
Cooperative Motion and Task Planning
Under Temporal Tasks

MENG GUO

Licentiate Thesis
Stockholm, Sweden 2014

TRITA-EE 2014:005
ISSN 1653-5146
ISBN 978-91-7595-016-7

KTH School of Electrical Engineering
Automatic Control Lab

SE-100 44 Stockholm
SWEDEN

Akademisk avhandling som med tillst̊and av Kungliga Tekniska högskolan
framlägges till offentlig granskning för avläggande av teknologie licentiatex-
amen i elektro- och systemteknik torsdag 13 mars 2014, klockan 10.15 i sal
L1, Kungliga Tekniska högskolan, Drottning Kristinaväg 30, Stockholm.

c© Meng Guo, March 2014

Tryck: Universitetsservice US AB

Abstract

Temporal-logic-based languages provide a formal and accurate way
to specify complex motion and action missions for autonomous robots,
beyond the classic point-to-point navigation task.

The first part of the thesis is devoted to the nominal scenario:
an autonomous robot is given a motion task specified as Linear-time
Temporal Logic (LTL) formulas. Under the assumption that the
workspace is static and fully-known, we provide a systematic and
automated scheme to synthesize both the discrete motion and task
plan and the hybrid control strategy that drives the robot, such that
the resulting trajectory fulfills the given task specification.

Limited knowledge about the workspace model, unforeseen changes
in the workspace property and un-modeled dynamical constraints of
the robot may render the nominal approach inadequate. Thus in
the second part of the thesis we take into account four non-nominal
scenarios where: (i) the specified task is not feasible; (ii) the task
contains hard and soft constraints; (iii) the workspace model is not
fully-known in priori; (iv) the task involves not only robot motion
but also actions. The proposed results greatly improve the real-time
adaptability and reconfigurability of the nominal scheme.

In the last part, we analyze a team of interconnected autonomous
robots with local and independently-assigned tasks. Firstly we consider
the case where cooperations among the robots are imposed due to
heterogeneity and collaborative tasks. A decentralized coordination
scheme is proposed such that the robots’ joined plans satisfy their
mutual tasks the most. Then a distributed knowledge transfer and
update procedure is designed for the networked robots that co-exist
within a common but partially-known workspace. It guarantees both
the safety and correctness of their individual plans.

iii

Acknowledgments

I would like first of all to express my gratitude to my main advisor
Prof. Dimos V. Dimarogonas for his invaluable support, guidance and
encouragement, in both life and work; my co-advisor Prof. Karl H. Johansson
for his great insight and knowledge.

During the past two years, Automatic Control Lab has been a joyful
place to stay. I thank Martin A., H̊akan, and Martin J. for fun running and
biking routes; Olle for numerous Pentago matches; António for inspiring
perspectives on world order; Yuzhe for endless brain teaser puzzles; Burak
for movie and novel suggestions; Jana for fruitful discussions; Arda for
helpful Ubuntu tips; Hamid and Burak for enormous help with my teaching;
Haukur for leading me into the world of Python; and my current officemates
Yuzhe, Davide, Farhad, Euhanna, Christian, Hamid, José and H̊akan.

Special thanks to collaborators in EU RECONFIG project: Alejandro
and Michele for great learning experiences on ROS, computer vision and
navigation control and for being such fun companions. Many thanks to
Matteo and other researchers at Smart Mobility Lab, for their help and
support during the experiment last December.

Thanks also go to the administrators at Automatic Control Lab: Hanna,
Kristina, Anneli and Karin for always being helpful and creating a pleasant
working atmosphere.

Finally, I would like to thank my girlfriend Wei Li and my family for
always believing in me and moral support.

Thank you!
Meng Guo

Stockholm, March 2014

v

Contents

Acknowledgments v

Contents vii

1 Introduction 1
1.1 Motivating Examples . 1
1.2 Background . 4
1.3 Related Work . 6
1.4 Main Contributions . 10
1.5 Thesis Outline . 12

2 Motion and Task Planning 13
2.1 Finite-state Transition System 13
2.2 Linear Temporal Logic . 18
2.3 Problem Formulation . 19
2.4 Discrete Plan Synthesis . 20
2.5 Hybrid Controller Synthesis 29
2.6 Discussion . 36

3 Reconfiguration and Real-time Adaptation 37
3.1 Potentially Infeasible Task . 37
3.2 Soft and Hard Specifications 44
3.3 Partially-known Workspace 49
3.4 Motion and Action Planning 60
3.5 Discussion . 68

4 Multi-agent System with Locally-assigned Tasks 69

vii

viii CONTENTS

4.1 Dependent Local Tasks . 69
4.2 Independent Local Tasks . 79
4.3 ROS Implementation . 89
4.4 Discussion . 92

5 Conclusions and Future Work 93
5.1 Summary . 93
5.2 Future Work . 95

Bibliography 97

Chapter 1

Introduction

The unprecedented development of digital processing units has boosted
the manufacture and installation of industrial and especially domestic

robots. They become more powerful in terms of computing speed and
capacity, and at the same time more affordable. They are expected to
accomplish various tasks specified by non-expert end-users autonomously,
without or with minimal human intervention.

Additionally, wireless communication technology enables almost all
robots to be connected and possibly also with internal or external “smart”
sensors, meaning that they can have more accurate and up-to-date infor-
mation about their operation space. This type of communication should be
modeled and encoded in a formal and correct way to save bandwidth and
improve efficiency. All these issues bring the need for a new framework for
modeling, design and analysis of interconnected multi-robot systems.

1.1 Motivating Examples
To demonstrate the motivation for the methods developed in the thesis,two
potential applications are presented: rescue robots and domestic robots.

Rescue Robots
Rescue robots are designed for rescuing people and exploring dangerous
and hazardous sites during disasters (as shown in Fig. 1.1). First of all,
a formal and concise way to specify the intended task is a key aspect
since human languages are hard for machines to understand and full of

1

2 Introduction

Figure 1.1: Illustration of a team of rescue robots. (Courtesy of
Wikimedia)

ambiguities (Resnik, 2011). These tasks normally consist of a sequence
of robot motion and actions. For instance, one task of the DARPA 2014
competition (DARPA, 2012) is to “open a door, enter a building, climb an
industrial ladder, traverse an industrial walkway, and turn on a valve”.

Given the task, the robot should be able to synthesize a plan and
control strategy that fulfills the task, in an automated way without human
intervention. This is critical for practical applications where many rescue
robots operate in a degraded environment and communications between the
robots and the human operators are un-reliable.

Though a blueprint of the operation site normally exists, the actual
workspace might be significantly different after the disaster and full of
uncertainties. Thus it is essential for the robot to sense the actual physical
workspace and to adapt its own plan and control strategy accordingly.

Due to different sizes, loads, power capacities and functionalities,
the robots within the team might be assigned different roles and tasks.
However it is very likely that one robot needs the collaboration from others
to accomplish part of its own task. A efficient scheme to coordinate
collaborations within the team is of great importance.

1.1. Motivating Examples 3

Figure 1.2: Illustration of a future view on domestic robots and smart
house. (Courtesy of Creattica (2014))

Domestic Robots

Domestic robots or service robots are used for household duties, like
cleaning (Roomba, 2013), surveillance (Gostai, 2013), tele-presence, assis-
tance (Rethink, 2013) and fun (Romo, 2013). It is predicted that about
15.6 million service robots for personal and domestic usage will be sold
between 2012 and 2015 (Robotics, 2012). They should be able to accomplish
complex tasks including navigation, manipulation, recognition, interaction
with humans and so on, as shown in Fig. 1.2. The future perspective
on domestic robots is that they will become a nearly ubiquitous part of
everyone’s day-to-day life.

The key functionality of domestic robots is that they receive daily tasks
specified by non-expert end-users and need to synthesize the plan and control
strategy by themselves to fulfill the task. Most importantly, they should
execute the plan autonomously and adapt to the varying environment within
different households. This places numerous challenges on integrating the
high-level task planning with the low-level motion and action control.

Furthermore, through Internet or Intranet, the service robots belong to
the whole domestic network with other smart sensors. It relieves the robots
from being equipped with heavy on-board sensors, under the condition that

4 Introduction

an efficient information exchange protocol can be designed. As a result, a
formal and correct framework that provides all these features will popularize
the deployment of domestic robots even further.

1.2 Background
In this section, we introduce some background knowledge related to
automated planning, model-checking algorithms and multi-agent systems.

Motion and Task Planning
Motion planning normally refers to the planning problem that involves
systems with continuous dynamics given as ordinary differential/difference
equations. The planning goal is to find the actuation signal that drives
the system from an initial state to a goal state. It is also called
planning in continuous statespace by LaValle (2006) or a control problem
in Control Theory (Doyle et al., 1992). Despite of the fact that motion
planning tasks are normally easy to specify, they are not trivial to
solve due to different geometric and dynamic constraints. However there
are many well-established methods for navigating an autonomous robot
from an initial position to a goal position, while staying within the
allowed area, e.g., navigation function (NF) for sphere workspace and
obstacles (Koditschek and Rimon, 1990), potential field (PF)-based control
algorithm for workspace with triangular partitions (Lindemann et al., 2006),
sampling-based motion planning techniques like probabilistic roadmap
method (Kavraki et al., 1996), and rapidly-exploring random trees (LaValle,
1998; Karaman and Frazzoli, 2011).

On the other hand, in Artificial Intelligence (Ghallab et al., 2004), the
task planning problem is to find a sequence of actions that change the system
from an initial state to a goal state. Given a finite set of actions, each
action is described by (1) the precondition that has to be fulfilled before the
action can be performed; (2) the effect on the system state after performing
the action. The system under consideration is modeled as discrete state-
transition systems (Dean and Wellman, 1991). Different ways to represent
the states may result in various complexities when solving the planning
problem. Logic-based representation is currently one of the most popular
formalisms used by many planning tools, like STRIPS (Fikes and Nilsson,
1972) and PDDL (McDermott et al., 1998). The solving process is similar

1.2. Background 5

to human deliberation that chooses and organizes actions by anticipating
their outcomes.

The greatest distinction between motion and task planning is that
the statespace in motion planning is continuous and possibly unbounded,
making it impossible to enumerate all the states explicitly as in task
planning. Furthermore, the set of allowed actions is also infinite given the
continuous input space. The notion of action condition and effect is also
not well defined since from different initial states the dynamical system may
evolve differently under the same actuation signal.

Model Checking for Synthesis
Model checking, also called property checking is a model-based verification
technique that exhaustively and automatically checks whether a given
model satisfies a given specification (Clarke et al., 1999; Baier et al., 2008;
McMillan, 1993). The model can be the actual hardware or software system
or its abstraction as a finite transition system. The property specification
normally involves security requirements such as absence of bad states and
deadlocks. The automaton-based model-checking algorithm returns either
success indicating that all possible system behaviors satisfy the property,
or a counterexample as one possible behavior that fails the property.
Temporal logic language provides a concise and formal way to specify both
propositional and temporal requirements on the system behavior.

Model-checking algorithms have also attracted much interest of applying
them for the purpose of synthesis rather than verification. In particular,
there has been many recent work that integrates motion planning algorithms
with model-checking techniques to treat complex motion tasks specified by
temporal logics (Belta et al., 2007; Fainekos et al., 2009; Bhatia et al., 2010).
Temporal logics such as Linear Temporal Logic (LTL) and Computation
Tree Logic (CTL) provide a formal and high-level way of describing motion
objectives that are much more complex than the well-studied point-to-point
navigation problems. For instance, the task might involve the coverage of
several regions, sequential visits, response or surveillance.

When applying model-checking algorithms for synthesis rather than
verification, the desired outcome is distinctively different: (1) the purpose of
verification is to find any system behavior that violates the property; (2) for
synthesis we are interested in the system behavior satisfying the property,
and more importantly that is optimized regarding certain cost functions.

6 Introduction

Distributed and Networked System
Seldom one autonomous agent is a stand-alone system, but often coexists
and interacts with other agents. Networked or multi-agent systems are often
deployed for the distributed problem solving (Durfee, 2006), where a global
task is decomposed into smaller subtasks and then assigned to each agent.
This formulation favors a tightly-coupled and top-down approach, where
each agent receives commands from the central planner and executes them
in a synchronized manner (Kok and Vlassis, 2006).

There is another type of multi-agent system assuming that each agent is
assigned a local task independently and no global tasks. As a result, each
agent acts according to its own plan in oder to accomplish the task, and
meanwhile it interacts with other agents when necessary, in terms of infor-
mation exchange and collaborations. This formalism favors loosely-coupled
and bottom-up approaches, which resembles many practical systems like
the community-based map building and navigation application (Hardawar,
2012) and collaborative consumption (Botsman and Rogers, 2010).

Control or coordination algorithms for a multi-agent system are normally
evaluated regarding how decentralized they are (Ren et al., 2005). A
centralized approach requires a central unit monitoring the whole team
and sending out control commands to every agent. On the contrary, a
decentralized approach normally has flexible membership such that agents
can join and leave the team freely; requires only local interaction among
agents that are nearby; respects privacy that an agent need not reveal all
its local information to others.

1.3 Related Work
In this section, we review some existing literature related to this thesis.

Model-checking-based Control Synthesis
The model-checking-based controller synthesis has been applied to both
complex dynamical systems and autonomous robots.

Tabuada and Pappas (2006) considers the control strategy synthesis
for discrete-time linear systems where the control objective is given by
linear temporal logic formulas, beyond the usual stabilization and output
regulation objectives. Aydin Gol and Lazar (2013) proposes an optimal

1.3. Related Work 7

control strategy for discrete-time systems under the temporal logic con-
straints and a quadratic cost function. Yordanov and Belta (2010) and
Yordanov et al. (2012) present a computational framework for the a feedback
control strategy synthesis of discrete-time piecewise affine systems, where
the specification is given as linear temporal logic formulas over linear
predicates. Fainekos and Pappas (2009) provides a robustness index for the
satisfiability of continuous-time signals under temporal logic specifications.
Abbas et al. (2013) synthesizes a generic cyber-physical system with respect
to a metric temporal property.

On the other hand, Fainekos et al. (2009) firstly proposes the complete
framework of automated controller synthesis for autonomous robots under
temporal logic tasks. The robot’s motion is abstracted by its dynamical
transitions within a partition of the workspace, as a finite transition system.
Then a high-level discrete plan as a sequence of regions to visit is synthesized
by the modified model-checking algorithms, which is then implemented
by low-level continuous controller. Graphical tools (Srinivas et al., 2013)
are also developed for non-expert end-users to express the intended task
specifications freely.

Partially-known Workspace
A critical assumption for the formalism above is that the workspace is
perfectly known and is correctly represented in the finite transition system.
The discrete plan is normally generated off-line and the robot executes the
plan no matter what has changed in the workspace, i.e., it does not react to
actual observations, as also mentioned in Ding et al. (2011b). Consequently,
this framework is lack of reconfigurability and real-time adaptation. Some
existing work considers the case when a complete representation of the
workspace is not available. In Ding et al. (2011b) and Wolff et al. (2012), the
robot’s motion and the uncertain workspace are modeled as nondeterministic
Markov decision processes, where the goal is to find a control strategy that
maximizes the probability of satisfying the specification. In Kress-Gazit
et al. (2009) and Wongpiromsarn et al. (2010), a two-player GR(1) game
between the robot and the environment is constructed and a receding horizon
planning algorithm is introduced. A winning strategy for the robot can be
synthesized by exhaustively searching through all possible combinations of
the robot movements and the admissible workspaces.

Instead of aiming for an off-line motion plan that takes into account

8 Introduction

every possible situation, we propose to create a preliminary plan based
on the initially available knowledge about the robot and the workspace.
Then while implementing the preliminary plan, real-time observation about
the workspace and the plan execution status are gathered, based on which
the plan is verified and revised (Guo et al., 2013b). Similar ideas appear
in Livingston et al. (2012) by locally patching the invalid transitions, which
however can not handle unexpected changes in regions’ properties.

Infeasible Task

The initial knowledge of the workspace might be partially or even incorrect,
which may render the intended task infeasible. As stressed in Fainekos
(2011), Kim and Fainekos (2012) and Raman and Kress-Gazit (2011), the
above motion planning framework reports a failure when the given task
specification is not realizable. It is desired that users could get feedbacks
about why the planning has failed and how to resolve this failure.

Fainekos (2011) and Kim and Fainekos (2012) address this problem in a
systematic way to find the relaxed specification automaton that is closest to
the original one and at the same time can be fulfilled by the system. Raman
and Kress-Gazit (2011) introduces a way to analyze the environment and
system components contained in the infeasible specification, and identify
the possible cause. The main difference between our work (Guo and
Dimarogonas, 2013) and the references above is that we put emphasize on
how to synthesize the motion plan that fulfills the infeasible task the most,
instead of finding and analyzing the infeasible parts of the task. Detailed
comparisons can be found at the beginning of Section 3.1.

Tumova et al. (2013b) and Tumova et al. (2013a) take into account the
problem of synthesizing a least-violating control strategy under a set of
safety rules. However the level of satisfiability is measured differently from
our approach. In particular, we not only measure how many states along
the plan violate the safety specifications, but also how much each of those
states violates the specifications.

Motion and Action Planning

To solve problems of practical interest it is often necessary to perform various
actions at different regions. Thus in Guo et al. (2013a), we propose a generic

1.3. Related Work 9

framework that combines model-checking-based robot motion planning with
action planning using action description languages.

Some relevant work can be found that integrates motion planning and
action planning. In Smith et al. (2011), since the underlying actions can only
be performed at fixed regions, the specification is reinterpreted in terms
of regions to visit. In Kress-Gazit et al. (2009), since the actions can be
activated and de-activated at any time, independent propositions are created
for each action. The above approaches are not be applicable if some actions
can only be performed when the workspace and the robot itself satisfy certain
conditions, or choices have to be made among all allowed actions.

Multi-agent System with Temporal Tasks
The same model-checking-based control synthesis framework has also been
extended to a multi-agent system consisting of autonomous agents. Many
existing work can be found on decomposing a global task specification to
bi-similar local ones in a top-down manner, which are then executed by
the agents in a synchronized (Kloetzer and Belta, 2010) and partially-
synchronized (Ding et al., 2011a) manner. Ulusoy et al. (2012) presents
an optimal path planning framework for a team of mobile robots under a
global task specification and traveling time uncertainties. Karaman and
Frazzoli (2011) formulates the multi-UAV routing problem under linear
temporal tasks as a mixed integer linear programming problem and the
derived paths for all vehicles need to be executed in a synchronized way.
There are several drawbacks of this top-down approach: it is centralized as
the plans for the whole team are synthesized once by the central unit; it has
a high computational complexity subjected to the combinatorial blowup; it
is vulnerable to agent failures and contingencies in the workspace.

Thus we, from an opposite viewpoint, assume that the local task
specifications are assigned locally to each agent and there is no specified
global task. Namely we consider a team of cooperative agents with
different, independently-assigned, even conflicting individual tasks (Guo and
Dimarogonas, 2013, 2014a). This loosely-coupled and bottom-up approach
allows more flexibility of the system, where plans and decisions are made
locally by each agent; conflicts and collaborations are resolved during
execution time. Filippidis et al. (2012) adopts a similar formalism where
a framework for decentralized verification is proposed. However the way to
resolve potentially-conflicting tasks is not considered there.

10 Introduction

1.4 Main Contributions
In the first contribution we propose a novel framework for real-time motion
planning based on model checking and revision. We firstly modify the
existing nested-DFS algorithm to search for an accepting path of a directed
graph, which gives a preliminary motion plan. Then we classify three types
of real-time information that might be obtained during real-time execution,
and show how they can be used to update the system model. We provide
a criterion to verify whether the current motion plan remains valid for
the updated system. If not, an iterative revision algorithm is designed
to revise the plan locally such that it becomes valid and fulfills the task
specification. This framework is particularly useful for operation in partially-
known workspaces and workspaces with uncertainties. The above results
have been published in the following proceeding:

• M. Guo, K. H. Johansson and D. V. Dimarogonas. Revising Motion
Planning under Linear Temporal Logic Specifications in Partially
Known Workspaces. IEEE International Conference on Robotics and
Automation(ICRA), Karlsruhe, Germany, May 2013.

The second contribution is a generic approach to derive the complete
description of the robot’s functionalities within a certain workspace, such
that any LTL task specification in terms of desired motions and actions
can be treated. We propose an approach to combine model-checking-based
motion planning with action planning using action description languages,
in order to tackle tasks involving not only regions to visit but also desired
actions at these regions. The above results have been published in the
following proceeding:

• M. Guo, K. H. Johansson and D. V. Dimarogonas. Motion and Action
Planning under LTL Specification using Navigation Functions and
Action Description Language. IEEE/RSJ International Conference
on Intelligent Robots and Systems(IROS), Tokyo, Japan, November
2013.

In the third contribution we analyze single- and multi-agent systems
under local LTL tasks that are infeasible and describe how to synthesize the
motion plan that fulfills the infeasible task the most and how the infeasible
task could be relaxed. We allow the user-defined relative weighting between

1.4. Main Contributions 11

the implementation cost of the motion plan and how much this plan fulfills
the original task specification. Multi-agent systems are also exploited and
a decentralized approach is proposed by considering the dependency and
priority relations. The above results have been published in the following
proceeding:

• M. Guo and D. V. Dimarogonas. Reconfiguration in Motion Planning
of Single- and Multi-agent Systems under Infeasible Local LTL
Specifications. IEEE Conference on Decision and Control(CDC),
Firenze, Italy, December 2013.

In the fourth contribution, we propose a cooperative plan reconfiguration
scheme for networked autonomous agents under partially-known workspace.
Each agent has a locally-assigned and possibly infeasible task specification as
LTL formulas, containing hard sub-specifications for safety and soft ones for
performance. A real-time knowledge transfer and update scheme is designed,
which guarantees not only safety and correctness of individual plans but also
fast convergence to the optimal plan. The above results have been published
in the following proceedings:

• M. Guo and D. V. Dimarogonas. Distributed Plan Reconfiguration
via Knowledge Transfer in Multi-agent Systems under Local LTL
Specifications. IEEE International Conference on Robotics and
Automation(ICRA), Hongkong, China, May 2014. To appear.

• M. Guo and D. V. Dimarogonas. Multi-agent Plan Reconfiguration
under Local LTL Specifications. International Journal of Robotics
Research. Submitted.

The following publications are not covered in this thesis, but contain
material that motivates the work presented here:

• M. Guo, M. M. Zavlanos and D. V. Dimarogonas. Controlling the
Relative Agent Motion in Multi-Agent Formation Stabilization. IEEE
Transactions on Automatic Control, Sep 2013.

• M. Guo and D. V. Dimarogonas. Consensus with Quantized Relative
State Measurements. Automatica, 49(8): 2531–2537, Aug 2013.

12 Introduction

• M. Guo and D. V. Dimarogonas. Nonlinear Consensus via Continuous,
Sampled, and Aperiodic Updates. International Journal of Control,
86(4): 567-578, Jan 2013.

• M. Guo, D. V. Dimarogonas and K. H. Johansson. Distributed
Real-time Fault Detection and Isolation For Cooperative Multi-agent
Systems. American Control Conference(ACC), Montreal, Canada,
June 2012.

• M. Guo and D. V. Dimarogonas. Quantized Cooperative Control
Using Relative State Measurements. IEEE Conference on Decision
and Control and European Control Conference(CDC-ECC), Orlando,
FL, USA, December 2011.

1.5 Thesis Outline
The structure of this thesis is as follows. In Chapter 2, we introduce the
theoretical tools and preliminary knowledge needed to formulate the nominal
motion and task planning problem. Then the generic framework for solving
this problem is proposed. Chapter 3 contains four extensions to the nominal
scenario, where reconfigurability and real-time adaptation is the main focus.
Chapter 4 addresses the cooperative planning and reconfiguration problem
for networked autonomous agents with both independent and dependent
tasks. At last, we present the final conclusions and some future research
directions in Chapter 5.

Chapter 2

Motion and Task Planning

This chapter introduces the key ingredients in the model-checking-
based motion and task planning framework. A finite-state transition

system serves as the discrete abstraction of the continuous robot motion
within a workspace, while a linear-temporal-logic formula specifies the
task requirement over the transition system. The aim is to firstly find a
discrete motion and task plan, which satisfies the task and at the same
time minimizes a cost function. Then the discrete plan is implemented by a
hybrid control strategy that navigates the robot within the real workspace.

2.1 Finite-state Transition System
The robot’s continuous motion within a certain workspace is abstracted as
a finite-transition system (Baier et al., 2008). This finite-state transition
system is constructed by integrating two aspects: (i) the workspace model;
(ii) the robot’s dynamics and its navigation technique.

The Workspace Model

The workspace we consider is a bounded n-dimensional space, denoted by
W0 ⊂ Rn, within which there exists W smaller regions of interest πi ⊂
W0, ∀i = 1, · · · ,W . Denote by Π = {π1, · · · , πW } the set of all smaller
regions. We require that Π is a full partition of the workspace and any two
regions πi, πj ∈ Π do not overlap. Namely,

∪W
i=1 πi = W0 and πi ∩ πj = ∅,

∀i, j = 1, . . . ,W and i 6= j.

13

14 Motion and Task Planning

Atomic propositions are boolean variables that can be either True or
False. They are used here to express known propterties about the state of
the robot. Specifically, in order to indicate the robot’s position, we define
the set of atomic propositions APr = {ar,i}, i = 1, · · · ,W , where

ar,i =

{
True if the robot is in region πi,
False otherwise, (2.1)

where ar,i can be evaluated by monitoring the measurements from a
localization or positioning system. The requirement that

∪n
i=1 πi = W0 is

important to ensure that the robot’s position is tracked at all time. Beside
the geometric structure of the workspace, we also would like to express some
generic properties within the workspace that are of interest to potential
tasks. Denote by APp = {ap,1, · · · , ap,M} the set of atomic propositions for
these properties. For simplicity, we set AP = APr ∪ APp as the set of all
atomic propositions.

Definition 2.1. The labeling function L : Π → 2AP maps a region πi ∈ Π
to the set of atomic propositions satisfied by πi. Moreover, ar,i ∈ L(πi) by
default, ∀i = 1, · · · ,W . N

Note that partial satisfaction of a proposition is not allowed. Namely, if
only a part of region πi satisfies a ∈ AP and the other part does not, then πi
should be split into two regions: one satisfies a and the other does not. APp

greatly improves the flexibility when expressing the intended tasks because
one generic property can represent one type of regions without explicitly
specify the location of these regions.

Example 2.1. An office-like workspace has six rooms and one corridor,
which gives the partition in Fig. 2.1. Two properties are “there is a basket
in the region” and “there is a ball in the region”. N

Additionally, since every region is a dense subset of the n-dimensional
space, it is impossible to represent each region by the set of points contained
in it. Thus it is crucial to represent and encode these regions efficiently.
For instance, rectangles can be encoded by its center coordinate, height
and width; sphere by its center and radius; triangular by the coordinates
of its corners. There are also automated partition tools like Delaunay
triangulation (Lee and Schachter, 1980) and Voronoi diagram (LaValle,
2006). Note that this level of partition is preliminary and not robot-specific.

2.1. Finite-state Transition System 15

Figure 2.1: Left: the office-like partition of six rooms and one corridor.
Right: after adding in APp, with two balls (in red) and one basket (in blue).

Robot Dynamics and Navigation Technique
We assume the robot satisfies the following continuous dynamics:

ẋ = f(x(t), u(t)), (2.2)

where x ∈ Rn, u ∈ Rm are the position and control signal; f(·) is Lipschitz
continuous (Khalil, 2002). Thus the system is deterministic, i.e., given an
initial state x(0), a control input u(t) : R → Rm produces an unique state
trajectory. We mainly take into account the single-integrator dynamics or
the unicycle model. However the proposed framework can be potentially
applied to autonomous robots with various dynamics.

Given the preliminary partition from Section 2.1 and the agent dynamics
by (2.2), we need to abstract the robot’s ability to transit from one region to
another, which is not necessarily the adjacency relation in the geometrical
sense. Instead it is defined in the control-driven fashion.

Definition 2.2. There is a transition from πi to πj if an admissible
navigation controller U : Rn ×Π×Π → Rm:

u(t) = U(x(t), πi, πj), t ∈ [t′, t′′] (2.3)

exists that could drive the system (2.2) from any point in region πi to a point
in region πj in finite time. At the same time the robot should stay within πi
or πj. Namely, x(t′) ∈ πi, x(t′′) ∈ πj and x(t) ∈ πi ∪ πj, ∀t ∈ [t′, t′′]. N

The above definition is closely related to the implementation of a discrete
motion plan described in Section 2.5. Two main navigation techniques are
discussed in the thesis: (i) Lindemann et al. (2006) proposes a potential-
field-based feedback control algorithm. It navigates a differential-driven

16 Motion and Task Planning

mobile robot from any point inside a region to an adjacent region through
a desired facet. The partition is based on generalized Voronoi diagram
and a smooth vector filed is constructed over each triangular region;
(ii) Koditschek and Rimon (1990) provides a provably correct point-to-
point navigation algorithm, by constructing an exact navigation function
for sphere workspace and obstacles. It has been successfully applied in
both single (Loizou and Jadbabaie, 2008) and multi-agent (Dimarogonas
and Kyriakopoulos, 2007) navigation control under different geometric
constraints, like single-integrator (Loizou and Kyriakopoulos, 2002), double-
integrator (Dimarogonas and Kyriakopoulos, 2005) vehicles. By following
the negated gradient of the navigation function, a collision free path is
guaranteed from almost any initial position in the free space to any goal
position in the free space given that the workspace is valid.

It is rarely the case that a navigation technique is applicable to any
type of partitions. For instance, the potential-filed-based method requires a
triangular partition while the navigation-function-based approach needs all
sphere structures. This means that the preliminary workspace partition
might be modified in terms of number, size and shape of the regions.
Example 2.2 shows some cases where the preliminary partition is modified
after incorporating the robot dynamics and navigation techniques. Note
that this might lead to an over-approximation or under-approximation (Säıdi
and Shankar, 1999) of the actual workspace as some regions are shrunk or
expanded during the process. In some cases, another navigation technique
needs to be considered when it is infeasible to incorporate one navigation
technique to a given workspace model.

Example 2.2. As shown in Fig. 2.2, the office-like workspace is further
partitioned, since the underlying navigation technique relies on triangular
partition. The irregular partitions are approximated by circular areas due
to the navigation-function construction. N

Control-driven and Weighted FTS
The robot motion is abstracted as transitions among the regions Π =
{π1, · · · , πN}. With a slight abuse of notation, we denote the state
πi = {the robot is at region πi}, i = 1, · · · , N . The states reflect
which region the robot is currently visiting. The transitions or state changes
represent that the robot has moved from one region to another. Recall

2.1. Finite-state Transition System 17

Figure 2.2: Further partitions resulting from incorporating different
navigation techniques.

that the transition relation is not necessarily the adjacency relation in the
geometrical sense, but by Definition 2.2. Formally the control-driven and
weighted finite-state transition system (FTS) is defined below:

Definition 2.3. The control-driven weighted FTS is a tuple Tc = (Π, −→c

, Π0, AP, Lc, Wc), where

• Π = {πi, i = 1, . . . ,W} is the set of states;

• −→c⊆ Π×Π is the transition relation by Definition 2.2. For simplicity,
πi −→c πj is equivalent to (πi, πj) ∈−→c;

• Π0 ⊆ Π is the initial state, to indicate where the robot may start from;

• AP = APr ∪APp is the set of atomic propositions.

• Lc : Π → 2AP is a labeling function by Definition 2.1

• Wc : Π × Π → R+ is the weight function, representing the cost of a
transition in −→c. N

We assume that Tc does not have a terminal state. The successors of
state πi are defined as Post(πi) = {πj ∈ Π |πj −→c πj}. An infinite path
of Tc is an infinite state sequence τ = π1π2 · · · such that π1 ∈ Π0 and
πi ∈ Post(πi−1) for all i > 0. The trace of a path is the sequence of
sets of atomic propositions that are true in the states along that path, i.e.,
trace(τ) = Lc(π1)Lc(π2) · · · . The trace of Tc is defined as Trace(Tc) =
∪τ∈I trace(τ), where I is the set of all infinite paths in Tc. An useful way

18 Motion and Task Planning

to represent an infinite path is to use the ω-operator, to indicate the segment
that has to be repeated infinitely many times (Baier et al., 2008).

The weighted FTS Tc is fully-known if it reflects the actual workspace
model and robot dynamics; Tc is called static if Tc does not change with
time.

2.2 Linear Temporal Logic
A language is needed to specify a complex task, which on one hand should
be expressive enough to specify various types of tasks, and on the other hand
should be formal enough to avoid ambiguity and misinterpretation. Linear-
time Temporal Logic (LTL) provides a concise and formal way to specify
both propositional and temporal constraints on the system behavior.

Syntax and Semantics
Linear-time temporal logic (LTL) is defined using the following syntax:

ϕ ::= True | a | ϕ1 ∨ ϕ2 | ¬ϕ | © ϕ | ϕ1 Uϕ2, (2.4)

where a ∈ AP and ∧ (or), ¬ (not), © (next), U (until). For brevity, we omit
the derivations of other useful operators like � (always), ♦ (eventually), ⇒
(implication) and refer to Chapter 5 of Baier et al. (2008). An infinite word
over the alphabet 2AP is an infinite sequence σ ∈ (2AP)ω, with the following
structure σ = S0S1S2 · · · , where Sk ∈ 2AP for all k = 1, 2, · · · , where Sk is
the set of atomic propositions that are true at time step k.

The semantics of LTL formula for an infinite word σ is given via a doubly-
recursive definition of the relation (σ, k) |= ϕ, meaning that the word σ
satisfies ϕ at time step k.

Definition 2.4. The semantics of LTL is defined as follows:

(σ, k) |= a ↔ a ∈ Sk

(σ, k) |= ¬ϕ ↔ (σ, k) 2 ϕ

(σ, k) |= ©ϕ ↔ (σ, k + 1) |= ϕ

(σ, k) |= ϕ1 ∨ ϕ2 ↔ (σ, k) |= ϕ1 or (σ, k) |= ϕ2

(σ, k) |= ϕ1 Uϕ2 ↔ ∃k′ ∈ [k, +∞], (σ, k′) |= ϕ2 and
∀k′′ ∈ (k, k′), (σ, k′′) |= ϕ1 . N

2.3. Problem Formulation 19

Any LTL formula ϕ is satisfied by σ at time step 0 if (σ, 0) |= ϕ (for
simplicity we denote by σ |= ϕ). The words of ϕ is defined as the set of
words that satisfy ϕ at time step 0, i.e., Words(ϕ) = {σ ∈ (2AP)ω |σ |= ϕ}.

LTL formulas can be used to specify various robot control tasks, such as
safety (�¬ϕ1, globally avoiding ϕ1), ordering (♦(ϕ1 ∧ ♦ (ϕ2 ∧ ♦ϕ3)), ϕ1,
ϕ2, ϕ3 hold in sequence), response (ϕ1 ⇒ ϕ2, if ϕ1 holds, ϕ2 will hold in
future), repetitive surveillance (�♦ϕ, ϕ holds infinitely often).

Given an infinite path τ of Tc and an LTL formula ϕ over AP , trace(τ)
is a word over the alphabet 2AP . Thus we can verify if trace(τ) satisfies ϕ
according to the semantics (2.4).

Definition 2.5. An infinite path τ satisfies ϕ, i.e., τ |= ϕ if its trace
trace(τ) |= ϕ. A satisfying path is also called a plan for ϕ.

2.3 Problem Formulation
As discussed in the introduction, a single counter example would be enough
for the purpose of verification, i.e., to verify that not all infinite paths of
Tc satisfy ϕ. However for plan synthesis, since the derived plan needs to be
implemented by autonomous robots, it would be of interest to find a plan
that fulfills certain structure.

Prefix-suffix Structure
As a plan is essentially an infinite sequence of states in Tc, it is not
convenient to encode, analyze or manipulate both in theory and software
implementation. Thus we consider the plan with the prefix-suffix structure:

τ = 〈τpre, τsuf〉 = τpre [τsuf]
ω (2.5)

where the prefix τpre is transversed only once and the suffix τsuf is repeated
infinitely. A plan with this prefix-suffix structure has a finite representation
as (2.5). This structure is also called lasso-shapeed in Schuppan and Biere
(2005), namely, τ has the stem τpre and the loop τsuf.

Definition 2.6. ϕ is called feasible if there exists an infinite path τ of Tc
that satisfies ϕ. N

With the above preliminaries in hand, the problem formulation for the
nominal scenario could be stated as follows:

20 Motion and Task Planning

Problem 2.1. Given the control-driven wFTS Tc and an LTL formula ϕ
over AP , (i) find a plan with the prefix-suffix structure by (2.5); (ii) construct
the hybrid control strategy based on (2.3) to execute the derived plan.

2.4 Discrete Plan Synthesis
In this section, we describe in detail how to synthesize the discrete plan that
solves the first part of Problem 2.1.

Büchi Automaton
Given an LTL formula ϕ over AP , there exists a Nondeterministic Büchi
automaton (NBA) over 2AP corresponding to ϕ, denoted by Aϕ.

Definition 2.7. The NBA Aϕ is defined by a five-tuple:

Aϕ = (Q, 2AP , δ, Q0, F), (2.6)

where Q is a finite set of states; Q0 ⊆ Q is a set of initial states; 2AP is
the alphabet; δ : Q × 2AP → 2Q is a transition relation; F ⊆ Q is a set of
accepting states. N

An infinite run of the NBA is an infinite sequence of states that starts
from an initial state and follows the transition relation. Namely, r =
q0q1q2 · · · , where q0 ∈ Q0 and qk+1 ∈ δ(qk, S) for some S ∈ 2AP , k = 0, 1, · · · .
Moreover, r is called accepting if Inf(r) ∩ F 6= ∅, where Inf(r) is the set
of states that appear in r infinitely often. Similar as before, we denote the
successors of qm ∈ Q by Post(qm) = {qn | ∃S ∈ 2AP , qn ∈ δ(qm, S)}.

Definition 2.8. Given an infinite word σ = S0S1S2 · · · over 2AP , its
resulting run in Aϕ is denoted by rσ = q0q1q2 · · · , which satisfies: (i)
q0 ∈ Q0; (ii) qi+1 ∈ δ(qi, Si), ∀i = 1, 2, · · · ,∞.

Similarly, given a finite word σ̄ = S0S1S2 · · ·SN+1 over 2AP , its
resulting run is denoted by rσ̄ = q0q1q2 · · · qN , which satisfies: (i) q0 ∈ Q0;
(ii) qi+1 ∈ δ(qi, Si), ∀i = 1, 2, · · · , N . N

Note that since Aϕ is nondeterministic, there may exist multiple resulting
runs of the same world. Denote by Lω(Aϕ) the accepted language of Aϕ,
which is the set of infinite words that result in an accepting run of Aϕ, i.e.,
Lw(Aϕ) = {σ ∈ (2AP)ω | rσ is an accepting run}.

2.4. Discrete Plan Synthesis 21

q1

init

q2

q3

q1q1 ¬a4

a1 & ¬a4

¬a4

a2 & ¬a4

¬a4

a1 & ¬a4

a2 & a3 & ¬a4

¬a4a1 & a2 & a3 &
¬a4

a3 & ¬a4

a1 & a2 & ¬a4

a1 & a2 & ¬a4

a1 & a2 & a3 &
¬a4

Figure 2.3: The NBA corresponds to ϕ = (�♦a1) ∧ (�♦a2) ∧ (�♦a3) ∧
(�¬a4) (from Gastin and Oddoux (2001)). The transition from state q1 to
q3 is given by q3 ∈ δ(q1, l) where the boolean expression l = (a2 & ¬a4)
encodes four input alphabets {a2}, {a2, a1}, {a2, a3}, {a2, a1, a3}.

Lemma 2.1. Lw(Aϕ) = Words(ϕ)

Proof. See proof of Theorem 5.37 in Baier et al. (2008) �

The translation process from an LTL formula to its corresponding NBA
can be done in time and space 2O(|ϕ|) (Baier et al., 2008). However, there
are fast translation algorithms (Gastin and Oddoux, 2001), which generates
NBA with few states and transitions. Furthermore it is tedious to list all
input alphabets for each transition, particularly given a large set of AP .
Thus it is important to represent them in an compact and efficient manner.
The translation algorithm from Gastin and Oddoux (2001) generates a
boolean expression for each transition, which accepts all alphabets that
enable this transition (as shown in Fig. 2.3). Binary decision diagrams
(BDD) are well-known for their efficiency to represent and evaluate boolean
functions (Akers, 1978) . As a result, an NBA can be encoded symbolically
and efficiently. More details can be found in Section 4.3.

Product Büchi Automaton
The automaton-based model-checking algorithm can be found in Vardi and
Wolper (1986) and Algorithm 11 of Baier et al. (2008). It is based on
checking the emptiness of the product Büchi automaton. Since Words(ϕ) =

22 Motion and Task Planning

Lw(Aϕ) and trace(τ) ∈ Trace(Tc), the original problem is equivalent to
finding the intersection Trace(Tc)∩Lw(Aϕ), which is actually the language
of the product Büchi automaton Ap = Tc ⊗Aϕ, which accepts all runs that
are valid for Tc and at the same time satisfy ϕ.

It is important to mention that unlike the model-checking algorithm
for verification, we do not negate the task specification before generating
the associated NBA and the product automaton. This is because we
are interested in the “good” behavior of the system that satisfies the
specification, not the “bad” behavior that satisfies the negated specification
for the purpose of verification.

Definition 2.9. The weighted product Büchi automaton is defined by Ap =
Tc ⊗Aϕ = (Q′, δ′, Q′

0, F ′, Wp), where

• Q′ = Π×Q = {〈π, q〉 ∈ Q′ | ∀π ∈ Π, ∀q ∈ Q}.

• δ′ : Q′ → 2Q
′. 〈πj , qn〉 ∈ δ′(〈πi, qm〉) iff (πi, πj) ∈−→c and qn ∈

δ(qm, Lc(πi)).

• Q′
0 = {〈π, q〉 |π ∈ Π0, q0 ∈ Q0}, the set of initial states

• F ′ = {〈π, q〉 |π ∈ Π, q ∈ F}, the set of accepting states.

• Wp : Q
′ ×Q′ → R+ is the weight function.

Wp(〈πi, qm〉, 〈πj , qn〉) = Wc(πi, πj), (2.7)

where 〈πj , qn〉 ∈ δ′(〈πi, qm〉). N

Since Ap remains a Büchi automaton (Baier et al., 2008), its infinite
run and its accepting condition can be defined similarly as Aϕ. An infinite
run R is called accepting if it intersects with the accepting set F ′ infinitely
often. The successors of q′s are given by Post(q′s) = {q′g | q′g ∈ δ′(q′s)}. Given
a state q′ = 〈π, q〉 ∈ Q′, its projection on Π is denoted by q′|Π = π and its
projection on Q is denoted by q′|Q = q. Given an infinite run R = q′0q

′
1q

′
2 · · ·

of Ap, its projection on Π is denoted by R|Π = q′0|Π q′1|Π q′2|Π · · · and its
projection on Q is denoted by R|Q = q′0|Q q′1|Q q′2|Q · · · .

Lemma 2.2. If there exists an infinite path τ of Tc such that τ |= ϕ, then
at least an accepting run of Ap exists.

Proof. See the proof of Theorem 4.63 from Baier et al. (2008). �

2.4. Discrete Plan Synthesis 23

Lemma 2.3. Given an accepting run R of Ap, then R|Π |= ϕ.

Proof. By definition, there exists an accepting state q′f ∈ F ′ appearing in
R infinitely often. Thus q′f |Q ∈ F appears in R|Q infinitely often, yielding
that R|Q is an accepting run. It can be easily shown that R|Q is one of the
resulting runs of the trace of R|Π. Thus trace(R|Π) ∈ Lω(ϕ) = Words(ϕ),
which implies R|Π |= ϕ by Definition 2.5. It completes the proof. �

Cost of Accepting Run
We intended to find an infinite path τ of Tc with the prefix-suffix structure
by (2.5), such that τ |= ϕ.

Lemma 2.4. Given that there exists an infinite path τ with the prefix-suffix
structure by (2.5) and τ |= ϕ, then at least one accepting run of Ap exists
with the prefix-suffix structure.

Proof. Since τ |= ϕ, then σ = trace(τ) ∈ Words(ϕ). Furthermore as
Lw(Aϕ) = Words(ϕ) by Lemma 2.1, σ ∈ Lw(Aϕ), meaning that the resulting
run rσ in Aϕ by Definition 2.8 is an accepting run of Aϕ.

Without loss of generality, let τ = π0π1 · · ·πi · · · and rσ = q0q1 . . . qj · · · .
Now we prove that R = 〈π0, q0〉〈π1, q1〉 · · · 〈πi, qj〉 · · · is an accepting run
of Ap. First of all, 〈π0, q1〉 ∈ Q′

0 as π0 ∈ Π0 and q0 ∈ Q0. Secondly,
〈πi+1, qj+1〉 ∈ δ′(〈πi, qj〉) as (πi, πi+1) ∈−→c and qi+1 ∈ δ(qi, Lc(πi)). At
last, since rσ is an accepting run of Aϕ, there exists an accepting state
qf ∈ F that appears in rσ infinitely often. Correspondingly, there exists at
least one 〈π, qf 〉 that appears in R infinitely often and 〈π, qf 〉 ∈ F ′, where
π may stand for one or several states in Π. Since F ′ is finite, there must be
one accepting state q′f ∈ F ′ that appears in R infinitely often.

Then an accepting run with the prefix-suffix structure can be constructed
by using the segment from 〈π0, q0〉 to q′f as prefix and the segment starting
from q′f and back to q′f as the suffix, which completes the proof. �

Thus we could focus on the accepting runs of Ap with the following prefix-
suffix structure:

R = 〈Rpre, Rsuf〉 = q′0 q
′
1 · · · q′f

[
q′f q

′
f+1 · · · · · · q′n

]ω
= 〈π0, q0〉 · · · 〈πf−1, qf−1〉

[
〈πf , qf 〉〈πf+1, qf+1〉 · · · · · · 〈πn, qn〉

]ω
,

(2.8)

24 Motion and Task Planning

Algorithm 1: Construct full product automaton, FullProd()
Input: Tc, Aϕ

Output: Ap

foreach πi ∈ Π, qm ∈ Q do1
q′s = 〈πi, qm〉 ∈ Q′2
if qm ∈ Q0 and πi ∈ Π0 then3

q′s ∈ Q′
04

if qm ∈ F then5
q′s ∈ F ′6

foreach πj ∈ Post(πi), qn ∈ Post(qm) do7
q′g = 〈πj , qn〉 ∈ Q′8

d = CheckTranB(qm, Lc(πi), qn, Aϕ)9
if d ≥ 0 then10

q′g ∈ δ′(q′s)11

Wp(q
′
s, q

′
g) = Wc(πi, πj) + α · d12

return Ap13

where q′0 = 〈π0, q0〉 ∈ Q′
0 and q′f = 〈πf , qf 〉 ∈ F ′. Note that there are no

correspondences among the subscripts. The prefix part Rpre = (q′0 q
′
1 · · · q′f)

from an initial state q′0 to one accepting state q′f that is executed only once
while the suffix part Rsuf = (q′f q

′
f+1 · · · · · · q′n) from q′f back to itself that is

repeated infinitely. Given the finite representation as (2.8), there is a finite
set of transitions appearing in R:

Edge(R) = {(q′i, q′i+1), i = 0, 1 · · · , (n− 1)} ∪ {(q′n, q′f)}. (2.9)

The structure also allows us to define the total cost of R:

Cost(R, Ap) =

f−1∑
i=0

Wp(q
′
i, q

′
i+1) + γ

n−1∑
i=f

Wp(q
′
i, q

′
i+1)

=

f−1∑
i=0

Wc(πi, πi+1) + γ
n−1∑
i=f

Wc(πi, πi+1)

(2.10)

where the first summation in (2.10) represents the accumulated weights of
transitions along the prefix and the second is the summation along the suffix.

2.4. Discrete Plan Synthesis 25

Algorithm 2: Validate transitions of Aϕ, CheckTranB()
Input: (qm, l, qn, Aϕ), qm, qn ∈ Q, l ∈ 2AP

Output: distance d
d = −11
if qn ∈ δ(qm, l) then2

d = 03

return d4

Note that γ ≥ 0 represents the relative weighting on the cost of transient
response (the prefix) and steady response (the suffix).

Problem 2.2. Given the product automaton Ap, find its accepting run with
the prefix-suffix structure that minimizes the cost defined by (2.10).

We denote by Ropt the solution for the above problem, as the optimal
accepting run. Its corresponding plan is given by τopt = Ropt|Π.

Remark 2.1. τopt might not be the actual optimal plan with the prefix-
suffix structure, whose cost is defined similarly as (2.10). As pointed out
in Schuppan and Biere (2005), this optimality loss is due to the simplification
during the translation process from LTL formulas to the corresponding NBA.
However there are certain types of tight NBA such as Clarke et al. (1994)
that preserves this quality. It means that the optimal plan can be found
directly as the projection of the optimal run. But we have not found the
software implementation for this translation algorithm yet. Nevertheless the
trade-off between optimality and computational complexity remains as the
tight NBA would certainly have far more states and edges as shown in the
examples of Schuppan and Biere (2005). N

Optimal Run Search Algorithms
In this part we present two methods to construct the product automaton
and the graph search algorithm to find the optimal accepting run.

Full Construction

Since only static and fully-known workspace is considered, both Tc and ϕ
are time-invariant. Thus Ap can be constructed fully by Definition 2.9,

26 Motion and Task Planning

P_FFP_IF

Figure 2.4: For every pair of initial state q′0 ∈ Q′
0 (in blue) and accepting

state q′f ∈ F ′ (in red), the shortest path from q′0 to q′f and the shortest cycle
containing q′f are computed.

which is presented in Algorithm 1. In particular, given a FTS state πi ∈ Π
and a NBA state qm ∈ Q, the composed state 〈πi, qm〉 is added to Q′ if it
is not in Q′ already. Then all transitions originated from 〈πi, qm〉 can be
found by the definition of δ′, namely ∀πj ∈ Post(πi) and ∀qm ∈ Post(qn),
〈πj , qn〉 ∈ Post(〈πi, qm〉) if qn ∈ δ(qm, L(πi)). This condition is evaluated
by calling Algorithm 2 in Line 9: d = −1 if qn /∈ δ(qm, Lc(πi)); d = 0 if
qn ∈ δ(qm, Lc(πi)). The weight of this transition is given by (2.7) in Line
12, where α is set to 1 for now.

After constructing Ap fully, Algorithm 3 takes as input arguments Ap

and a set of starting states S′ ⊆ Q′, which is set to Q′
0 by default, while

it generates the optimal accepting run. Algorithm 3 utilizes Dijkstra’s
algorithm (LaValle, 2006) for computing the shortest path from a single
source node to a set of target nodes within a weighted graph. In particular,
function DijksTargets(Ap, q′S , Q′

T) computes shortest paths in Ap from
source state q′S ∈ Q to every target state belonging to the set Q′

T ∈ Q′.
Function DijksCycle(Ap, q′S) is used to compute shortest cycle from the
source state q′S back to itself. As shown in Figure 2.4, for each pair of initial
and accepting states (q′0, q

′
f) where q′0 ∈ Q′

0 and q′f ∈ F ′, the shortest path
from q′0 to q′f is obtained from line 1 of Algorithm 3 where DijksTargets(·)
is called while the shortest cycle containing q′f is obtained from line 2 of
Algorithm 3 where DijksCycle(·) is called. At last, the pair (q′0,?, q

′
f,?)

that minimizes the total cost defined by (2.10) is chosen. Then the optimal
accepting run is determined by setting its prefix as the shortest path from
q′0,? to q′f,? and its suffix as shortest cycle containing q′f,?.

Algorithm 1 has the complexity proportional to the sum of the number
of states and transitions in Ap. The worst-case complexity of Algorithm 3 is
given by O(|Ap| · log |Ap| ·(|Q′

0|+ |F ′|))) as essentially the Dijkstra algorithm
has to be called over Ap by the number of times equal to |Q′

0|+ |F ′|.

2.4. Discrete Plan Synthesis 27

Algorithm 3: Search for optimal run, OptRun().
Input: Ap, S′ = Q′

0 by default
Output: Ropt
1. If Q′

0 or F ′ is empty, construct Q′
0 or F ′ first.

2. For each initial state q′0 ∈ S′, call DijksTargets(G, q′0, F ′).
3. For each accepting state q′f ∈ F ′, call DijksCycle(G, q′f).
4. Find the pair of (q′0,?, q′f,?) that minimizes the summed cost defined
by (2.10).
5. Optimal accepting run Ropt, prefix: the shortest path from q′0,? to
q′f,?; suffix: the shortest cycle from q′f,? and back to itself.
return Ropt

On-the-fly Construction

Beside constructing Ap once for all, we would construct Ap on-the-fly along
with the graph search Algorithm 3 and even the revision Algorithm 14
introduced later. In other words, the states and transition relations of
Ap are built “on demand”. When the search algorithm visits any state
q′s ∈ Q′ and calls Algorithm 4 for the adjacency relation of q′s, Algorithm 4
iterates through all successors of q′s and returns the corresponding transition
q′g ∈ δ′(q′s) along with its weight. Note that each state q′s ∈ Q′ is marked by
the label “visited” or “unvisited”, to indicate if the transitions originated
from q′s have to be constructed. In particular, if q′s is marked “visited”,
it means that they have been constructed before and can be returned
directly (Lines 2-4); if q′s is marked “unvisited” or πi belongs to Π̂, they
need to be constructed by Definition 2.7 in Lines 5-12; Π̂ is defined in (3.20),
which can be treated as ∅ for now.

The markers “visited” and “unvisited” improve the computational
efficiency as the adjacency relation of states that have been visited before
can be returned directly, meaning that the results from previous planning
iterations can be reused later; Π̂ provides a highly efficient way to maintain
and update Ap in case of updates in Tc, as later described in Algorithm 14
in Section 3.3. Then Algorithm 3 can be easily modified such that it takes
the adjacency relation of Ap as an input, instead of the full Ap. Functions
DijksTargets(·) and DijksCycle(·) still work in the same way as Dijkstra
algorithm only needs the adjacency relation in the breadth-first structure
and the associated weight. Even though the worst-case computational

28 Motion and Task Planning

Algorithm 4: Build adjacency relation of Ap on-the-fly, AdjProd()
Input: q′s, Tc, Aϕ, Π̂, Ap

Output: q′g ∈ δ′(q′s), Wp(q
′
s, q

′
g)

q′s = 〈πi, qm〉 ∈ Q′1
if q′s is marked “visited” then2

foreach q′g ∈ δ′(q′s) do3
yield transition q′g ∈ δ′(q′s) and its weight4

else if q′s is marked “unvisited” or πi ∈ Π̂ then5
empty δ′(q′s)6
foreach πj ∈ Post(πi), qn ∈ Post(qm) do7

q′g = 〈πj , qn〉 ∈ Q′8

d = CheckTranB(qm, Lc(πi), qn, Aϕ)9
if d ≥ 0 then10

q′g ∈ δ′(q′s)11

Wp(q
′
s, q

′
g) = Wc(πi, πj) + α · d12

yield transition q′g ∈ δ′(q′s) and its weight13

mark q′s as “visited”14

complexity of Algorithm 3 when combined with Algorithm 4 remains the
same as the full construction by Algorithm 1, the on-the-fly construction of
Ap is essential for the partially-known and dynamic workspace presented in
Section 3.3 where Tc has to be updated frequently.

Example 2.3. This example shows the general complexity of synthesizing a
discrete motion and task plan using the proposed scheme. The FTS consists
of n×n uniform grids as states and the cost from one region to an adjacent
region is set randomly and uniformly within [0, 1]. The task is to deliver two
objects to two different destinations separately and then return to the base
station. The formula can be written similarly as (2.15). The location of the
objects and destinations are chosen randomly. We keep track of: (i) tfull, the
time needed to fully construct Ap by Algorithm 1; (ii) tsyn, the time taken
to find the optimal accepting run by Algorithm 3 over the fully-constructed
Ap; (iii) tfly, the time taken to construct Ap on-the-fly by Algorithm 4 along
the optimal search by Algorithm 3. They are measured by CPU time in

2.5. Hybrid Controller Synthesis 29

Table 2.1: Numerical Results for Example 2.3

Size n2 tfull (s) tsyn (s) tfly (s) Size n2 tfull (s) tsyn (s) tfly (s)

25 1.11 0.03 0.82 3025 64.77 2.98 74.53

225 8.85 0.23 6.88 4225 91.65 3.96 101.34

625 14.04 0.56 11.09 5625 118.24 5.44 144.78

1225 24.96 1.12 23.24 7225 150.77 7.00 178.99

2025 42.40 1.87 38.13 9025 187.01 8.95 218.17

seconds. This numerical analysis is carried out on a desktop computer (3.06
GHz Duo CPU and 8GB of RAM).

The associated NBA has 75 states and 877 edges. Judging from
Table 2.1, given a fixed transition system and this particular task, these
two different approaches consume almost the same amount of time. The
construction of Ap takes almost 95% of the total time while the graph search
algorithm is relatively fast. N

2.5 Hybrid Controller Synthesis
Assume the optimal run Ropt from Algorithm 3 has the following format:

Ropt = 〈Rpre, Rsuf〉
= Rpre,1Rpre,2 · · ·Rpre,Npre

[
Rsuf,1Rsuf,2 · · ·Rsuf,Nsuf

]ω
,

(2.11)

where Rpre = Rpre,1 · · ·Rpre,Npre is the prefix; Rsuf = Rsuf,1 · · ·Rsuf,Nsuf is the
suffix. Thus the robot’s status within the accepting run can be uniquely
determined by the segment (prefix or suffix) and its index within that
segment, which are denoted by seg and k. To generate the infinite plan using
Rpre and Rsuf, Algorithm 5 takes the current product state q′cur = Rseg,k and
Ropt as inputs and generates the next goal product state. Simply speaking,
it firstly follows the prefix until the end of prefix. Then it switches to the
suffix and follows it until the end. After that it restarts from the beginning
of the suffix and repeats the same process. In this way, the suffix is executed
infinitely many times.

Algorithm 6 executes the derived optimal run Ropt off-line. Initially
the agent starts from q′pre,1; q′cur and q′pre are the current and next product
state in Ropt; πcur and πnext indicate the robot’s current region and the next

30 Motion and Task Planning

Algorithm 5: Find next goal state, NextGoal()
Input: q′cur, Ropt
Output: q′next
q′cur = Rseg,k1
if seg = ‘‘pre”, k < Npre then2

k = k + 1, seg=“pre”3

if seg = ‘‘pre”, k = Npre then4
k = 1, seg=“suf”5

if seg = ‘‘suf”, k < Nsuf then6
k = k + 1, seg=“suf”7

if seg = ‘‘suf”, k = Nsuf then8
k = 1, seg=“suf”9

return q′next = Rseg,k10

goal region. πnext is initialized as τpre,1; Rpast is used to store the sequence
of product states that has been reached in Ropt; τpast is used to store the
sequence of regions the robot has visited; Once a confirmation is acquired
that πnext is reached, q′next is added to Rpast and correspondingly πnext is
added to τpast. Then q′next is set to the next goal state from Algorithm 5
given q′cur. As a result, the controller U(x(t), πcur, πnext) is activated to drive
the agent from πcur to πnext. Algorithm 6 can be running for infinitely long
time as the the suffix segment is repeated infinitely many times.

Remark 2.2. The condition in Line 3 of Algorithm 6 greatly effects the
resulting behavior of the robot, regarding when it stops moving towards the
current goal region and switches to the next.

Case Study
In this case study, we validate the proposed framework by both simulation
and experiment results.

Workspace Abstraction

The workspace is a testbed with size 2.4m × 2.1m representing the
office environment shown in Fig. 2.5, consisting of three rooms on each

2.5. Hybrid Controller Synthesis 31

Algorithm 6: Off-line plan execution by hybrid control, HybCon()
Input: Ropt, x(t)
Output: u, Rpast, τpast, q′cur
q′cur = q′next = Rpre,1, πnext = q′next|Π, Rpast = [], τpast = []1
while True do2

if x(t) ∈ πnext confirmed then3
q′cur = q′next4
τpast = τpast + πnext, Rpast = Rpast + q′next5
q′next = NextGoal(q′cur, Ropt)6
πcur = q′cur|Π, πnext = q′next|Π7

u = U(x(t), πcur, πnext)8

side and one corridor in the middle. The corridor is partitioned into
three smaller segments. Thus this workspace has nine regions in total
“r1, · · · , r6, c1, c2, c3”, represented by propositions “r1,· · · , r6, c1, c2, c3”.
There are one red ball, one green ball and two baskets in different rooms,
represented by propositions “rball, gball, basket”. The rectangular regions are
encoded by the center point, width and height. The horizontally adjacent
rooms are separated by vertical walls. The cost of moving from one region
to another is estimated by the Euclidean distance between their centers.
The region name and its labeling function are given by (from bottom to
up, left to right): (r1, {r1}), (r2, {r2, basket}), (r3, {r3, gball}), (c1, {c1}),
(c2, {c2}), (c3, {c3}), (r4, {r4, basket}), (r5, {r5, rball}), (r6, {r6}).

Robot Description

The robot we deployed is a NAO robot (Aldebaran, 2014) with size 0.5m×
0.2m× 0.3m, which is an autonomous, programmable humanoid robot. Its
state within the workspace is given by (xr, yr, θr), where xr and yr are
the coordinate and θr ∈ [−π, π] is its orientation with respect to the x-
axis. Although its inner kinematics and dynamics are hard to analyze, it is
equipped with a development toolkit called NAOqi motion API, making it
fairly straightforward to design motion controllers that drive the robot to a
goal point relative to its local coordinate. In particular, the basic control
modules provided are “move x()”, “move y()” and “turn()”. Namely, it can
move forward in its local x-axis by the given speed, move sideways in its local

32 Motion and Task Planning

0 500 1000 1500 20000

500

1000

1500

2000

Figure 2.5: the actual trajectory that fulfills ϕ1 by (2.13).

y-axis by the given speed and it can turn itself by the given angular speed.
Those modules are blocking in the sense that only one module can be running
every time instant and moving forward is much more precise than moving
sideways. Since they are not free of actuation noises and disturbances, we
design the following turn-and-forward feedback controller:

u =


move x

(
κ1 · ‖(xg − xr, yg − yr)‖

)
, if |θdif| > θ̄{

turn
(
κ2 · θdif

)
, if θ̄ < |θdif| ≤ π

turn
(
− κ2 · sign(θdif) · (2π − abs(θdif))

)
, if |θdif| > π

(2.12)
where (xg, yg) is the goal position; ‖xg−xr, yg−yr‖ is the relative distance;
θref = arctan(yg − yr, xg − xr) is the relative angle between the robot’s
position and the goal position; θdif = θref−θr is the difference between robot’s
orientation and the desired orientation; θ̄ < π is a design parameter deciding
when the robot should move forward; κ1, κ2 > 0 are design parameters as the

2.5. Hybrid Controller Synthesis 33

0 500 1000 1500 20000

500

1000

1500

2000

Figure 2.6: the actual trajectory that fulfills ϕ3 by (2.14).

proportional gain. Thus the robot would keep turning until it is facing the
the goal position. The time interval to update u is also an important tunning
parameter. It is verified by the simulation and experimental results that the
proposed controller is effective. Then the generic controller U(x(t), πi, πj)
in (2.3) can be obtained by setting the way point in (2.12) as the center
of the next goal region, which guarantees the robot’s transition from one
region to an adjacent one, except when there are walls in between. Based
on this transition relation, we could construct Tc that consists of 9 regions
and 16 edges. In the simulation, we add Gaussian noises to the actuation
signal generated by (2.12).

Simulation Results

We illustrate the effectiveness of the proposed framework by considering four
different task specifications.

Case I: the robot has to pick up the red ball, drop it to the one of the

34 Motion and Task Planning

0 500 1000 1500 20000

500

1000

1500

2000

Figure 2.7: the actual trajectory that fulfills ϕ4 by (2.15).

baskets and then stay at room one. It is specified as the LTL formula:

ϕ1 = ♦(rball ∧ ♦ basket) ∧ ♦� r1, (2.13)

which can be interpreted as “eventually pick up the red ball. Once it is
done, move to one basket and drop it. At last come back to room one
and stay there”. It took 0.03s for Algorithm 3 to find the optimal plan:
“r1 c1 c2 r5 c2 r2 c2 c1 r1 (r1)ω”, with the prefix cost 581 and suffix cost 1.
Then the optimal plan is constructed and executed off-line by Algorithm 6
and the final trajectory is shown in Fig. 2.5. The experiment video that
demonstrates this case can be found online (Guo and Colledanchise, 2014).

Case II: same delivery task as in Case (I), but now it has to deliver two
objects and is not allowed for the robot to carry two objects simultaneously.

2.5. Hybrid Controller Synthesis 35

0 500 1000 1500 20000

500

1000

1500

2000

Figure 2.8: the actual trajectory that fulfills ϕ5 by (2.16).

The task is specified by the LTL formula:

ϕ2 =♦(rball ∧ ♦ basket) ∧ ♦(gball ∧ ♦ basket) ∧ ♦� r1
∧ �(rball ⇒ ©(¬gball U basket))
∧ �(gball ⇒ ©(¬rball U basket)),

(2.14)

where we add in the constraints that another ball can be picked up only after
the robot has dropped the ball in hand. It took 0.86s for Algorithm 3 to
find the optimal plan: “r1 c1 c2 c3 r3 c3 c2 r2 c2 r5 c2 r2 c2 c1 (r1)ω”, with the
prefix cost 1021 and suffix cost 1. The final trajectory is shown in Fig. 2.6.
It can be seen that the robot picks up the green ball first, drop it in the
basket in r2, picks up the green ball, and drop it in the basket in r2, which
fulfills the imposed constraint.

Case III: same delivery task as in Case (II), but now we require that the
red ball has to be delivered to the basket in r2 while the green ball has to

36 Motion and Task Planning

the basket in r4. Now the task can be specified by:

ϕ3 =♦(rball ∧ ♦ (basket ∧ r2)) ∧ ♦(gball ∧ ♦ (basket ∧ r4))
∧ �(rball ⇒ ©(¬gball U basket))
∧ �(gball ⇒ ©(¬rball U basket)) ∧ ♦� r1,

(2.15)

where the location for each basket is specified. It took 1.39s for Algorithm 3
to find the optimal plan: “r1 c1 c2 r5 c2 r2 c2 c3 r3 c3 c2 c1 r4 c1 (r1)ω”, with
the prefix cost 1021 and suffix cost 1. The final trajectory is shown in
Fig. 2.7. It shows that the robot picks up the red ball first, drop it in the
basket in r2, picks up the green ball, and drop it in the basket in r4.

Case IV: given a surveillance task, the robot needs to inspect rooms r3,
r4 and r6 infinitely often. It can be written as the LTL formula:

ϕ4 = (�♦ r3) ∧ (�♦ r4) ∧ (�♦ r6). (2.16)

It took 0.01s for Algorithm 3 to find the optimal plan: “r1 c1 r4 c1 c2 c3 r3 c3
(r6 c3 c2 c1 r4 c1 c2 c3 r3 c3)ω”, with the prefix cost 1021 and suffix cost 1.
The final trajectory is shown in Fig. 2.8. It can be seen that the robot
patrols these three rooms as required.

2.6 Discussion
In this chapter, we present the framework to synthesize the hybrid control
strategy that navigates an autonomous robot such that a high-level task
specification is fulfilled. We start from constructing the finite abstraction
of the robot’s motion within the workspace. Then we propose an fully-
automated scheme to synthesize the discrete motion and task plan satisfying
the specified task. At last, a hybrid control strategy is designed that executes
the discrete plan off-line.

Chapter 3

Reconfiguration and Real-time
Adaptation

The framework presented in Chapter 2 needs the critical assumption that
the workspace is fully-known in priori and remains static. The plan is

synthesized once and executed off-line by the hybrid controller as it is. This
renders the approach lack of reconfigurability and real-time adaptation. In
this chapter, we mainly address this issue.

3.1 Potentially Infeasible Task
An intriguing question to ask about the framework introduced in Chapter 2
is what if the given task specification is infeasible. This could happen when
either the task is actually infeasible or the task is feasible but the initial
workspace model is incomplete or incorrect.

Problem 3.1. Assume the given task specification is infeasible by
Definition 2.6, how should the specification be relaxed and more importantly
how to synthesize the motion and task plan that satisfies the original
specification as much as possible?

An approximate algorithm is provided in Kim and Fainekos (2012) that
partially answers the above problem. It generates a relaxed specification
automaton A′

ϕ which is close to Aϕ and feasible over Tc (see Section III-C
of Kim and Fainekos (2012)). Then the discrete plan can be synthesized
by following the procedure as described in Section 2.4. However there are

37

38 Reconfiguration and Real-time Adaptation

often more than one accepting run within Tc ⊗A′
ϕ and they may fulfill the

original task specification to different extents. Instead we aim to firstly
find the motion and task plan that fulfills the task the most regarding
certain criterion, based on which then the relaxed specification automaton
is constructed.

Relaxed Product
By Definition 2.6, ϕ is infeasible when the standard product automaton
Ap does not have an accepting run. Thus we need to relax the constraints
imposed by Aϕ to allow more transitions within Ap.

Definition 3.1. The relaxed product Büchi automaton Ar = Tc×Aϕ =
(Q′, 2AP , δ′, Q′

0, F ′, Wr) is defined as follows:

• Q′ = Π×Q = {〈π, q〉 | ∀π ∈ Π, ∀q ∈ Q}.

• 2AP is the alphabet: AP = {a1, a2, · · · , aK}.

• δ′ : Q′ → 2Q
′. 〈πj , qn〉 ∈ δ′(〈πi, qm〉) if and only if (πi, πj) ∈−→c and

∃ l ∈ 2AP such that qn ∈ δ(qm, l).

• Q′
0 = Π0 × Q0 is the set of initial states. F ′ = Π × F is the set of

accepting states.

• Wr : Q
′ ×Q′ → R+is the weight function to be defined. N

Two differences between Ar and Ap from Definition 2.9 are: (i) the constraint
“qn ∈ δ(qm, Lc(πi))” when defining δ′ is relaxed to “∃ l ∈ 2AP such that
qn ∈ δ(qm, l)” here; (ii) the weight function Wr is defined differently from
Wp. We firstly introduce the evaluation function Eval : 2AP → {0, 1}K :

Eval(l) = ν ⇐⇒ [νi] =

{
1 if ai ∈ l,

0 if ai /∈ l,
(3.1)

where i = 1, · · · ,K; l ∈ 2AP and ν ∈ {0, 1}K . Namely, each subset of 2AP

is mapped to a K-dimensional Boolean vector. Then a distance function
between two input alphabets ρ : 2AP × 2AP → N is defined as:

ρ(l, l′) = ‖ν − ν ′‖1 =
K∑
i=1

| νi − ν ′i |, (3.2)

3.1. Potentially Infeasible Task 39

L(π)

x

Dist(L(π), x)

L(π’)

L(π)

x

X_r

Figure 3.1: Left: the distance of Lc(π) to a set of input alphabets χ (the
solid line). Right: the input alphabets are revised by adding more elements.

where ν = Eval(l), ν ′ = Eval(l′) and l, l′ ∈ 2AP . ‖ · ‖1 is the `1 norm.
Then we could define the distance between an element l ∈ 2AP to a set
χ ⊆ 2AP (χ 6= ∅) (Boyd and Vandenberghe, 2004):

Dist(l, χ) =

{
0 if l ∈ χ,

minl′∈χ ρ(l, l′) otherwise.
(3.3)

Note that Dist(l, χ) is not defined for χ = ∅. An example of computing
Dist(·) is given in Fig. 3.1. Now we give the formal definition of Wr:

Wr(〈πi, qm〉, 〈πj , qn〉)
= Wc(πi, πj) + α · Dist(Lc(πi), χ(qm, qn)),

(3.4)

where 〈πj , qn〉 ∈ δ′(〈πi, qm〉); α ≥ 0 is a design parameter;

χ(qm, qn) = {l ∈ 2AP | qn ∈ δ(qm, l)} (3.5)

consists of all input alphabets that enable the transition from qm to qn
in Aϕ. By Definition 3.1 there always exists l ∈ 2AP that qn ∈ δ(qm, l),
thus χ(qm, qn) 6= ∅ is ensured. Wc(πi, πj) is the implementation cost of
the transition from πi to πj in Tc; Dist(Lc(πi), χ(qm, qn)) measures how
much the transition from πi to πj violates the constraints imposed by the
transition from qm to qn. Being 0 means that Aϕ is not violated, while the
larger the distance is the more Aϕ is violated. The design parameter α is
used to reflect the relative penalty on violating the original specification,
and also the user’s preference on a plan that has less implementation cost
or that fulfills the task specification more. The penalty on violating Aϕ is
increased when α is larger.

40 Reconfiguration and Real-time Adaptation

Example 3.1. Consider the NBA in Fig. 2.3 and the transition from
state q1 to q3, χ(q1, q3) = {{a2}, {a2, a1}, {a2, a3}, {a2, a1, a3}}. Then
Dist({a1}, χ(q1, q3)) = ρ({a1}, {a1, a2}) = 1; Dist({a2}, χ(q1, q3)) =
ρ({a2}, {a2}) = 0; Dist({a2, a3}, χ(q1, q3)) = ρ({a2, a3}, {a2, a3}) = 0 . N

Balanced Accepting Run
Since Ap does not have an accepting run, we instead search for an accepting
run within Ar. However the existence of an accepting run alone is not
enough because: (i) they have different implementation costs; (ii) we would
like to measure how much they violate the original specification. Thus we
still consider the accepting runs with the prefix-suffix structure by (2.8):

R = q′0 q
′
1 · · · q′f−1[q

′
f q

′
f+1 · · · · · · q′n]ω

= 〈π0, q0〉 · · · 〈πf−1, qf−1〉
[
〈πf , qf 〉〈πf+1, qf+1〉 · · · · · · 〈πn, qn〉

]ω
,

(3.6)

where q′0 = 〈π0, q0〉 ∈ Q′
0 and q′f = 〈πf , qf 〉 ∈ F ′. However, the total cost

by (2.10) is interpreted differently:

Cost(R, Ar) =

f−1∑
i=0

Wr(q
′
i, q

′
i+1) + γ

n−1∑
i=f

Wr(q
′
i, q

′
i+1)

=

f−1∑
i=0

(
Wc(πi, πi+1) + α · Dist(Lc(πi), χ(qi, qi+1))

)
+ γ

n−1∑
i=f

(
Wc(πi, πi+1) + α · Dist(Lc(πi), χ(qi, qi+1))

)
= costτ + α · distϕ ,

(3.7)

where the accumulated implementation cost of the motion plan τ = R|Π is

costτ =
(f−1∑
i=0

+γ

n−1∑
i=f

)
Wc(πi, πi+1); (3.8)

the accumulated distance of τ to Aϕ is

distϕ =
(f−1∑
i=0

+γ
n−1∑
i=f

)
Dist(Lc(πi), χ(qi, qi+1)); (3.9)

3.1. Potentially Infeasible Task 41

Algorithm 7: Validate transitions of relaxed Aϕ, CheckTranR()
Input: (qm, l, qn, Aϕ), qm, qn ∈ Q, l ∈ 2AP

Output: distance d
d = Dist(l, χ(qm, qn)) by (3.3)1
return d2

the design parameter γ ≥ 0 represents the relative weighting on the cost of
transient response (the prefix) and steady response (the suffix).

Problem 3.2. Find the accepting run of Ar that minimizes the cost by (3.7).

We call the solution to Problem 3.2 the balanced accepting run of Ar,
denoted by Rbal. The corresponding balanced plan is τbal = Rbal|Π.

Remark 3.1. As mentioned in Section 2.4, each transition of the NBA is
encoded by a boolean expression accepting all alphabets that enable this
transition. This boolean expression is represented as a binary decision
diagram (BBD), where the distance function by (3.3) can be readily
integrated. The basic idea is that for operator “∨” it returns the minimal
distance of its left and right branches, while for operator “∧” it returns the
summed distance of its left and right branches. Thus it is not necessary to
enumerate all input alphabets to evaluate the distance. More details can be
found in Section 4.3.

Balanced Plan Synthesis
Given the values of α and γ, Ar can be either constructed fully by
Algorithm 1 or on-the-fly by Algorithm 4. But Algorithm 2 needs to
be replaced by Algorithm 7, where the distance is computed by (3.3).
Consequently, given the value of α, γ, Algorithm 3 can be called with
respect to the full construction of Ar or its adjacency relation, by which
the balanced accepting run Rbal can be obtained. Then the corresponding
balanced plan is τbal = Rbal|Π.

Remark 3.2. Although Ar allows more transitions compared ro Ap, any
balanced plan is a valid path of Tc, i.e., the transition relation of Tc is never
relaxed when constructing Ar. Thus τbal is always implementable.

42 Reconfiguration and Real-time Adaptation

Algorithm 8: Feedback for single robot, SingleFB()
Input: Rbal, Tc, Aϕ

Output: A′
ϕ, costτ , distϕ

1. Initialization: A′
ϕ = Aϕ. costτ = distϕ = 0.

2. For each transition (q′i, q
′
i+1) ∈ Edge(Rbal), perform steps 3-5:

3. Let q′i = 〈πi, qm〉 and q′i+1 = 〈πj , qn〉.
4. costτ = costτ +Wc(πi, πj).
5. d = CheckTranR(qm, Lc(πi), qn,Aϕ). If d > 0, add qn to
δ(qm, Lc(πi)) of A′

ϕ. distϕ = distϕ + d.
return A′

ϕ, costτ , distϕ

Furthermore, Algorithm 8 takes as inputs Rbal, Tc and Aϕ and computes
the associated costτ , distϕ and the relaxed specification automaton A′

ϕ.
While iterating through the transitions along Rbal by (2.9), it constructs
A′

ϕ by adding new transitions to Aϕ; it accumulates costτ and distϕ as
defined in (3.8) and (3.9). It can be verified that the obtained A′

ϕ is a valid
relaxation of Aϕ (Kim and Fainekos, 2012). Note each Rbal corresponds to
an unique balanced plan τbal and a revised specification automaton A′

ϕ.

Lemma 3.1. If distϕ = 0, then τbal |= ϕ.

Proof. Since Dist(·) ≥ 0 by (3.3), the accumulated distance distϕ = 0
implies qn ∈ δ(qm, Lc(πi)) for all transitions (〈πi, qm〉, 〈πj , qn〉) along Rbal.
Since Ap and Ar have the same states with the same sets of initial and
accepting states, Rbal is also an accepting run for Ap by Definition 2.9.
Then its corresponding plan τbal satisfies ϕ by Lemma 2.3. �

However it may not be trivial to determine the appropriate value of α
for the desired balance between the implementation cost and distance to
the task specification. As an extension, Algorithm 3 could be called under
different α to generate various balanced accepting runs, among which the
unique ones are saved as the candidates. They can be compared regarding
the associated costτ and distϕ. The chosen τopt can be implemented off-
line by constructing the hybrid controller as proposed in Algorithm 6.

Theorem 3.1. If ϕ is feasible over Tc, the balanced plan τbal satisfies ϕ if
α > α, where α is given by (3.10).

3.1. Potentially Infeasible Task 43

π1

π2

π3

{a2,a3}

{a1}

{a2}

30

40 20

10
{Φ}

π0 a1qq1

a1

¬ a2 & ¬ a3
¬ a2 & ¬ a3

q05 5

Figure 3.2: Left: the FTS Tc has four states, labeled by the propositions
they satisfy. Transitions are labeled by the costs. Right: the NBA Aϕ

associated with ϕ = ♦�a1 ∧�¬(a2 ∧ a3).

Proof. If ϕ is feasible over Tc, Algorithms 3 and 2 return the optimal
accepting run Ropt with the total cost (under the same γ) by (2.10):

Cost(Ropt,Ap) = α. (3.10)

It is easy to show that Ropt is also a valid accepting run of Ar since Ap and
Ar have the same states with the same sets of initial and accepting states.
Moreover, under the same γ, Cost(Ropt,Ap) = Cost(Ropt,Ar). Assuming
that τbal does not satisfy ϕ, then distϕ ≥ 1 by (3.9). As a result, the total
cost of Rbal by (3.7) satisfies:

Cost(Rbal, Ar) > α · distϕ > α. (3.11)

Since α > α = Cost(Ropt,Ap) = Cost(Ropt,Ar), (3.11) implies

Cost(Rbal,Ar) > Cost(Ropt,Ar).

However by the definition of the balanced run, Rbal is the accepting run of
Ar with the least total cost, i.e., Cost(Rbal,Ar) ≤ Cost(Ropt,Ar), which
leads to a contradictory. Thus the proposed method can be applied directly
when ϕ is feasible over Tc without any modification but choosing a large
enough α. Algorithms 3 and 7 will automatically select the accepting run
that satisfies ϕ, i.e., distϕ = 0. �

Example 3.2. As shown in Fig. 3.2, the robot has to go from region π0 to
π3 and stay there, meanwhile avoid all regions satisfying properties a2 or a3.
Three alternative motion plans are obtained by varying α (γ = 5), as shown
in Fig. 3.3: (i) when the penalty on violating ϕ is low, Aϕ is revised by adding

44 Reconfiguration and Real-time Adaptation

0 5 10 15 20 25 30
30

40

50

60

70

80

90

100

110

120
Cost of the Optimal Accepting Path

T
o

ta
l C

o
st

 b
y

(7
)

30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

Cost to implement

D
is

ta
nc

e
to

 th
e

sp
ec

ifi
ca

tio
n

Potential Motion Plans

Plan1: (
0
)

Plan2:
0 1

(
3
)

Plan3:
0 2

(
3
)

Figure 3.3: Left: the total cost of the balanced accepting run when γ = 5
under different α. Right: the unique balanced runs, located by their costτ
(x-axis) and distϕ (y-axis).

q1 to δ(q0, ∅), q1 to δ(q1, ∅) and the balanced plan is [π0]ω (black hexagram,
costτ 30, distϕ 6); (ii) when the penalty is increased, Aϕ is revised by
adding q1 to δ(q0, {a2, a3}), where the balanced plan is π0 π1 [π3]

ω (blue
square, costτ 65, distϕ 2); (iii) when the penalty is severe, Aϕ is revised
by adding q1 to δ(q0, {a2}), where the balanced plan is π0 π2 [π3]

ω (cyan
triangle, costτ 85, distϕ 1). Note that in (iii) the agent passes through π2
which satisfies only a2, instead of π1 which satisfies both a2 and a3. N

3.2 Soft and Hard Specifications
The previous section presents how to synthesis a balanced motion and
task plan that satisfies the potentially-infeasible task as much as possible.
However, sometimes a specification contains two distinctive parts: one
part for hard constraints that concerns safety or security and should not
be violated for all time; another part for soft constraints and additional
achievement that might not be feasible and should be satisfied as much
as possible. In this section, we propose a solution that meets these
requirements.

Problem Formulation
The robot’s finite transition system is still denoted by Tc from Definition 2.3.
Its task specification remains an LTL formula over AP , but with the

3.2. Soft and Hard Specifications 45

Algorithm 9: Relaxed intersection, RelaxInt()
Input: Asoft, Ahard

Output: Ãϕ

foreach q1 ∈ Q1, q2 ∈ Q2, t ∈ {1, 2} do1
qm = 〈q1, q2, t〉 ∈ Q2
if q1 ∈ Q1,0, q2 ∈ Q2,0, t ∈ {1} then3

qm ∈ Q04

if q1 ∈ F1, t ∈ {1} then5
qm ∈ F6

foreach q̌1 ∈ Post(q1), q̌2 ∈ Post(q2), ť ∈ {1, 2} do7
qn = 〈q̌1, q̌2, ť〉 ∈ Q8
if

(
q1 /∈ F1, t ∈ {1}, ť ∈ {1}

)
or

(
q2 /∈ F2, t ∈ {2}, ť ∈ {2}

)
9

or
(
q1 ∈ F1, t ∈ {1}, ť ∈ {2}

)
or

(
q2 ∈ F2, t ∈ {2}, ť ∈ {1}

)
then

qn ∈ δ(qm, l), ∀l ∈ χ1(q1, q̌1)10

return Ãϕ11

following structure:
ϕ = ϕsoft ∧ ϕhard, (3.12)

where ϕsoft and ϕhard are “soft” and “hard” sub-formulas; ϕhard could
include safety constraints like collision avoidance: “avoid all obstacles” or
power-supply guarantee: “visit the charging station infinitely often”; ϕsoft

could include performance requirements like “collect as many objects” but
the location of some objects is not known. Introducing soft and hard
specifications is due to the observation that the partially-known workspace
considered in Section 3.3 might render parts of the specification infeasible
initially and thus yield the needs for them to be relaxed, while the safety-
critical parts should not be relaxed during the process.

Problem 3.3. Given the task specification by (3.12), how to synthesize the
motion and task plan such that ϕhard is satisfied fully, while ϕsoft is satisfied
the most?

46 Reconfiguration and Real-time Adaptation

Safety-ensured Synthesis
Now there are two levels of specifications by ϕhard and ϕsoft, with respect to
which the property of a plan can be stated more specifically.

Definition 3.2. An infinite path τ = π1π2 · · · of Tc, τ is called: (i) valid
if (πi, πi+1) ∈−→c, for i = 1, 2 · · · ; (ii) safe if τ |= ϕhard; (iii) satisfying
if τ |= ϕ. N

Let Ahard = (Q1, 2
AP , δ1, Q1,0, F1) and Asoft = (Q2, 2

AP , δ2, Q2,0, F2) be
the NBA associated with ϕhard and ϕsoft, respectively. Detailed definition
can be found in Section 2.4. The functions χ1(·) of Ahard and χ2(·) of Asoft

are defined analogously as (3.5). Now we propose a way to construct the
relaxed but safety-ensured intersection of Ahard and Asoft.

Definition 3.3. The relaxed intersection of Ahard and Asoft is defined by:

Ãϕ = (Q, 2AP , δ, Q0, F), (3.13)

where Q = Q1 ×Q2 × {1, 2}; Q0 = Q1,0 ×Q2,0 × {1}; F = F1 ×Q2 × {1};
δ : Q × 2AP → 2Q, with 〈q̌1, q̌2, ť〉 ∈ δ(〈q1, q2, t〉, l) when three conditions
hold: (1) l ∈ χ1(q1, q̌1); (2) χ2(q2, q̌2) 6= ∅; (3) qt /∈ Ft and ť = t, or qt ∈ Ft

and ť = mod (t, 2) + 1, where t ∈ {1, 2} and mod is the modulo operation. N

Algorithm 9 constructs Ãϕ by Definition 3.3. Note that Ãϕ remains a Büchi
automaton. We relax the requirement that there should exist a common
input alphabet that enables the transitions from qi to q̌i for i ∈ {1, 2},
compared with the standard definition of Büchi automata intersection (see
Chapter 4.3 of Baier et al. (2008)). An accepting run r of Ãϕ intersects
with the accepting set F infinitely often. The last component t ∈ {1, 2} in
Q ensures that r has to intersect with both F1×Q2×{1} and Q1×F2×{2}.
This fact is used in the proof of Theorem 3.2 below. Denote by r|Q1 and
r|Q2 the projection of r onto the states of Ahard and Asoft, respectively.

Theorem 3.2. Given an accepting run r of Ãϕ, r|Q1 is an accepting run of
Ahard. Moreover, Lω(Ãϕ) ⊆ Lω(Ahard).

Proof. By definition, at least one of accepting states in F should appear
in r infinitely often. The projection of F onto Q1 is F1, therefore one of
the accepting states in F1 is visited infinitely often by r|Q1 . Secondly, since
l ∈ χ1(q1, q̌1) is ensured by Definition 3.3, all transitions along r are valid

3.2. Soft and Hard Specifications 47

for Ahard. As a result, r|Q1 is an accepting run of Ahard. For the second
part, given any infinite word σ ∈ Lω(Ãϕ), σ results in an accepting run of
Ãϕ by Definition 2.8, denoted by rσ. It has been proved that rσ|Q1 is also
an accepting run of Ahard, which implies that σ ∈ Lω(Ahard). Thus for any
σ ∈ Lω(Ãϕ), σ ∈ Lω(Ahard) holds, namely Lω(Ãϕ) ⊆ Lω(Ahard). �

Since we need to guarantee that ϕhard is fulfilled fully and ϕsoft is satisfied
as much as possible, we rely on the relaxed product automaton proposed
previously to handle both feasible and potentially infeasible specifications.

Definition 3.4. The safety-ensured and relaxed product Büchi automaton
Ãr = Tc×Ãϕ = (Q′, δ′, Q′

0, F ′, Wp) is defined as follows:

• Q′ = Π×Q = {〈π, q〉 | ∀π ∈ Π, ∀q ∈ Q}.

• δ′ : Q′ → 2Q
′. 〈πj , qn〉 ∈ δ′(〈πi, qm〉) if and only if (πi, πj) ∈−→c and

qn ∈ δ(qm, Lc(πi)).

• Q′
0 = Π0 × Q0 is the set of initial states. F ′ = Π × F is the set of

accepting states.

• Wr : Q
′ ×Q′ → R+ is the weight function.

Wr(〈πi, qm〉, 〈πj , qn〉)
=Wc(πi, πj) + α · Dist(Lc(πi), χ2(q2, q̌2))

(3.14)

where 〈πj , qn〉 ∈ δ′(〈πi, qm〉); qm = 〈q1, q2, t〉; qn = 〈q̌1, q̌2, ť〉; α ≥ 0
is a design parameter; function Dist(·) is defined in (3.3). N

The weight function consists of two parts: Wc(πi, πj) measures the
implementation cost of the transition from πi to πj ; Dist(Lc(πi), χ2(q2, q̌2))
measures how much this transition violates the constraints imposed by
Asoft; α reflects the relative penalty on violating the soft specification.

Theorem 3.3. Assume R is an accepting run of Ãr. Its projection on Π,
τ = R|Π, is both valid and safe for Tc and ϕ by Definition 3.2.

Proof. The fact that τ is valid can be verified from the definition of
δ′: every transition in δ′ when projected onto Π is a valid transition
within −→c. Secondly, since R is an accepting run of Ãr = Tc×Ãϕ, then
trace(τ) ∈ Lω(Ãϕ), which implies trace(τ) ∈ Lω(Ahard) by Theorem 3.2.
Since Words(ϕhard) = Lω(Ahard) by Lemma 2.1, trace(τ) ∈ Words(ϕhard),
which implies τ |= ϕhard, thus τ is also safe. �

48 Reconfiguration and Real-time Adaptation

Algorithm 10: Validate transitions of Ãϕ, CheckTranS()
Input: (qm, l, qn, Ãϕ), qm, qn ∈ Q, l ∈ 2AP

Output: distance d
qm = 〈q1, q2, t〉, qn = 〈q̌1, q̌2, ť〉1
d = −12
if qn ∈ δ(qm, l) then3

d = Dist(l, χ2(q2, q̌2)) by (3.3)4

return d5

Same as before, in order to measure the implementation cost of different
accepting runs of Ãr and how much they violate the soft specification, we
consider the accepting runs with the prefix-suffix structure by (3.6). However
its total cost is defined with respect to the soft specification:

Cost(R, Ãr) =

f−1∑
i=0

Wr(q
′
i, q

′
i+1) + γ

n−1∑
i=f

Wr(q
′
i, q

′
i+1)

= costτ + α · distϕsoft ,

(3.15)

where γ ≥ 0; the accumulated implementation cost of τ = R|Π is

costτ = (

f−1∑
i=0

+ γ

n−1∑
i=f

)Wc(πi, πi+1);

the accumulated distance of τ with respect to Aϕsoft is

distϕsoft = (

f−1∑
i=0

+ γ

n−1∑
i=f

) Dist(Lc(πi), χ2(q
′
i|Q2 , q

′
i+1|Q2)),

where q′i|Q2 and q′i+1|Q2 are the projection of q′i and q′i+1 onto Q2.

Problem 3.4. Find the accepting run of Ãr that minimizes the total cost
by (3.15).

We call the solution to Problem 3.4 as the safe accepting run of Ãr,
denoted by Rsafe. The corresponding safe plan is τsafe = Rsafe|Π.

3.3. Partially-known Workspace 49

Safe Plan Synthesis
Given the values of α and γ, Ãr can be either constructed fully by
Algorithm 1 or on-the-fly by Algorithm 4. But Algorithm 2 needs to be
replaced by Algorithm 10 where the distance d reflects whether the input
alphabet violates the hard specification and the distance to the set of input
alphabets for the soft specification. Then the safe accepting run Rsafe can
be obtained in the prefix-suffix format by calling Algorithm 3 with respect
to Ãr. By Theorem 3.3, its corresponding plan τsafe is always valid and safe
no matter how the value of α and γ are chosen.

Same as in Section 3.1, the value of α could be tuned by calling
Algorithm 3 under different α to generate candidates of Rsafe. The
associated costτ and distϕsoft can be computed similarly as in Algorithm 8.
After deciding the safe accepting run, its corresponding plan τsafe can be
implemented by the hybrid control strategy following Algorithm 6.

Lemma 3.2. If distϕsoft = 0, then τsafe |= ϕ.

Proof. By Lemma 3.1, if distϕsoft = 0, Rsafe is an accepting run for the
un-relaxed product Tc × Aϕ by Definition 2.9, where Aϕ is the un-relaxed
intersection (Baier et al., 2008) of Aϕsoft and Aϕhard . Thus its corresponding
plan τsafe satisfies ϕ by Lemma 2.3. �

3.3 Partially-known Workspace
It is rarely the case that the system model, i.e., the transition system, is
consistent with the actual workspace and robot dynamics. It means that the
motion and task plan synthesized off-line may not be executed as expected.
As a result, a real-time planning and reconfiguration framework is needed,
where the planning and execution are interleaved as shown in Fig. 3.4. If
the actual workspace is different from the workspace model embodied in
the transition system, it is crucial to put the planner on-line and make it
dynamic, such that it can monitor the execution of the plan, update the
system model based on the real-time observation, and validate or revise the
current plan.

Thus in this section we analyze how the transition system could be
updated based on the robot’s observations. The observations could come
from both its sensing ability and the communication functionality. We

50 Reconfiguration and Real-time Adaptation

Figure 3.4: Diagram for dynamic planning, where the planning and
execution are interleaved

denoted by T t
c the transition system at time t ≥ 0, particularly

T t
c = (Π, −→t

c, Π0, AP, Lt
c, W

t
c), (3.16)

where the superscript indicates the time. Note that (i) the set of regions
Π is static, meaning that no new regions are added or existing regions
are removed; (ii) the set of initial states Π0 and the set of known atomic
propositions AP are also static.

Furthermore its task specification consists of hard and soft parts: ϕ =
ϕsoft ∧ ϕhard, as introduced in (3.12), which is invariant after the system
starts. Denote by Ãϕ the relaxed intersection automaton from Algorithm 9.

Problem 3.5. Assume the workspace is partially-known. The following
problems are posed: (i) how to model the robot’s sensing and communication
functionalities; (ii) how to update the transition system accordingly; (iii)
how to guarantee the motion and task plan is always valid and safe.

3.3. Partially-known Workspace 51

Initial Synthesis
At t = 0, the initial motion and task plan can be obtained by following the
approach proposed in Section 3.2, given the initial transition system T 0

c and
ϕ. Denote by Rt, τ t = Rt|Π, Ãt

r the obtained safe accepting run, the safe
plan and the relaxed product automaton at time t ≥ 0, respectively. In this
section, we assume that Ãt

r is constructed on-the-fly by Algorithms 4 and 10
and Rt is obtained by Algorithm 3 for Ãt

r. Note that the soft specification
may not be feasible initially but it is guaranteed by Theorem 3.3 that τ0 is
always safe and valid for T 0

c .

Knowledge Update
The robot we consider has both the sensing ability to discover the workspace
and the communication functionality to communicate with external sources.
In this section, we discuss how these functionalities can be modeled.

Denote by Senset as the set of sensing information obtained at time
t ≥ 0. Note that this information might be gathered when a robot reaches
a region or during the transition from one region to another. It has the
following format:

Senset = {
(
(π, S, S¬), E, E¬

)
}, (3.17)

where π ∈ Π stands for a perceived region; S ⊆ AP is the set of propositions
satisfied by this region; S¬ ⊆ AP is the set of propositions not satisfied by
this region; (πi, πj , w) ∈ E if (πi, πj) needs to be added to −→t

c with weight
w or its weight is updated to w; (πi, πj) ∈ E¬ if (πi, πj) needs to be removed
from −→t

c. Senset reflects the actual workspace at time t.

Example 3.3. The sensing info
(
(π1, {a1, a3}, {a2}), (π1, π2, 10), (π1, π3)

)
∈ Senset is received if it is observed that region π1 satisfies proposition a1
and a3 but not a2; (π1, π2, 10) ∈ E if the transition from π1 to π2 is allowed
with the cost 10; (π1, π3) ∈ E¬ if the transition from π1 to π3 is invalid. N

This sensing function can be modeled by assigning a sensing radius h > 0,
such that all regions intersecting with the sphere {y ∈ Rn | |y − x(t)| ≤ h}
are visible, where x(t) ∈ Rn is the robot’s position at time t. Different
post-processing techniques might be necessary to abstract the essential
information for (3.17) from raw sensing data.

52 Reconfiguration and Real-time Adaptation

Besides, communication with external sources is another important mean
to retrieve information. This source can be another robot, a control base
station, or even an on-line database. Whenever this robot communicates
with the external source at time t, it sends the following request message:

Requestt = ϕ|AP , (3.18)

which informs the external source the set of workspace properties this agent
is interested in. The reply message it gets has the following format:

Replyt = {(π′, S′, S′
¬)}, (3.19)

where S′ ⊆ (ϕ|AP) and S′
¬ ⊆ (ϕ|AP); S′ and S′

¬ can not both be empty;
π′ ∈ Π is the region that satisfies S′ but not S′

¬. Note that S′ and S′
¬

only contain propositions that are relevant to the task ϕ. Depending on the
actual communication protocol, the external source can decide how often it
replies to the robot’s request.

Example 3.4. The reply information (π1, {a1}, {a2}) ∈ Replyt is received
if region π1 satisfies proposition a1 but not a2. N

Transition System Update

Thus at time t, the agent might obtain new knowledge from Senset and
Replyt as described before, based on which it needs to update its own
system model. Denote by T t−

c and T t+
c as the transition system before and

after the update at time t. Recall that (π, S, S¬) ∈ Senset or Replyt

indicates that the region π ∈ Π satisfies S but not S¬. Then Lt+
c (π) =

Lt−
c (π) ∪ S \ S¬, where Lt+

c (π) and Lt−
c (π) are the labeling function of π

before and after the update. Regarding E,E¬ ∈ Senset, new transitions
are added or some existing transitions’ weight is updated based on E while
transitions in E¬ are removed. The above descriptions are summarized in
Algorithm 11: Π̃ ⊆ Π is used to store the set of regions within Π of which
the labeling function is changed during the update; Π̂ in Line 8 stores the
set of regions of which the adjacency relation needs to be reconstructed in
Line 5 of Algorithm 4. Note that if both Senset and Replyt are empty,
T t+
c remains the same as T t−

c .

3.3. Partially-known Workspace 53

Algorithm 11: Transition system update, UpdaT()
Input: T t−

c , Senset, Replyt.
Output: T t+

c , Π̃, Π̂
T t+
c = T t−

c1
foreach (π, S, S¬) ∈ Senset or Replyt do2

if π ∈ Π then3

Lt+
c (π) = Lt−

c (π) ∪ S \ S¬4

if Lt+
c (π) 6= Lt−

c (π) then5

add π to Π̃6

remove (πi, πj) from −→t+
c , ∀(πi, πj) ∈ E¬7

add (πi, πj) to −→t+
c , W t+

c (πi, πj) = w, ∀(πi, πj , w) ∈ E8

Π̂ = Π̃ ∪ {πi | (πi, πj) ∈ E, or (πi, πj , w) ∈ E¬}9

return T t+
c , Π̃, Π̂10

Real-time Plan Revision

Since T t
c might be updated as described in previous part, the motion and

task plan from the initial synthesis in Section 3.2 needs to be evaluated
regarding their validity, safety and optimality.

Product Automaton Update

Denote by Ãt−
r and Ãt+

r as the relaxed product automaton corresponding to
T t−
c and T t+

c , respectively. To update Ãt
r, a brute-force approach would be

to reconstruct the complete Ãt
r from scratch by Algorithm 1 using Ãϕ and

T t+
c , or to re-evaluate all transitions within Ãt−

r that are relevant to the latest
changes in T t+

c as proposed in Guo et al. (2013b). However, both methods
have the complexity proportional to the number of transitions within Aϕ

and more importantly most of the updated transitions of Ãt+
r might not be

used by the plan revision Algorithm 14 later.
Thus we propose to incorporate the update information including Π̃, E

and E¬ into the adjacency relation function of Ãt
r in Algorithm 4. As shown

in Line 8 of Algorithm 11, for any region πi ∈ Π̃ whose labeling function or
adjacency relation has been changed, they are stored in a new set Π̂, namely

54 Reconfiguration and Real-time Adaptation

Algorithm 12: Validate the current run, ValidRun()
Input: Ãt+

r , Rt, Π̃, E¬
Output: Ξ, ℵ
Ξ = ℵ = ∅1
forall (q′s, q′s+1) ∈ Edge(Rt) do2

q′s = 〈πi, qm〉, q′s+1 = 〈πj , qn〉3
if (πi, πj) ∈ E¬ then4

add (q′s, q
′
s+1) to Ξ5

else if πi ∈ Π̃ then6

d = CheckTranS(qm, Lt+
c (πi), qn, Ãϕ)7

if d < 0 then8
add (q′s, q

′
s+1) to ℵ9

return Ξ, ℵ10

Π̂ = Π̃ ∪ {πi | (πi, πj) ∈ E, or (πi, πj , w) ∈ E¬}. (3.20)
Thus all the transitions originated from q′s whose projection onto Π belongs
to Π̂, i.e., q′s|Π ∈ Π̂, have to be re-constructed. This is implemented by Line 5
of Algorithm 4. In this way, the update information is used only when q′s is
revisited by the revision Algorithm 14 and then δ′(q′s) is re-constructed.

Given the updated transition system T t+
c and the current plan τ t, two

natural questions arise: (i) is τ t still valid or safe? (ii) if not, how can we
modify τ t such that it remains valid and safe for T t+

c and ϕ?

Validity and Safety
Recall that the current accepting run Rt has a finite set of transitions
appearing in it, i.e., Edge(Rt) by (2.9). By checking Edge(Rt), we could
validate if the current plan τ t is still valid or safe.

Definition 3.5. Given the updated transition system T t+
c from Algo-

rithm 11, any transition (〈πi, qm〉, 〈πj , qn〉) ∈ Edge(Rt) is called: (i)
invalid if (πi, πj) /∈−→t+

c ; (ii) unsafe if Lt+
c (πi) /∈ χ1(qm|Q1 , qn|Q1). �

Recall that Q1 is the set of states of Ahard. The notations Ξ and ℵ in
Algorithm 12 are used to store the sets of invalid and unsafe transitions

3.3. Partially-known Workspace 55

in Rt. Algorithm 12 iterates through each transition (〈πi, qm〉, 〈πj , qn〉)
within Edge(Rt) and checks if (πi, πj) has been removed from T t+

c (line 3)
or if the changed label Lt+

c (πi) would make this transition unsafe (line 6),
where function CheckTranS(·) by Algorithm 10 is called.

Theorem 3.4. Assume Rt is an accepting run of Ãt−
r ; T t−

c is updated to
T t+
c ; Ξ, ℵ are obtained from Algorithm 12. Then (i) τ t remains valid if and

only if Ξ = ∅; (ii) τ t remains safe if ℵ = ∅.

Proof. Since Rt is an accepting run of Ãt−
r , τ t is both valid and safe for T t−

c

by Theorem 3.3. If Ξ = ∅ and ℵ = ∅, Edge(Rt) does not contain any invalid
or unsafe transitions. Thus Rt remains an accepting run of Ãt+

r . “If” part
of (i): by Theorem 3.3, τ t is valid since Rt remains an accepting run of Ãt+

r .
“Only if” part of (i): if Ξ 6= ∅, τ t contains at least one invalid transition,
thus not valid by Definition 3.2. “If” part of (ii): by Theorem 3.3, τ t is safe
since Rt remains an accepting run of Ãt+

r . �

Safety-ensured Plan Revision
If Ξ or ℵ are not empty from Algorithm 12, τ t might be invalid or unsafe.
A plan revision scheme is needed to guarantee its validity and safety.

One straightforward approach could be to recall Algorithm 3 with respect
to T t+

c and Aϕ, but using the robot’s current region πcur from Algorithm 6
as the initial region. Let the derived accepting run and corresponding plan
be Rnew and τnew. In the following, we show that even though τnew is valid
and safe as proved in Theorem 3.3, it can not guarantee the actual safety
if we take into account the robot’s past trajectory. Given the robot’s past
trajectory τpast and past run Rpast from Algorithm 6, its complete trajectory
is obtained by concatenating τpast with τnew, namely

τcomp = τpast + τnew. (3.21)

Note that τcomp remains the suffix-suffix format. A key observation is that
the safety property of τnew does not ensure the safety of the robot’s complete
trajectory starting from time 0. In fact, this is because when analyzing the
corresponding runs of τpast and τnew in Ãt+

r , the product state q′cur (the last
state of Rpast) from Algorithm 6 may not be the same as the first product
state in Rnew. As a result, these two segments can not be concatenated into
an accepting run of Ãt+

r .

56 Reconfiguration and Real-time Adaptation

Algorithm 13: Corresponding product states, CorProd()
Input: Ãt

r, τpast
Output: Q′

τpast

S1 = {〈τpast[1], q0〉 | q0 ∈ Q0}1
for k = 2 : |τpast| do2

S2 = ∅3
forall q′s ∈ S1 do4

forall q′g ∈ δ′(q′s) do5
if q′g|Π = τpast[k] then6

add q′g to S27

S1 = S28

return Q′
τpast = S19

Problem 3.6. Assume Ξ or ℵ are not empty from Algorithm 12. Given
the robot’s past trajectory τpast, how to find the new plan τnew such that its
complete trajectory by (3.21) is guaranteed to be valid and safe.

Before stating the solution, we need to define the set of corresponding
product runs given the robot’s past trajectory. As pointed out in
Definition 2.8, the resulting run of an infinite or finite words in Aϕ may
not be unique because of the non-determinism of Ãϕ. In other words, given
the finite past trajectory τpast, its trace may result in a set of runs in Ãϕ,
denoted by rτpast :

rτpast = {rσ̄ by Def. 2.8 for Ãϕ | σ̄ = trace(τ̄past)}, (3.22)

where τ̄past = τpast[1 : (|τpast| − 1)], i.e., the segment from the first state to
the second last state of τpast; rτpast is finite because τpast is finite and the
number of states in Ãϕ is finite. Consequently, the finite set of corresponding
finite runs in Ãt+

r is given by

Rτpast = {R |R|Π = τpast, R|Q ∈ rτpast}, (3.23)

where each finite run R is the synchronized product of τpast and any run
belonging to rτpast by (3.22). Since Rτpast may contain multiple finite runs
in Ãt+

r , πcur may correspond to multiple states in Ãt+
r , which is denoted by

Q′
τpast = {last(R) |R ∈ Rτpast}, (3.24)

3.3. Partially-known Workspace 57

Figure 3.5: Locally revise the invalid transitions in the current accepting
run Rt. The sequences of states in dashed line represent the corresponding
runs given the robot’s past trajectory.

where last(R) is the last state of the finite run R belonging to Rτpast .
Clearly, Rpast ∈ Rτpast and q′cur ∈ Q′

τpast . Given τpast, the corresponding
Q′

τpast can be derived by Algorithm 13.
To solve Problem 3.6, we propose an algorithm that is similar to

Algorithm 5 in Guo et al. (2013b). Denote by Rt− , Rt+ , τ t
− , τ t

+ the
accepting run and corresponding plan before and after the revision at time t,
respectively. Moreover, Rt−

pre and Rt−
suf are the prefix and suffix of Rt− , while

Rt+
pre and Rt+

suf are the prefix and suffix of Rt+ .
Given the invalid or unsafe transition (q′s, q

′
s+1) in Rt− from Algo-

rithm 12, it belongs to either Rt−
pre or Rt−

suf. In Algorithm 14, it firstly
tries to locally finds a “bridging” segment that make up this transition by
breadth-first search (as shown in Fig. 3.5). tail(q′s+1, R

t−
pre) is the segment

of Rt−
pre after q′s, not including q′s; head(q′s−1, R

t−
pre) is the segment of Rt−

pre
before q′s−1, not including q′s−1; last(bridge) is the last state on the path
bridge. Function DijksTarget(Ãt+

r , q′S , Q′
T) is defined similarly as function

DijksTargets(·) in Algorithm 3, which returns shortest path from the single
source state q′S ∈ Q′ to any target state belonging to the set Q′

T ⊆ Q′; Ãt+
r

is the adjacency function from Algorithm 4. Thus it returns the shortest
path once one of the targets is reached.

At last, if the call to function DijksTarget(·) returns an empty path
bridge, it means that the accepting state last(Rt−

pre) is not reachable from
q′s−1. Then Algorithm 3 is called to search for the balanced accepting run of
Ãt+

r , but using Q′
τpast from Algorithm 13 as the set of initial states, instead

58 Reconfiguration and Real-time Adaptation

Algorithm 14: Revise the current plan, Revise()
Input: Ξ, ℵ, Rt− , Ãt+

r , Q′
τpast

Output: Rt+

forall (q′s, q′s+1) ∈ (Ξ ∪ ℵ) do1

if (q′s, q
′
s+1) ∈ Rt−

pre then2

bridge=DijksTarget(Ãt+
r , q′s−1, tail(q′s, Rt−

pre))3

if bridge 6= ∅ then4

Rt−
pre = head(q′s−1, Rt−

pre)+bridge+tail(last(bridge), Rt−
pre)5

else6

Rt+ = OptRun(Ãt+
r , Q′

τpast)7

return Rt+8

if (q′s, q
′
s+1) ∈ Rt−

suf then9

repeat line 3-8 but replace Rt−
pre by Rt−

suf10

return Rt+ = 〈Rt−
pre, R

t−
suf〉11

of the default Q′
0. Note that Rt− is revised iteratively and the condition

(q′s, q
′
s+1) ∈ Rt−

pre or Rt−
suf is also checked iteratively (lines 2 and 9).

Theorem 3.5. The new plan τnew can be obtained from Algorithm 14 such
that τcomp is valid and safe, if there exists one.

Proof. If a new plan τnew exists such that the complete path τcomp is valid
and safe, by Lemma 2.2 there exists an accepting run of Ãt+

r whose projection
onto Π is τcomp. Given the invalid or unsafe transitions in Rt− (in prefix or
suffix), firstly Algorithm 14 tries to revise Rt− by looking for the bridging
segments. If no such segments exist, it means that the current accepting
state is not reachable from q′s−1. Instead it searches for the accepting run
that starts from any of the product states in Q′

τpast and consists of a cycle
containing at least one of accepting states in Ãt+

r . It means that an accepting
run that starts from one of the initial states and obeys the robot’s past
trajectory exists only if a bridging segment is found in Line 3 that revise the
current accepting run or a new accepting run starting from Q′

τpast is found
in Line 8. �

3.3. Partially-known Workspace 59

The overall structure of the on-line planning scheme is given in Algo-
rithm 17 later, where the accepting run Rt is updated by both the revision
Algorithm 14 and the optimal search Algorithm 3. As a result, the next
goal region for the hybrid controller also changes accordingly.

Case Study
Consider a unicycle robot that satisfies: ẋ0 = v cos θ, ẏ0 = v sin θ, θ̇ =
w, where p0 = (x0, y0)

T ∈ R2 is the center of mass, θ ∈ [0, 2π] is the
orientation, and v, w ∈ R are the transition and rotation velocities.

Workspace Model

The workspace we consider is shown in Fig. 3.6, which consists of 12
polygonal regions. The continuous controller that drives the robot from
an region to any geometrically adjacent region is based on Lindemann et al.
(2006), which is built by constructing vector fields over each cell for each face.
The controller design is omitted here for brevity. There are three regions of
interest and one regions is occupied by obstacles. The surveillance task is
given by “visit region 2, 3, 4 infinitely often and avoid all possible obstacles”.
The LTL formula is given by “ϕ = (�♦a1) ∧ (�♦a2) ∧ (�♦a3) ∧ (�¬a4)”
and its associated NBA is shown in Fig. 2.3.

Simulation Results

The preliminary workspace is initialized as obstacles free and the associated
T 0
c is constructed by Definition 2.3. The actual workspace is shown in

Fig. 3.6, where region 9 is occupied by obstacles and there are walls between
some regions. The robot is capable of perceiving obstacles within a region
and walls between adjacent regions. A preliminary motion plan is generated
by Algorithms 3 and 6 (arrowed red line in Fig. 3.6), but it is not valid for
the actual workspace as it intersects with the obstacle region 9.

The robot moves according to the motion plan and reaches region 12,
where it obtains the following information: E¬ = {(π4, π11), (π11, π4)} and
(π9, {a4}, ∅), namely region 9 satisfies a4. The updated motion plan is
illustrated by the arrowed red lines in Fig. 3.6. Then the robot follows
this updated motion plan. At region 6 and 3, it obtains the information:
E¬ = {(π6, π8), (π8, π6)} and E¬ = {(π7, π3), (π3, π7)}, respectively. 32
transitions are removed in both cases. But the motion and task plan remains

60 Reconfiguration and Real-time Adaptation

1

2
3

5

6

7

9

10

11

12

8

4

1

2 3

4

Figure 3.6: Left: Initial workspace and the the preliminary motion and
task plan. Right: actual workspace and the final trajectory.

valid because its corresponding accepting run remains valid. The final
trajectory is shown in Fig. 3.6.

3.4 Motion and Action Planning
Until now all the task and motion plans only involve a sequence of regions
to visit, such that the robot’s trajectory satisfies the specification. However,
to solve problems of practical interest it is often necessary to perform
various actions at different regions. In other words, the purpose of “going
somewhere” is to “do something”. The resulting plan is clearly a combination
of transitions among different places and performing sequential actions.

It would be inadequate to carry out the motion planning and action
planning independently since the motion plan and action plan are closely
related, i.e., “where to go” is motivated by “what to do there” and
“what to do now” depends on “where it has been”. Another observation
is that some actions can only be performed when certain conditions
are fulfilled and as a result certain state variables might be changed.
Action description language (Gelfond and Lifschitz, 1998) provides an
intuitive and powerful way for describing the preconditions and effects of
different actions. Moreover, we propose to separate the domain-specific
knowledge (Van Harmelen et al., 2008) such as the workspace model and the
robot’s mobility in the workspace, from the domain-independent knowledge
such as the action map based on the actions the robot is capable of. One
advantage is the increased modularity that our framework is adaptable
whenever the workspace is modified or the task specification is changed.

3.4. Motion and Action Planning 61

In this section, to distinguish the finite transition systems for mobility
and action, we replace the wFTS Tc in Definition 2.3 with M. Namely, the
abstraction of agent’s mobility is given by:

M = (ΠM, actM, −→M, ΠM,0, ΨM, LM, WM), (3.25)

which is defined in the same way as Tc; actM stands for the control
strategy (2.3) symbolically; ΨM = Ψr∪Ψp where Ψr = {Ψr,i}, i = 1, · · · , N ,
is the set of propositions indicating the agent position; Ψp = {Ψp,1, · · · ,Ψp,I}
is the finite set of propositions indicating interested properties, some of which
are relevant to robot’s actions discussed later. For instance, “this room has
product A” is a property relevant to the action “pickup A”.

Action Description Language

Classic planning formalisms, like STRIPS Fikes and Nilsson (1972), ADL Ped-
nault (1989), provide an intuitive way to describe high-level actions
the robot is capable of. Given a set of system states and actions,
each action is described by specifying its precondition and effect on the
states. Assume that the robot is capable of performing K different
actions {actB,1, · · · , actB,K}, implementable by the corresponding low-level
controllers {Kk}, k = 1, · · · ,K. Denote by ActB = {actB,0, · · · , actB,K},
where actB,0 , None indicates that none of these K actions is performed.
Moreover, we introduce another two sets of propositions:

(i) Ψs = {Ψs,j}, represents the internal states of the robot, j =
1, 2 · · · , J , e.g., “the robot has product A”;

(ii) Ψb = {Ψb,k} where Ψb,k = True if and only if action k is performed,
k = 0, 1, · · · ,K. We assume that any two actions cannot be concurrent, i.e.,
at most one element of Ψb can be true.

The subscripts of Ψs and Ψb stand for the “state” and “behavior” of the
robot. With Ψp, Ψs and Ψb, we can describe each action in ActB by the
precondition and effect functions.

Precondition and Effect

The precondition function

Cond : ActB × 2Ψp × 2Ψs −→ True/False, (3.26)

62 Reconfiguration and Real-time Adaptation

Table 3.1: Action Description for Section 3.4

Action Condition Effect
actB,0 True Ψb,0 = T,

Ψb,∼0 = F

actB,1 Ψp,1 &¬Ψs,1 &¬Ψs,2
Ψs,1 = T,

Ψb,1 = T, Ψb,∼1 = F

actB,2 Ψs,1
Ψs,1 = F,

Ψb,2 = T, Ψb,∼2 = F

actB,3 Ψp,2 &¬Ψs,2 &¬Ψs,1
Ψs,2 = T,

Ψb,3 = T, Ψb,∼3 = F

actB,4 Ψs,2
Ψs,2 = F,

Ψb,4 = T, Ψb,∼4 = F

actB,5 True Ψb,5 = T,
Ψb,∼5 = F

takes one action in ActB, subsets of Ψp and Ψs as inputs and returns a
boolean value. Namely in order to perform that action, the conditions on
the workspace properties Ψp and the robot’s internal states Ψs have to be
fulfilled. For instance, the action “pickup A” can only be performed when
“the room has product A”. While some actions like “take pictures” might be
performed without such constraints and then the condition is simply True.
Note the condition for actB,0 is always True by definition.

The effect function

Eff : ActB × (2Ψs ×Ψb) −→ (2Ψs ×Ψb), (3.27)

represents the effect of the actions. As a result of performing action actB,k,
the robot’s internal states Ψs might be changed and Ψb is changed to indicate
which action is performed. More specifically,

(i) Eff(actB,0, ws,Ψb,k) = (ws, Ψb,0), where ws ⊆ 2Ψs and ∀Ψb,k ∈ Ψb.
Performing actB,0 does not change the robot’s internal state and all elements
in Ψb except Ψb,0 are set to False;

(ii) Eff(actB,k, ws, Ψb,l) = (w′
s, Ψb,k), where ws, w

′
s ⊆ 2Ψs and Ψb,l, Ψb,k ∈

Ψb, is the effect function of actB,k for k 6= 0.
For example, once the action “pickup A” is performed, the propositions

“the robot has A” and “‘pickup A’ is performed” become true. Note that
the effect functions can not modify the properties of the workspace.

3.4. Motion and Action Planning 63

Action Map
Given Ψp, Ψs, Ψb and ActB, Cond, Eff, the action map is defined as a tuple

B = (ΠB, ActB, Ψp, ↪−→B, ΠB,0, ΨB, LB, WB), (3.28)

where (i) ΠB ⊆ 2Ψs × Ψb is set of all assignments of Ψs and Ψb; (ii) Ψp

serves as the input propositions, and 2Ψp is the finite set of possible input
assignments; (iii) the conditional transition relation ↪−→B is defined by πB×
αB × 2Ψp × π′

B ⊆ ↪−→B if the following conditions hold: (1) αB ∈ ActB,
πB, π

′
B ∈ ΠB; (2) Cond (αB, 2

Ψp , πB) = True; (3) π′
B ∈ Eff (αB, πB); (iv)

ΠB,0 ⊆ 2Ψs ×Ψb,0 is the initial state; (v) ΨB = Ψs ∪Ψb is the set of atomic
propositions; (vi) LB(πB) = {πB}, i.e., the labeling function is the state
itself; (vii) WB : ↪−→B → R+ is the weight associated with each transition
and WB(πB, αB, 2

Ψp , π′
B) is estimated by the cost of action αB.

Remark 3.3. The set of states ΠB is defined as 2Ψs×Ψb instead of 2Ψs×2Ψb

because only one element in Ψb can be true. N

Ψp can be viewed as external inputs (Baier et al., 2008) to the action
map, i.e., within different regions the transition relations might be different
due to their different properties. Moreover, B is nondeterministic in the
sense that at each state πB any action whose associated condition function
is evaluated to be true, can be performed.

It is worth mentioning that the action map is constructed independently
of the structure of the workspace where the robot will be deployed.
Furthermore, given an instance of the workspace property Ψp, the action
map B is equivalent to a wFTS as all conditional transition relations can be
verified or falsified based on the definition of ↪−→B.

Full Functionality Model
As mentioned earlier, the mobility abstraction M from (3.25) and the action
map B from (3.28) are adequate for the controller synthesis within certain
problem domain. However, in order to consider richer and more complex
tasks involving both regions to visit and actions to perform within these
regions, we need a complete model of robot’s functionalities that combines
these two parts. We propose the following way to compose M and B:

R = (ΠR, ActR, −→R, ΠR,0, ΨR, LR, WR), (3.29)

64 Reconfiguration and Real-time Adaptation

…...

||
|

M

B
…...

R

Figure 3.7: The action map B is composed with each region of M, giving
a complete description R of robot’s functionalities.

where (i) ΠR = ΠM × ΠB is the set of states; (ii) ActR = actM ∪ ActB is
the set of actions; (iii) −→R⊆ ΠR × ActR × ΠR is the transition relation,
defined by the following rules:

(1) 〈πM, πB〉
actM−−−→R 〈π′

M, π′
B〉 if πM

actM−−−→M π′
M and πB

actB,0−−−−→B π′
B;

(2) 〈πM, πB〉
αB−−→R 〈πM, π′

B〉 if πB ×αB ×LM(πM)×π′
B ⊂ ↪−→B, where

αB ∈ ActB;
(iv) ΠR,0 = ΠM,0 × ΠB,0 contains the robot’s initial region and initial

internal state; (v) ΨR = ΨM∪ΨB is the complete set of atomic propositions
including Ψr, Ψp, Ψs and Ψb; (vi) LR : ΠR → 2ΨR is the labeling function,
LR(〈πM, πB〉) = LM(πM) ∪ LB(πB); (vii) WR :−→R→ R+, is the weight
function on each transition, defined as:

(1) WR(〈πM, πB〉, actM, 〈π′
M, π′

B〉) = WM(πM, actM, π′
M);

(2) WR(〈πM, πB〉, αR, 〈πM, π′
B〉) = WB(πB, αR, π

′
B), if αR ∈ ActB.

Remark 3.4. In the definition of ↪−→B, actB,0 is released automatically
whenever the controller (2.3) is activated, because whenever the robot moves
to a new region, this automatically indicates that no actions within actB,k
are performed as we assume non-concurrent actions. N

Figure 3.7 illustrates the idea behind the process of parallel composition
defined above. Blue squares represent the states of M and red cycles encode
the states of B. Loosely speaking, when composing them into R, N copies of
B are first made, corresponding to the N regions within the workspace. At

3.4. Motion and Action Planning 65

the same time, the conditional transition relations in these copies are verified
or falsified by verifying the conditions on the properties of each region.

The composed system R is a wFTS over the set of atomic propositions
ΨR. Recall that ΨR = Ψr ∪ Ψp ∪ Ψs ∪ Ψb. Among them, Ψr, Ψp

are commonly seen in related work (Bhatia et al., 2010; Kloetzer and
Belta, 2010; Smith et al., 2011), but Ψs, Ψb allow us to express richer
requirements on the robot’s internal states and actions directly, as for
example where these actions are desired and the preferred sequence. For
instance, the task “eventually always drop A at region 1” can be expressed
as ϕ = �♦ (Ψr,1 ∧ Ψb,2), where Ψr,1=“{the robot is in region 1”} and
Ψb,2={“drop A” is performed}. Notice that we do not even need to specify
where to “pickup A” as it is modeled in the action map that to “drop A”
the robot has to “pickup A” first at some regions that have A. We now state
the problem we consider in this section:

Problem 3.7. Given the full functionality description R and the task ϕ,
find its motion and action plan that minimizes the cost defined by (2.10)
and construct the hybrid control strategy that executes this plan.

Since R remains a standard finite transition system, the framework
proposed in Chapter 2 can be applied directly to find the infinite optimal
motion and action sequence that has a finite representation and minimizes
the cost by 2.10. We denote by Rmoac the optimal accepting run of the
product R × Aϕ from Algorithm 3, which can be projected onto R as the
motion and action plan τmoac = Rmoac|ΠR .

For each pair of sequential states (πR,i, πR,i+1) in τmoac there exists an
action αR ∈ ActR such that (πR,i, αR, πR,i+1) ∈−→R from (3.29). Thus
the underlying low-level control strategy can be synthesized by sequentially
implementing the continuous controller associated with the actions along τR,
in a similar way as Algorithm 6. In particular, if αR = actB,k, the controller
{Kk} that implements actB,k is activated. If αR = actM, the navigation
controller (2.3) is applied to drive the agent from one point in the starting
region to one point in the goal region. Note that external confirmation
messages are needed for the completion of both motion and action.

Overall Framework
The overall framework has four steps: (i) construct the mobility abstraction
M and action map B; (ii) construct the full functionality R by composing

66 Reconfiguration and Real-time Adaptation

M and B; (iii) synthesis the motion and action plan τmoac; (iv) execute
the plan by the hybrid control strategy. It is worth mentioning that M, B
are constructed only once for the robot within a certain workspace and
ϕ can express any task specification in terms of required motions and
actions. Steps (ii-iv) are performed in an automated way. Whenever a new
task specification is given, the complete functionalities model R remains
unchanged and steps (iii-iv) are repeated to synthesize the corresponding
plan. Whenever the workspace is modified, only M needs to be re-
constructed but the action map B remains the same and can be reused.

Case Study

In this case study, we consider an autonomous robot that repetitively delivers
various products from a source region to destination regions, meanwhile
avoids the prohibited regions and surveils over certain regions.

System Model

We take into account a 2-D workspace for better visualization of the
results. The workspace (as shown in Fig. 3.8) is bounded by region 0:
π0 = B1([0.5 0.5]T), where [0.5 0.5]T ∈ R2 is the center point and 1 is the
radius. Within π0 there exist five sphere regions of interest: region 1: π1 =
B0.1([0 0]T), region 2: π2 = B0.1([1 0]T), region 3: π3 = B0.1([1 1]T),
region 4: π4 = B0.1([0 1]T), region 5: π5 = B0.15([0.5 0.5]T). Ψr = {Ψr,i}
reflects the robot’s position, i = 1, · · · , 5. The robot satisfies the single-
integrator dynamics, namely ẋ = u. Each region is potentially connected
to any other region and the transition cost is estimated by the straight-line
distance between them. There are three properties of concern: Ψp,1={this
region has product A}, Ψp,2={this region has product B}, Ψp,3={this region
is a office area}. It is assumed that region 1 has product A and B and
region 5 is a office area. The robot starts from region 1. Then M can
be easily constructed by (3.25). The navigation controller is derived by
constructing the exact potential filed over this sphere workspace Koditschek
and Rimon (1990). Details can be found in Guo et al. (2013a).

The robot is assumed to be capable of five actions: actB,1={pickup A},
actB,2={drop A}, actB,3={pickup B}, actB,4={drop B}, actB,5={take pic-
tures}, and actB,0={None} by definition. The associated costs are 20, 20, 20,
20, 15, 5, respectively. Ψb indicates which action is performed. Two

3.4. Motion and Action Planning 67

3

5

4

1 2

25

25

25

25

20 20

2020

3535

{Ψ_r,1;Ψ_p,1; Ψ_p,2}

{Ψ_r,5; Ψ_p,3}

{Ψ_r,2}

{Ψ_r,4} {Ψ_r,2}

Act_B,3Act_B,3

Act_B,1Act_B,1 Act_B,2Act_B,2

Act_B,5Act_B,5Act_B,4Act_B,4

1 2

34

5

Figure 3.8: Left: the wFTS for the robot’s mobility. Right: the final action
and motion trajectories fulfills the task specification. The robot stays within
the workspace π0 during the whole mission. Inside the blue boxes are the
actions to perform at different regions.

propositions reflecting the robot’s internal states are given by Ψs,1={the
robot has A}, Ψs,2={the robot has B}. The effect and condition functions
paired with each action in ActB are listed in Table 3.1 after Section 3.4.
actB,0 and actB,5 can be performed anytime while the others have conditions
on Ψp and/or Ψs. Note that the conditions on actB,1 and actB,3 indicated
that the robot can not hold product A and B at the same time. Assume
that the robot initially has no product A or B. The resulting action map B
is then constructed by (3.28), which has 6 × 22 = 24 states. We omit the
diagrams of M and B here due to limited space.

Task Specification

In plain English, the given task is to repeatedly transport product A to from
region 1 to region 2 and product B from region 1 to region 4, while at the
same time region 3 need to be under surveillance. Moreover, all office areas
should be avoided during the whole mission. Related the propositions we
have defined and the LTL, the task is reinterpreted as “Infinitely often,
drop A in region 2, drop B in region 4, take pictures within region 3. Always,
avoid office areas”. The above task can be expressed in LTL format as

ϕ = �♦(Ψr,2 ∧Ψb,2) ∧ �♦(Ψr,4 ∧ Ψb,4)

∧ �♦(Ψr,3 ∧ Ψb,5) ∧ �(¬Ψp,3).

68 Reconfiguration and Real-time Adaptation

The NBA Aϕ corresponding to ϕ above is obtained from Gastin and Oddoux
(2001), which has 4 states and 13 transitions. As can be seen here, the size
of the resulting Aϕ is relatively small even though the desired action is quite
complex. The main reason is that we do not need to specify in ϕ that where
the robot should go to pickup A and B.

Simulation Results

The composition R = M||| B is constructed by (3.29), which has 90
states and 606 transitions (compared with 215 states when unfolding ΨR
blindly). The product automaton AP = R ⊗ Aϕ is constructed fully by
Algorithm 1, which has 480 states, out of which 120 are accepting states.
Then Algorithm 3 is applied to AP to find its optimal accepting run. The
final discrete plan is obtained by projecting this accepting run onto R, which
is interpreted in terms of the following sequence of actions in R: pickup A
in region 1 −→ move to region 2 −→ drop A −→ move to region 3 −→
take pictures −→ move to region 1 −→ pickup B −→ move to region 4 −→
drop B −→ move to region 1. Note that this sequence is cyclic and can be
repeated as many times as needed. The total cost of this motion and action
plan is 230. The corresponding hybrid control strategy is synthesized based
on Algorithm 6. In Figure 3.8, the final trajectories are shown by the red
arrowed lines and the actions performed during the motion are indicated by
action names in the blue boxes.

3.5 Discussion
In this chapter, we discuss about four non-nominal scenarios as extensions
to the nominal motion and task planning scheme presented in Chapter 2.
In particular, we present a method to synthesize the balanced plan for
potentially infeasible tasks and the safe plan for tasks with hard and soft
constraints. Then we present a dynamic planning and revising scheme for
partially-known workspace, which guarantees safety and correctness. At
last, we propose the motion and action planning scheme to handle broader
task specifications.

Chapter 4

Multi-agent System with
Locally-assigned Tasks

The multi-agent system we consider consists of a team of cooperative
agents with different and locally-assigned individual tasks, which might

be dependent or independent. Compared with the multi-agent systems
designed for solving global tasks (Kloetzer and Belta, 2010; Ding et al.,
2011a), this kind of distributed system favors a loosely-coupled and bottom-
up formulation. In this chapter, we start from the reconfiguration problem
for multi-agent systems, where some local tasks are dependent due to
heterogeneity and collaborative tasks. Potential conflicts are resolved by
distributed coordination. Then we propose a real-time knowledge transfer
and update scheme for a team of robots coexisting within the partially-
known workspace. At last, we describe the software implementation of our
motion and task planning framework.

4.1 Dependent Local Tasks

The reconfiguration of multi-agent systems under local infeasible LTL
specifications is more difficult than the single-agent case discussed in
Sections 3.1 and 3.2, due to the following reasons: (i) the joined execution
of multiple agents’ tasks may not be mutually feasible even though the
individual one is; (ii) the priority of each agent plays an important role
when deciding whose tasks should be changed. The first aspect is because
these tasks are assigned independently and some cooperative tasks have not

69

70 Multi-agent System with Locally-assigned Tasks

been fully agreed before the deployment. The second aspect is because some
agents’ tasks are safety or security critical and have to be fulfilled all the
time, meaning that other agents have to comply when there are conflicts.

Assume the system we consider consists of N agents, denoted by agent
i ∈ N = {1, 2 · · · , N}. Moreover, we denote the finite transition system of
agent i by

Ti = (Πi, −→i, Πi,0, APi, Li, Wi), (4.1)

of which the notations follow Definition 2.3; Ti abstracts agent i’s motion
within its workspace Πi; APi reflects the properties concerning agent i in Ti.

Denote by APN = AP1∪AP2 · · ·∪APN the set of all propositions allowed.
For each agent, its task specification ϕi can be specified over not only APi

but APN . The specification automaton for ϕi is

Aϕi = (Qi, 2
APN , δi, Qi,0, Fi), (4.2)

of which the notations follow Definition 2.7; χi(qj , q
′
j) = {l ∈ 2APN | q′j ∈

δ(qj , l)} is the set of input alphabets enabling the transition from qj to q′j ,
as in (3.5).

Dependency and Mutual Feasibility
The dependencies implied by the task assignments can be defined as follows:

Definition 4.1. Agents i and j are called dependent when one of the
following conditions holds: (1) agent i depends on agent j if APϕi∩APj 6= ∅;
(2) agent j depends on agent i if APϕj ∩APi 6= ∅. N

These conditions can be checked by comparing the elements within sets
APϕi and APj (also APϕj and APi), as also proposed in Filippidis et al.
(2012). Based on the dependency relation, we may define the dependency
graph of the multi-agent system associated with tasks ϕi, i = 1, · · · , N .

Definition 4.2. The dependency graph Gd = (V, E) consists of: the
set of vertices V = 1, 2 · · · , N representing the agents; the set of edges
E ⊆ V × V where (i, j) ∈ E and (j, i) ∈ E if agent i and j are dependent
by Definition 4.1, ∀i 6= j and i, j ∈ V . N

Definition 4.3. Θ ⊆ V forms a dependency cluster if and only if ∀i, j ∈
Θ there is a path from i to j in the dependency graph Gd. N

4.1. Dependent Local Tasks 71

Θ3

Θ2

Θ1

Θ4
L(π1)

X1

Dist(L(π1), x1)

X2

Dist(L(π1), x2)

L(π2)
L(π3)

Figure 4.1: Left: the dependency graph of a system with 9 agents and 4
clusters. Right: different relative distances between L(π) and χ1, χ2.

A cluster contains at least one agent, which happens when this single
agent is not dependent on any of the other agents. Loosely speaking, two
agents belong to the same cluster when they are directly dependent or
transitively dependent by a dependency chain. An example of a dependency
graph and dependency clusters are shown in Figure 4.1.

Without loss of generality, we first solve the reconfiguration problem
within one cluster Θ = {1, 2, · · · ,M}. Given the individual transition
system Ti by (4.1), ∀i ∈ Θ, the composed finite transition system for this
cluster Θ is constructed by

TΘ = (ΠΘ, −→Θ, ΠΘ,0, APΘ, LΘ, WΘ), (4.3)

where ΠΘ = Π1×Π2 · · ·×ΠM ; 〈π1, π2 · · · , πM 〉 −→Θ 〈π′
1, π

′
2 · · · , π′

M 〉 if and
only if πi −→i π

′
i, i = 1, 2, · · · ,M ; ΠΘ,0 = Π1,0 × Π2,0 · · · × ΠM,0; APΘ =

AP1∪AP2 · · ·∪APM ; LΘ(〈π1, π2 · · · , πM 〉) = L1(π1)∪L2(π2) · · ·∪LM (πM);
WΘ(〈π1, π2 · · · , πM 〉, 〈π′

1, π
′
2 · · · , π′

M 〉) = W1(π1, π
′
1) + · · ·+WM (πM , π′

M).
We denote the mutual specification by

ϕΘ = ϕ1 ∧ ϕ2 · · · ∧ ϕM , (4.4)

which is the conjunction of all individual task specifications. AϕΘ is the
NBA associated with ϕΘ. Then {ϕi, ∀i ∈ Θ} are called mutually infeasible
if ϕΘ is infeasible over TΘ by Definition 2.6.

Problem 4.1. Given the cluster Θ, if {ϕi, ∀i ∈ Θ} are mutually
infeasible, how should the individual motion and task plan be synthesized
such that the mutual specification is satisfied the most?

72 Multi-agent System with Locally-assigned Tasks

Decentralized Coordination
Denote by APϕΘ = APϕ1 ∪ APϕ2 · · · ∪ APϕM the set of all propositions
appearing in ϕΘ by (4.4). Note that APϕΘ ⊆ APΘ ⊂ APN . Since ϕΘ is
infeasible over TΘ, we need to relax the requirement that every ϕi has to
be fulfilled simultaneously. Thus we define the relaxed intersection of the
individual specification automaton Aϕi .

Definition 4.4. Given the M Büchi automata Aϕ1 , Aϕ2 · · · , AϕM , their
relaxed intersection is given by ÃϕΘ = (Q, 2APϕΘ , δ, Q0, F), where Q =
Q1 × · · · × QM × {1, 2 · · · ,M}; Q0 = Q1,0 × · · · × QM,0 × {1}; F = F1 ×
Q2 · · · × QM × {1}; δ : Q → 2Q. 〈q′1, · · · , q′M , t′〉 ∈ δ(〈q1, · · · , qM , t〉)
when: (1) 〈q1, q2 · · · , qM , t〉, 〈q′1, q′2 · · · , q′M , t′〉 ∈ Q; (2) ∃ li ∈ 2APϕΘ such
that q′i ∈ δi(qi, li), ∀i ∈ Θ; (3) qt /∈ Ft and t′ = t, or qt ∈ Ft and t′ =
mod (t, M) + 1, where mod is the modulo operation. N

The conventional definition of Büchi automaton intersection (Clarke
et al., 1999) is obtained by replacing the second constraint “∃ li ∈ 2APϕΘ

such that q′i ∈ δi(qi, li), ∀i ∈ Θ” by “∃ l ∈ 2APϕΘ such that q′i ∈ δi(qi, l),
∀i ∈ Θ”. Namely, we relax the requirement that there should exist a common
input alphabet that enable the transitions from qi to q′i in Aϕi , ∀i ∈ Θ. The
last component t ∈ {1, 2, · · · ,M} in the state ensures that at least one
accepting state of every Aϕi is visited infinitely often.

Definition 4.5. The relaxed product automaton Ar,Θ = TΘ × ÃϕΘ =
(Q′, δ′, Q′

0, F ′, Wr) is defined as follows:

• Q′ = ΠΘ ×Q = {〈πΘ, q〉 | ∀πΘ ∈ ΠΘ, ∀q ∈ Q}.

• δ′ ⊆ Q′ × Q′. (〈πΘ, qa〉, 〈π′
Θ, qb〉) ∈ δ′ iff (πΘ, π

′
Θ) ∈−→Θ and qb ∈

δ(qa).

• Q′
0 = ΠΘ,0 ×Q0 is the set of initial states. F ′ = ΠΘ ×F is the set of

accepting states.

• Wr : δ
′ → R+ is the weight function, defined as

Wr(〈πΘ, q1, · · · , qM , t〉, 〈π′
Θ, q

′
1, · · · , q′M , t′〉)

= WΘ(πΘ, π
′
Θ) + α

M∑
i=1

βi Dist(LΘ(πΘ), χi(qi, q
′
i))

(4.5)

4.1. Dependent Local Tasks 73

where α, β1, β2 · · · , βM ≥ 0 are design parameters; the function
Dist(·) is defined in (3.9); 〈π′

Θ, q
′
1, · · · , q′M , t′〉 ∈ δ′(〈πΘ, q1, · · · , qM , t〉);

χi(qi, q
′
i) = {l ∈ 2APΘ | q′i ∈ δi(qi, l)} consists of all input alphabets that

enable the transition from qi to q′i in Aϕi, ∀i ∈ Θ. N

Denote by β = {βi, i ∈ Θ}. As “∃li ∈ 2APϕΘ such that q′i ∈ δi(qi, li),
∀i ∈ Θ” by Definition 4.4, χi(qi, q

′
i) 6= ∅. Figure 4.1 illustrates the relative

distances between LΘ(πΘ) and two sets of input alphabets χ1, χ2. The
definition of Wr can be interpreted similarly as the one in (3.4). The first
item represents the implementation cost of the transition from πΘ to π′

Θ

in TΘ; α reflects the relative weighting between the implementation cost
of the motion plan and how much the plan fulfills the mutual specification
automaton AϕΘ ; However, β plays the role as the “priority” index for each
agent, i.e., the larger βi is, the higher the priority agent i has. For example,
if agent i has the highest priority with important tasks, βi can be set very
large such that the penalty of violating Aϕi is severe. On the other hand, if
it plays the role as an assisting robot, βi can be chosen close to zero.

Problem 4.2. Given the relaxed product automaton Ar,Θ, (i) find its
balanced accepting run that minimizes the total cost by (3.7); (ii) synthesize
and execute the individual plan for each agent.

Given the value of α and β, Ar,Θ by Definition 4.5 can be either
constructed fully or on-the-fly as described in Section 2.4. Then by following
the same approach from Section 3.1, the balanced accepting run with the
prefix-suffix structure and minimizes the total cost by (3.7) can be found by
Algorithm 3. Denote by Rbal,Θ the balanced accepting run for the cluster.

Remark 4.1. It is possible to split WΘ(πΘ, π
′
Θ) in (4.5) into M parts, i.e.,

the implementation cost of each agent. Relative weighting among these costs
can also be added in case of different power capacities among the agents. N

Synthesis and Execution of Individual Plan
First of all, agents within one cluster should agree upon the value of α
according to the intended relative weighting between the implementation
cost and the distance to the mutual tasks, and also the value of β based on
their priorities within the cluster. In the absence of a central authority, α
and β can either be determined by the designer prior to the deployment or

74 Multi-agent System with Locally-assigned Tasks

Algorithm 15: Feedback function for clusters, ClusterFB()
Input: Rbal,Θ of Ar,Θ; Ti, Aϕi

Output: costτi , distϕi , A′
ϕi

1. Initialization: A′
ϕi

= Aϕi , costτi = distϕi = 0.
2. For each (q′j , q

′
j+1) ∈ Edge(Rbal,Θ), perform steps 3-5 as follows:

3. Let q′j = 〈πΘ, q1, · · · , qM , t〉 and q′j+1 = 〈π′
Θ, q

′
1, · · · , q′M , t′〉.

4. Project (πΘ, π′
Θ) onto Ti and save the projection (πi,Θ, π′

i,Θ) in τi.
costτi = costτi +Wi(πi,Θ, π

′
i,Θ);

5. d = CheckTranR(qi, LΘ(πΘ), q
′
i,Aϕi). If d > 0, add q′i to

δi(qi, LΘ(πΘ)|APi) of A′
ϕi

. distϕi = distϕi + d.
return costτi , distϕi , A′

ϕi

a consensus algorithm on the value of α and β within the cluster might be
needed. Many distributed consensus algorithms can be applied, e.g., Ren
et al. (2005); Olfati-Saber and Shamma (2005); Cortés (2008).

Then Algorithm 3 is called to generate the balanced accepting run
Rbal,Θ. The cooperative motion plan τΘ is the projection of Rbal,Θ onto
TΘ. Then Algorithm 15 is used to interpret Rbal,Θ of Ar,Θ for each agent i:
(i) its individual motion plan τi, as the projection of τΘ onto Πi; (ii) the
associated revised specification automaton A′

ϕi
, obtained by adding new

transitions to Aϕi ; (iii) the implementation cost of τi as costτi ; (iv) the
accumulated distance of τΘ to its original task specification ϕi as distϕi ,
defined similarly as in (2.10). As an extension, Algorithm 3 could be applied
under different α and β to derive several balanced accepting run candidates,
of which the unique ones are saved. Then Algorithm 15 gives feedback about
their implementation cost and their distances to individual specifications.

Lemma 4.1. Assume τΘ and distϕi are the derived from Algorithm 15.
Then distϕi = 0 implies that τΘ|Πi satisfies ϕi.

Proof. The proof is omitted as it is similar to that of Lemma 3.1. �

Example 4.1. An example of a two-agent system is shown in Figures 4.2
and 4.3. Agent 1 needs to visit π1 and π2 infinitely often, but never be
at π1 with agent 2 at the same time. Agent 2 needs to visit π1 and stay
there. Six different motion plans are obtained by Algorithms 3 and 15 under
different α and β, as in Figure 4.4. The same color indicates that the same
balanced accepting run is found. Here we list two motion plan candidates:

4.1. Dependent Local Tasks 75

a1&a2 &¬b1

q2

q1 (¬b1)|(¬a1)

a1&¬b1
a1&¬b1

(a2&¬b1)|
(¬a1&a2)

(¬b1)|(¬a1)

q0

a1&a2&
¬b1

(¬b1)|(¬a1)

5

π1π0

π2
5

{Φ} {a1}

{a2}

1

1

1

Figure 4.2: Agent 1’s model and task: its FTS T1 (left) and NBA Aϕ1

associated with ϕ1 = (�♦a1) ∧ (�♦a2) ∧ (�¬(a1 ∧ b1)) (right).

q0 b1q1True
b1

{Φ}

π1π0
5

{b1}

11

Figure 4.3: Agent 2’s model and task: its FTS T2 (left) and NBA Aϕ2

associated with ϕ2 = ♦� b1 (right).

(i) agent 1: π0π1[π2]
ω, agent 2: π0π0[π1]

ω (which has distϕ1 2, distϕ2 0,
costτ1 12, costτ2 8); (ii) agent 1: π0π1[π2π1π2]

ω, agent 2: π0π0[π1π0π1]
ω

(which has distϕ1 0, distϕ2 1, costτ1 20, costτ2 16). N

The above approach is applied to any other clusters within the multi-
agent system. Particularly, (i) all agents need to confirm their dependency
relation, i.e., which cluster they belong to; (ii) within each cluster an
agreement on α and β should be achieved; (iii) Algorithm 3 is called to derive
the balanced accepting run Rbal,Θ; (iv) each agent computes its individual
plan by Rbal,Θ|Πi ; (v) all agents within one cluster implements their motion
plans in a synchronized way (Kloetzer and Belta, 2010).

Remark 4.2. This multi-agent framework can be applied to the single-agent
case where the specification has the “conjunction” form ϕ = ϕ1∧ϕ2 · · ·∧ϕN .
Then the sub-specification ϕi can be modeled as the individual specification
of an “imaginary” agent which has identical movements as the “real” agent;
β could represent different priorities among these sub-tasks. N

Let |Ti| and |Aϕi | denote the size of agent i’s FTS and the NBA. The
size of Ar,Θ by Definition 4.5 for one cluster with M members is |Ar,Θ| =

76 Multi-agent System with Locally-assigned Tasks

✵ ✶ ✷ ✸ ✹ ✺ ✻ ✼ ✽ ✾ ✶✵
✵

✷

✹

✻

✽

✶✵

✶✷

✶✹

✶✻

✶✽

✷✵

�
✥

✁
❂✂✄

✵ ✵�✁ ✶ ✶�✁ ✷ ✷�✁ ✸ ✸�✁ ✹ ✹�✁ ✁
✵

✵�✁

✶

✶�✁

✷

✷�✁

✸

✸�✁

✹

✻

❉✂✄☎✆✝✞✟ ☎✠
✡

☛☞

✌☞✌✍

✌✎

✏✻

✑
✒✓
✔✕
✖
✗
✘
✔✙

✚

Figure 4.4: Left: the balanced accepting runs generated under different α
and β (γ = 5). Right: the balanced plan candidates located by their distance
to ϕ1 and distance to ϕ2 (y-axis), and labeled by the implementation cost.

M ·
∏M

i=1 |Ti| · |Aϕi |. Algorithm 3 runs in O(|Ar,Θ| log |Ar,Θ| · (|Q′
0|+ |F ′|)).

Algorithm 15 have the complexity linear to the length of Rbal,Θ.

Case Study
Consider a team of four unicycle robots that satisfy: ẋi = vi cos θi, ẏi =
vi sin θi, θ̇i = ωi, where pi = (xi, yi)

T ∈ R2 is agent i’s position; θi ∈ [0, 2π]
is the orientation; and vi, ωi ∈ R are the transition and rotation velocities,
i = 1, 2, 3, 4. The workspace is shown in Figure 4.5, which consists of 26
polygonal regions. The continuous controller that drives the robots from an
region to any geometrically adjacent region is based on Lindemann et al.
(2006) by constructing vector fields over each triangular cell for each face.
The controller design is omitted for brevity.

Task Specifications

Robots 2, 3 and 4 are confined in rooms 2, 3 and 4 as shown in Figure 4.5.
Each room has six regions, some of which are obstacle-occupied (in gray).
They repetitively carry different goods from the storage region to the
unloading region within each room, while avoiding obstacles. After picking
up goods at the storage region, they have to drop the goods at unloading
region before they return to the storage region. The storage, unloading and
obstacle-occupied regions are labeled by ai,s, ai,u and ai,o respectively for

4.1. Dependent Local Tasks 77

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

x

y

Room 2

a_2,s
a_2,u
a_1,c1

Room 3

Room 4

a_3,u

a_1,c2 a_3,s

a_4,s

a_1,c3
a_4,u'

a_4,u

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

x

y

Figure 4.5: Left: the workspace model, where blue boxes indicate the
confined rooms for robots 2, 3 and 4; Right: both ϕ1 and ϕ2 are fulfilled
(corresponds to P1), and robot 3 chooses the plan that violates ϕ3 the least.

agent i = 2, 3, 4. Robot 1 has to collect these goods at the regions labeled by
a1,c1, a1,c2 and a1,c3 repetitively. In addition, robot 4 needs to meet robot 1
at region labeled by a4,u′ . The obstacle-occupied regions for agent 1 are
labeled by a1,o. These tasks are specified as LTL formulas by:

robot 1: ϕ1 = �♦(a1,c1) ∧ �♦(a1,c2) ∧ �♦(a1,c3 ∧ a4,u′) ∧ �(¬a1,o)
robot i: ϕi = �♦ai,s ∧ �♦ai,u ∧ �(ai,s ⇒ ©(¬ai,s U ai,u)) ∧ �(¬ai,o),

i = 2, 3, 4,, where ai,s and ai,u stand for “robot i is at its storage region and
unloading region, respectively”, i = 2, 3, 4; a1,c1, a1,c2, a1,c3 indicate “robot
1 is at collecting regions c1, c2 and c3 respectively”; ai,o indicated “robot i
is at obstacle-occupied regions”, i = 1, 2, 3, 4; a4,u′ indicates “the robot 4 is
at the unloading region that robot 1 knows”. These regions of interest are
labeled by the atomic propositions that are true in Fig. 4.5.

Dependency and potential conflicts: by Definition 4.1, robots 1 and 4
are dependent while robots 2 and 3 run independently. There is a
misunderstanding between robots 1 and 4 about the location of robot 4’s
unloading region, namely, a4,u′ and a4,u indicate two different regions, as
shown in Room 4 of Figure 4.5. But this does not necessarily mean that ϕ1

and ϕ4 are mutually infeasible. Moreover, ϕ3 is infeasible for agent 3
because of the obstacles in room 3. Each robot can transit between any two
geometrically adjacent regions within their confined workspace, of which the
costs are uniformly 5. They could also stay at any region with the cost 1.

78 Multi-agent System with Locally-assigned Tasks

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

x

y

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

x

y

Figure 4.6: Left: robots 1 and 4 meet at a1,u′ and ϕ1 is fulfilled but not ϕ4

(corresponds to P2). Right: robots 1 and 4 do not meet while ϕ4 is fulfilled
but not ϕ1 (corresponds to P3).

T1 has 13 states while Ti has 6 states; Aϕ1 has 4 states and Aϕi has 5 states
by Gastin and Oddoux (2001), i = 2, 3, 4.

Simulation Results

Algorithm 15 is applied to the cluster formed by robots 1 and 4. The
composed transition system TΘ has 78 states. The relaxed product
automaton Ar,Θ consists of 3120 states and 1364 edges, which has three
weighting parameters α, β1 and β2. By choosing α = 0, 20, 100; β1 = 1;
β2 = 0, 0.5, 1, 10, six unique motion plan candidates are found. Here we
choose three of them: (P1) α = 100, β1, β2 = 1. Robot 4 travels more
distance from its unloading region to meet robot 1 at the collecting region
(distϕ1 0, distϕ4 0, costτ1 140, costτ4 48); (P2) α = 100, β1 = 1, β2 = 0.
Robots 1 and 4 meet at robot 1’s collecting region (distϕ1 0, distϕ4 8,
costτ1 140, costτ4 21); (P3) α = 30, β1, β2 = 1. Robots 1 and 4 do
not meet (distϕ1 2, distϕ4 0, costτ1 126, costτ4 20). On the other hand,
Algorithm 8 is applied for robot 3 to find the motion plan that violates ϕ3 the
least. We choose the motion plan under α = 2, of which the implementation
cost is 30 and the distance to ϕ3 is 3. In particular, Figures 4.5 and 4.6
present the final motion of the composed system when the above motion
plans are implemented by the lower-level hybrid controllers.

4.2. Independent Local Tasks 79

4.2 Independent Local Tasks
If the individual task only relies on local propositions, the team of robots are
independent, i.e., their plans can be synthesized and executed independently
from each other. However since the agents are usually located at various
locations within the workspace, providing them access to the up-to-date
knowledge about the actual workspace. Those local knowledge possessed
by individual agent, if shared among the team, might benefit each member
such that they can make better and more informed plans.

Partially-known Workspace
We consider a team of autonomous agents with unique identities (IDs)
i ∈ N = {1, 2 · · · , N}, which coexist within the common but partially-
known workspace W. Agent i’s possible motion within W is abstracted as
a weighted finite transition system (wFTS):

T t
i = (Πi, −→t

i, Πi,0, APi, L
t
i, W

t
i), (4.6)

the components of which are defined in a similar way as (3.16). The
superscript t ≥ 0 indicates that the workspace is partially known and might
be updated after the system starts. Each agent i has a locally-assigned task
specification ϕi = ϕsoft

i ∧ ϕhard
i , where ϕsoft

i and ϕhard
i are the “soft” and

“hard” constraints for agent i as (3.12).

Initial Synthesis
At t = 0, for each agent i ∈ N , the initial motion and task plan can be
obtained as the safe plan by following the framework proposed in Section 3.2,
regarding the initial transition system T 0

i and ϕi. We assume the on-the-
fly construction based on Algorithms 4 and 10 is used. Note that the soft
specification may not be feasible initially and is relaxed by the balanced
accepting run. Denote by Ãt

r,i the relaxed product automaton of agent i at
time t; Rt

i, τ ti as the derived balanced accepting run and the associated plan.

Cooperative Knowledge Transfer
In Section 3.3, we describe how a single agent could update its transition
system through its sensing ability to observe the actual workspace and

80 Multi-agent System with Locally-assigned Tasks

its communication ability to inquire and retrieve knowledge from external
sources. Belonging to the same multi-agent system, the other agents could
be the external source. In other words, they could share and transfer their
knowledge about the workspace collectively in real-time. In this section, we
explain in detail how to design the knowledge transfer protocol and how to
combine it with the real-time motion planning and revising scheme from
Section 3.3.

Communication Network

The communication network represents how the information flows among the
agents. Each agent i has a set of neighboring agents, denoted by Ni ⊆ N .
Agent i can send messages directly to any agent belonging to Ni. We take
into account two different ways to model the communication network: (1)
global communication with a fixed topology; (2) limited communication with
a dynamic topology. In the first case, Ni is pre-defined and fixed after the
system starts. In the second case, each agent has a communication range,
denoted by Ci ≥ 0. Agent i can only send messages to agent j if their relative
distance is less than Ci, i.e., |xj(t)− xi(t)| ≤ Ci where xj(t), xi(t) ∈ Rn are
the positions of agents j and i at time t. Then N t

i = {j ∈ N| |xj(t)−xi(t)| ≤
Ci} is the time-varying neighboring set of agent i at time t.

Communication Protocol

Agent i is interested in all the propositions appearing in ϕi, namely ϕi|APi .
We propose a subscriber-publisher communication mechanism to reduce the
communication load for each agent. Whenever agent j communicates with
agent i ∈ N t

j for the first time at time t, it follows the subscribing procedure:
agent j sends a request message to agent i that

Requesttj,i = (j, ϕj |APj , i), (4.7)

which informs agent i the set of propositions agent j is interested. Each
agent has a subscriber list, containing the request messages it has received.
Note that each agent also keeps track of the agents which it has subscribed
to, such that it sends a request to any of its neighboring agents only once.

The sensing update of agent i is denoted by Senset
i, the structure of

which is given in (3.17). Then the publishing phase of each agent follows
an event-driven approach: whenever (π, S, S¬) ∈ Senset

i is obtained, it

4.2. Independent Local Tasks 81

Algorithm 16: Transfer Knowledge to other agents, TranKnow()
Input: Senset

i, Requestt0j,i
Output: Replyt

i,j

forall (π, S, S¬) ∈ Senset
i do1

forall Requestt0j,i received at t0 < t do2
Requesttj,i = (j, ϕj |APj , i)3

if j ∈ N t
i then4

S′ = S ∩ (ϕj |APj)5

S′
¬ = S¬ ∩ (ϕj |APj)6

if S′ 6= ∅ or S′
¬ 6= ∅ then7

add (π, S′, S′
¬) to Replyt

i,j8

return Replyt
i,j9

checks its subscriber list whether the content might be of interest to any of
the subscribers regarding some propositions. If it is of interest to agent j
regarding some propositions in in ϕj |APj , then agent i checks if j ∈ N t

i . If
so, it publishes a reply message to agent j that

Replyt
i,j = {(π, S′, S′

¬)}, (4.8)

where S′ = S ∩ (ϕj |APj) and S′
¬ = S¬ ∩ (ϕj |APj); Note that since S′ and

S′
¬ only contain propositions that are relevant to agent’s task ϕ, every

reply message should contain useful knowledge. The above procedure
is summarized in Algorithm 16. Note that through this communication
mechanism, any request only needs to be sent once and every reply message
contains useful knowledge. This subscriber-publisher scheme can be easily
implemented by multicast or unicast wireless protocols.

Real-time Verification and Reconfiguration
Upon receiving Senset

i and Replyt
j,i from j ∈ N t

i , agent i could update its
transition system Ti by Algorithm 11. Regarding its current motion and task
plan τ ti , the validity and safety of τ ti needs to be verified by Algorithm 12.
Moreover, in case τ ti is falsified, i.e., either invalid or unsafe, Algorithm 14
is called to revise τ ti such that it becomes valid and safe, where Π̃t

i, ℵt
i, Ξt

i

82 Multi-agent System with Locally-assigned Tasks

Algorithm 17: Cooperative on-line planning for each agent i ∈ N
Input: T 0

i , Ãϕi , Ã0
r,i, xi(t)

Output: Rt
i, τ ti , Υt

i, T t
i

R0
i = OptRun(Ã0

r,i); // Algorithm 31

q′i,cur = q′i,next = R0
i,[pre,1], πi,next = q′i,next|Πi , Ri,past = [], τi,past = []2

while True do3
send Requestti,g4

check Replyt
h,i, Requestt0j,i and Senset

i5

Replyt
i,j = TranKnow(Senset

i, Requestt0j,i); // Algorithm 166

send Replyt
i,j7

(T t+
i , Π̃t

i, Π̂
t
i) = UpdaT(T t

i , Senset
i, Replyt

h,i) ; // Algorithm 118

Ãt+
r,i = AdjProd(T t+

i , Π̂t
i, Ãϕi); // Algorithm 49

(ℵt
i, Ξt

i) = ValidRun(Ãt+
r,i, Rt

i, Π̃t
i, E¬) ; // Algorithm 1210

Υt
i = Υt

i + |Π̂t
i|11

Q′
i,τpast = CorProd(Ãt+

r,i, τi,past); // Algorithm 1312

if Υt
i ≥ N call

i or t− T t
i ≥ T call

i then13

Rt+
i = OptRun(Ãt+

r,i, Q′
i,τpast); // Algorithm 314

Υt
i = 0, T t

i = t, q′i,next = Rt+

i,[pre,2]15

else if ℵt
i 6= ∅ or Ξt

i 6= ∅ then16

Rt+
i = Revise(Ãt+

r,i, Rt
i, ℵt

i, Ξt
i, Q′

i,τpast); // Algorithm 1417

q′i,next = Rt+

i,[seg,k]18

if x(t) ∈ q′i,next|Πi confirmed then19
q′i,cur = q′i,next20

τi,past = τi,past + πi,next, Ri,past = Ri,past + q′i,next21

q′i,next = Rt+

i,[seg,k] = NextGoal(q′i,cur, R
t+
i); // Algorithm 522

πi,cur = q′i,cur|Πi , πi,next = q′i,next|Πi23

ui = U(xi(t), πi,cur, πi,next)24

stand for the set of regions in T t
i with modified labeling functions at time

t, the set of unsafe transitions and invalid transitions in Rt
i.

Algorithm 14 provides a way to locally revise the invalid or unsafe plan,
which guarantees validity and safety by Theorem 3.3. However it does

4.2. Independent Local Tasks 83

not maintain the cost optimality of the safe accepting run compared with
Algorithm 3. The general problem of computing and maintaining the
shortest path in a graph where the edges are inserted or deleted and edge
weights are increased or decreased is referred to as the dynamic shortest
path problem (DSPP) in Chan and Yang (2009) and Misra and Oommen
(2005). As pointed out in both papers, it is inefficient to re-compute
the shortest path “from scratch” using the well-known static solution like
Dijkstra algorithm each time the graph changes.

Thus we propose an event-based criterion (Heemels et al., 2012) to ensure
the optimality check. Denote by Υt

i the accumulated number of number of
changes of T t

i at time t; Υt+
i = Υt−

i + |Π̂t
i| and Υ0

i = 0. Denote by Ti the last
time instant when Algorithm 3 is called. Let the thresholds N call

i , T call
i ≥ 0

be chosen freely by each agent. Then whenever at least one of the following
conditions holds: (1) Υt

i ≥ N call
i ; (2) t − Ti ≥ T call

i , Algorithm 3 is called
with respect the latest T t

i to derive the safe plan, but using Q′
τpast as the set

of initial states. Afterwards, Υt+
i is reset to zero and Ti to the current time.

Overall Structure
The overall architecture is summarized in Algorithm 17. When the system
starts, each agent synthesizes its own initial motion and task plan. It sends
requests to neighboring agents. Then it checks if it receives any reply,
sensing or request messages, based on which it replies to its subscribers,
and updates its transition system. At last, it decides whether the revising
algorithm or the optimal synthesis algorithm should be called by the
triggering condition. It is worth mentioning that the next goal region πi,next
changes automatically whenever: (i) the accepting run Rt

i is updated by
either the revision Algorithm 14 and the optimal search Algorithm 3; (ii)
the current goal region is confirmed to be reached.

Theorem 4.1. For each agent i at any time t ≥ 0, its motion plan τ ti
derived by Algorithm 17 is always valid and safe for T t

i and ϕi. Moreover,
for any t′ ≥ 0, there exists time t ∈ [t′, t′ + T call

i] such that τ ti corresponds to
the safe accepting run.

Proof. The first part follows directly from Theorems 3.4 and 3.5. Moreover
τ ti is the safe plan for Ãt+

r,i given Q′
i,τpast whenever Algorithm 3 is called. Due

to the triggering condition, it is called at least once within any time period
with length T call

i , which completes the proof. �

84 Multi-agent System with Locally-assigned Tasks

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

Figure 4.7: Left: the actual workspace as described in Section 4.2. Right:
the final motion plan for aerial vehicles, which corresponds to the final
optimal plan in Fig. 4.9. It satisfies both ϕhard

Ar i and ϕsoft
Ar i, since all base

stations (in yellow) are surveiled and non-fly areas (in cyan) are avoided.

Case Study
In this case study, we consider a team of 15 autonomous robots: five of
them are aerial vehicles that surveil over base stations; the rest are ground
vehicles that collect food and water resources to supply the base stations.

Workspace and Agent Description

As shown Fig. 4.7, the workspace we consider is a 10 × 10m2 square
which is approximated by B5([0, 0]), where [0, 0] is the origin and 5 is the
radius. There are 7 base stations with size 1 × 1m2 (in yellow, denoted by
“b1”,· · · ,“b7”). Besides, there are numerous no-fly zone (in cyan, denoted by
“nfly”) and sphere obstacles (in red, denoted by “obs”) at various locations
with different sizes. Food (in green, denoted by “food”) and water (in blue,
denoted by “water”) resources of various size are scattered in the free space.

Five aerial vehicles (denoted by Ar 1,· · · , Ar 5) start randomly from one
of the base stations. For aerial vehicles, “b1”,· · · , “b7”, “nfly”, “water”,
“food” are their known propositions, which does not include “obs”. It means
that aerial vehicles cannot detect obstacles on the ground. Initially, they

4.2. Independent Local Tasks 85

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

Figure 4.8: The final motion plan for agents Gw i (left) and for agents Gf i
(right). It is shown that water (in blue) or food (in green) are fetched before
any base station (in yellow) and all base stations are supplied infinitely often,
while obstacle (in red) avoidance is always ensured.

know the location of some base stations and some no-fly zones, but not
the water and food resources. They have an average speed 0.1m/s and a
sensing radius of 2m in the x-y coordinate. They have the hard specification
“repetitively visit at least one of the base stations, while avoiding all no-fly
zones”, and soft specification “visit all base stations infinitely often”. In LTL
formulas, the specifications are given as

ϕhard
Ar i = (�¬ nfly) ∧ (�♦(ϕone)),

ϕsoft
Ar i = (�(♦b1 ∧ ♦b2 ∧ · · · ∧ ♦b7)),

(4.9)

where ϕone , b1 ∨ b2 ∨ · · · ∨ b7 and i = 1, · · · , 5. The NBA associated with
ϕhard

Ar i has 2 states and 4 edges by Gastin and Oddoux (2001), while the one
with ϕsoft

Ar i has 8 states and 43 edges.
The other ten agents are ground vehicles: five of them (denoted by

Gf 1,· · · , Gf 5) collect food and the rest (denoted by Gw 1, · · · , Gw 5) for
water, to supply the base stations. For ground vehicles, “b1”, · · · , “b7”,
“obs”, “water”, “food” are known propositions, which does not include
“nfly”. Thus ground vehicles cannot recognize “nfly” zones. Initially, they
start randomly from one base station and only knows the location of one

86 Multi-agent System with Locally-assigned Tasks

water (or food) resource, but not the obstacles and other base stations.
They have an average speed 0.05m/s and a sensing radius of 1m in the x-y
coordinate. For ground vehicles, the hard specification is “avoid all obstacles
and repetitively collect water (or food) resources to at least one base station”
and the soft specification is “supply all base stations infinitely often”. In LTL
formulas, the hard and soft tasks for Gw i are given by

ϕhard
Gw i = (�♦¬obs) ∧ ϕorder

ϕsoft
Gw i = (�(♦b1 ∧ ♦b2 ∧ · · · ∧ ♦b7)),

(4.10)

where ϕorder , (�♦ water) ∧ (�(water ⇒ ©(¬water U (ϕone)))
∧ (�((ϕone) ⇒ ©(¬(ϕone)U water)), which says that water must be fetched
and supplied to at least one base station infinitely often. ϕsoft

Gw i is the same
as for Ar i, requiring that all base stations be supplied infinitely often. The
NBA associated with ϕhard

Gw i have 10 states and 30 edges by Gastin and
Oddoux (2001), while the one for ϕsoft

Gw i has 8 states and 43 edges. The soft
and hard specifications ϕhard

Gf i and ϕsoft
Gf i for Gf i can be defined in a similar

way by replacing proposition “water” with “food”.
Clearly, for each agent the soft specification is impossible to fulfil initially

as they have no complete knowledge about the location of all base stations.
However, since “b1”, “b2”,· · · , “b7” belong to all vehicles, meaning that any
relevant information can be shared within the group. Moreover, since the
propositions “water” and “food” also belong to aerial vehicles, they could
help the ground vehicles to discover relevant knowledge within a shorter
time. Regarding the communication network, a dynamic topology where
each agent has a communication radius (set to 5m for all agents).

Simulation Results

Initially each agent has very limited knowledge, considering that they only
know the location of one base station and none of the obstacle regions. We
choose α to be 1000 and γ to be 10 as the task specifications focus on
repetitive tasks. We set N call

i and T call
i to be (3, 60s) for aerial vehicles and

(3, 100s) for ground vehicles. The system was simulated for 600s and it
took 200s for the workspace to be fully discovered by all agents. Fig. 4.7
and 4.8 show the trajectories corresponding to the suffix part of the optimal
run, for the three groups Ar i, Gf i, Gw i. It can be seen that both soft and
hard specifications are fulfilled by all agents.

4.2. Independent Local Tasks 87

0 20 40 60 80 100
Time (s)

0

1000

2000

3000

4000

5000

6000

To
ta

l C
os

t

[5
522]

[3
319]

[3
132]

[1
39]

[1
39]

[5
522]

[3
319]

[1
134]

[3
41]

[2
41]

[1
39]

[7
512]

[0
318]

[3
130]

[1
39]

[6
520]

[0
227]

[0
135]

[1
39]

[8
520]

[2
133]

[2
40]

[1
39]

Ar_1
Ar_2
Ar_3
Ar_4
Ar_5

0 50 100 150 200
Time (s)

0

1000

2000

3000

4000

5000

6000

To
ta

l C
os

t

[11
525]

[11
258]

[12
168] [7

152]

[8
59] [8

51]

[11
525]

[9
146]

[8
51]

[10
525]

[8
152]

[8
59]

[8
59] [8

51]

[12
525]

[9
152]

[9
59] [8

51]

[12
525]

[10
149]

[10
53]

[8
51]

Gf_1
Gf_2
Gf_3
Gf_4
Gf_5

Figure 4.9: The evolution of the plan total cost of agents Ar i (left) and
Gf i (right). For Ar 1, the initial plan has a total cost 5220 ([5, 521]), when it
only knows two base stations. Its final plan has a total cost 391 ([1, 39]), as
shown in Fig. 4.7. For Gf 1, the initial plan has a total cost 5268 ([12, 526]),
when it only knows the location of one base station and one food resource.
Its final plan has the total cost 610 ([3, 60]), as shown in Fig. 4.8.

Fig. 4.9 and 4.10 shows how the optimal plans of Ar i, Gw i and Gf i evolve
with time. In particular, under the proposed scheme, the total cost of the
optimal plan for each agent decreases gradually until its workspace model is
complete. It can be seen that the planner incorporates the knowledge update
into the optimal plan, such that the soft task specification is satisfied more.
Fig. 4.10 illustrates the number of messages received by each agent under
the dynamic communication topology. Compared with the synchronized
solution that requires information exchange at each time step Ding et al.
(2011a), Karaman and Frazzoli (2008), the messages are only sent and
received following the subscriber-publisher scheme.

Experiments

To further testify the proposed framework, three nexus ground vehicles are
deployed in the Smart Mobility Lab, Royal Institute of Technology KTH, as
shown in Fig. 4.11. Similar task specifications are designed as in Section 4.1.
One vehicle R1 has the surveillance task over four base stations and avoids
all obstacles, as specified by (4.9). One vehicle R2 needs to visit the blue

88 Multi-agent System with Locally-assigned Tasks

0 50 100 150 200
Time (s)

0

1000

2000

3000

4000

5000

6000
To

ta
l C

os
t

[7
513]

[6
42]

[5
43]

[5
43]

[11
513]

[6
46]

[6
46]

[5
43]

[6
516]

[5
42]

[5
42]

[10
513]

[5
45]

[5
42]

[10
513]

[5
45]

[5
42]

Gw_1
Gw_2
Gw_3
Gw_4
Gw_5

0 10 20 30 40 50 60
Time

0

2

4

6

8

10

12

14

of

Me
ss

ag
es

Ar_1
Ar_2
Ar_3
Ar_4
Ar_5

Gw_1
Gw_2
Gw_3
Gw_4
Gw_5

Gf_1
Gf_2
Gf_3
Gf_4
Gf_5

Figure 4.10: Left: the evolution of the plan total cost of agents Gw i. For
agent Gw 1, the initial plan has a total cost around 5147 ([11, 513]), when it
only knows the location of one base station and one water resource. Its final
plan has a total cost 456 ([6, 45]), as shown in Fig. 4.8. Right: the right
figure shows the number of messages (including sensing and reply messages)
received by each agent under the dynamic communication topology.

regions and all base stations infinitely often in an interleaved order while
avoiding all obstacles, as specified by (4.10). One vehicle R3 needs to visit
the green regions and all base stations in a similar manner. The real-time
feedback of vehicles’ position and orientation is obtained from the indoor
motion capture system “Qualisys”. Obstacles are detected by the on-board
sonar sensors. Wireless communication between the control PC and vehicles
are handled by APC220 Radio Communication Modules.

In detail, the lab workspace is a 6 × 6m2 and modelled by the circle
B3([0, 0]). Four base stations are located at the center and four corners; two
blue regions, two green regions, three obstacles regions are scattered in the
workspace (as shown in Fig. 4.11). Initially R1 knows the location of all base
stations but none of the obstacle regions while R2 and R3 only know the
location of one base station and one green or blue regions. The experiment
results are recorded in real-time (Guo and Dimarogonas, 2014b). Fig 4.11
shows the workspace and the recorded panels in the experiment.

4.3. ROS Implementation 89

Figure 4.11: Left: the workspace used in the experiment, with three Nexus
vehicles. Right: the recorded panels, including video streams, vehicles’
trajectories and the log window.

4.3 ROS Implementation

There are two main model-checking-based motion planning software pack-
ages: Linear Temporal Logic Motion Planner (LTLMoP) by Finucane et al.
(2010) and LTL Robust Multi-Robot Planner (LROMP) by Ulusoy et al.
(2012). However since both are simulation-oriented, it is not straightforward
to use them to control physical robots that interact with actual workspace
and communicate with external sources.

Robot operating system (ROS) is currently one of the most popular
operating systems for a large variety of robotic platforms. “ROS is a flexible
framework for writing robot software. It is a collection of tools, libraries,
and conventions that aim to simplify the task of creating complex and
robust robot behavior across a wide variety of robotic platforms” (ROSWiki,
2013). It keeps a minimum and simple interfaces between different functional
packages, which is beneficial for the purpose of reuse, modification and
integration of packages designed for different robotic applications.

More importantly, the real-time message passing and handling services
of ROS allow multiple ROS packages to be running in parallel, which is
extremely beneficial for real-time applications. For instance, our planning
algorithm can be running to revise, update and improve the plan while the
robot is moving to the next goal region, in contrary to the blocking scenario
where the robot can only move after it has finished the planning phase.

90 Multi-agent System with Locally-assigned Tasks

Figure 4.12: Architecture for our ROS-based implementation. Name of
the topics: 1. next goal region or next action; 2. request to external source;
3. reply from communication; 4. observation from sensing; 5. confirmation
for motion or action; 6. robot’s position.

Package Architecture

A running ROS consists of a single ROS core and several running processes
as ROS nodes. The ROS core provides a distributed computing environment
allowing multiple processes to be running simultaneously. They communi-
cate via ROS messaging services and can be running on different robots,
computers and processing units even with different programming languages.

A ROS node can be both publisher and subscriber: it can subscribe to
as many topics and publish to as many topics. Once a ROS node publishes
a message to a topic, the ROS core will distribute this message to all nodes
that have subscribed to this topic. Normally once a ROS node receives a new
message under a topic, a pre-defined callback function is called automatically
such that this message can actually be used by this node.

We divide the essential functionalities for our motion and task planning
scheme into five modules: planning, actuation, sensing, localization and
communication. Ideally they are located in five different ROS nodes, as
shown in Fig. 4.12. Each node is connected to the ROS core by directed
arrows as the message flow, above which is the topic name. Outgoing arrows
from a node indicate that this node can publish messages over the topics
above the arrows, while incoming arrows indicate that this node is subscribed
to those topics above the arrows. Thus the integration process only involves
agreement on the topic names and the message structures. Note that the
five-module structure may vary for different applications. For example, the
sensing and localization nodes might be merged if they rely on the same

4.3. ROS Implementation 91

Figure 4.13: Data flow within the ROS node for planning. Input data is
in rounded rectangular; internal variables are in rectangular; output data
is in parallelogram. Texts on the arrows are algorithms: 1. LTL formulas
to Büchi automaton and encodings; 2. relaxed automaton intersection by
Definition 3.3; 3. relaxed product automaton by Algorithms 4 and 10; 4.
plan synthesis by Algorithm 3; 5. update transition system by Algorithm 11;
6. product automaton update by Algorithm 4; 7. validate and revise plan
by Algorithm 14; 8. reply to requests by Algorithm 16.

hardware and are outputs of the same program.

ROS Node for Planning

The main contribution lies in the ROS node package for the motion and
task planning algorithms presented in Chapters 2 and 3. The whole
package is written in Python due to its fast prototyping and multi-platform
accessibility. We use the ROS library “Rospy” as the interface, which
is a client library that enables the creation of ROS topics, services and
parameters for python-based programs (ROSWiki, 2013).

The structure of the ROS node for planning is shown in Fig. 4.13. In
initialization step, the initial finite transition system is encoded by the
NetworkX graph structure (Hagberg et al., 2008) and the hard and soft

92 Multi-agent System with Locally-assigned Tasks

task specifications are given as LTL formulas in the string format. When
the planner node starts running, it firstly translates the hard and soft
specification formulas into Büchi automaton by running the executable
file from Gastin and Oddoux (2001). The output text file is then parsed
and encoded as a NetworkX graph. The propositional logic formula
representing all input alphabets for each transition is encoded by binary
decision diagram (BDD) using Lex parser (Horrigan, 2013). It allows for:
(i) fast encoding and evaluation of propositional formulas when constructing
the product automaton; (ii) efficient integration with the distance evaluation
in Algorithms 7 and 10. Both the full construction by Algorithm 1 and on-
the-fly construction by Algorithm 4 are implemented.

For complex tasks of practical interest, it may take several minutes to
compute the initial plan, which is not desirable for real-time applications.
Since in ROS all nodes can be running simultaneously, it allows us to
exploit the notion of any-time graph search algorithm (Likhachev et al.,
2008; Van Den Berg et al., 2006). Normally anytime planning algorithms
find a preliminary, possibly highly suboptimal solution very quickly within
a bounded time window. While this preliminary plan is being executed, the
planner continues to improve the preliminary plan until the optimal one is
found. They work particularly well for static and fully-known workspaces.
However if the workspace is dynamic, the robot has to re-plan frequently
during the execution. Then the anytime planner may loss the anytime
capability as it needs to generate new (highly-suboptimal) plans from scratch
frequently. Instead, the local revising algorithm by Algorithm 14 and the
event-based optimality check are more suitable.

4.4 Discussion
In this chapter, we extend the single-agent reconfiguration scheme under
infeasible tasks to the multi-agent system with locally-assigned tasks. A
decentralized solution is proposed to synthesize the individual motion plans
that satisfy the mutual specification as much as possible. Secondly, we
propose a cooperative planning and reconfiguration framework based on
local knowledge transfer and share among the agents. At last, we present
the software implementation of the motion and task planning algorithms
proposed in this thesis.

Chapter 5

Conclusions and Future Work

This chapter concludes the thesis by summarizing the main results
presented in Chapters 2-4, as well as some future research topics.

5.1 Summary

Model-checking-based Motion and Task Planning
In Chapter 2 we present the complete framework to synthesize a hybrid
control strategy that navigates an autonomous robot such that a high-
level task specification is fulfilled. First of all, a detailed description is
given about constructing the finite abstraction of the robot’s motion within
the workspace as a finite transition system, which takes into account both
the workspace geometrical structure and the robot dynamics. A generic
control task can be specified formally with respect to this transition system
using Linear-time Temporal Logic formulas. A fully-automated scheme is
proposed to synthesize (i) the discrete motion and task plan that satisfies
the task; (ii) the hybrid controller that executes this discrete plan. It is
guaranteed that the robot’s final trajectory within the workspace fulfills the
given task. Detailed algorithms are provided for implementation purposes.

Reconfiguration and Real-time Adaptation
Chapter 3 is devoted to improve the reconfigurability and real-time adapt-
ability of the nominal framework presented in Chapter 2. We first tackle the
scenario when the given task is infeasible for the initially-known workspace.

93

94 Conclusions and Future Work

Instead of returning a failure, we propose an approach to synthesize a
balanced plan that fulfills the task as much as possible. Then we extend
this approach to the case where the task specification contains hard and soft
parts. It is shown that the synthesized plan fulfills the hard specification for
safety and the soft specification as much as possible for performance. The
plan synthesized off-line may not be executable since the initial workspace
model might not be consistent with the actual workspace. Thus we
propose an on-line and real-time planing framework that takes into account
unexpected changes in the transition system, evaluates the current plan
regarding validity and safety and revising the plan if needed. In the end,
due to the observation that most tasks of practical interest consists of not
only sequence of motions but also actions to be performed, we present a
systematic way to model the robot’s full functionality including both motion
and actions, such that any task specification in terms of desired motions and
actions can be treated within the same framework.

Multi-agent Systems with Local Tasks
In Chapter 4, we consider a team of interconnected robots with different,
independently-assigned, even conflicting local tasks. Firstly, we address the
cooperative planning problem where one robot’s task might be dependent
on some of the other robots. We abstract the dependency cluster within the
network where all robots belonging to one cluster are dependent directly
or indirectly by a dependency chain. Their motion and task plans are
synthesized together such that the mutual specification is satisfied as much
as possible by their jointed motions. Secondly, even if they do not have
dependent tasks, one robot may have knowledge about the workspace that
is of interest to other robots. Thus we propose a distributed knowledge
transfer and share framework for multi-agent systems. While the system
runs, each robot updates its knowledge about the workspace via its sensing
capability and shares this knowledge with its neighboring robots. Based on
the knowledge update, each robot verifies and revises its motion plan in real
time. It is ensured that the hard specification is always fulfilled for safety
and the satisfaction for the soft specification is improved gradually. The
design only assumes local interactions and applies to both static or dynamic
communication topologies. Last but not least, as an important part of
the contribution, the software implementation of the proposed motion and
action planning framework is presented with detailed descriptions.

5.2. Future Work 95

5.2 Future Work

Our future work will be focused on the following aspects:
(1) automated abstraction. As mentioned in Section 2.1, the process

of constructing the finite transition system is not fully automated as it
relies on analyzing both the workspace structure and the robot’s dynamical
properties. Part of our future work is to bridge this gap for certain types of
workspace structure and robot dynamics.

(2) optimality. As mentioned in Chapter 2, the projection of the obtained
optimal accepting run of the product automaton is not necessarily the
optimal plan. The structure of Büchi automaton plays an important role
within this framework. Different translation softwares and different formula
expressions of the same task may result in distinctive results. A future
research direction would be to either implement the tight Büchi automaton
construction from Clarke et al. (1994) or search for the optimal plan given
any generic Büchi automaton. However the trade-off between computational
complexity and optimality remains.

(3) complexity. The on-the-fly construction is only one of the existing
techniques in model-checking-based verification algorithms to tackle the
state explosion problem. There are other methods like logic represen-
tation of the finite transition system (McMillan, 1993); bounded model-
checking (Biere et al., 2003). Nevertheless, how to utilize those techniques
for our concerns on real-time reconfiguration or adaptation and cost
optimality remains challenging.

(4) robustness and fault tolerance. The failure occurred during the
robot’s motion from one region to another can be incorporated in its
transition system update as shown in Section 3.3. However since it is not
uncommon to see robot being unsuccessful in accomplishing certain actions,
the planner should also adapt itself to these action failures. This is closely
related to the motion and action planning presented in Section 3.4. How to
model the action failure within the same framework and how to adjust the
motion and action plan accordingly are our on-going research.

(5) flexibility. The solution proposed in Section 4.1 for synthesizing the
joined motion is distributed with respect to dependency clusters, meaning
that the synchronized coordination for agents belonging to one cluster is
required. This imposes certain communication load and less flexibility for
the overall system. A fully-distributed coordination scheme with reduced
communication and improved flexibility is part of our future work.

96 Conclusions and Future Work

(6) continuous constraints. Beside the dependency relation introduced
by cooperative tasks, the motion of networked agents may also be subjected
to constraints from their continuous states, e.g., pairwise distance and
relative velocity. Future work involves to incorporate these continuous
constraints into our discrete planning and motion control framework.

Bibliography

H. Abbas, G. Fainekos, S. Sankaranarayanan, F. Ivančić, and A. Gupta.
Probabilistic temporal logic falsification of cyber-physical systems. ACM
Transactions on Embedded Computing Systems (TECS), 12(2s): 95 (2013).

S. B. Akers. Binary decision diagrams. Computers, IEEE Transactions on,
100(6): 509–516 (1978).

R. Aldebaran. Nao. http://www.aldebaran-robotics.com/en/ (2014).

E. Aydin Gol and M. Lazar. Temporal logic model predictive control for
discrete-time systems. In Proceedings of the 16th international conference
on Hybrid systems: computation and control, 343–352. ACM (2013).

C. Baier, J.-P. Katoen, et al. Principles of model checking, volume 26202649.
MIT press Cambridge (2008).

C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J.
Pappas. Symbolic planning and control of robot motion [grand challenges
of robotics]. Robotics & Automation Magazine, IEEE, 14(1): 61–70 (2007).

A. Bhatia, L. E. Kavraki, and M. Y. Vardi. Sampling-based motion planning
with temporal goals. In Robotics and Automation (ICRA), 2010 IEEE
International Conference on, 2689–2696. IEEE (2010).

A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded
model checking. Advances in computers, 58: 117–148 (2003).

R. Botsman and R. Rogers. What’s mine is yours: The rise of collaborative
consumption. HarperCollins (2010).

S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge
university press (2004).

97

http://www.aldebaran-robotics.com/en/

98 Bibliography

E. P. Chan and Y. Yang. Shortest path tree computation in dynamic graphs.
Computers, IEEE Transactions on, 58(4): 541–557 (2009).

E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at ltl model
checking. In Computer Aided Verification, 415–427. Springer (1994).

E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT press
(1999).

J. Cortés. Distributed algorithms for reaching consensus on general
functions. Automatica, 44(3): 726–737 (2008).

Creattica. Smart house. http://creattica.com/infographics/
smart-house/46656 (2014).

DARPA. Darpa robotics challenge. http://www.fbo.gov/utils/view?id=
74d674ab011d5954c7a46b9c21597f30 (2012).

T. L. Dean and M. P. Wellman. Planning and control. Morgan Kaufmann
Publishers Inc. (1991).

D. V. Dimarogonas and K. J. Kyriakopoulos. Decentralized motion control
of multiple agents with double integrator dynamics. In 16th IFAC World
Congress, to appear (2005).

D. V. Dimarogonas and K. J. Kyriakopoulos. Decentralized navigation
functions for multiple robotic agents with limited sensing capabilities.
Journal of Intelligent and Robotic Systems, 48(3): 411–433 (2007).

X. C. Ding, M. Kloetzer, Y. Chen, and C. Belta. Automatic deployment of
robotic teams. Robotics & Automation Magazine, 18(3): 75–86 (2011a).

X. C. Ding, S. L. Smith, C. Belta, and D. Rus. Mdp optimal control under
temporal logic constraints. In Decision and Control and European Control
Conference (CDC-ECC), IEEE Conference on, 532–538. IEEE (2011b).

J. C. Doyle, B. A. Francis, and A. Tannenbaum. Feedback control theory,
volume 1. Macmillan Publishing Company New York (1992).

E. H. Durfee. Distributed problem solving and planning. In Multi-agent
systems and applications, 118–149. Springer (2006).

http://creattica.com/infographics/smart-house/46656
http://creattica.com/infographics/smart-house/46656
http://www.fbo.gov/utils/view?id=74d674ab011d5954c7a46b9c21597f30
http://www.fbo.gov/utils/view?id=74d674ab011d5954c7a46b9c21597f30

Bibliography 99

G. E. Fainekos. Revising temporal logic specifications for motion planning.
In Robotics and Automation (ICRA), 2011 IEEE International Conference
on, 40–45. IEEE (2011).

G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas. Temporal
logic motion planning for dynamic robots. Automatica, 45(2): 343–352
(2009).

G. E. Fainekos and G. J. Pappas. Robustness of temporal logic specifications
for continuous-time signals. Theoretical Computer Science, 410(42):
4262–4291 (2009).

R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of
theorem proving to problem solving. Artificial intelligence, 2(3): 189–208
(1972).

I. Filippidis, D. V. Dimarogonas, and K. J. Kyriakopoulos. Decentralized
multi-agent control from local ltl specifications. In Decision and Control
(CDC), 2012 IEEE 51st Annual Conference on, 6235–6240. IEEE (2012).

C. Finucane, G. Jing, and H. Kress-Gazit. Ltlmop: Experimenting
with language, temporal logic and robot control. In Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ International Conference on,
1988–1993. IEEE (2010).

P. Gastin and D. Oddoux. Fast ltl to büchi automata translation. In
Computer Aided Verification, 53–65. Springer (2001).

M. Gelfond and V. Lifschitz. Action languages. Electronic Transactions on
AI, 3(16) (1998).

M. Ghallab, D. Nau, and P. Traverso. Automated planning: theory &
practice. Access Online via Elsevier (2004).

Gostai. Gostai by jazz security. http://www.gostai.com/security/
(2013).

M. Guo and M. Colledanchise. Ltl planning with nao. http://www.
youtube.com/watch?v=-TLVGPN8Lxo (2014).

http://www.gostai.com/security/
http://www.youtube.com/watch?v=-TLVGPN8Lxo
http://www.youtube.com/watch?v=-TLVGPN8Lxo

100 Bibliography

M. Guo and D. V. Dimarogonas. Reconfiguration in motion planning of
single- and multi-agent systems under infeasible local ltl specifications. In
Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on.
IEEE (2013).

M. Guo and D. V. Dimarogonas. Distributed plan reconfiguration via
knowledge transfer in multi-agent systems under local ltl specifications. In
IEEE International Conference on Robotics and Automation, Hongkong,
China (2014a).

M. Guo and D. V. Dimarogonas. Multi-agent cooperative motion and
task planning. https://www.dropbox.com/s/wzzy2hvv6z9sh4y/Demo.
avi (2014b).

M. Guo, K. H. Johansson, and D. V. Dimarogonas. Motion and action
planning under ltl specifications using navigation functions and action
description language. In Intelligent Robots and Systems (IROS), 2013
IEEE/RSJ International Conference on, 240–245. IEEE (2013a).

M. Guo, K. H. Johansson, and D. V. Dimarogonas. Revising motion
planning under linear temporal logic specifications in partially known
workspaces. In IEEE International Conference on Robotics and
Automation, Karlsruhe, Germany (2013b).

A. Hagberg, P. Swart, and D. S Chult. Exploring network structure,
dynamics, and function using networkx. Technical report, Los Alamos
National Laboratory (LANL) (2008).

D. Hardawar. Driving app waze builds its own siri for hands-free voice
control (2012).

W. Heemels, K. H. Johansson, and P. Tabuada. An introduction to event-
triggered and self-triggered control. In Decision and Control (CDC), 2012
IEEE 51st Annual Conference on, 3270–3285. IEEE (2012).

D. Horrigan. Lex parser. https://github.com/pyrocms/lex (2013).

S. Karaman and E. Frazzoli. Complex mission optimization for multiple-
uavs using linear temporal logic. In American Control Conference, 2008,
2003–2009. IEEE (2008).

https://www.dropbox.com/s/wzzy2hvv6z9sh4y/Demo.avi
https://www.dropbox.com/s/wzzy2hvv6z9sh4y/Demo.avi
https://github.com/pyrocms/lex

Bibliography 101

S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion
planning. The International Journal of Robotics Research, 30(7): 846–894
(2011).

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.
Robotics and Automation, IEEE Transactions on, 12(4): 566–580 (1996).

H. K. Khalil. Nonlinear systems, volume 3. Prentice hall Upper Saddle
River (2002).

K. Kim and G. E. Fainekos. Approximate solutions for the minimal revision
problem of specification automata. In Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, 265–271. IEEE
(2012).

M. Kloetzer and C. Belta. Automatic deployment of distributed teams
of robots from temporal logic motion specifications. Robotics, IEEE
Transactions on, 26(1): 48–61 (2010).

D. E. Koditschek and E. Rimon. Robot navigation functions on manifolds
with boundary. Advances in Applied Mathematics, 11(4): 412–442 (1990).

J. R. Kok and N. Vlassis. Collaborative multiagent reinforcement learning
by payoff propagation. The Journal of Machine Learning Research, 7:
1789–1828 (2006).

H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Temporal-logic-based
reactive mission and motion planning. Robotics, IEEE Transactions on,
25(6): 1370–1381 (2009).

S. M. LaValle. Rapidly-exploring random trees a new tool for path planning.
Technical Report 98-11 (1998).

S. M. LaValle. Planning algorithms. Cambridge university press (2006).

D.-T. Lee and B. J. Schachter. Two algorithms for constructing a delaunay
triangulation. International Journal of Computer & Information Sciences,
9(3): 219–242 (1980).

102 Bibliography

M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun. Anytime
search in dynamic graphs. Artificial Intelligence, 172(14): 1613–1643
(2008).

S. R. Lindemann, I. I. Hussein, and S. M. LaValle. Real time feedback
control for nonholonomic mobile robots with obstacles. In Decision and
Control, 2006 45th IEEE Conference on, 2406–2411. IEEE (2006).

S. C. Livingston, R. M. Murray, and J. W. Burdick. Backtracking temporal
logic synthesis for uncertain environments. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, 5163–5170. IEEE
(2012).

S. G. Loizou and A. Jadbabaie. Density functions for navigation-function-
based systems. Automatic Control, IEEE Transactions on, 53(2): 612–617
(2008).

S. G. Loizou and K. J. Kyriakopoulos. Closed loop navigation for multiple
holonomic vehicles. In Intelligent Robots and Systems, 2002. IEEE/RSJ
International Conference on, volume 3, 2861–2866. IEEE (2002).

D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, and D. Wilkins. Pddl-the planning domain definition language.
tech. report CVC TR–98–003/DCS TR–1165 (1998).

K. L. McMillan. Symbolic model checking. Springer (1993).

S. Misra and B. J. Oommen. Dynamic algorithms for the shortest path
routing problem: learning automata-based solutions. Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 35(6):
1179–1192 (2005).

R. Olfati-Saber and J. S. Shamma. Consensus filters for sensor networks
and distributed sensor fusion. In Decision and Control, 2005 and 2005
European Control Conference. CDC-ECC’05. 44th IEEE Conference on,
6698–6703. IEEE (2005).

E. P. Pednault. Adl: Exploring the middle ground between strips and the
situation calculus. In Proceedings of the first international conference on
Principles of knowledge representation and reasoning, 324–332. Morgan
Kaufmann Publishers Inc. (1989).

Bibliography 103

V. Raman and H. Kress-Gazit. Analyzing unsynthesizable specifications for
high-level robot behavior using ltlmop. In Computer Aided Verification,
663–668. Springer (2011).

W. Ren, R. W. Beard, and E. M. Atkins. A survey of consensus problems
in multi-agent coordination. In American Control Conference, 2005.
Proceedings of the 2005, 1859–1864. IEEE (2005).

P. Resnik. Semantic similarity in a taxonomy: An information-based
measure and its application to problems of ambiguity in natural language.
arXiv preprint arXiv:1105.5444 (2011).

Rethink. Rethink robotics. http://www.rethinkrobotics.com/ (2013).

N. Robotics. Professional service robots: continued increase. http://www.
worldrobotics.org/index.php?id=home&news_id=262 (2012).

Romo. Phone-powered robots for fun and games. http://romotive.com/
meet-romo (2013).

Roomba. Roomba vacuum cleaner. http://www.irobot.com/global/sv/
roomba_range.aspx (2013).

ROSWiki. Ros wikipedia. http://wiki.ros.org/ROS/Introduction
(2013).

H. Säıdi and N. Shankar. Abstract and model check while you prove. In
Computer Aided Verification, 443–454. Springer (1999).

V. Schuppan and A. Biere. Shortest counterexamples for symbolic model
checking of LTL with past. Springer (2005).

S. L. Smith, J. Tumova, C. Belta, and D. Rus. Optimal path planning for
surveillance with temporal-logic constraints. The International Journal
of Robotics Research, 30(14): 1695–1708 (2011).

S. Srinivas, R. Kermani, K. Kim, Y. Kobayashi, and G. Fainekos. A
Graphical Language for LTL Motion and Mission Planning. Ph.D. thesis,
Master’s thesis, Arizona State University (2013).

P. Tabuada and G. J. Pappas. Linear time logic control of discrete-
time linear systems. Automatic Control, IEEE Transactions on, 51(12):
1862–1877 (2006).

http://www.rethinkrobotics.com/
http://www.worldrobotics.org/index.php?id=home&news_id=262
http://www.worldrobotics.org/index.php?id=home&news_id=262
http://romotive.com/meet-romo
http://romotive.com/meet-romo
http://www.irobot.com/global/sv/roomba_range.aspx
http://www.irobot.com/global/sv/roomba_range.aspx
http://wiki.ros.org/ROS/Introduction

104 Bibliography

J. Tumova, L. I. R. Castro, S. Karaman, E. Frazzoli, and D. Rus. Minimum-
violation ltl planning with conflicting specifications. arXiv preprint
arXiv:1303.3679 (2013a).

J. Tumova, G. C. Hall, S. Karaman, E. Frazzoli, and D. Rus. Least-violating
control strategy synthesis with safety rules. In Proceedings of the 16th
international conference on Hybrid systems: computation and control,
1–10. ACM (2013b).

A. Ulusoy, S. L. Smith, X. C. Ding, and C. Belta. Robust multi-robot
optimal path planning with temporal logic constraints. In Robotics and
Automation, 2012 IEEE International Conference on, 4693–4698. IEEE
(2012).

J. Van Den Berg, D. Ferguson, and J. Kuffner. Anytime path planning and
replanning in dynamic environments. In Robotics and Automation, 2006.
Proceedings 2006 IEEE International Conference on, 2366–2371. IEEE
(2006).

F. Van Harmelen, V. Lifschitz, and B. Porter. Handbook of knowledge
representation. Elsevier (2008).

M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proceedings of the First Symposium on Logic in
Computer Science. IEEE Computer Society (1986).

E. M. Wolff, U. Topcu, and R. M. Murray. Robust control of uncertain
markov decision processes with temporal logic specifications. In Decision
and Control,IEEE 51st Conference on, 3372–3379. IEEE (2012).

T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon
control for temporal logic specifications. In Proceedings of the 13th ACM
international conference on Hybrid systems: computation and control,
101–110. ACM (2010).

B. Yordanov and C. Belta. Formal analysis of discrete-time piecewise affine
systems. Automatic Control, IEEE Transactions on, 55(12): 2834–2840
(2010).

B. Yordanov, J. Tumova, I. Cerna, J. Barnat, and C. Belta. Temporal
logic control of discrete-time piecewise affine systems. Automatic Control,
IEEE Transactions on, 57(6): 1491–1504 (2012).

	Acknowledgments
	Contents
	Introduction
	Motivating Examples
	Background
	Related Work
	Main Contributions
	Thesis Outline

	Motion and Task Planning
	Finite-state Transition System
	Linear Temporal Logic
	Problem Formulation
	Discrete Plan Synthesis
	Hybrid Controller Synthesis
	Discussion

	Reconfiguration and Real-time Adaptation
	Potentially Infeasible Task
	Soft and Hard Specifications
	Partially-known Workspace
	Motion and Action Planning
	Discussion

	Multi-agent System with Locally-assigned Tasks
	Dependent Local Tasks
	Independent Local Tasks
	ROS Implementation
	Discussion

	Conclusions and Future Work
	Summary
	Future Work

	Bibliography

