = (g1, θ1), n1 = (g2, θ2) where
the grids g1 and g2 are adjacent; wi ∶ ei → R+ is the weighting function, where
wi((g1, θ1), (g2, θ2)) = d+α ⋅ ∣θ1−θ2∣, where α is defined in (6.29); (iv) shortest path
search. Firstly, locate the initial node n0 = (g0, θ0) ∈ ni that is closest to the current
state si(t). Then construct the shortest paths from n0 to every other node in ni by
Dijkstra’s algorithm. At last, find the destination n⋆d ∈ ni that minimizes the cost
in (6.30). Denote the shortest path from n0 to n⋆d by pΞ

i = n0n1n2⋯nLi−1n
⋆
d, where

nl = (gl, θl) ∈ ni and Li is the total length. An example is shown in Figure 6.3.
Give the shortest path pΞ

i , the element qli = (sli, t
l
i, v

l
i) of pi can be derived by

setting sli = (gxl ⋅ d, g
y
l ⋅ d, θl) and vli = Vi, ∀l = 0,1,⋯, Li, and tli is computed by:

tl+1
i = tli +

d

vli
+

∣θl+1
i − θli∣

Wi
, ∀l = 1,2,⋯, Li, (6.31)

which accumulates the time for robot i to move from sli to sl+1
i with linear velocity vli

and angular velocityWi. If a solution to (6.30) exists, the resulting pi is the tentative
path of robot i with the associated marked set Nm

i . Moreover, its tentative gain
is given by χi = ∥pLi

i − zi`∥ − ∥pi(t) − zi`∥. For the ease of notation, we denote this
local path synthesis procedure by a single function:

(pi, χi) = Check(si(t), Ni(t), zi`, N
m
i). (6.32)

As a result, robot i executes pi by following and staying within the sequence of grids
along pi. More details are given in the fifth block.

6.2. EGGs-based hybrid control 111

0.5 0.0 0.5 1.0
0.5

0.0

0.5

1.0

a0

a1

a2

a3

−0.5 0.0 0.5 1.0
−0.5

0.0

0.5

1.0

a0

a1

a2

a3

0.5 0.0 0.5 1.0
0.5

0.0

0.5

1.0

a0

a1

a2

a3

Figure 6.3: Gray grids indicate the allowed search area. The blue star-marked path is the
optimal discrete path p0 by (6.30) for robot a0, given its marked neighbors a1, a2, a3
and its goal. Notice the change of graph topology Gm0 (t) and the fact that it remains
connected while a0 moves along p0.

Lemma 6.17. Assume that (6.30) has a solution at time t0 > 0. If all marked
neighbors in Nm

i remain static and robot i executes pi until t1 > t0, then Gmi (t)
remains connected and all robots within V mi (t) are collision-free, ∀t ∈ [t0, t1].

Proof. Since all marked neighbors in Nm
i stay static, robot i is the only moving

robot within V mi . Initially Gmi (t0) is connected and any two robots within V mi are
collision-free. While robot i executes pi, the formulation of (6.30) ensures that Gmi (t)
remains connected and robot i is collision-free with any marked neighbor. This holds
until robot i finishes executing pi by reaching qLi

i at time t1. ∎

(IV) Path adaptation. The fourth building block is the path adaptation
algorithm for any active robot while executing its tentative path. Assume that at
time t > 0 an active robot i may detect another robot j ∈ N that does not belong
to Nm

i , when its state si(t) corresponds to qw0
i ∈ pi in (6.28), where 0 < w0 < Li.

We consider the two cases:
If j.mode = static, then robot i only needs to check if its future path seg-

ment is in collision with this static robot j. Its future path segment is given
by pi[w0:Li] = qw0

i qw0+1
i ⋯qLi

i , where qli = (sli, t
l
i, v

l
i) is defined in (6.28). Therefore

if Collide(gwi , gj(t)) = �, ∀w = w0, w0 +1,⋯, Li, it means they will not collide and
pi remains unchanged; otherwise, pi is adapted by repeating the synthesis procedure
by (6.32), but with the new neighboring set Ni(t).

If j.mode = move, then robot j is also moving and executing its path pj . In this
case, it is more complicated to check whether they will be in collision. To begin with,
we assume that robot j’s position sj(t) corresponds to qv0

j ∈ pj , where 0 < v0 < Lj .
Its future path segment is given by pj[v0:Lj] = qv0

j q
v0+1
j ⋯q

Lj

j , where qlj = (slj , t
l
j , v

l
j)

from (6.28). Given pi[w0:Li] and pj[v0:Lj], a potential collision between robots i
and j can be detected by the function:

CollidePath(pi, pj) = �. (6.33)

112 Inter-robot relative motion constraints

if Collide(pwi , pvj) = � and ∣twi − tvj ∣ < ∆t, for any pwi ∈ pi[w0:Li] and any pvj ∈
pj[v0:Lj], where ∆t > 0 is a design parameter as the allowed time difference,
which depends on the estimation accuracy of the time sequences {twi } and {tvj}
by (6.31). Then robots i and j keep their current paths unchanged; otherwise,
CollidePath(pi, pj) = ⊺, meaning that they may collide by executing their re-
spective paths. Thus at least one of them should modify its current path, the
choice of which robot will be presented later. For now, we assume that robot i is
chosen to change its path pi. Let wc ∈ {w0,w0 + 1,⋯, Li} be the smallest index
within pi[w0:Li] that a potential collision could happen by (6.33) and the associated
index within pj[v0:Lj] is vc ∈ {v0, v0 + 1,⋯, Lj}. Then robot i would avoid this col-
lision by reducing its speed within the segment pi[w0:wc], while pi[wc:Li] remains
unchanged. To find a suitable linear velocity ν < vmax for elements in pi[w0:wc], we
consider the following optimization problem:

min0<ν<vmax ∣Vi − ν∣

s.t. vli = ν, ∀l = w0,⋯,wc.

Collide(pwi , pvs) = �, and ∣twi − t
v
s ∣ < ∆t,

∀pwi ∈ pi[w0:Li], ∀pvj ∈ pj[v0:Lj].

(6.34)

where Vi is the reference velocity. The conditions above ensure that after adjusting
the linear velocity, pi and pj will not collide by (6.33). The above problem can be
solved as follows: firstly, choose ν = maxl∈[w0:wc]{v

l
i} and a proper step size δv > 0.

Then gradually decrease ν by δv and check if the conditions within (6.34) are
fulfilled. If not, repeat this procedure until ν = ν⋆ is small enough and all conditions
within (6.34) are fulfilled. As a result, ν⋆ is the suitable linear velocity for pi[w0:wc].
Moreover, the time instants {vwi } within pi[w0:Li] are updated according to (6.31).
If ν < 0 and no solution can be found, it means that the initial position of robot i is
in collision with parts of robot j’s path.

Now consider that while executing the adjusted path, robot i may meet with
another moving robot, say k ∈ Ni(t1) at time t1 > 0. Now its corresponding index
within pi is w′

0 > w0. Similar as before, robots i and k exchange their paths pi
and pk. Function CollidePath(pi, pk) can be used to check if they will collide
in the future. If so, assume that robot i is chosen to adapt its path again and the
potential collision is estimated to happen at index w′

c of pi. Consider the relative
position of qw

′

c

i and qwc

i from the previous adjustment: (i) if w′
c ≤ wc, robot i would

reduce its linear velocity within pi[w′
0:w′

c] by the same formulation as (6.34); (ii)
if w′

c > wc, robot i would instead reduce its linear velocity within pi[wc:w′
c] by

the same formulation as (6.34). For the ease of notation, we denote this process of
adjusting linear velocity by a single function:

pi = SlowDown(si(t), pi, pj), (6.35)

which is only applied to the robot that adapts its path. Figure 6.4 shows an example
of applying the above function. Note that the sequence of {sli} within pi remains
unchanged and the collision is avoided by adjusting only the velocity.

6.2. EGGs-based hybrid control 113

0.0 0.5 1.0 1.5
x(m)

0.5

0.0

0.5

1.0
y
(m

)

a0

a1

p0

p1

0 1 2 3 4 5 6
t(s)

0.1

0.2

0.3

0.4

0.5

0.6

v
(m

/s
)

p−1 (t)

p1 (t)

p2 (t)

Figure 6.4: The left image shows that robots a0, a1 have a potential collision given their
paths p1,p2 with velocities 0.5m/s,0.4m/s. After applying SlowDown(⋅) by (6.35),
the resulting velocity of a0 is shown in the right and the potential collision is avoided.

(V) Continuous control for tracking. The fifth building block is the con-
tinuous controller for an active robot to track its synthesized path. We rely on
the nonlinear control scheme from [101] for unicycle models that handles bounded
control inputs and ensures the tracking of a reference trajectory with a prov-
able bounded tracking error. In particular, consider that an active robot i needs
to execute its path pi by (6.28) and assume that it is going from qli to ql+1

i at
time t0 > 0. We first construct the reference trajectory (xr(t), yr(t), θr(t)) as fol-
lows: (i) rotate to the desired orientation while staying at the same position. For
t ∈ [t0, t1), we set xr(t) = xli, yr(t) = yli, θr(t) = θli +Wi ⋅ sgn(θl+1

i − θli)(t − t0) and
wr(t) = Wi, vr(t) = 0, where t1 = t0 + ∣θl+1

i − θli∣/Wi; (ii) forward towards the next
grid while keeping the same orientation. For t ∈ [t1, t2], we set xr(t) = xli + v

l
i ⋅

cos(θr) ⋅(t− t1), yr(t) = yli +vli ⋅ sin(θr) ⋅(t− t1), θr(t) = θl+1
i and wr(t) = 0, vr(t) = vli,

where t2 = d/vli. Denote the saturation function by Satδ(x) = x, ∀∣x∣ ≤ δ and
Satδ(x) = sgn(x)δ, ∀∣x∣ > δ. Then the nonlinear control laws are given as fol-
lows: vi = vr cos(θe) − Sata(k0xe) and wi = wr +

f1(xe, ye, θe, t)
f2(xe, ye, t)

+ Satb(k1θ̄0), where
a = vmax−v

l
i; xe = cos(θ)(x−xr)+sin(θ)(y−yr); ye = − sin(θ)(x−xr)+cos(θ)(y−yr);

θe = θr − θ; b > 0 is chosen such that ∣wi∣ < wmax; k1, k2 > 0; θ̄0 = θ0 + f3(xe, ye, t) ye;
the actual expressions of functions f1(⋅), f2(⋅) and f3(⋅) can be found in Section III
of [101]. The guarantees for convergence and bounded tracking error are shown in
Theorem 1 of [101]. For brevity, we denote this control scheme by the function:

(vi, wi) = Move(si(t), pi). (6.36)

which can be either of the above approaches depending on the particular application.
Examples of the control scheme can be found in Section 6.2.5.

EGGs description

With the above building blocks, we now present the complete graph grammars for
the embedded graph γ(t), which includes the set of local transition rules with the

114 Inter-robot relative motion constraints

associated conditions and control modes, which can be applied locally by each robot.
[R.0] At t = 0, each robot i ∈ N initializes its label by setting i.id = i, i.mode =

check or i.mode = static randomly, and i.data.nb = ∅, i.data.pt = [], i.gi = 0,
where [] denotes an empty sequence. Moreover, for any robot j ∈ Ni(0), it sets
(i, j).id = (i, j).

After the system starts at t > 0, each robot i ∈ N reconstructs its local graphGi(t)
and applies the rules below: [R.1] If i.mode = check, robot i first communicates
with every neighbor j ∈ Ni(t) and checks if j.mode = active and i ∈ j.data.nb. If so,
it sets i.mode = static and adds robot j to i.data.nb.

After that, if i.mode = check still holds, robot i chooses an allowed marked
schemeNm

i givenGi(t) and calls the function Check(si(t), Ni(t), zi, N
m
i) in (6.32).

If (6.30) has a solution as the tentative path pi and the potential gain χi. If χi > 0,
then it sets i.mode = move and i.data.nb = Nm

i (t), i.data.gi = χi, i.data.pt = pi.
Otherwise if χi ≤ 0, it sets i.mode = static and i.data.nb = ∅. Otherwise if no
solutions to (6.30) exist or χi ≤ 0, it sets i.mode = static and i.data.nb = ∅.

[R.2] If i.mode = static, robot i stays static by setting vi = wi = 0. Then it
communicates with each neighbor j ∈ Ni(t) and checks that if j.mode = active,
i ∈ j.data.nb, and j ∉ i.data.nb hold. If so, it adds robot j to i.data.nb. Moreover,
for each robot j ∈ i.data.nb, it checks whether i ∈ j.data.nb still holds. If not,
it removes robot j from i.data.nb. At last, it checks if i.data.nb = ∅. If so, it
sets i.mode = check.

[R.3] If i.mode = move, robot i first checks if j.mode = static, ∀j ∈ i.data.nb.
If not, it stops moving by setting i.mode = check and i.data.nb = ∅. Otherwise, it
executes its tentative path pi via the motion controller (vi,wi) = Move(si(t), pi)
by (6.36). As discussed earlier, robot i may encounter other robots, e.g., j ∈ Ni(t):

(i) if j.mode = move, they exchange their respective gains and tentative paths.
Then the robot with higher gain is given higher priority. Assume for now i.data.gi <
j.data.gi, implying robot j has higher priority. Then the robot with lower prior-
ity, i.e., robot i, calls CollidePath(pi, pj) by (6.33) to check if pi and pj will
collide. If so, robot i calls SlowDown(si(t), pi,pj) by (6.35). If it has a solution,
robot i updates its path pi by slowing down; otherwise, robot i stops moving by
setting i.mode = static and i.data.nb = ∅.

(ii) if j.mode = static, robot i checks if it would collide with robot j given its
current path pi. If so, it stops moving by setting i.mode = check and i.data.nb = ∅.

[R.4] If i.mode = move and ∥pi(t) − zi`∥ < ci, where ci > 0 is the threshold from
Definition 6.6, robot i has reached its goal point. Then robot i stops moving and
resets i.mode = static and i.data.nb = ∅.

It is worth mentioning that the gain comparison in [R.3] introduces a fixed
priority among the active robots. It means that in the worst-case scenario all robots
will slow down or be static except the one with the highest gain.

6.2. EGGs-based hybrid control 115

6.2.3 Local plan synthesis
The previous section solves how each robot could move to its current goal point,
while obeying the motion constraints. Here we tackle how each robot should choose
and update its goal point, in order to fulfill the local task ϕi. The solution was
presented in Section 5.1: (i) recall that the complete motion and action model Ri is
given in Section 6.2.1, (ii) then we derive the NBA Aϕi associated with ϕi by the fast
translation tools [41]; (iii) now we construct the product automaton Ap,i = Ti×Aϕi by
Definition 3.9; (iv) lastly a nested Dijkstra’s shortest path algorithm by Algorithm 3.1
is applied to Ap,i, to find its strongly connected component with the minimal
summation cost. The discrete plan denoted by τi has the prefix-suffix structure:

τi = πi,0πi,1⋯πi,ki−1(πi,kiπi,ki+1⋯πi,Ki)
ω, (6.37)

where πi,k = (zi,k, ai,k) ∈ Πi where zi,k ∈ Zi and ai,k ∈ Σi, ∀i = 0, 1,⋯,Ki and Ki > 0
is the total length of the prefix and suffix. Note that since the suffix is repeated
infinitely often, τi has an infinite length. Given these locally-synthesized plans, we
need the following assumption:

Assumption 6.2. The plans {τi, i ∈ N} are feasible as a whole if γ(t) is allowed
by Definition 6.5 when p(t) satisfies pi(t) = zi,k, ∀i ∈ N and ∀k = 0,1,⋯. ▲

6.2.4 Overall structure
In this part, we present the complete solution that combines the EGGs and the
local plan synthesis scheme from above. When the system starts, each robot i ∈ N
derives it local plan τi by (6.37) and sets its current goal point zi` = zi,0; then
it follows the transition rules and control laws from the EGGs; by [R.4] after it
reaches zi,0, it then performs the action ai,k according to the plan τi; after the action
is accomplished, it remains static until all other robots have reached their respective
goal points and finished the corresponding actions. This can be detected through the
communication network that all robots are static. Then each robot would update
its goal point by zi` = zi,1 and sets i.mode = check, ∀i ∈ N . Then all robots follow
the EGGs to make progress towards this new goal point. This procedure repeats
indefinitely as the discrete plans have infinite length. Note that after robot i ∈ N
reaches zi,Ki , it should set zi` = zi,ki to repeat the plan suffix by (6.37).

Lemma 6.18. Given that G(0) is connected initially, it is guaranteed that G(t)
remains connected for t ≥ 0.

Proof. Since G(0) is connected, there exists at least one path of length N that
connects all robots in G(0). Denote by this path ζ0 = a0a1⋯aN , where robots ai
and ai+1 are directly connected by an edge and ai ∈ Ni+1(0), ∀i = 0,1,⋯,N − 1.
Denote by t1 > 0 as the smallest time instance that one of the consecutive robot
pairs within ζ0 is not directly connected anymore. Without loss of generality, let
the pair be robots i and j. Notice that j ∉ Ni(t1) can only happen in one of

116 Inter-robot relative motion constraints

the following cases: (i) robot i is moving while robot j is static during [0, t1].
Given the marked neighbors Nm

i (0), by Definition 6.9 it holds that j ∈ Nm
i (0).

Given robot i’s path pi as derived by (6.30), Lemma 6.17 ensures that the sub-
graph Gmi (t) remains connected for t ∈ [0, t1] while robot i executes pi. Thus even
though robots i and j are not connected directly at time t1, they are still connected
indirectly within Gmi (t1); (ii) both robots i and j are moving during [0, t1]. Given
their marked neighbors Nm

i (0) and Nm
j (0), by Definition 6.9 there must exist a

static robot k ∈ Ni(0) that k ∈ Nm
i (0) and k ∈ Nm

j (0). Given their paths pi, pj as
derived by (6.30), by the same analysis as in case (i), robots i, k remain connected
and robots j, k remain connected during [0, t1], yielding that robots i, j remain
connected indirectly. We conclude that robots i, j remain connected indirectly after
becoming disconnected directly at time t1. Since the other consecutive pairs in ζ0
remain connected directly, G(t1) remains connected for t ∈ [0, t1]. Now denote by ζ1
the new path of length N that connects all robots within G(t1) at time t1. By
repeating the same analyses for ζ0 above, we can show that G(t) remains connected
for t ∈ [t1, t2], where t2 is the smallest time instance that one of the consecutive
robot pairs in ζ1 becomes disconnected directly. Thus by recursive reasoning we can
show that G(t) remains connected, ∀t ≥ 0. ∎

Theorem 6.19. All local tasks ϕi, i ∈ N are satisfied while γ(t) ∈ Γd, ∀t > 0.

Proof. Since the workspace is assumed to be unbounded and free of obstacles, at
least one robot within N can be active and make a progress towards its current
goal point. The connectivity of G(t) is proved above and the collision avoidance is
ensured by the formulation of (6.30) and (6.34). Moreover, Assumption 6.2 ensures
that the intermediate configuration of all robots’ goal points is feasible and can be
reached. At last, by construction, the execution of τi guarantees the satisfaction
of ϕi, we ensure that the local task ϕi is satisfied, ∀i ∈ N . ∎

6.2.5 Case study
In this section, we present the simulation results of the EGGs-based hybrid control
scheme presented above. The message passing among the robots are handled by the
Robot Operating System (ROS) and each robot is launched as a ROS node.

Workspace and robot description

The six robots are labeled a0, a1,⋯, a5 and each occupies a disk area of radius 0.05m.
As shown in Figure 6.5, the communication range d is uniformly set to 0.9m, while
the safety distance d is set to 0.15m. Moreover, their reference linear velocity is set
to between 0.1m/s and 0.3m/s, under the maximal 0.4m/s. The angular velocity is
set to between 0.4rad/s and 0.5rad/s, under the maximal 0.7rad/s.

The robots’ points of interest and local task specifications are defined as fol-
lows: robots a0, a1 have the local task as surveillance. Robot a0 has four points of
interest at (1.5,1.5), (-0.2,1.5), (0,0), (1.6,0) with labels {r1}, {r2}, {r3}, {r4}.

6.2. EGGs-based hybrid control 117

1.0 0.5 0.0 0.5 1.0 1.5 2.0
x(m)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y
(m

)

a0,11

g0

a1,0

g1

a2,0

g2

a3,3
g3

a4,0

g4

a5,11

g5

1.0 0.5 0.0 0.5 1.0 1.5 2.0
x(m)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y
(m

)

a0,11
g0 a1,0

g1

a2,0

g2

a3,7

g3

a4,3

g4
a5,6g5

Figure 6.5: Snapshots of the simulation. Moving robots are denoted by red circles while
static ones are in blue, labeled by ai and ai.gi. Lines marked by stars are tentative paths
of the active robots. Black squares represent the goal points, labeled by gi, ∀i ∈ N .

Its local task is to surveil r1, r2, r3, r4 in any order, which can be specified as the
LTL formula ϕ0 = ∧i=1,⋯,4 ◻◇ri. Robots a1 has points of interest close to a0’s and
its local tasks is similar to ϕ0. Robots a2, a3 have the local tasks for providing
services. Robot a2 has three points of interest at (1.2,0.4), (0.6,0.6), (0.6,0.9)
with labels {s1}, {s3}, {s2}. Its local task is to provide services s1, s2, s3 in se-
quence, namely ϕ2 = ◻ ◇ (s1 ∧ ◇(s2 ∧ ◇s3)). Robots a3 has points of interest
close to a3’s and its task is similar to ϕ2. At last, robots a4, a5 are responsible
for transporting goods between goal points. Robot a4 has three points of inter-
est (1.1, 1.0), (1.5, 1.5), (1.0,1.0) with labels {b}, {g1}, {g2}. Its local task is to
transport goods g1 and g2 to the base b, i.e., ϕ4 = ∧i=1,2◻◇(b⇒ (¬bU gi)). Robot a5
has three points of interest close to a4’s and its local task is similar to ϕ4. Initially,
the robots start from (-0.5, -0.5), (0, -0.5), (0.5, -0.5), (1.0, -0.5), (1.5, -0.5), (2.0, -0.5),
which forms a line graph.

Simulation results

After the system starts, each robot first synthesizes its discrete plan τi as described
in Section 6.2.3. To give an example, robot a0’s discrete plan is to visit r1, r2, r3, r4
in sequence and repeat, while robot a4’s plan is to visit b, g1, b, g2 in sequence and
repeat. Then they follow the EGGs as described in Section 6.2.2. Most of the time
there are 3−4 robots moving. Figures 6.5 show some snapshots of how G(t) changes
with time. At t = 92.5s, 160.5s, all robots update their goal points according to their
discrete plans. This procedure continues indefinitely and we simulate the system
until t = 240.5s when they have reached the forth goal point. To verify that all
motion constraints are fulfilled, the left image of Figure 6.6 shows the evolution of
the maximal length of the shortest path between any two vertices within G(t) (i.e.,
the diameter). It is always less than 6, meaning that G(t) remains connected. The

118 Inter-robot relative motion constraints

0 10 20 30 40 50
t(s)

0

1

2

3

4

5

6

d
ia

m
e
te

r

0 10 20 30 40 50
t(s)

0.0

0.2

0.4

0.6

0.8

1.0

m
in

im
a
l
d
is

ta
n
ce

(m
)

Figure 6.6: Evolution of the graph diameter (left) and the minimal distance among
the robots (right). G(t) remains connected as its diameter is always lower than 6; no
collision occur as the minimal distance is always above 0.15m.

right image of Figure 6.6 shows the evolution of the minimal distance between any
two robots, which is always larger than the safety distance 0.15m, meaning that no
collision happens. The complete simulation video can be found in [65].

6.3 Summary

In this chapter, we first proposed a potential-field-based control scheme for multi-
robot systems to fulfil locally-assigned tasks as general or sc-LTL formulas, while
subject to relative-distance constraints. Then we considered the multi-robot system
with a different dynamical model under both collision avoidance and connectivity
maintenance constraints. The proposed solution relies on the EGGs to specify local
communication and interaction rules among the robots. It has been shown that
both approaches are distributed and can guarantee the satisfaction of all local tasks
while the relative-motion constraints are obeyed at all time.

Chapter 7

Contingent service and formation tasks

Two common types of cooperative robotic tasks are the service and formation
tasks. Particularly, the service request is a short-term task provided by one

robot to another, while the formation task is a relative deployment requirement
among the robots with predefined transient responses imposed by an associated
performance function. These tasks are often requested and exchanged among the
robots during run time. In this chapter, we address this issue by proposing a hybrid
control strategy that handles the contingent service or formation tasks along with
the local task of each robot. It involves monitoring the real-time events that are
critical to the plan execution, adjusting the local plan to satisfy the contingent
requests and switching the low-level continuous control mode. It is shown that both
local tasks and contingent tasks are satisfied for all robots. Numerical simulations
are provided in the end to validate the proposed strategy.

7.1 Problem formulation

In this section, we formally state the problem considered in this chapter, i.e.,
the robot model, the contingent service and formation tasks and the local task
specifications given as RTL formulas.

Preliminaries
Maximal solution of dynamical systems

Consider the initial value problem:

ψ̇(t) =H(t, ψ), ψ(0) = ψ0 ∈ Ωψ, (7.1)

where ψ ∈ Rn is the state, H ∶ R+ ×Ωψ → Rn and Ωψ ⊂ Rn is a non-empty open set.
A solution ψ(t) of the aforementioned initial value problem is maximal if it has
no proper right extension that is also a solution of (7.1). Moreover, the following
theorem and proposition will be employed in the sequel.

119

120 Contingent service and formation tasks

Theorem 7.1. [133] Assume that H(t, ψ) is: (i) locally Lipschitz on ψ for almost
all t > 0; (ii) piecewise continuous on t for each fixed ψ ∈ Ωψ; and (iii) locally
integrable on t for each ψ ∈ Ωψ. Then there exits a maximal solution ψ(t) of (7.1)
on the time interval [0, tmax) with tmax > 0 such that ψ(t) ∈ Ωψ, ∀t ∈ [0, tmax). ▲

Proposition 7.2. [133] Assume that the hypotheses of Theorem 7.1 above hold.
For a maximal solution ψ(t) of system (7.1) on the time interval [0, tmax) with
tmax <∞ and for any compact set Ω′

ψ ⊂ Ωψ, there exists a time instant t′ ∈ [0, tmax)
such that ψ(t′) ∉ Ω′

ψ. ▲

.

Real-time temporal logic

In order to analyze properties of real-time signals, we also consider a real-time
extensions of LTL described in Section 3.2, i.e., the real-time temporal logic (RTL),
originally introduced in [124]. Its syntax is similar to LTL as introduced in Sec-
tion 3.2, but its semantics is defined over continuous-time Boolean signals. Consider a
continuous-time Boolean signal x ∶ R≥0 → 2AP over the set of atomic propositions AP ,
where x(t) ⊆ AP is the set of propositions that x satisfies at time t ≥ 0. Given an RTL
formula ϕ over AP , the satisfiability relation (x, t) ⊧ ϕ, i.e., whether signal x satisfies
ϕ at time t ≥ 0, is determined according to the following recursive definition: (x, t) ⊧
a↔ a ∈ x(t) ; (x, t) ⊧ ¬ϕ↔ (x, t) ⊭ ϕ; (x, t) ⊧ ϕ1 ∨ ϕ2 ↔ (x, t) ⊧ ϕ1 or (x, t) ⊧ ϕ2;
(x, t) ⊧ ϕ1 Uϕ2 ↔ ∃t′ ≥ t, (x, t′) ⊧ ϕ2 and ∀t′′ ∈ (t, t′), (x, t′′) ⊧ ϕ1. We say that
an RTL formula ϕ is satisfied by x if (x, 0) ⊧ ϕ or simply x ⊧ ϕ. Moreover, similarly
to sc-LTL, there exists a particular class of RTL, called sc-RTL that can be satisfied
by a real-time Boolean signal in a finite time. It only contains the U and ◇ temporal
operators and is written in positive normal form [36]. Finally since we consider RTL
and LTL with the same syntax but interpreted with different semantics, we define
the following correspondence between an RTL formula and an LTL formula:

Definition 7.1. Given an RTL formula ϕ, the associated LTL formula, denoted by
[ϕ], has the same expression as ϕ but evaluated under the LTL semantics. ▲

7.1.1 System description
We consider a team of N autonomous robots with identities i ∈ N ≜ {1,2,⋯,N}
obeying the following single-integrator dynamics on a 2D workspace:

ṗi(t) = ui(t), (7.2)

where pi(t), ui(t) ∈ R2 denote the ith robot’s position and control input at time t ≥ 0,
∀i ∈ N . It should be noticed that the robots are modeled as point masses without
volume, hence no that inter-robot collisions are not considered. Each robot has a
sensing radius r > 0, which is assumed to be identical for all robots, i.e., robot i can
only exchange information with another robot j if their relative distance satisfies

7.1. Problem formulation 121

∥pi(t) − pj(t)∥ ≤ r. We denote by pi(t) ∶ R≥0 → R2 the trajectory of robot i during
the time interval [0, t). Moreover, pi([t1, t2]) stands for the trajectory segment
during time [t1, t2]. Finally, each robot i has a predefined neighboring set Ni ⊆ N ,
i ∈ N , which is assumed to be nonempty, and j ∈ Ni implies i ∈ Nj , ∀j ∈ Ni.

Moreover, there exists a set of regions of interest within the 2-D workspace Π ≜
{π1, π2,⋯, πM}, where M ≥ 1. They are circular area around the points of interest:
π` ≜ B(c`, r`) = {p ∈ R2∣∥p − c`∥ ≤ r`}, where ` = 1,2,⋯,M , c` ∈ R2 is the center
and r` ≥ rmin is the radius, with rmin being a given constant as the minimal radius
of all regions. We assume that Π is included within a large sphere region denoted
by πB = B(cB , rB), which stands for the allowed workspace. Finally, there is a set of
local atomic propositions R = {R`, ` = 1,2,⋯,M} representing the property fulfilled
at each region. Hence given robot’s state pi(t) at time t ≥ 0, it holds that R`(t) = ⊺
if pi(t) ∈ π` and R`(t) = � otherwise, for ` = 1,2,⋯,M .

7.1.2 Local task with contingent requests
In this part, we introduce the definition of contingent requests for formation and
service, based on which we can then formulate the local task of each robot.

Contingent request

As mentioned earlier, the robots can exchange information with their neighbors
when their relative distance is less than r. Via this communication protocol, we
allow each robot to send contingent requests of the following two types:

(I) Service: robot i requests its neighbor j ∈ Ni at time t to accomplish a
short-term service described by a sc-RTL formula ϕs

ij,t over R. Note that ϕs
ij,t is

predefined for each neighbor j and may be different at different request time t, which
is assumed to be always feasible for robot j. This request can be communicated by
sending the formula ϕs

ij,t directly to robot j.
(II) Formation: robot i requests its neighbor j ∈ Ni at time t to converge

to a desired relative-position formation by cij ∈ R2 with a predefined transient
response imposed by the corresponding performance function ρij(t) ∶ R+ → R+.
This formation has to be kept until robot i accomplishes a short-term formation
task described by a sc-RTL formula ϕf

ij,t over R and a release message is sent to
robot j afterwards. The formation task ϕf

ij,t is also predefined for robot i and may
be different at different request time t. The relative formation error is given by:

eij(t) ≜ pi(t) − pj(t) − cij . (7.3)

Here let us define µij ≜ eTij eij as a scalar measure of the formation error and

µ̂ij(t) ≜
µij(t)

ρij(t)
(7.4)

as the normalized error with respect to the performance specifications introduced
by the corresponding performance function ρij(t), which is a smooth, bounded and

122 Contingent service and formation tasks

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

pi pj

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time(s)

0.0

0.5

1.0

1.5

2.0

2.5

Er
ro

r

eij(t) ρij(t)

Figure 7.1: Robot i starts from (1, 1) and its neighbor j starts from (0, 0). The desired
relative position is cij = [0.1, 0.1] and the corresponding performance function is set
to ρij(t) = 2.995 e−0.5t + 0.005. Robot i moves with constant velocity while robot j
aims at establishing the desired formation with prescribed performance. The left figure
shows the trajectory of both robots within the workspace while the right one depicts
the evolution of eij(t), along with the performance function ρij(t).

strictly positive function. We consider exponential performance functions here:

ρij(t) ≜ (ρij,0 − ρij,∞)e−lijt + ρij,∞, (7.5)

where lij > 0 specifies the decreasing rate of ρij(t), ρij,0 > 0 is the initial value of
ρij(t) at time 0, chosen such that ρij,0 > µij(0); and ρij,∞ > 0 reflects the maximum
allowed steady state error. This request can be communicated by sending the
formation vector cij and the performance function ρij(t) to robot j.

In order to monitor the performance of the formation, we define a set of control-
lable atomic propositions: Hi ≜ {hij , j ∈ Ni}, where

hij(t) ≜

⎧⎪⎪
⎨
⎪⎪⎩

⊺ if µ̂ij(t) ∈Dij ≡ (0, 1),

� otherwise.
(7.6)

Notice that robot j needs to satisfy the prescribed formation performance, i.e.,
hij(t) = ⊺ until it receives a release message from robot i. An example of formation
control with prescribed performance is shown in Figure 7.1.

Upon receiving either a service or formation request from robot i, we assume
that robot j will reply immediately to either confirm or refuse this request. Thus
we introduce a set of observational atomic propositions for each robot i ∈ N :
Oi ≜ {os

ij , o
f
ij , j ∈ Ni}, where os

ij(t) = ⊺ if the service request sent by robot i is
confirmed by robot j at time t; and os

ij(t) = � otherwise (of
ij(t) is defined similarly

for formation requests). Additionally, we also introduce a set of releasing atomic
propositions for robot i ∈ N : Zi ≜ {zij , j ∈ Ni}, where zij(t) = ⊺ if robot i sends a
release message to its neighbor j ∈ Ni at time t; and zij(t) = � otherwise.

7.1. Problem formulation 123

Local task specifications

Denote by AP i = R ∪ Oi ∪ Hi ∪ Zi the complete set of atomic propositions of each
robot i ∈ N . Each robot i is assigned a local task specified as an RTL formula ϕi
over AP i, which has the following structure:

ϕi ≜ ϕ
l
i ∧ ϕ

s
i ∧ ϕ

f
i (7.7)

where ϕl
i denotes the static task specification as a general RTL formula over R

concerning only the local motions of robot i; ϕs
i is the contingent task specification

regarding the service requests that robot i may receive from robot j with i ∈ Nj :

ϕs
i ≜ ⋀

i∈Nj , j∈N

◻ (os
ij → ϕs

ji,t). (7.8)

Hence whenever robot i confirms a service request ϕs
ji,t from robot j, then it should

fulfill this service task afterwards; finally ϕf
i is the contingent task specification

regarding the formation requests that robot i may send to its neighbor j ∈ Ni:

ϕf
i ≜ ⋀

j∈Ni

◻ (of
ji → (ϕf

ij,t ∧ (hij U zij))). (7.9)

Therefore whenever a formation request from robot i is confirmed by robot j, the
corresponding short-term formation task ϕf

ij,t should be fulfilled afterwards and
moreover the formation controllable proposition by hij should be always kept true
until a release message is sent to robot j. In other words, it requires that once robot j
confirms a formation request from robot i, it should achieve the desired relative
position with prescribed performance as imposed by the corresponding performance
function ρij(t), until robot i has accomplished its formation task ϕf

ij,t.
Remark 7.1. While the local task ϕl

i as the static task specification is commonly-
seen in the related literature [15, 56], main novelty of this work lies in the contingent
service task ϕs

i by (7.8) and the formation task specification ϕf
i by (7.9) that have

not been tackled at all for multi-robot systems. Moreover notice that all services
and formation requests are exchanged in real-time and hence cannot be known
a priori. The validity of the observational and controllable propositions can only
be determined in real-time. Thus, it is not possible to acknowledge the complete
specification ϕi before the system initializes. ▲

Thus, the problem confronted in this work is formulated as follows:

Problem 7.1. Consider a team of robots obeying the dynamics (7.2), with each
assigned a local task defined by (7.7)-(7.9). The goal is to synthesize a distributed
hybrid control protocol that the RTL formulas ϕi are satisfied, ∀i ∈ N . ▲

The proposed hybrid control scheme consists of four major components as shown
in Figure 7.2, i.e., the communication block, the event monitoring block, the discrete
planning block and the hybrid control block. In the following, we first present two

124 Contingent service and formation tasks

Communication Monitoring

Hybrid ControlPlanner

cji, ρji(t)

ϕserv
ji

zji

ϕserv
ij cij , ρij(t)zij

rf
ji, r

s
ji

zij

zji

Rgof
ij

cji, ρji(t)ϕserv
ji ϕform

ij

πig

Rg
pi

Figure 7.2: The overall structure of the hybrid control scheme. The arrows indicate the
information flow. Detailed descriptions are given in Section 7.5.

continuous motion control schemes regarding the navigation and the formation
tasks respectively; subsequently we describe the real-time event monitoring module
that handles critical events during the system operation as well as the established
communication protocol among the robots regarding contingent requests. Afterwards,
we show the discrete plan synthesis and adaptation algorithms that handle the
contingent service and formation requests. Finally, the overall hybrid control scheme
is synthesized based on these components and its correctness is proven.

7.2 Controller design under prescribed performance

In this part, we describe the continuous control design for two different objectives,
i.e., to navigate an robot to its goal region, without crossing any undesirable regions;
and to establish a desired formation with a prescribed transient response.

7.2.1 Navigation control
Recall that the set of sphere regions of interest within the workspace boundary
πB is given by Π = {π1, π2,⋯, πM}. Since there are no explicit representations of
“obstacles” and no fixed initial or goal regions, we denote by πg = B(cg, rg) ∈ Π
the goal region and πs = B(cs, rs) ∈ Π the initial region. In this work, we rely on
the navigation function approach proposed by Rimon and Koditschek in [87] to
navigate robot i from πs to πg, without crossing other undesirable regions πj ∈ Π
with j ≠ s, g. In particular, the navigation function can be constructed as

Φi(pi) ≜
γg

(γkg + βgs)
1
k

, (7.10)

7.2. Controller design under prescribed performance 125

where k > 0 is a design parameter, pi ∈ R2 and Φi ∈ [0, 1]; γg ≜ ∥pi − cg∥
2 represents

the attractive potential field to the goal cg ∈ R2; βgs ≜ βB ∏
M
j=1,j≠s,g βj is the

repulsive potential field by the workspace boundary and the undesirable regions that
should be avoided, with βB ≜ r2

B − ∥pi − cB∥2 and βj ≜ ∥pi − cj∥
2 − r2

j . For brevity, we
denote by Πavoid ≜ ∪

M
j=1,j≠s,gπj the set of regions to be avoided and by πB/Πavoid the

free space. It is assumed that πB and the sphere regions in Π satisfy the condition
of a valid workspace from [87], i.e., πm ⊂ πB and πm ∩ πn = ∅, ∀m,n = 1,2,⋯,M .

It has been proved [87] that Φi(pi) has only one global minimum at p = cg and
M − 2 saddle points within the allowed freespace with zero set-measure. Hence a
feasible path within the free workspace that leads an robot from its initial position
in πs to its goal region πg can be generated by following the negated gradient of
Φi(pi) or equivalently by adopting the subsequent control law:

ui = −∇pi Φi(pi) (7.11)

Based on [105], it is proven that γg → 0 as t →∞ and βgs > 0 holds, ∀t ≥ 0, for a
sufficiently large constant k. Moreover, a collision free path is ensured for almost any
initial position in the free space (except a set of measure zero) to any goal region in
the free space. Furthermore, its asymptotic stability guarantees the convergence to
the neighborhood of pg (i.e., the goal region πg) in finite time [105].

Lemma 7.3. The navigation control law (7.11) remains bounded, i.e., ∥ui∥ < umax,
where umax > 0 is a finite upper bound given the workspace configuration.

Proof. By computing explicitly the gradient of Φi(pi), we get:

∇piΦ =
βgs∇piγg −

1
k
γg∇piβgs

(γkg + βgs)
1
k+1

, (7.12)

where ∇qiγg = 2(pi − cg) and ∇qiβgs = (∑
M
j=1,j≠s,g 2(pi − cj)βB∏

M
k=1,k≠j,s,g βk) −

(2(pi − cB)∏
M
j=1,j≠s,g βj). Owing to the fact that qi remains in the allowed free

space without crossing Πavoid, both ∇piγg and ∇piβgs have bounded magnitude and
βgs > 0, which implies that ∥ui∥ = ∥∇piΦi∥ ≤ umax with an upper bound umax > 0
depending on the configuration of Π. ∎

7.2.2 Prescribed formation control
As described in Section 7.1.2, a contingent request may also involve a formation
task that should be executed with prescribed performance, i.e., robot i requests
robot j ∈ Ni to converge to a desired formation described by the relative position cij
while satisfying predefined transient constraint introduced by the corresponding
prescribed performance function ρij(t) as defined in (7.5). Moreover, this formation
should be maintained until the associated short-term formation task ϕf

ij,t is satisfied
by robot i. Since robot i may send a formation request to more than one of its
neighbors, we denote by N f

i ⊆ Ni the subset of robots that have confirmed its

126 Contingent service and formation tasks

request. In the sequel, we propose the motion control scheme for both robot i that
sends the formation request and robot j ∈ N f

i that confirmed it.
Notice that at the request time t in case robot i lies inside a region πs ∈ Π then

the associated navigation function can be constructed similarly to (7.10). Otherwise
the repulsive potential βgs should be slightly modified since all regions in Π except πg
should be treated as undesirable regions to be avoided. Denoting the corresponding
navigation function by Φf

i (pi), the proposed motion controller is given by:

ui ≜ −∇pi Φf
i (pi). (7.13)

On the other hand, for each robot j ∈ N f
i that has confirmed the formation request

of robot i, we design a motion control law that ensures the convergence to the
desired relative formation under the prescribed performance as follows:

uj ≜Kij
εij

ρij(t)
eij , (7.14)

where Kij > 0 is a design parameter; eij = pi − pj − cij ; and

εij ≜ ln (
1

1 − µ̂ij
), (7.15)

where µ̂ij =
eTijeij

ρij(t)
is defined by (7.4) as the normalized formation error.

Lemma 7.4. Under the motion control laws by (7.13) and (7.14), initialized at
time t = T0, robot i will arrive its goal region πg within finite time Tg > T0, while
all robots j ∈ N

f
i that confirmed its formation request will satisfy eTij(t)eij(t) <

ρij(t),∀t ∈ [T0, Tg], thus fulfilling the formation request with prescribed performance
as imposed by the associated performance functions ρij(t), j ∈ N f

i .

Proof. Following similar analysis within Section 7.2.1, we may show that robot i
arrives its goal region πg within finite time Tg > T0, while avoiding the undesirable
regions included in Πavoid Regarding the robots j ∈ N f

i that have confirmed the
formation request, the dynamics of the formation error is calculated as follows:

∂µ̂ij

∂t
=

2 eTij uij ρij(t) − e
T
ij eij ρ̇ij(t)

ρ2
ij(t)

,

where uij(t) = ui(t) − uj(t). Substituting (7.14) and eTij eij = ρij µ̂ij , we obtain:

∂µ̂ij

∂t
= −

µ̂ij

ρij(t)
[Kij εij + ρ̇ij(t)] +

2 eTij ui(t)

ρij(t)

= −
µ̂ij

ρij(t)
[Kij ln (

1

1 − µ̂ij
) + ρ̇ij(t)] +

2 eTij ui(t)

ρij(t)
.

(7.16)

7.3. Triggering events and communication protocol 127

Since the right-hand side of (7.16) is continuous on t and locally Lipschitz on µ̂ij
over Dij , we may apply Theorem 7.1 to deduce that a maximal solution of (7.16)
on a time interval [T0, τmax) such that µ̂ij(t) ∈ Dij , ∀t ∈ [T0, τmax). Let us also
consider the following Lyapunov-like function: Vij(t) ≜ 1

2
ε2
ij , which owing to (7.15)

is well-defined, ∀t ∈ [T0, τmax). Its time derivative is given by:

V̇ij = εij
∂εij

∂t
=

εij

1 − µ̂ij

∂µ̂ij

∂t
. (7.17)

Invoking (7.16), V̇ij = −hij [µ̂ij(Kij εij+ρ̇ij(t))−2 eTij ui(t)], where hij(t) =
εij

(1−µ̂ij)ρij(t)
>

0. Since εij > 0, ρij(t) > 0 and ∣eTij ui(t)∣ ≤ ∥eij∥∥ui(t)∥, we have

V̇ij ≤ −hij [Kij µ̂ij εij + µ̂ij ρ̇ij(t) − 2 ∥eij∥∥ui(t)∥]

≤ −hij [Kij µ̂ij εij − ∣ρ̇ij(t)∣ − 2
√
ρij(t) ∥ui(t)∥],

where we use the fact that 0 ≤ µ̂ij < 1 and ∥eij∥ =
√
µij =

√
µ̂ij ρij(t) ≤

√
ρij(t).

Hence, since µ̂ij = 1 − e−εij , we conclude that V̇ij < 0, ∀t ∈ [0, τmax) when

εij(1 − e−εij) >
supt∈[T0, τmax)

{∣ρ̇ij(t)∣ + 2
√
ρij(t) ∥ui(t)∥}

Kij
≜ bij . (7.18)

Notice that bij is finite as Kij > 0, ρ̇ij(t), ρij(t) are bounded by construction
and ∥ui(t)∥ < umax as proven in Lemma 7.3. Consider now the smooth function
g(x) = x(1 − e−x), which is monotonically increasing for x > 0 with g(0) = 0, ∀x > 0.
Let ε⋆ij be a constant that satisfies ε⋆ij(1 − e−ε

⋆

ij) = bij , which exists and is unique
owing to the monotonicity of g(x). Hence V̇ij < 0 when εij > ε

⋆
ij , from which we

conclude: εij(t) < max{ε⋆ij , εij(T0)} ≜ εij , ∀t ∈ [T0, τmax] and consequently:

µ̂ij(t) < 1 − e−εij ≜ µ̂ij < 1, ∀t ∈ [T0, τmax).

Thus we deduce that µ̂ij(t) ∈ [0, µ̂ij] ≜D
′
ij , ∀t ∈ [T0, τmax], where D′

ij is a nonempty
and compact subset of Dij . Finally, what remains to be shown is that τmax can be
extended to ∞. Therefore, assume that τmax <∞. Since D′

ij ⊂ Dij and µ̂ij(t) is a
maximal solution of (7.16) over [T0, τmax), Proposition 7.2 dictates the existence of
a time instant t′ ∈ (T0, τmax) such that µ̂ij(t) ∉ D′

ij , which clearly contradicts the
fact that µ̂ij(t) ∈ D′

ij , ∀t ∈ [T0, τmax). Thus τmax =∞ and µ̂ij(t) ∈ [T0, µ̂ij] ⊂ Dij ,
∀t ∈ [T0, ∞), which ensures that: eTij(t)eij(t) < ρij(t),∀t ∈ [T0, Tg], ∀j ∈ N f

i . ∎

7.3 Triggering events and communication protocol

In this section, we first present the set of real-time events that are crucial for the
system execution, and then describe the communication protocol among the robots
to handle contingent requests.

128 Contingent service and formation tasks

7.3.1 Real-time event monitoring scheme

It is clear from the problem formulation that monitoring several real-time events
plays a crucial role in the satisfaction of the individual local tasks. In particular, for
each robot i ∈ N , four events need to be monitored in real time:

(a) Region cross event. It is the event that occurs when an robot enters or
leaves a region in Π. More precisely, robot i enters the region π` ∈ Π at time t0 > 0
if pi(t−0) ∉ π` and pi(t0) ∈ π`, where δd < t0 − t−0 < δt, with δd, , δt > 0 as two design
parameters and δd is similar to the notion of dwelling time [40]. Robot i leaves the
region π` ∈ Π at time t0 > 0 if pi(t−0) ∈ π` and pi(t0) ∉ π`, where δd < t0 − t−0 < δt. This
event is directly related to the validity of proposition R` ∈ R.

(b) Request and reply event. It is the event that occurs when robot i sends
a service or formation request to its neighbor j ∈ Ni at time t0 > 0 and robot j
replies this request at the same time. If robot j confirms this service request, the
observational proposition os

ij ∈ Oi satisfies os
ij(t) = ⊺, ∀t ∈ [t0, t0 + δd) and os

ij(t) = �,
∀t ∈ [t0 + δd, t1], where t1 > t0 + δd is the next time instant when robot j receives a
request from robot i; otherwise, if robot j denies this request, os

ij(t) = �, ∀t ∈ [t0, t1].
Same rules apply to propositions related to formation requests {of

ij , ∀j ∈ Ni}. In
addition, if robot i sends a release message to its neighbor j ∈ Ni at t0, then zij(t) = ⊺,
∀t ∈ [t0, t0 + δd) and zij(t) = �, ∀t ∈ [t0 + δd, t1], where t1 is the next time instant
when robot i sends a release message to robot j.

(c) Service finish event. It is the event that occurs when robot i has finished
a service request that it has confirmed. For instance, suppose that os

ji(t0) = ⊺ and
robot i confirms the service request ϕs

ji,t0
by robot j at time t0 > 0. Then ϕs

ji,t0
is

satisfied by robot i at time tf ≥ t0, if its trajectory pi([t0, tf]) satisfies ϕs
ji,t0

on the
basis of the semantics presented in Section 7.1. Since all service tasks are assumed
to be feasible, the finishing time tf > t0 is finite for each service request.

(d) Formation finish event. It is the event that occurs when robot i has
finished a formation task that has been confirmed. For instance, suppose that
of
ji(t0) = ⊺ and robot j confirms the formation request by robot i at time t0 > 0. The
corresponding formation task for robot i is given by ϕf

ij,t0
. Then ϕf

ij,t0
is satisfied at

time tf ≥ t0 if pi([t0, tf]) satisfies ϕf
ij,t0

on the basis of the semantics presented in
Section 7.1. Since all formation tasks are also assumed to be feasible in finite time,
the time tf is also finite for each formation request.

Summarizing the events (a) and (b) can be easily monitored in real-time based
on their definitions. On the other hand, it is not trivial to monitor the events (c)
and (d) in an efficient way, especially when multiple service or formation requests
occur. Nevertheless, since event (c) and (d) are closely related to the discrete plan
synthesis and adaptation module, more details will be given there.

7.3.2 Protocol for exchanging contingent requests

Each robot i ∈ N will receive, send and confirm various contingent requests from
its neighbors during the system operation. Hence, denote by rsji(t) ∶ R+ → B the

7.4. Discrete plan synthesis and adaptation 129

continuous-time Boolean variable indicating whether robot i is serving a service
request from robot j ∈ Ni at time t > 0. In addition, let rf

ji(t) ∶ R+ → B be the
variable indicating whether robot i is serving a formation request from robot j ∈ Ni
at time t > 0. Initially, rs

ji(0) = � and rf
ji(0) = �, ∀j ∈ Ni. Moreover, rf

ii(t) ∶ R+ → B
indicates robot i is currently executing the task associated with its own formation
requests, which is also initialized as false, i.e., rf

ij(0) = �.
Robot i may send the predefined service formula ϕs

ij,t to its neighbor j ∈ Ni at
time t > 0 only if rf

ij(t) = �, i.e., robot j is not still serving the previous service
request from robot i. Similarly robot i may send the formation request described
by cij and ρij(t) at time t > 0, only if rf

gi = �, ∀g ∈ Ni, i.e., robot i itself is not
currently serving any of its neighbor’s formation request and rf

ij(t) = �,i.e., robot j
is not still serving the previous formation request from robot i. After sending a
request, robot i needs to wait for robot j’s reply. Once its request is confirmed
by robot j, the observational proposition os

ij(t) or of
ij(t) is updated according to

part (b) of Section 7.3.1. On the other hand, whenever robot i receives a request
from its neighbor j ∈ Ni at time t > 0, it checks first whether rf

ii(t) = ⊺ or rf
ji(t) = ⊺,

for any j ∈ Ni, i.e., robot i is currently executing its own formation task or serving
one of its neighbor’s formation request. If so, robot i denies this request; otherwise,
robot i confirms its request and starts serving it. Alternatively, other approaches
like direct user triggering could also be incorporated.

From the above, we see that each robot i ∈ N may serve multiple service requests
from its neighbors but only one formation request at a time. This is because a new
service or formation request can only be sent if the previous service or formation
request is fulfilled. Moreover, an robot can confirm multiple service requests from
its neighbors, but only one formation request as long as it is not currently serving
another formation request. On the other hand it will deny any service or formation
requests while it is serving a formation request, i.e., rf

ji(t) = ⊺, ∀j ∈ Ni.

7.4 Discrete plan synthesis and adaptation

In this section, we demonstrate how to synthesize the initial discrete plan for each
robot based on its own local task specifications and how to adapt it in real-time upon
receiving contingent service and formation requests from its neighboring robots.

7.4.1 Initial plan synthesis
At time t = 0, we assume that no requests have been sent yet, i.e., os

ij(0) = o
f
ij(0) = �,

∀j ∈ Ni and i ∈ N . As a result, only the static task ϕl
i of the RTL formula ϕi

defined in (7.7) is initially pursued. Hence the initial plan synthesis aims at finding
a discrete plan that satisfies ϕl

i .
Our approach relies on the model-checking algorithm [11] as introduced in

Chapter 3. The motion of robot i within the workspace is abstracted by a wFTS:
Ti ≜ (Πi, Ð→, R, L, Πi,0, W), where Πi ≜ {π0} ∪ Π is the set of states with π0 ≜
B(pi(0), 0);Ð→≜ (Π×Π)∪({π0}×Π) denotes the transition relation; L ∶ Πi → 2R with

130 Contingent service and formation tasks

L(π`) ≜ R`, ∀` ∈ {1,2,⋯,M} is the labeling function; Πi,0 ≜ {π0} is the initial state;
and W ∶Ð→→ R+ computes the cost of each transition with W (πm, πn) ≜ ∥cm − cn∥,
∀(πm, πn) ∈Ð→. Notice that only the local propositions of R are allowed in Ti and
that the initial state π0 is solely determined by the initial position of robot i. A
path of Ti is given by τ = π0π1π2⋯, where (πk, πk+1) ∈Ð→, ∀k ≥ 0 and its associated
trace,which corresponds to a discrete-time Boolean signal over R, is defined as the
sequence of propositions that are true along the path, i.e., trace(τ) = L(π0)L(π1)⋯,
which corresponds to a discrete-time Boolean signal over R.

On the other hand, ϕl
i is a general RTL formula over R with a corresponding

LTL formula denoted by [ϕl
i] based on Definition 7.1. Thus following the notations

defined in Section 3.2, we can construct the NBA associated with [ϕl
i], denoted by

Bi,s = (Qs, 2R, δs, Qs,0, Fs). Subsequently, given Ti and Bi,s, we may construct the
weighted product Büchi automaton (wPBA) similarly to Definition 3.9. The weighted
PBA Ap,i = Ti ×Bi,s = (Qp,i, δp,i, Qp,i,0, Fp,i, Wp,i) is defined by Qp,i = Πi×Qs with
q′p = ⟨π, q⟩ ∈ Qp,i, ∀π ∈ Πi and ∀q ∈ Qs; δp,i ∶ Qp,i → 2Qp,i with ⟨πd, qn⟩ ∈ δ

′
s(⟨πc, qm⟩)

if and only if (πc, πd) ∈Ð→ and qn ∈ δs(qm, L(πc)); Qp,i,0 = Πi,0 ×Qs,0 is the set
of initial states; Fp,i = Πi × Fs is the set of accepting states; Wp,i ∶ δp,i → R+ with
Wp,i(⟨πc, qm⟩, ⟨πd, qn⟩) =W (πc, πd), ∀(⟨πc, qm⟩, ⟨πd, qn⟩) ∈ δp,i.

After Ap,i is constructed, we search for one of its accepting runs denoted by Ri
that: (i) has a prefix-suffix structure, i.e., Ri = Ri,pre (Ri,suf)ω; and (ii) minimizes
the total cost cost(Ri, Ap,i) = cost(Ri,pre) + cost(Ri,suf), where cost(Ri,pre) and
cost(Ri,suf) are simply the accumulated weight of the transitions along the finite
sequence of product states in Ri,pre and Ri,suf. In this aspect, since Ap,i may be
viewed as a directed graph with initial and accepting states, a variation of the
Dijkstra’s shortest path algorithm can be used to find such an optimal accepting
run. For algorithmic details, we refer the readers to Algorithm 3.1 and Algorithm 2
in [51]. Denote by this optimal accepting run by Ri,0 and it can be then projected
back onto Πi, yielding the initial discrete plan of robot i as τi,0 = Ri,0∣Πi . Note
that τi,0 also has the prefix-suffix structure and the trace of τi,0 satisfies [ϕl

i]
automatically [11]. In this way τi,0 obtains the following sequence:

τi,0 = πi0πi1⋯(πiki πi(ki+1)⋯πiKi
)
ω
, (7.19)

with trace given by trace(τi,0) = L(πi0)L(πi1)⋯, where πi` ∈ Πi, ∀` = 1,2,⋯,Ki;
πi0πi1⋯πiki is the plan prefix defined as a finite sequence of goal regions to reach;
and πikiπi(ki+1)⋯πiKi is the plan suffix which is also finite but should be repeated
infinitely often, in order to satisfy [ϕl

i].
If no contingent requests are sent or confirmed by robot i for all t > 0, its

initial discrete plan τi,0 should remain unchanged and can be executed as follows:
initializing at pi(0), robot i moves to and enters region πi1 employing the motion
controller described in Section 7.2.1. Then an event that robot i entered region πi1
should be detected. Afterwards, it leaves region πi1 and moves to region πi2 under
the same control scheme. Such procedure is repeated until it reaches πiKi , after
which the next goal region is set at the beginning of the plan suffix πiki and continues

7.4. Discrete plan synthesis and adaptation 131

to πiKi and back to πiki again. In this way, the plan suffix is repeated infinitely
often as t→∞. Denote by pi(t) the resulting trajectory of robot i after the above
execution. Thus there exists an infinite sequence of time instants 0 t11 t

2
1 t

1
2 t

2
2⋯t

1
k t

2
k⋯,

with t2k+1 > t
1
k+1 > t

2
k > t

1
k > 0, ∀k ≥ 1, such that

pi(t) ∈ πik, ∀t ∈ [t1k, t
2
k), ∀k ≥ 1, (7.20)

where note that when k >Ki, πik ≜ πik′ for k′ ≜ mod(k − ki, Ki − ki) + ki, where mod
is the modulo operation. In this way, the trajectory pi intersects with the infinite
sequence of goal regions as specified by τi,0.

Theorem 7.5. If no contingent requests are sent or confirmed by robot i, i.e.,
os
ij(t) = of

ij(t) = �, ∀j ∈ Ni and ∀t ≥ 0, then the trajectory pi(t) generated by
executing the initial plan τi,0 satisfies the RTL formula ϕi.

Proof. First of all, if os
ij(t) = o

f
ij(t) = �, ∀j ∈ Ni and ∀t ≥ 0, the service task ϕs

i and
formation task ϕf

i defined by (7.8) and (7.9) may be ignored owing to the semantics
of the implication operator. In particular, if os

ij(t) = �, ∀t ≥ 0, ϕs
ij,t need not be true

to satisfy ϕs
i . Similarly, if of

ij(t) = �, ∀t ≥ 0, then ϕf
ij,t ∧ (hij U zij) need not be true

to satisfy ϕf
i . Thus ϕi is equivalent to ϕl

i and [ϕi] is equivalent to [ϕl
i].

Notice also that ϕl
i is specified over R and hence depends solely on the robot’s

trajectory, since it does not contain any observational or controllable propositions.
Moreover, we have shown that the trace of τi,0 satisfies the LTL formula [ϕl

i] as well
as that the trajectory pi(t) satisfies (7.20). Hence we also need to show that pi(t)
satisfies the RTL formula ϕl

i .
Let us define w = trace(τi,0), which is a discrete-time Boolean signal over R with

(w, 0) ⊧ [ϕl
i]. From the semantics of LTL and RTL presented in Sections 3.2 and 7.1,

it is easy to show that (i) if (w, 0) ⊧ [R`] for R` ∈ R, i.e., robot i needs to start
from region π`, then (7.20) guarantees that there exists a time interval [0, t1)
with t1 > 0 such that pi(t) ∈ π`, ∀t ∈ [0, t1). Thus, invoking the RTL semantics
we conclude that (pi, 0) ⊧ R`. Similar arguments may also apply for [¬R`] with
R` ∈ R; (ii) if (w, 0) ⊧ [R`1 ∨ R`2] for R`1 , R`2 ∈ R, i.e., robot i needs to start
either from region π`1 or π`2 , then (7.20) guarantees that there exists a time
interval [0, t1) with t1 > 0 such that pi(t) ∈ π`1 or pi(t) ∈ π`2 , ∀t ∈ [0, t1). Thus,
invoking the RTL semantics we also conclude that (pi, 0) ⊧ R`1 ∨ R`2 . (iii) if
(w, 0) ⊧ [R`1UR`2] for R`1 , R`2 ∈ R, i.e., robot i needs to stay at region π`1 before
it moves to region π`2 , then (7.20) guarantees that there exists a time interval
[0, t1) with t1 > 0 such that pi(t) ∈ π`1 ∀t ∈ [0, t1) and a subsequent one [t1, t2)
with t2 > t1 such that pi(t) ∈ π`2 , ∀t ∈ [t1, t2). Thus, invoking the RTL semantics
we also conclude that (pi, 0) ⊧ R`1UR`2 . Similar arguments can be applied to other
operators like ◇, → and ◻ through induction. Thus since (trace(τi,0), 0) ⊧ [ϕi],
we conclude that (pi(t), 0) ⊧ ϕi. ∎

The aforementioned results are valid only if no contingent requests are exchanged
while the multi-robot system operates, which however is not the case in this work.

132 Contingent service and formation tasks

Thus, in the sequel we study how service or formation requests should be handled
locally by adapting the discrete plans of the robots.

7.4.2 Event-based plan adaptation

Initially, we show how to handle contingent service requests. Based on our previous
analysis, an robot may confirm and serve multiple service requests simultaneously.
In such case, robot i needs to satisfy three kinds of tasks: (i) the static local task;
(ii) all the service requests received so far that have not been satisfied; and (iii) the
newly-received service request. These tasks need to be treated differently since the
first kind should be satisfied by the whole trajectory from t = 0; the second kind by
the trajectory starting from the time the service requests are confirmed; the third
kind by the future trajectory. Thus it is important to keep track of how much the
local task as well as the past and current service requests have been satisfied. In
that respect, we consider three different cases: (I) robot i receives the first service
request; (II) robot i receives a new service request while carrying out an old one
from another neighbor; and (III) robot i receives a new service request from the
same neighbor after its previous service request has been satisfied.

Case I: Suppose the first service request ϕs
ji,tj

received by robot i at time
tj > 0 was sent by robot j. Robot i needs to incorporate ϕs

ji,tj
into its static task

specification ϕl
i and update its current plan τi,0 to satisfy this request.

As mentioned earlier, the service task specification from (7.7) requires ϕs
ji,tj

to be
satisfied in a timely manner. The associated LTL formula is denoted by [ϕs

ji,tj
] and

B[ϕs
ji,tj

] = (Qj , 2R, δj , Qj,0, Fj) is the corresponding NBA, where the notations are
defined similarly as in Section 3.2. Recall that B[ϕl

i]
= (Qs, 2R, δs, Qs,0, Fs) is the

NBA associated with [ϕl
i]. Assume that at time tj the corresponding product state

of robot i in A′p,i is q′p,tj ∈ Q
′
p and the associated Büchi state in B[ϕl

i]
is qs,tj = q′p,tj ∣Qs .

Thus the request-prioritized and layered intersection of [ϕs
ji,tj

] and [ϕl
i] is:

Definition 7.2. The intersection of B[ϕs
ji,tj

] and B[ϕl
i]

is an NBA defined by:

A[ϕi] = (Q, 2R, δ, Q0, F), (7.21)

where Q = Qj×Qs×{1,2}; Q0 = Qj,0×{qs,tj}×{1}; F = Fj×Fs×{2}; δ ∶ Q×2R → 2Q,
with ⟨q̌j , q̌s, č⟩ ∈ δ(⟨qj , qs, c⟩, l) when the following conditions hold: (i) ⟨qj , qs, c⟩,
⟨q̌j , q̌s, č⟩ ∈ Q; (ii) q̌j ∈ δj(qj , l) and q̌s ∈ δs(qs, l); (iii) qj ∉ Fj and č = c = 1; or
qj ∈ Fj , c = 1 and č = 2; or č = c = 2. ▲

Different from the conventional way of computing intersections of Büchi au-
tomata [11], [ϕl

i] is a general LTL formula that should be satisfied at t = 0 while
[ϕs
ji,tj

] is a sc-LTL formula that should be satisfied after it is received. In particular,
A[ϕi] has two layers and it transits from the first layer to the second only if it
reaches Fj , i.e., [ϕs

ji,tj
] is satisfied; afterwards it stays at the second layer in order

7.4. Discrete plan synthesis and adaptation 133

to satisfy [ϕl
i]. In the following lemma, we prove the correctness of Definition 7.2

by showing that A[ϕi] accepts all words that satisfy both [ϕl
i] and [ϕs

ji,tj
].

Lemma 7.6. If there exists an ω-word w ∈ Rω such that w ⊧ [ϕs
ji,tj

] and w ⊧ [ϕl
i],

then A[ϕi] has at least one accepting run.

Proof. Owing to the fact that w ⊧ [ϕs
ji,tj

], at least one of the resulting runs
of w in B[ϕs

ji,tj
] is an accepting run, denoted by rj = qj,0qj,1⋯qj,Kj(qj,Kj)

ω , where
qj,0qj,1⋯qj,Kj is a finite sequence from an initial state qj,0 ∈ Qj,0 and cycles
from qj,Kj ∈ Fj and (qj,Kj)

ω is a repetitive suffix over qj,Kj . Such argument
holds true since all accepting states of B[ϕs

ji,tj
] have a self-cycle that accepts

any input alphabet (see Remark 4.31 of [11]). On the other hand, given that
w ⊧ [ϕl

i], then w results in at least one accepting run of B[ϕl
i]
, denoted by

rs = qs,0qs,1⋯(qs,Kf
qs,Kf+1qs,Kf+2⋯qs,Kf+Ks)

ω that starts from an initial state
qs,0 ∈ Qs,0 to an accepting state qs,Kf

∈ Fs and qs,Kf
qs,Kf+1qs,Kf+2⋯qs,Kf+Ks is a

finite cyclic suffix that cycles from qs,Kf
and back to itself. Without loss of generality,

we assume Kf >Kj . If not so, the suffix of rs can be extended by repeating itself
until Kf >Kj . In this sense, we can easily verify that a resulting run of w in A[ϕi]

can be constructed as follows:

r = (qj,0, qs,0,1)⋯(q1,Kj , qs,Kj ,1)(q1,Kj , qs,Kj+1,2)

(q1,Kj , qs,Kj+2,2)(q1,Kj , qs,Kj+3,2)⋯

((q1,Kj , qs,Kf
,2)(q1,Kj , qs,Kf+1, ,2)⋯(q1,Kj , qs,Kf+Ks , ,2))

ω

.

(7.22)

Consequently, since the first state (q1,0, qs,0,1) ∈ Q0 and the state within the
repetitive suffix (q1,Kj , qs,Kf

,2) ∈ F , then by definition r is an accepting run of
A[ϕi] and hence A[ϕi] accepts w. ∎

It can be seen that r reaches the accepting states in Fj that satisfies [ϕs
ji,tj

]

before it repeats the suffix that satisfies [ϕl
i]. Thus the service request has a higher

priority than the static specification and is satisfied earlier. Moreover, the layered
structure of A[ϕi] allows us to track the satisfaction of [ϕl

i] and [ϕs
ji,tj

] separately.
Case II: Suppose that robot i has confirmed m service requests [ϕs

gi,tg
] at

time tg from robot g, ∀g ∈ N s
i ⊆ Ni. Without loss of generality, we can re-order the

neighbors in N s
i by {1,2,⋯,m} ≜ N s

i , according to the time their service requests
were received, e.g., [ϕs

1i,t1
] denotes the earliest and [ϕs

mi,tm
] denotes the latest

received request. Furthermore, let B[ϕs
gi,tg

] = (Qg, 2R, δg, Qg,0, Fg) be the NBA
associated with [ϕs

gi,tg
], ∀g ∈ N s

i , where the notations are defined as in Section 3.2.
Additionally, assume that at time tm the corresponding product state of robot i

in Ap,i is q′p,tg ∈ Q′
p. In that respect, its associated Büchi state in B[ϕl

i]
is given

by qs,tm = q′p,tm ∣Qs and the associated Büchi state in each B[ϕs
gi,tg

] is given by
qg,tm = q′p,tm ∣Qg , ∀g ∈ N s

i . Thus we may define the request-prioritized and layered
intersection of [ϕs

gi,tg
], ∀g ∈ N s

i and [ϕl
i] as follows:

134 Contingent service and formation tasks

Definition 7.3. The intersection of B[ϕs
gi,tg

], ∀g ∈ N s
i and B[ϕl

i]
is an NBA by:

A[ϕi] = (Q, 2R, δ, Q0, F), (7.23)

where Q = Q1×Q2⋯×Qm×Qs×{1, 2, ⋯,m+1}; Q0 = {q1,tm}×{q2,tm}⋯×{qm−1,tm}×
Qm,0 × {qs,tm} × {1}; F = F1 × F2⋯ × Fm × Fs,0 × {m + 1}; δ ∶ Q × 2R → 2Q, with
⟨q̌1, q̌2, ⋯, q̌m, q̌s, č⟩ ∈ δ(⟨q1, q2, ⋯, qm, qs, c⟩, l) when the following conditions hold:
(i) ⟨q1, q2, ⋯, qm, qs, c⟩, ⟨q̌1, q̌2, ⋯, q̌m, q̌s, č⟩ ∈ Q; (ii) q̌j ∈ δj(qj , l), ∀j ∈ N s

i ; and
q̌s ∈ δs(qs, l); (iii) qc ∉ Fc and č = c; or qc ∈ Fc and č = c + 1; or č = c =m + 1. ▲

Notice that A[ϕi] has m + 1 layers and transits to the (c + 1)th layer only if the
set of accepting states Fc is reached for c = 1,2,⋯,m, i.e., [ϕs

ci,tc
] is satisfied; and

then it stays at the (m + 1)th layer in order to satisfy B[ϕl
i]
. The definition of Q0

ensures that the past progress of serving [ϕl
i] and [ϕs

gi,tg
] for g ∈ N s

i is preserved,
while the definition of δ allows us to keep track of such progress separately. Finally,
the correctness of the aforementioned definition relies on the following lemma:

Lemma 7.7. If there exists an ω-word w ∈ Rω such that w ⊧ [ϕs
gi,tg

], ∀g ∈ N s
i and

w ⊧ [ϕl
i], then A[ϕi] has at least one accepting run.

Proof. Similar to the proof with Lemma 7.6, we may construct an accepting run of
A[ϕi] by employing the resulting runs of w over [ϕl

i] and [ϕs
gi,tg

], ∀g ∈ N s
i . Similarly

to (7.22), such accepting run reaches an accepting state of B[ϕs
2i,t2

] first, transits to
the second layer, reaches an accepting state of B[ϕs

2i,t2
], and transits to the third

layer and so on. This process is repeated until it reaches the (m + 1)th layer and
stays there. Afterwards its suffix is repeated infinitely often to satisfy [ϕl

i]. ∎

In other words, the fact that A[ϕi] accepts the common words of [ϕl
i] and all

the service requests [ϕs
gi,tg

], ∀g ∈ N s
i . Note that A[ϕi] is updated recursively by

Definition 7.3 whenever robot i confirms new requests from its neighbors.
Case III: Assume that robot i has confirmed a service request ϕs

li,t1
l
from its

neighbor l ∈ Ni at time t1l > 0 and accomplished it at t2l > t1l . Afterwards, at time
t3l > t

2
l , robot i confirms a new service request ϕs

li,t3
l
from the same neighbor l. In

the sequel we discuss how we should adjust A[ϕi] to replace the old request ϕs
li,t1

l

by the new request ϕs
li,t3

l
. Let us denote by N s

i the set of neighbors whose service
requests robot i has to satisfy and by A[ϕi] the associated intersection NBA. Since
the service request from robot l has changed from ϕs

li,t1
l
to ϕs

li,t3
l
, A[ϕi] needs to be

updated as follows. First, the service requests need to be re-organized according to
the time they were received. Thus, the service request of robot l should be assigned
the index ∣N s

i ∣ as it was he latest received one. Subsequently, given the product
state q′

p,t3
l
of robot i at time t3l , the Büchi state associated with each [ϕs

gi,tg
] is

derived by the projection q′
p,t3

l
∣Q′

g
, ∀g ∈ N s

i and g ≠ l. Thus A[ϕi] can be recomputed
by Definition 7.3, with the service request of robot l being moved to the ∣N s

i ∣th layer.

7.4. Discrete plan synthesis and adaptation 135

Given the updated intersection automaton A[ϕi] from Cases (I)-(III), the corre-
sponding product automaton Pi should be updated following Definition 3.9. Thus we
should search for an accepting path of the updated Pi that minimizes the cost func-
tion mentioned in Section 7.4.1. Subsequently, this accepting run can be projected
onto Π, thus yielding the updated discrete plan of robot i. Finally, notice that the
local plan should also be adapted whenever A[ϕi] is updated in any of the aforemen-
tioned cases. In the sequel, we prove the correctness of the proposed discrete plan
adaptation approach. In this respect, assume that robot i receives a service request
ϕs
gi,tg

from neighbor g ∈ N s
i at time tg > 0. After that, at time t > tg > 0, robot i has

crossed the sequence of goal regions πi,1πi,2⋯πi,K during [tg, t], which is uniquely
determined by its discrete plan τi([tg, t]), where πi,k ∈ Π, ∀i = 1,2,⋯,K. Then
the corresponding trace is defined by tracei([tg, t]) = Li(πi,0)Li(πi,1)⋯Li(πi,K).
Furthermore, let q′i,t ∈ Q′ be the corresponding product state in Pi at time t.

Theorem 7.8. Given that ϕs
gi,tg

is feasible, there exists a finite time t > tg such
that the trajectory pi([tg, t]) of robot i satisfies the RTL formula ϕs

gi,tg
.

Proof. Since ϕs
gi,tg

is feasible, Lemma 7.7 ensures that A[ϕi] accepts the satisfying
words of [ϕs

gi,tg
]. Irrespective of the layer [ϕs

gi,tg
] is in A[ϕi], since all service requests

are co-safe, there exists a finite time t > tg when q′i,t∣Q reaches the accepting state Fg
From the definition of A[ϕi], we know that if qg ∈ Fg for any g ∈ N s

i , then the past
trace during [tg, t] (i.e., tracei([tg, t])) results in an accepting path of B[ϕs

gi,tg
]

from an initial state to the accepting state qg. Thus tracei([tg, t]) satisfies [ϕs
gi,tg

].
Therefore the fact that the resulting trajectory pi([tg, t]) satisfies the RTL formula
ϕs
gi,tg

can be easily deduced following the line of proof of Theorem 7.5. ∎

This proof also provides a straightforward way for robot i to monitor the
satisfaction of each request specification ϕs

gi,tg
, ∀g ∈ N s

i . Notice that given the
projection qi,t = q

′
i,t∣Q, if qi,t∣Qg ∈ Fg for any g ∈ N s

i , then [ϕs
gi,tg

] is satisfied by
tracei([tg, t]). This issue plays an important role for the event monitoring scheme
and the communication protocol presented in Section 7.3.

Finally, while serving its service requests, robot i may send formation requests to
its neighbors in Ni that may be confirmed. In this sense, assume that robot j ∈ Ni
confirms a formation request at time tj . The formation between robots i and j
should be kept until the associated formation task ϕf

ij,tj
is fulfilled by robot i. In

order to achieve that, robot i first needs to incorporate ϕf
ij,tj

into ϕi employing
the same procedure as with the new service requests case described previously.
More specifically, the NBA associated with [ϕf

ij,tj
] is computed as B[ϕf

ij,tj
] and the

intersection automaton A[ϕi] is recomputed by adding one extra level for B[ϕf
ij,tj

] in
Definition 7.3. Thus similar to Theorem 7.8, since ϕf

ij,tj
is a feasible sc-RTL formula,

it can be shown that ϕf
ij,tj

will be satisfied at a finite time instant t > tj , after which,
robot i sends a release message to robot j and then the formation between them is
removed by the continuous controller switch as follows.

136 Contingent service and formation tasks

qnav

ṗi =

qform

ṗi =

of
ij = ⊺

zji = ⊺

Rg = ⊺

−∇pi Φi(pi, πig) Kij
εij
ρij(t)

eij

Figure 7.3: The hybrid controller module. The arrows indicate the discrete transition
labeled by the associated guards.

After robot j confirms a formation request from its neighbor i ∈ Nj at time tj > 0,
it should converge to the desired formation described by the relative position cij
under the prescribed performance function ρij(t) until the release message is received
from robot i at t > tj . Thus at time tj , robot j needs to switch from the navigation
control law (7.10) to the formation control law (7.14). Then at time t, it needs to
switch back to the navigation controller to execute its original discrete plan.

Theorem 7.9. Given that ϕf
ij,tj

is feasible for robot i and robot j confirms the
formation request at time tj, there exists a finite time t > tj such that: (i) the
trajectory pi([tj , t]) of robot i satisfies the formation task ϕf

ij,tj
; (ii) robot j achieves

the desired formation described by cij with prescribed performance imposed by the
performance function ρij(t) during the time interval [tj , t]; and (iii) a release signal
is sent to robot j at time t.

Proof. The first part of the theorem can be proved in a similar way to Theorem 7.8. In
particular, the newly-confirmed formation task is incorporated into the intersection
automaton A[ϕi]. Since it is co-safe and feasible, there exists a finite time t > tj that
q′i,t∣Q reaches the accepting states of Bϕf

ij,tj
and thus tracei([tj , t]) satisfies [ϕf

ij,tj
].

Subsequently the fact that the resulting trajectory pi([tg, t]) satisfies the RTL
formula ϕf

ij,tj
can be shown as in Theorem 7.5. At the same time, a confirmation

message is sent from robot i to robot j. Regarding the second part, Lemma 7.4
indicates that the formation control law (7.14) guarantees that robot j will converge
to the desired relative formation described by cij with prescribed performance until
a release signal is received at time t, which completes the proof. ∎

7.5 Overall structure

In this subsection, we formally construct the overall hybrid control architecture,
based on the aforementioned analysis. As depicted in Figure 7.2, the architecture is

7.5. Overall structure 137

organized in four interconnected modules that run concurrently in real time.
Communication module. It receives the contingent service request ϕs

ji and
formation requests cji, ρji(t) from all its neighbor j ∈ Ni as well as the events
concerning rf

ji, rs
ji and zij from the event monitoring module. It also confirms or

refuses these requests based on the communication protocol described in Section 7.3.
Thus the confirmed service request ϕs

ji is passed to the discrete planner module
and the confirmed formation request by cji, ρji(t) is passed to the hybrid controller
module. Moreover, it is also responsible for sending the contingent service requests
ϕs
ij and formation requests cij , ρij(t) to all its neighbors j ∈ Ni. Additionally, in

case a formation request is confirmed by robot j, the associated formation task ϕf
ij

is sent to the discrete planner module. Finally, the release message zji received from
neighbor j is sent directly to the hybrid control module.

Discrete planner module. It computes the initial discrete plan τi,0 as described
in Section 7.4.1. Afterwards, each time a confirmed service request ϕs

ji or a formation
task ϕf

ij is received from the communication module, it reconstructs the intersection
automaton A[ϕi] and recomputes the production automaton Ap,i, based on which
the discrete plan τi is updated, as shown in Section 7.4.2. Moreover, it updates the
next goal region based on the reaching event generated by the event monitoring
module. Finally, it sends the next goal πig ∈ Πi to the hybrid controller module.

Event monitoring module. It monitors and passes the reaching event to the
discrete planner and the hybrid controller modules. Moreover, events related to the
satisfaction of service or formation tasks (i.e., rf

ji, rs
ji and zij) are also acknowledged

to the communication and hybrid controller modules.
Hybrid controller module. It is in charge of switching between the navigation

and formation control modes. As shown in Figure. 7.3, the hybrid control automaton
is defined as a tuple Hcont ≜ (Q, P, Init, f, D, O, E, G), where Q = {qnav, qform}
is the set of discrete states; P ⊆ πi0 is the continuous state; Init = qnav × pi(0) is
the initial state; f(qnav, pi) = −∇qi Φi(pi, πig) is the continuous dynamics by (7.10)
within the discrete state qnav, where πig is the goal region by the discrete planner;
f(qform, pi) = Kji εji eji/ρji(t) is the continuous dynamics by (7.14) within the
discrete state qform, where cji, ρji(t) are the formation request from the commu-
nication module; D(qnav) = D(qform) ⊆ πi0 are the domains of the continuous
state; O = {o1, o2, o3} is the set of external events, where o1 is “Rg = ⊺”, o2 is
“of
ij = ⊺”, and o3 is “zji = ⊺”; E = {(qnav, qnav), (qnav, qform), (qform, qnav)} in-

volves the allowed discrete transition edges; G(qnav, qnav) = o1, G(qnav, qform) = o2,
G(qform, qnav) = o3 indicate the guard over each discrete transition.

Theorem 7.10. Given the aforementioned local hybrid control architecture and
under the assumption that all service and formation requests are feasible, then each
local task ϕi is satisfied by the trajectory of robot i as t→∞, ∀i ∈ N .

Proof. As mentioned in Section 7.1.2, each local task ϕi consists of three parts, i.e.,
ϕl
i , ϕs

i and ϕf
i . At first, notice that Theorem 7.5 guarantees that if no service or

formation requests are confirmed by robot i, then its trajectory would satisfy the

138 Contingent service and formation tasks

0 5 10 15 20
Time (s)

0

1

2

3

4

5

Ag
en

ts

S31 F31

S12 F24

F43 S13 F31

F43 F24

Service

Formation

1 2 3 4 5
Time(s)

0

1

2

3

4

5

6

7

Er
ro

r

e43(t) ρ43(t)

Figure 7.4: Left: the service or formation tasks each robot is engaged. The label Sij
indicates that robot j is performing a service request from robot i and Fij indicates that
robot j is during a formation request from robot i. Right: evolution of the formation error
along with the performance function for the formation request ϕf

43 during [0s, 5.5s].

local task ϕl
i . Subsequently, we show that both service requests ϕs

i and formation
requests ϕf

i are fulfilled as long as robot i exchanges requests with its neighbors
in real-time. In case robot i confirms a service request ϕs

gi, tg
from robot g, then

Theorem 7.8 ensures that there exists a finite time tis > tg such that the trajectory
pi([tg, tsi]) satisfies ϕs

gi, tg
. Moreover, notice that the same also holds for all services

requests confirmed by robot i, which implies that ϕs
i is fulfilled. Alternatively, if a

formation request ϕf
gi, tg

is confirmed, then Theorem 7.9 ensures that there exists
a finite time tfi > tg such that the trajectory pg([tg, tfi]) of robot g satisfies the
formation task ϕf

gi,tg
in a finite time t > tg and meanwhile the formation between

robot i and g is kept during time [tg, t
f
i]. Furthermore, since the same holds for

all formation requests confirmed by robot i, it implies that ϕf
i is fulfilled. Thus, all

three parts of ϕi are fulfilled and thus ϕi is satisfied for each robot i ∈ N . ∎

7.6 Case study

In this section, we present a simulated paradigm of four autonomous robots with
heterogeneous capabilities. The proposed algorithms are implemented in Python 2.7
and all simulations are carried out on a desktop computer.

Workspace and task description

The area of size 4m × 4m is shown in Figure 7.6, within which there are seven
sphere regions π0, π1,⋯, π6 of interests with different radius. They are labeled by
the propositions R0,R1,⋯,R6. Moreover the workspace is bounded by the circle
B([2,2], 2.35). Additionally, denote by R1, R2, R3, R4 the team of four robots that
satisfy (7.2). Their neighboring set is defined by: N1 = {R2, R3}, N2 = {R1, R4},

7.6. Case study 139

8.0 8.5 9.0 9.5
Time(s)

0

1

2

3

4

5

6

Er
ro

r

e24(t) ρ24(t)

15.0 15.5 16.0 16.5 17.0
Time(s)

0

1

2

3

4

5

6

7

Er
ro

r

e31(t) ρ31(t)

Figure 7.5: Evolution of the formation error along with the associated performance func-
tion, for the formation requests ϕf

24 during [7.7s, 9.4s] and ϕf
31 during [14.8s, 17.1s].

N3 = {R1, R4}, N4 = {R2, R3}. They initialize from (0.3, 0.5), (3.8, 0.5), (2.0, 3.5)
and (0.3, 3.5), respectively and their communication radius is set to 1m.

For robot R1, the local task ϕl
1 = (◇(R2∧◇R5))∧(◻◇R3 ∧ ◻◇R6) requires that

it first visits region π2, then π5 and surveils over regions π3 and π6. Its predefined
service requests concern R2 (i.e., ϕs

12 = ◇R6) and R3 (i.e., ϕs
13 = ◇(R2 ∧ ◇R5)),

while there are no formation requests to either R2 or R3. Robot R2 has the local
task ϕl

2 = ◻◇ (R2 ∧ ◇R5) ∧ ◻¬R0 indicating that it should surveil over regions π2

and then π5, and avoids π0 all the time. Moreover, there are no service requests to
R1 or R4, while the formation request to R4 is given by c24 = (−0.5, 0), ρ24,0 = 6,
ρ24,∞ = 0.0001 and l24 = 3. under formation task ϕf

24, = ◇R3. Robot R3 has the
local task ϕl

3 = (◇R3) ∧ (◇R4) ∧ (◇◻R5) ∧ (◻¬R0), i.e., it should visit regions
π3, π4 and π5 in any order, and avoid π0 all the time. The predefined service request
to R1 is given by ϕs

31 =◇(R1 ∧◇R2) and the formation requests to R1 is given by
c31 = (0.5, 0), ρ31,0 = 7, ρ31,∞ = 0.0001 and l31 = 4. There are no service or formation
requests to R4. Finally, robot R4 has the local task ϕl

4 = ◻ ◇ R3 ∧ ◻ ◇ R4 that
requires it surveil regions π3 and π4. There are no service requests to R2 or R3, while
the formation request to R3 is defined as c43 = (0.3, 0), ρ43,0 = 7, ρ43,∞ = 0.0001 and
l43 = 10 under the formation task ϕf

43 =◇R3.

Simulation results

The system was simulated for 20s and it should be noted that all service and
formation requests defined earlier were exchanged and accomplished by the robots
after 17.1s. More specifically, at t = 0, the initial synthesis of the discrete plan is
done locally by each robot. The initial plan of R1 is given by τ1 = π2π5π3π6(π0π3)

ω;
the initial plan of R2 is τ2 = π3(π2π5)

ω; the initial plan of R3 is τ3 = π5π4π3(π5)
ω;

the initial plan of R4 is τ4 = π6(π4π3)
ω. It can be easily verified that all satisfy the

respective local tasks. Snapshots of the robots’ trajectories at key time instants are
shown in Figure 7.6. In particular, at t = 0.1s, R3 receives R4’s formation request

140 Contingent service and formation tasks

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
(m

)

r4

r5r6

r0r1

r2 r3

1

2

3

4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
(m

)

r4

r5r6

r0r1

r2 r3

1

2

3

4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
(m

)

r4

r5r6

r0r1

r2 r3

1

2

3

4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
(m

)

r4

r5r6

r0r1

r2 r3

1

2

3

4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
(m

)

r4

r5r6

r0r1

r2 r3

1

2

3

4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
(m

)

r4

r5r6

r0r1

r2 r3

1

2

3

4

Figure 7.6: Snapshots of the robots’ trajectories at 3s, 4.2s, 9.1s, 10.5s, 17s and 20s.
Descriptions of these events can be found in Section 7.6.

and executes it until t = 5.5s, when R4 finishes the formation task ◇R3 by reaching
π3. At 0.6s, R2 confirms service request ◇R6 from R1 and changes its local plan to
visit π6 first, which is done at 4.2s. At the same time, R1 confirms service request
◇(R1 ∧ ◇R2) from R3 and changes its local plan to visit π1 and then π2 first, which
is done at 7.1s. During [7.7s, 9.4s], R4 carries out a relative formation task with
R2 until R2 reaches π2. Then R3 confirms the service request ◇(R2 ∧ ◇R5) from
R1 at 5.5s. This service is accomplished at 14.8s by R3’s detour to π2 first and π5

afterwards. At last, R1 establishes a relative formation with R4 at 14.8s until robot
R4 finishes the formation task ◇R3 by reaching π3 at 17.1s. By then, all predefined
contingent tasks were fulfilled and no further contingent tasks will be exchanged.
Subsequently, each robot continues executing its local plans to fulfill its local task.
Finally, regarding the formation requests ϕf

43, ϕf
24 and ϕf

31, the evolution of the
formation errors as depicted in Figures 7.4 and 7.5 meets the specifications imposed
by the performance functions. An accompanying video may be found in [53].

7.7 Summary

In this chapter we presented a hybrid control strategy for multi-robot systems under
static local task and contingent temporal tasks. It has been shown that both the
contingent service and formation tasks are fulfilled, while the prescribed formation
constraints are always respected.

Chapter 8

Software implementation and experiments

This chapter presents the software implementation for some algorithms we have
described in the previous chapters. Then we show some experiment results

based on this implementation over different robotic platforms.

8.1 Software package P-MAS-TG

There are some existing model-checking-based motion planning software packages,
e.g., the LTL motion planner (LTLMoP) by [39] and the LTL robust multi-robot
planner (LROMP) by [142]. However since both are simulation-oriented, it is not
straightforward to use them for controlling physical robots that interact with real-
time measurements. The software package developed in this thesis is named by
“planner for multi-agent systems with temporal goals” (P-MAS-TG), available at [50].
It features both the motion planning and action planning modules described in
Chapters 3 and 5, and the partially-feasible tasks addressed in Chapter 4.

8.1.1 Robot control architecture

Robot operating system (ROS) is currently the most popular operating system for
a large variety of robotic platforms [128]. ROS is a flexible framework for writing
robot softwares. It is a collection of tools, libraries, and conventions that aim to
simplify the task of creating complex and robust robot behavior across a wide variety
of robotic platforms. It keeps a minimum and simple interfaces between different
functional packages. More importantly, the real-time message passing and handling
services of ROS allow multiple ROS packages to be running in parallel, which is
extremely beneficial for real-time applications. For instance, the planning algorithm
can be running to revise, update and improve the plan while the robot is executing
the continuous controller, in contrary to the blocking scenario where the robot can
only move after it has finished the planning phase.

A running ROS consists of a single ROS core and several running processes as ROS
nodes. The ROS core provides a distributed computing environment allowing multiple

141

142 Software implementation and experiments

Figure 8.1: Architecture for the ROS-based implementation. Name of the topics: 1. next
goal region or next action; 2. request to external source; 3. reply from communication;
4. observation from sensing; 5. confirmation for motion or action; 6. robot’s position.

processes to be running simultaneously. They communicate via ROS messaging
services and can be running on different robots, computers and processing units
even with different programming languages. A ROS node can be both publisher and
subscriber: it can subscribe to as many topics and publish to as many topics. Once a
ROS node publishes a message to a topic, the ROS core will distribute this message
to all nodes that have subscribed to this topic. Normally once a ROS node receives
a new message under a topic, a pre-defined callback function is called automatically
such that this message can actually be used by this node.

We divide the essential functionalities for the motion and task planning scheme
into five modules: planning, actuation, sensing, localization and communication.
Ideally they are located in five different ROS nodes, as shown in Figure 8.1. Each
node is connected to the ROS core by directed arrows as the message flow, above
which is the topic name. Outgoing arrows from a node indicate that this node can
publish messages over the topics above the arrows, while incoming arrows indicate
that this node is subscribed to those topics above the arrows. Thus the integration
process only involves agreement on the topic names and the message structures. Note
that the five-module structure may vary for different applications. For example, the
sensing and localization nodes might be merged if they rely on the same hardware
and are outputs of the same program.

8.1.2 ROS node for planning

The main contribution lies in our ROS-node package for the motion and task planning
algorithms presented in Chapters 3, 4, and 5. The whole package is written in Python
due to its fast prototyping and multi-platform accessibility. We use the ROS library
“Rospy” as the interface, which is a client library that enables the creation of ROS
topics, services and parameters for python-based programs [128]. The structure of
the ROS node for planning is shown in Figure 8.2. In the initialization step, the initial
finite transition system is encoded by the NetworkX graph structure [70]; the hard
and soft task specifications are given as LTL formulas in the string format. When
the planner node starts running, it firstly translates the hard and soft specification

8.1. Software package P-MAS-TG 143

Figure 8.2: Data flow within planning package. Input data is in rounded rectangular;
internal variables are in rectangular; output data is in parallelogram. Texts on the arrows
are algorithms: 1. LTL formulas to Büchi automaton and encodings; 2. automaton
intersection by Definition 4.3; 3. product automaton by Definition 4.1; 4. plan synthesis
by Algorithm 3.1; 5. transition system update; 6. product automaton update; 7. validate
and revise plan by Algorithm 4.4; 8. reply to requests by Algorithm 4.5.

formulas into Büchi automaton by running the executable file from [41]. The output
text file is then parsed and encoded as a NetworkX graph. The propositional logic
formula representing all input alphabets for each transition is encoded by binary
decision diagram (BDD) using the Lex parser [74]. It allows for: (i) fast encoding
and evaluation of propositional formulas when constructing the product automaton;
(ii) efficient integration with the distance evaluation. Both the full construction and
on-the-fly construction are implemented.

For complex tasks of practical interest, it may take several minutes to compute
the initial plan, which is not desirable for real-time applications. Since in ROS all
nodes can be running simultaneously, it allows us to exploit the notion of any-time
graph search algorithm [102, 144]. Normally anytime planning algorithms find a
preliminary, possibly highly suboptimal solution quickly within a bounded time.
While this preliminary plan is being executed, the planner continues to improve
this plan until the optimal one is found. This approach works particularly well
for static and fully-known workspaces. However if the workspace is dynamic, the
robot has to replan frequently during the execution. Then the anytime planner may
loss its anytime property as it needs to generate new and suboptimal plans from
scratch frequently. Instead, the local revising algorithm by Algorithm 4.4 and the
event-based optimality check are more suitable.

144 Software implementation and experiments

Figure 8.3: The snapshots of two NAO robots fulfilling their local tasks.

8.2 Experiment demonstrations

In this section, we present four different experiment setups and results where
the P-MAS-TG package serves as the main planning module.

Experiment one
In the first experiment we demonstrate the general motion and action planning
framework proposed in Chapters 3 and 5.

Experiment setup. The workspace represents an office environment as shown
in Figure 8.3, consisting of six rooms and a corridor in the middle. The corridor is
partitioned into three smaller parts, i.e., this workspace has nine regions, represented
by labels “r1,⋯, r6” and “c1, c2, c3”. The object of interest is a red ball, represented
by the label “ball”. The cost of moving from one partition to another is estimated by
the Euclidean distance between their centers. The labeling function is given by the
region and labels (from bottom to top, from left to right): (π1, {r1}), (π2, {r2}),
(π3, {r3}), (π4, {c1}), (π5, {c2}), (π6, {c3}), (π7, {r4}), (π8, {r8,ball}), (π9, {r9}).
The robots we deployed are two NAO robots as shown in Figure 8.3. It is equipped
with three basic control modules “move_x(⋅)”, “move_y(⋅)” and “turn(⋅)”. Namely, it
can move forward, sideways and turn itself by the given speed. Besides these motion
primitives, we have implemented various NAO action primitives, such as “crouch”
to crouch; and “wave” to wave one hand. They are implemented using the Behavior
Tree control scheme from [109]. We rely on the ARToolKit single camera system to
track real-time positions of the NAO robots.

8.2. Experiment demonstrations 145

Figure 8.4: Left: the workspace with three Nexus vehicles. Right: the recorded panels,
including the message log and vehicles’ trajectories.

Results description. This section describes the experiment results when the
local tasks are given as: ϕ1 = (◇(r1 ∧◇(c1 ∧◇(c2)))) ∧ (◇◻ r2) and ϕ2 = (◇(r3 ∧
◇(crouch ∧ ◇wave))) ∧ (◇ ◻ r5). Namely, the NAO robot to the right needs to
crouch first, traverse the workspace, wave their hand when detecting a ball and
then stays at that region; another NAO robot needs to cross the corridor and reach
the adjacent room. Note that the inter-robot collision avoidance is integrated with
the navigation control scheme, i.e., one robot would stop and wait until another
robot passes. It took 0.04s to synthesize the optimal plans: τ1 = π1 π4 π5 (π2)

ω

and τ2 = π3 crouchπ6 π5 π8 wave (π8)
ω. A potential collision is resolved locally at

region π5. The real-time behaviors and simulated trajectories are shown in Figure 8.3
at different time instants. It can be seen that both tasks are fulfilled. The complete
video for this experiment can be found in [60].

Experiment two

The second experiment demonstrates the real-time knowledge transfer and plan
adaptation scheme proposed in Chapter 4.

Experiment setup. The experiment setup is similar to the simulated case
presented in Section 4.5: three nexus ground vehicles are deployed in the Smart
Mobility Lab at KTH, as shown in Figure 8.4. The lab workspace is 6m×6m, within
which there are four base stations at four corners in yellow, two blue regions, two
green regions, three obstacle-regions in red. The local tasks are specified as follows:
vehicle R1 has the surveillance task over four base stations and avoids all obstacles;
vehicle R2 needs to visit the blue regions and all base stations infinitely often in an
interleaved order while avoiding all obstacles; vehicle R3 needs to visit the green
regions and all base stations in an interleaved manner. The corresponding LTL
formulas are formulated similarly as in Section 4.5. The real-time feedback of each
vehicle’s position is obtained from the motion capture system “Qualisys”. Obstacle
detection are modeled by the on-board sonar sensors. Communication between the

146 Software implementation and experiments

(a) (b)

(c) (d)
Figure 8.5: Experiment snapshots for the hybrid control of two youBots.

control PC and vehicles are through wireless modules.
Results description. Note that the workspace model is only partially known

to each robot initially. In particular, R1 knows the location of all base stations but
none of the obstacle regions while R2 and R3 only know the location of one base
station and one green or blue regions. It means that all local tasks are initially
infeasible and the planning scheme proposed in Algorithm 4.6 is needed, including
the initial balanced plan synthesis, the knowledge-transfer module and the real-time
plan adaptation algorithm. The experiment results are similar to the simulated case
in Section 4.5. Figure 8.4 shows the graphic interface to monitor the progress. The
experiment video is available online [53].

Experiment three

The third experiment demonstrates the collaborative motion and action planning
module in Chapter 5 and the real-time plan adaptation scheme through knowledge
transfer from Chapter 4.

Experiment setup. The experiment setup involves two youBots, a localization
system, one object of interest as shown in Figure 8.5. Each youBot is equipped with
one gripper and can be controlled to move freely in the obstacle-free workspace.
We rely on the same localization system as for the NAO robots. There are some
predefined regions of interest for each youBot: the youBot with marker “G” has
one in the middle as “r3” and two on the left as “r1, r2”, while the youBot with
marker “A” has one in the middle as “r4” and two on the right as “r5, r6”. The

8.2. Experiment demonstrations 147

Figure 8.6: Snapshots of experiment four at 25s and 230s.

object of interest to youBot “A” is in one of its known regions. The precondition and
effect of actions “pick” and “drop” are omitted here for brevity. The local tasks are
defined as follows: youBot “G” is required to surveil over its two regions of interest
on the left side, or by the LTL formula ϕG = ◻◇ r1 ∧◻◇ r2; youBot “A” is required
to go to region r4, pick up the object of interest and transport it to region r5, then
surveil over regions r5 and r6, or by the formula ϕA = ◇((r4 ∧ ◇pick) ∧ ◇(r5 ∧

◇drop)) ∧ (◻◇ r5 ∧ ◻◇ r6).
Results description. Each youBot synthesizes its balanced plan initially and

starts executing it. Since no object of interest is at region r4 initially when the system
starts, youBot “A” can not perform the action “pick” there. Instead, it surveils
over regions r5 and r6 according to its balanced plan, as shown in Figures 8.5a-
8.5b. For youBot “G”, it fulfills its task specification by visiting regions r1 and r2
repetitively, as shown in Figures 8.5a-8.5d. After some time, the object of interest is
placed manually close to region r3, as shown in Figure 8.5b. Afterwards, youBot “G”
discovers this object in r3 and then broadcasts this knowledge to youBot “A”. As
a result, youBot “A” incorporates this information into its workspace model and
updates its local plan to improve the satisfiability. According to the revised plan,
it navigates to region r4 and perform the action “pick”, as shown in Figure 8.5c.
After the successful grasp, this object is then transported to region r5 as specified
in ϕA, which is shown in Figure 8.5d. Afterwards, youBot “A” continues visiting
regions r5 and r6 repetitively. The complete experiment video with more detailed
descriptions can be found online [64].

Experiment four
In the forth experiment, we demonstrate the EGGs-based hybrid control scheme
proposed in Section 6.2, which corresponds to the simulated case in Section 6.2.5.

Experiment setup. We implement the EGGs-based control scheme and the
navigation controller proposed in Section 6.2 on a team of five Khepera II robots at
the GRITS Lab of Georgia Tech, as shown in Figure 8.6. They are differential-driven

148 Software implementation and experiments

0 100 200 300 400 500 600
t(s)

0

1

2

3

4

5

g
ra

p
h
 d

ia
m

e
te

r

0 100 200 300 400 500 600
t(s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
in

im
a
l
d
is

ta
n
ce

(m
)

Figure 8.7: Evolution of the graph diameter (left) and the minimal distance among the
robots (right). Same conclusions can be drawn as in Figure 6.6.

wheeled robots that communicates wirelessly with the base station computer. Their
positions and orientations are tracked in real-time by the OptiTrack system. The
message exchange among the robots, between the robots and OptiTrack system are
all handled by ROS as described earlier. The robots’ points of interest are scattered
within the 3m × 3m workspace and designed to be feasible by Assumption 6.2. The
communication radius and safety distance for the multi-robot team are set to 0.9m
and 0.15m, respectively. The navigation controller in (6.36) is tuned properly to
ensure that the robot can track the synthesized path consisting of discrete grid
points. We omit the task description for each robot here since it is the same as the
simulated case in Section 6.2.5 and described in detail in the experiment video [66].
Note that no robot actions are modeled and the synthesis of the motion plan relies
on the package described earlier.

Results description. We run the system for 11 minutes and the robots have
reached the fourth goal point in their discrete plans. The whole experiment is
recorded by an overhead camera. Two snapshots of the experiment are shown in
Figure 8.6, where the layout of the robots’ goal points have been changed. We plot
the diameter of G(t) and the minimal distance between any two robots during the
time period [0s,660s] in Figure 8.7. Based on this figure, we can verify that both
continuous constraints are satisfied since G(t) remains connected as its diameter
is always lower than 6; no collision occur as the minimal distance is always above
0.15m. The overall progress is similar to the simulated case from Section 6.2.5 and
the complete experiment video can be found in [66].

8.3 Summary

We presented in this chapter the software implementation for some algorithms we
have proposed in the previous chapters. We then demonstrated its application to
various robotic platforms.

Chapter 9

Conclusion and future work

This chapter summarizes the content of the thesis and provides some future
research directions.

9.1 Conclusion

At the beginning of this thesis, we provided some motivating applications from
the industrial areas of service robots, autonomous cars and drones, where we also
outlined several main challenges that arise when designing coordination and control
strategies for networked multi-robot systems. Particularly, we emphasized the need
for an intuitive but formal way for the end-users to specify high-level tasks, the
importance of an automated scheme to control the robot to satisfy this task, the
benefits of inter-robot communication to the planning process, and the advantage
of coordinated collaboration among the robots. Then we presented the theoretical
background and a review of some relevant work in Chapter 2.

In Chapter 3 we introduced the nominal framework for motion and task planning
of a single dynamical robot given its motion task specified as a LTL formula.
Under the assumption that the workspace is static and fully-known, we provided
a systematic and automated scheme to synthesize firstly the discrete motion and
task plan, and then the hybrid control strategy that drives the robot to execute this
plan such that its resulting trajectory fulfills the given task.

Then in Chapter 4 we extended this nominal framework to a multi-robot system
where a team of dynamical robots coexist within the same workspace and are
interconnected by communication links. Each robot has a locally-assigned individual
task specified as LTL formulas, which now contain hard and soft constraints. Due to
limited knowledge about the workspace model and un-modeled dynamical constraints
of the robots, the nominal approach becomes inadequate. Thus we proposed a
cooperative knowledge-transfer scheme: while the system runs, each robot updates its
knowledge about the workspace via its sensing capability and shares this knowledge
with its neighbouring robots. Based on the knowledge update, each robot then
verifies and revises its local plan in real time. It has been shown that the hard

149

150 Conclusion and future work

specification is always fulfilled for safety and the satisfaction of the soft specification
is improved gradually for performance.

It has been emphasized that collaborations among the robots can greatly improve
the capability and efficiency of a multi-robot system. In Chapter 5, the robots’ local
tasks are specified as LTL formulas over both robot motion and actions, which are
dependent due to the existence of collaborative actions. The proposed coordination
scheme is distributed and guarantees that all local tasks are fulfilled. Any decision
is made locally by each robot based on local computation and communication with
neighboring robots. It is scalable and resilient to robot failures.

In Chapter 6, we considered inter-robot continuous constrains such as relative-
distance constrains, collision avoidance and connectivity of the communication
network. These constraints are closely related to the stability, safety and integrity of
the overall team. We proposed two different hybrid control techniques to handle the
relative-motion constrains along with the local temporal tasks: the first approach
is based on the potential field and the second approach uses Embedded Graph
Grammars (EGGs) as the main tool. Both approaches are shown to ensure the
satisfaction of all local tasks and the relative-motion constraints.

Two common types of cooperative robotic tasks, namely service and formation
tasks, were addressed in Chapter 7. The robots are allowed to request and exchange
these tasks in real-time, with additional prescribed performance constraints. The
proposed hybrid control strategy has been shown to guarantee that all local tasks
are satisfied, while at the same time the service requests are fulfilled by one robot
accomplishing a short-term task for another robot, and the formation requests are
fulfilled by two robots keeping a relative-deployment requirement with predefined
transient response imposed by an associated performance function.

Last but not least, we presented in Chapter 8 the software package that accom-
panies some algorithms proposed in the thesis and some experiment demonstrations
over different robotic platforms.

9.2 Future work

In the future research, I would like to continue the research direction on hybrid
control of networked multi-robot systems under complex temporal tasks, but with
particular interest in the following aspects:

Distributed workspace abstraction
All the general hybrid control schemes mentioned in the thesis consist of three major
steps: the finite abstraction of robot motion as a FTS; the discrete plan synthesis
by graph search; and the hybrid controller construction, among which only the first
step is not automated. In other words, it relies on a manual definition of the FTS
based on the workspace model and the robot dynamics. Thus it is highly desirable
to develop an automated abstraction method that achieves the same results. More
importantly, given a team of dynamical robots, it would be beneficial for them to

9.2. Future work 151

exchange and improve their abstraction results through inter-robot communication,
owing to the fact that each robot has a more accurate abstraction of the area
where it is located. Especially between homogeneous robots, one robot’s abstraction
results can be used directly by another due to their identical dynamics. However it
becomes more challenging to explore how to transfer abstraction results between
heterogeneous robots given that their dynamics are different.

Task swapping and merging

Task swapping means that two robots exchange parts of their task specifications,
while task merging means that one robot merges parts of another robot’s task to its
own. Both are powerful means of collaborative task execution for multi-robot systems,
in order to either reduce the total execution cost or render the originally-infeasible
tasks feasible for the whole team [59]. The direct question to ask is which two robots
should swap or merge which parts of their task specifications, while ensuring that
the temporal characteristics of the original local tasks are still respected. To answer
that, we first need to address the essential notion of equivalence for task executions
by different robots, which has not been investigated for neither homogeneous nor
heterogeneous robots in literature. Additionally, as a side effect, it can be observed
that there is often a trade-off between the potential cost reduction and the extra
time delay caused by the synchronization during the task swapping or merging.

Dynamic recruitment among groups

As discussed in Chapter 5, recruitment is an essential tool for multi-robot systems
where collaborations among the robots are required to fulfill all local tasks. The
straightforward formulation is to define inter-robot dependency directly on robot
identities, which often leads to a rigid coordination scheme that is neither scalable
nor robust. Chapter 5 has shown that dependency by collaborative actions provides
a more intuitive and flexible way to formulate collaborative tasks. The proposed
coordination framework features a dynamic recruitment scheme that allows flexible
membership and is resilient to robot failures, which is particularly suitable for
large-scale multi-robot systems. To continue exploring this direction, it is worth
considering multi-robot systems that consist of heterogeneous robots within which
there are several groups of homogeneous robots, particularly to find out how the
coordination scheme among different groups could be different from that within the
same group. Also it would be interesting to investigate the possibility of introducing
group leaders for the groups of homogeneous robots, and how this would affect the
overall complexity and performance for coordination.

Information-driven control and coordination

Most of the motion control and coordination schemes mentioned in the thesis are
task-driven in the sense that the main objective is to satisfy local tasks in a cost-

152 Conclusion and future work

efficient way, while the availability and quality of real-time information, including
sensory inputs and inter-robot communication, are taken for guaranteed. It however
might not be the case in many practical applications, e.g., the sensory information
might be uncertain when abstracting features in the workspace or the inter-robot
communication might be subject to package loss, channel failure and delays. Thus
it would be of practical interest to consider improving real-time information quality
as an additional control objective, along with the satisfaction of high-level tasks.
For instance, due to the existence of blocking obstacles, two robots may actively
move towards each other to improve their communication quality, even if it means
to deviate from their best routes; one robot may visit a region that is not in its
optimal plan, in order to reduce uncertainty about that region for other robots.
Suitable metrics to measure information quality should be investigated and then
incorporated into the existing motion and task coordination framework.

Timed temporal tasks
Besides temporal properties that can be specified in LTL, another important per-
formance metric of dynamical systems is the response time. Namely, it is not only
desired the robot will accomplish a task, but also it should happen within a desired
time. For example, instead of “stay in room A and then go to room B”, the task
specification may be “stay in room A for 5 minutes and then arrive room B in 10
minutes”. This aspect will introduce two main challenges: firstly, how to modify the
existing model-checking-based synthesis framework such that it incorporates physical
time, instead of virtual discrete time or sampled time; secondly, how this timed
metric will effect the design of the underlying continuous controller. In particular,
the controller now needs to ensure both convergence as the traditional control
objective and the response time as required. These two challenges may have to be
tackled simultaneously as they are closely coupled, i.e., a reliable controller design
with guaranteed response time would greatly simply the procedure for the synthesis
of the timed discrete plan.

Bibliography

[1] A. Abate, J.-P. Katoen, J. Lygeros, and M. Prandini. Approximate model
checking of stochastic hybrid systems. European Journal of Control, 16(6):
624–641, 2010.

[2] H. Abbas, G. Fainekos, S. Sankaranarayanan, F. Ivančić, and A. Gupta.
Probabilistic temporal logic falsification of cyber-physical systems. ACM
Transactions on Embedded Computing Systems (TECS), 12(2):95, 2013.

[3] Aethon. The tug smart autonomous mobile robot. http://www.aethon.com
/tug/benefits/, 2015.

[4] S. B. Akers. Binary decision diagrams. Computers, IEEE Transactions on,
100(6):509–516, 1978.

[5] Aldebaran. Robot nao. http://www.aldebaran-robotics.com/en/, 2014.

[6] Aldebaran. Robot pepper. https://www.aldebaran.com/en/a-robots/
who-is-pepper, 2015.

[7] R. Alur, T. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete abstractions
of hybrid systems. Proceedings of the IEEE, 88(7):971–984, 2000.

[8] Amazon. Amazon prime air delivery system. http://www.amazon.com/b?
node=8037720011, 2015.

[9] T. Arai, E. Pagello, and L. E. Parker. Editorial: Advances in multi-robot
systems. IEEE Transactions on robotics and automation, 18(5):655–661, 2002.

[10] E. Aydin Gol and M. Lazar. Temporal logic model predictive control for
discrete-time systems. In Proceedings of the 16th International Conference on
Hybrid Systems: Computation and Control, pages 343–352. ACM, 2013.

[11] C. Baier and J.-P. Katoen. Principles of model checking. MIT press Cambridge,
2008.

[12] C. P. Bechlioulis and K. J. Kyriakopoulos. Robust model-free formation control
with prescribed performance and connectivity maintenance for nonlinear multi-
agent systems. In Decision and Control (CDC), 2014 IEEE 53rd Annual
Conference on, pages 4509–4514, 2014.

153

154 Bibliography

[13] C. P. Bechlioulis, G. Rovithakis, et al. Robust adaptive control of feedback
linearizable mimo nonlinear systems with prescribed performance. Automatic
Control, IEEE Transactions on, 53(9):2090–2099, 2008.

[14] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J. Pappas.
Symbolic planning and control of robot motion [grand challenges of robotics.
Robotics & Automation Magazine, IEEE, 14(1):61–70, 2007.

[15] A. Bhatia, L. E. Kavraki, and M. Y. Vardi. Sampling-based motion plan-
ning with temporal goals. In Robotics and Automation (ICRA), 2010 IEEE
International Conference on, pages 2689–2696, 2010.

[16] S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[17] E. P. Chan and Y. Yang. Shortest path tree computation in dynamic graphs.
Computers, IEEE Transactions on, 58(4):541–557, 2009.

[18] Y. Chen, X. C. Ding, A. Stefanescu, and C. Belta. Formal approach to the
deployment of distributed robotic teams. Robotics, IEEE Transactions on, 28
(1):158–171, 2012.

[19] E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at ltl model
checking. In Computer Aided Verification, pages 415–427. Springer, 1994.

[20] E. M. Clarke and J. M. Wing. Formal methods: State of the art and future
directions. ACM Computing Surveys (CSUR), 28(4):626–643, 1996.

[21] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT press,
1999.

[22] T. L. Dean and M. P. Wellman. Planning and control. Morgan Kaufmann
Publishers Inc., 1991.

[23] D. V. Dimarogonas and K. J. Kyriakopoulos. Decentralized motion control
of multiple agents with double integrator dynamics. In 16th IFAC World
Congress, 2005.

[24] D. V. Dimarogonas and K. J. Kyriakopoulos. Decentralized navigation func-
tions for multiple robotic agents with limited sensing capabilities. Journal of
Intelligent and Robotic Systems, 48(3):411–433, 2007.

[25] D. V. Dimarogonas, S. G. Loizou, K. J. Kyriakopoulos, and M. M. Zavlanos. A
feedback stabilization and collision avoidance scheme for multiple independent
non-point agents. Automatica, 42(2):229–243, 2006.

[26] X. C. Ding, M. Kloetzer, Y. Chen, and C. Belta. Automatic deployment of
robotic teams. Robotics & Automation Magazine, 18(3):75–86, 2011.

Bibliography 155

[27] X. C. Ding, S. L. Smith, C. Belta, and D. Rus. Mdp optimal control under
temporal logic constraints. In Decision and Control and European Control
Conference (CDC-ECC), IEEE Conference on, pages 532–538, 2011.

[28] J. C. Doyle, B. A. Francis, and A. Tannenbaum. Feedback control theory.
Macmillan Publishing Company New York, 1992.

[29] E. H. Durfee. Distributed problem solving and planning. In Multi-agent
systems and applications, pages 118–149. Springer, 2006.

[30] M. Egerstedt and X. Hu. Formation constrained multi-agent control. Robotics
and Automation, IEEE Transactions on, 17(6):947–951, 2001.

[31] M. Egerstedt, X. Hu, and A. Stotsky. Control of mobile platforms using a
virtual vehicle approach. Automatic Control, IEEE Transactions on, 46(11):
1777–1782, 2001.

[32] Engadget. Self-driving taxis will begin trials in japan next year. http:
//www.engadget.com/2015/10/01/robot-taxi-japan-2016/, 2015.

[33] C. Exist. Don’t worry: Drones are making sure you’ll never have to go without
wine. http://www.fastcoexist.com/3040473/dont-worry-drones-are-m
aking-sure-youll-never-have-to-go-without-wine, 2015.

[34] G. E. Fainekos. Revising temporal logic specifications for motion planning. In
Robotics and Automation (ICRA), 2011 IEEE International Conference on,
pages 40–45, 2011.

[35] G. E. Fainekos and G. J. Pappas. Robustness of temporal logic specifications
for continuous-time signals. Theoretical Computer Science, 410(42):4262–4291,
2009.

[36] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas. Temporal logic
motion planning for dynamic robots. Automatica, 45(2):343–352, 2009.

[37] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application
of theorem proving to problem solving. Artificial intelligence, 2(3):189–208,
1972.

[38] I. Filippidis, D. V. Dimarogonas, and K. J. Kyriakopoulos. Decentralized
multi-agent control from local ltl specifications. In Decision and Control
(CDC), 2012 IEEE 51st Annual Conference on, pages 6235–6240, 2012.

[39] C. Finucane, G. Jing, and H. Kress-Gazit. Ltlmop: Experimenting with
language, temporal logic and robot control. In Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on, pages 1988–1993, 2010.

156 Bibliography

[40] M. Franceschelli, M. Egerstedt, and A. Giua. Motion probes for fault detection
and recovery in networked control systems. In American Control Conference
(ACC), 2008, pages 4358–4363, 2008.

[41] P. Gastin and D. Oddoux. Fast ltl to büchi automata translation. In Computer
Aided Verification, pages 53–65. Springer, 2001.

[42] M. Gelfond and V. Lifschitz. Action languages. Electronic Transactions on
AI, 3(16), 1998.

[43] M. Ghallab, D. Nau, and P. Traverso. Automated planning: theory & practice.
Elsevier, 2004.

[44] A. Girard. Approximately bisimilar finite abstractions of stable linear systems.
pages 231–244, 2007.

[45] C. Godsil and G. F. Royle. Algebraic graph theory, volume 207. Springer
Science & Business Media, 2013.

[46] Google. Google self-driving car project. http://www.google.com/selfdri
vingcar/, 2015.

[47] Gostai. Gostai by jazz security. http://www.gostai.com/security/, 2013.

[48] M. Guo. Cooperative motion and task planning under temporal tasks. Licen-
tiate Degree Thesis, 2014.

[49] M. Guo. Cooperative motion and task planning under temporal tasks. 2014.

[50] M. Guo. P-mas-tg. https://github.com/MengGuo/P_MAS_TG, 2015.

[51] M. Guo and D. V. Dimarogonas. Reconfiguration in motion planning of single-
and multi-agent systems under infeasible local ltl specifications. In Decision
and Control (CDC), 2013 IEEE 52nd Annual Conference on, 2013.

[52] M. Guo and D. V. Dimarogonas. Distributed plan reconfiguration via knowl-
edge transfer in multi-agent systems under local ltl specifications. In Robotics
and Automation (ICRA), 2014 IEEE International Conference on, 2014.

[53] M. Guo and D. V. Dimarogonas. Multi-agent cooperative motion and task
planning. https://youtu.be/leTuzy3TIhI, 2014.

[54] M. Guo and D. V. Dimarogonas. Simulation video of nominal scenario for
cooperative motion and task planning. https://vimeo.com/142983863, 2015.

[55] M. Guo and D. V. Dimarogonas. Simulation of fault recovery scenario for
cooperative motion and task planning. https://vimeo.com/142984081, 2015.

Bibliography 157

[56] M. Guo and D. V. Dimarogonas. Multi-agent plan reconfiguration under
local ltl specifications. The International Journal of Robotics Research, 34(2):
218–235, 2015.

[57] M. Guo and D. V. Dimarogonas. Bottom-up motion and task coordination for
loosely-coupled multi-agent systems with dependent local tasks. In Automation
Science and Engineering (CASE), IEEE International Conference on, 2015.
To appear.

[58] M. Guo, K. H. Johansson, and D. V. Dimarogonas. Motion and action
planning under ltl specifications using navigation functions and action descrip-
tion language. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on, pages 240–245, 2013.

[59] M. Guo, K. H. Johansson, and D. V. Dimarogonas. Revising motion planning
under linear temporal logic specifications in partially known workspaces. In
Robotics and Automation (ICRA), 2013 IEEE International Conference on,
pages 5025–5032, 2013.

[60] M. Guo, M. Colledanchise, and A. Marzinotto. Experiment video for hybrid
control of nao robot. https://youtu.be/a75iwD5dFYY, 2014.

[61] M. Guo, J. Tumova, and D. V. Dimarogonas. Cooperative decentralized multi-
agent control under local ltl tasks and connectivity constraints. In Decision
and Control (CDC), 2014 IEEE 53rd Annual Conference on, pages 75–80,
2014.

[62] M. Guo, M. M. Zavlanos, and D. V. Dimarogonas. Controlling the relative
agent motion in multi-agent formation stabilization. Automatic Control, IEEE
Transactions on, 59(3):820–826, 2014.

[63] M. Guo, C. P. Bechlioulis, K. J. Kyriakopoulos, and D. V. Dimarogonas. Hybrid
control of multi-agent systems with contingent temporal tasks and prescribed
formation constraints. Control of Network Systems, IEEE Transactions on.
Submitted., 2015.

[64] M. Guo, M. Colledanchise, and A. Marzinotto. Experiment video for the
hybrid control of youbot robot. https://youtu.be/eWviu8We-vk, 2015.

[65] M. Guo, M. Egerstedt, and D. V. Dimarogonas. Simulation video for eggs-based
control. https://vimeo.com/136210841, 2015.

[66] M. Guo, M. Egerstedt, and D. V. Dimarogonas. Experiment video for eggs-
based control. https://vimeo.com/137872185, 2015.

[67] M. Guo, J. Tumova, and D. V. Dimarogonas. Communication-free multi-agent
control under local temporal tasks and relative-distance constraints. Automatic
Control, IEEE Transactions on. Conditionally accepted., 2015.

158 Bibliography

[68] M. Guo, J. Tumova, and D. V. Dimarogonas. Hybrid control of multi-agent
systems under local temporal tasks and relative-distance constraints. In
Decision and Control (CDC), 2015 IEEE 54rd Annual Conference on, 2015.
To appear.

[69] M. Guo, M. Egerstedt, and D. V. Dimarogonas. Hybrid control of multi-
robot systems using embedded graph grammars. In Robotics and Automation
(ICRA), 2016 IEEE International Conference on, 2016. Sumbitted.

[70] A. Hagberg, P. Swart, and D. S Chult. Exploring network structure, dynamics,
and function using networkx. Technical Report, 2008.

[71] K. He, M. Lahijanian, L. E. Kavraki, and M. Y. Vardi. Towards manipulation
planning with temporal logic specifications. In Robotics and Automation
(ICRA), 2015 IEEE International Conference on, pages 346–352, 2015.

[72] W. Heemels, K. H. Johansson, and P. Tabuada. An introduction to event-
triggered and self-triggered control. In Decision and Control (CDC), 2012
IEEE 51st Annual Conference on, pages 3270–3285, 2012.

[73] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press,
2012.

[74] D. Horrigan. Lex parser. https://github.com/pyrocms/lex, 2013.

[75] IEEE. Look mom, no hands! http://www.ieee.org/about/news/2012/
5september_2_2012.html, 2012.

[76] M. Ji and M. B. Egerstedt. Distributed coordination control of multi-agent
systems while preserving connectedness. Georgia Institute of Technology, 2007.

[77] M. Ji, G. Ferrari-Trecate, M. Egerstedt, and A. Buffa. Containment control in
mobile networks. Automatic Control, IEEE Transactions on, 53(8):1972–1975,
2008.

[78] S. Karaman and E. Frazzoli. Linear temporal logic vehicle routing with
applications to multi-uav mission planning. International Journal of Robust
and Nonlinear Control, 21(12):1372–1395, 2011.

[79] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion
planning. The International Journal of Robotics Research, 30(7):846–894,
2011.

[80] Y. Karayiannidis, D. V. Dimarogonas, and D. Kragic. Multi-agent average
consensus control with prescribed performance guarantees. In Decision and
Control (CDC), 2012 IEEE 51st Annual Conference on, pages 2219–2225,
2012.

Bibliography 159

[81] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. Robotics
and Automation, IEEE Transactions on, 12(4):566–580, 1996.

[82] H. K. Khalil. Nonlinear systems, volume 3. Prentice Hall, 2002.

[83] K. Kim and G. E. Fainekos. Approximate solutions for the minimal revision
problem of specification automata. In Intelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference on, pages 265–271, 2012.

[84] M. Kloetzer and C. Belta. A fully automated framework for control of
linear systems from temporal logic specifications. Automatic Control, IEEE
Transactions on, 53(1):287–297, 2008.

[85] M. Kloetzer and C. Belta. Automatic deployment of distributed teams of
robots from temporal logic motion specifications. Robotics, IEEE Transactions
on, 26(1):48–61, 2010.

[86] M. Kloetzer, X. C. Ding, and C. Belta. Multi-robot deployment from ltl
specifications with reduced communication. In Decision and Control and
European Control Conference (CDC-ECC), 2011 50th IEEE Conference on,
pages 4867–4872, 2011.

[87] D. E. Koditschek and E. Rimon. Robot navigation functions on manifolds
with boundary. Advances in Applied Mathematics, 11(4):412–442, 1990.

[88] J. R. Kok and N. Vlassis. Collaborative multiagent reinforcement learning by
payoff propagation. The Journal of Machine Learning Research, 7:1789–1828,
2006.

[89] R. E. Korf. Planning as search: A quantitative approach. Artificial Intelligence,
33(1):65–88, 1987.

[90] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Where’s waldo? sensor-
based temporal logic motion planning. In Robotics and Automation (ICRA),
2007 IEEE International Conference on, pages 3116–3121, 2007.

[91] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Temporal-logic-based
reactive mission and motion planning. Robotics, IEEE Transactions on, 25(6):
1370–1381, 2009.

[92] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[93] O. Kupferman and M. Y. Vardi. Model checking of safety properties. Formal
Methods in System Design, 19(3):291–314, 2001.

160 Bibliography

[94] M. Lahijanian, S. Almagor, D. Fried, L. E. Kavraki, and M. Y. Vardi. This time
the robot settles for a cost: A quantitative approach to temporal logic planning
with partial satisfaction. In AAAI Conference on Artificial Intelligence, 2015.

[95] J.-C. Latombe. Robot motion planning, volume 124. Springer Science &
Business Media, 2012.

[96] S. M. LaValle. Rapidly-exploring random trees a new tool for path planning.
Technical Report 98-11, 1998.

[97] S. M. LaValle. Planning algorithms. Cambridge university press, 2006.

[98] S. M. LaValle and S. Hutchinson. Optimal motion planning for multiple robots
having independent goals. Robotics and Automation, IEEE Transactions on,
14(6):912–925, 1998.

[99] S. M. LaValle and J. J. Kuffner Jr. Rapidly-exploring random trees: Progress
and prospects. 2000.

[100] D.-T. Lee and B. J. Schachter. Two algorithms for constructing a delaunay
triangulation. International Journal of Computer & Information Sciences, 9
(3):219–242, 1980.

[101] T.-C. Lee, K.-T. Song, C.-H. Lee, and C.-C. Teng. Tracking control of unicycle-
modeled mobile robots using a saturation feedback controller. Control Systems
Technology, IEEE Transactions on, 9(2):305–318, 2001.

[102] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun. Anytime
search in dynamic graphs. Artificial Intelligence, 172(14):1613–1643, 2008.

[103] S. R. Lindemann, I. I. Hussein, and S. M. LaValle. Real time feedback control
for nonholonomic mobile robots with obstacles. In Decision and Control
(CDC), 2006 45th IEEE Conference on, pages 2406–2411, 2006.

[104] S. C. Livingston, R. M. Murray, and J. W. Burdick. Backtracking temporal
logic synthesis for uncertain environments. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pages 5163–5170, 2012.

[105] S. G. Loizou and A. Jadbabaie. Density functions for navigation-function-
based systems. Automatic Control, IEEE Transactions on, 53(2):612–617,
2008.

[106] S. G. Loizou and K. J. Kyriakopoulos. Closed loop navigation for multiple
holonomic vehicles. In Intelligent Robots and Systems (IROS), 2002 IEEE/RSJ
International Conference on, volume 3, pages 2861–2866, 2002.

[107] S. G. Loizou and K. J. Kyriakopoulos. Automatic synthesis of multi-agent
motion tasks based on ltl specifications. In Decision and Control (CDC), 2004.
43rd IEEE Conference on, volume 1, pages 153–158, 2004.

Bibliography 161

[108] M. R. Maly, M. Lahijanian, L. E. Kavraki, H. Kress-Gazit, and M. Y. Vardi.
Iterative temporal motion planning for hybrid systems in partially unknown
environments. In International Conference on Hybrid Systems: Computation
and Control, pages 353–362, 2013.

[109] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ögren. Towards a unified
behavior trees framework for robot control. In Robotics and Automation
(ICRA), 2014 IEEE International Conference on, pages 5420–5427, 2014.

[110] M. Mazo and P. Tabuada. Decentralized event-triggered control over wireless
sensor/actuator networks. Automatic Control, IEEE Transactions on, 56(10):
2456–2461, 2011.

[111] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, and D. Wilkins. Pddl-the planning domain definition language. Tech.
Report CVC TR–98–003/DCS TR–1165, 1998.

[112] K. L. McMillan. Symbolic model checking. Springer, 1993.

[113] J.-M. McNew and E. Klavins. Locally interacting hybrid systems with em-
bedded graph grammars. In Decision and Control (CDC), 2006 45th IEEE
Conference on, pages 6080–6087, 2006.

[114] J.-M. McNew, E. Klavins, and M. Egerstedt. Solving coverage problems with
embedded graph grammars. In Hybrid Systems: Computation and Control,
pages 413–427. 2007.

[115] S. Misra and B. J. Oommen. Dynamic algorithms for the shortest path routing
problem: learning automata-based solutions. Systems, Man, and Cybernetics,
IEEE Transactions on, 35(6):1179–1192, 2005.

[116] P. Ögren. Increasing modularity of uav control systems using computer
game behavior trees. In AIAA Guidance, Navigation and Control Conference,
Minneapolis, MN, 2012.

[117] P. Ögren, M. Egerstedt, and X. Hu. A control lyapunov function approach to
multi-agent coordination. In Decision and Control (CDC), 2001. Proceedings
of the 40th IEEE Conference on, pages 1150–1155, 2001.

[118] R. Olfati-Saber. Flocking for multi-agent dynamic systems: Algorithms and
theory. Automatic Control, IEEE Transactions on, 51(3):401–420, 2006.

[119] E. P. Pednault. Adl: Exploring the middle ground between strips and the
situation calculus. In Proceedings of the International Conference on Prin-
ciples of Knowledge Representation and Reasoning, pages 324–332. Morgan
Kaufmann Publishers Inc., 1989.

162 Bibliography

[120] D. Pickem, M. Egerstedt, and J. S. Shamma. Complete heterogeneous self-
reconfiguration: Deadlock avoidance using hole-free assemblies. In Estimation
and Control of Networked Systems, volume 4, pages 404–410, 2013.

[121] V. Raman and H. Kress-Gazit. Analyzing unsynthesizable specifications for
high-level robot behavior using ltlmop. In Computer Aided Verification, pages
663–668. Springer, 2011.

[122] W. Ren, R. W. Beard, and E. M. Atkins. A survey of consensus problems
in multi-agent coordination. In American Control Conference (ACC), 2005.
Proceedings of the, pages 1859–1864, 2005.

[123] Rethink. Rethink robotics. http://www.rethinkrobotics.com/, 2013.

[124] M. Reynolds. Continuous temporal models. In AI 2001: Advances in Artificial
Intelligence, pages 414–425. Springer, 2001.

[125] S. Riko. Robot bear. http://www.digitaltrends.com/cool-tech/ri
ken-robear/, 2015.

[126] E. Rimon and D. E. Koditschek. Exact robot navigation using cost functions:
the case of distinct spherical boundaries in en. In Robotics and Automation
(ICRA), Proceedings of 1988 IEEE International Conference on, pages 1791–
1796, 1988.

[127] N. Robotics. Professional service robots: continued increase. http://www.
worldrobotics.org/index.php?id=home&news_id=262, 2012.

[128] ROSWiki. Ros wikipedia. http://wiki.ros.org/ROS/Introduction, 2013.

[129] H. Saïdi and N. Shankar. Abstract and model check while you prove. In
Computer Aided Verification, pages 443–454. Springer, 1999.

[130] V. Schuppan and A. Biere. Shortest counterexamples for symbolic model
checking of LTL with past. Springer, 2005.

[131] B. Smith, A. Howard, J.-M. McNew, J. Wang, and M. Egerstedt. Multi-robot
deployment and coordination with embedded graph grammars. Autonomous
Robots, 26(1):79–98, 2009.

[132] S. L. Smith, J. Tumova, C. Belta, and D. Rus. Optimal path planning for
surveillance with temporal-logic constraints. The International Journal of
Robotics Research, 30(14):1695–1708, 2011.

[133] E. D. Sontag. Mathematical control theory: deterministic finite dimensional
systems, volume 6. Springer Science & Business Media, 2013.

Bibliography 163

[134] S. Srinivas, R. Kermani, K. Kim, Y. Kobayashi, and G. Fainekos. A Graphical
Language for LTL Motion and Mission Planning. PhD thesis, Arizona State
University, 2013.

[135] P. Tabuada and G. J. Pappas. Model checking ltl over controllable linear
systems is decidable. pages 498–513, 2003.

[136] P. Tabuada and G. J. Pappas. Linear time logic control of discrete-time linear
systems. Automatic Control, IEEE Transactions on, 51(12):1862–1877, 2006.

[137] N. Y. Times. Some germans balk at plan to use drones to fight graffiti.
http://www.nytimes.com/2013/05/29/world/europe/in-germany-unea
se-at-plan-to-use-drones-to-fight-graffiti.html?_r=0, 2013.

[138] TU/e. Amigo robots. http://www.roboticopenplatform.org/wiki/AMIGO,
2015.

[139] J. Tumova and D. V. Dimarogonas. A receding horizon approach to multi-
agent planning from local ltl specifications. In American Control Conference
(ACC), 2014, pages 1775–1780, 2014.

[140] J. Tumova, L. I. R. Castro, S. Karaman, E. Frazzoli, and D. Rus.
Minimum-violation ltl planning with conflicting specifications. arXiv preprint
arXiv:1303.3679, 2013.

[141] J. Tumova, G. C. Hall, S. Karaman, E. Frazzoli, and D. Rus. Least-violating
control strategy synthesis with safety rules. In Proceedings of the 16th In-
ternational Conference on Hybrid Systems: Computation and Control, pages
1–10, 2013.

[142] A. Ulusoy, S. L. Smith, X. C. Ding, and C. Belta. Robust multi-robot optimal
path planning with temporal logic constraints. In Robotics and Automation,
2012 IEEE International Conference on, pages 4693–4698, 2012.

[143] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus. Optimality and
robustness in multi-robot path planning with temporal logic constraints. The
International Journal of Robotics Research, 32(8):889–911, 2013.

[144] J. Van Den Berg, D. Ferguson, and J. Kuffner. Anytime path planning and
replanning in dynamic environments. In Robotics and Automation (ICRA),
Proceedings 2006 IEEE International Conference on, pages 2366–2371, 2006.

[145] J. Van den Berg, M. Lin, and D. Manocha. Reciprocal velocity obstacles for
real-time multi-agent navigation. In Robotics and Automation (ICRA), 2008
IEEE International Conference on, pages 1928–1935, 2008.

[146] F. Van Harmelen, V. Lifschitz, and B. Porter. Handbook of knowledge repre-
sentation. Elsevier, 2008.

164 Bibliography

[147] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proceedings of the First Symposium on Logic in
Computer Science. IEEE Computer Society, 1986.

[148] Wikipedia. Moore’s law. https://en.wikipedia.org/wiki/Moore’s_law,
2015.

[149] Wired. Robots to live-stream night-time museum explorations. http://www.
wired.co.uk/news/archive/2014-08/12/robots-tate-britain, 2014.

[150] Wired. The internet of things is far bigger than anyone realizes. http://www.
wired.com/insights/2014/11/the-internet-of-things-bigger/, 2014.

[151] E. M. Wolff, U. Topcu, and R. M. Murray. Robust control of uncertain markov
decision processes with temporal logic specifications. In Decision and Control
(CDC), IEEE 51st Conference on, pages 3372–3379, 2012.

[152] L. A. Wolsey. Integer programming, volume 42. Wiley New York, 1998.

[153] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon control for
temporal logic specifications. In Proceedings of the 13th ACM International
Conference on Hybrid Systems: Computation and Control, pages 101–110,
2010.

[154] B. Yordanov and C. Belta. Formal analysis of discrete-time piecewise affine
systems. Automatic Control, IEEE Transactions on, 55(12):2834–2840, 2010.

[155] B. Yordanov, J. Tumova, I. Cerna, J. Barnat, and C. Belta. Temporal logic
control of discrete-time piecewise affine systems. Automatic Control, IEEE
Transactions on, 57(6):1491–1504, 2012.

[156] M. Zamani, P. Mohajerin Esfahani, R. Majumdar, A. Abate, and J. Lygeros.
Symbolic control of stochastic systems via approximately bisimilar finite
abstractions. Automatic Control, IEEE Transactions on, 59(12):3135–3150,
2014.

[157] M. M. Zavlanos, A. Jadbabaie, and G. J. Pappas. Flocking while preserving
network connectivity. In Decision and Control (CDC), 46th IEEE Conference
on, pages 2919–2924, 2007.

[158] M. M. Zavlanos, M. B. Egerstedt, and G. J. Pappas. Graph-theoretic con-
nectivity control of mobile robot networks. Proceedings of the IEEE, 99(9):
1525–1540, 2011.

