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Stability and Performance of Continuous-Time
Power Control in Wireless Networks

Hamid Reza Feyzmahdavian, Themistoklis Charalambous, and Mikael Johansson

Abstract

This paper develops a comprehensive stability analysis framework for general classes of continuous-time power control
algorithms under heterogeneous time-varying delays. Our first set of results establish global asymptotic stability of power control
laws involving two-sided scalable interference functions, and include earlier work on standard interference functions as a special
case. We then consider contractive interference functions and demonstrate that the associated continuous-time power control laws
always have unique fixed points which are exponentially stable, even under bounded heterogeneous time-varying delays. For
this class of interference functions, we present explicit bounds on the decay rate that allow us to quantify the impact of delays
on the convergence time of the algorithm. When interference functions are linear, we also prove that contractivity is necessary
and sufficient for exponential stability of continuous-time power control algorithms with time-varying delays. Finally, numerical
simulations illustrate the validity of our theoretical results.
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I. INTRODUCTION

Since wireless communication devices operate within limited radio spectra, the need to efficiently manage the available
spectrum grows as wireless devices become more pervasive. However, wireless communication devices that share the same
radio frequency experience Co-Channel Interference (CCI), which impairs the achievable communication rates. A wireless
device that unilaterally increases its transmit power can expect to sustain successful transmissions over longer distances and
at higher data rates. However, the increased transmit power will increase the co-channel interference seen by other users, and
will drain the energy stored in the device battery faster. Adaptive power control algorithms allow devices to setup and maintain
wireless links with minimum power while satisfying constraints on Quality of Service (QoS). Such power control approaches
are suitable for services with strict QoS requirements, such as voice and video telephony, with prescribed fixed transmission
Bit Error Rates (BER). This paper focuses Signal-to-Interference-and-Noise Ratio (SINR) as QoS measure; this is reasonable,
since other relevant measures of QoS, such as the BER, are monotone functions of the SINR.

Initial work on distributed power control with SINR-based QoS was done by Zander [1], assuming a linear model of inter-
ference and negligible receiver noise. Zander proposed the Distributed Balancing Algorithm (DBA) in which the power levels
of the transmitters constituting the network are updated in a distributed fashion to obtain the greatest Signal-to-Interference-
Ratio (SIR) that they are capable of jointly achieving. Subsequently, Foschini and Miljanic [2], proposed continuous- and
discrete-time power control algorithms (henceforth called Foschini–Miljanic algorithms) for the linear interference model that
account for the thermal noise and provide power control with user-specific SINR requirements. These algorithms converge
to the optimal power allocation, if one exists, and are based on locally available information only; specifically, the current
transmit power level and the measured interference at the receiver of each communication pair are used to update of the power
level on that link. If there exist transmit power levels so that the SINR targets on all links can be met, then the algorithm will
converge to such a configuration; otherwise, the transmit powers will diverge.

The seminal work by Foschini and Miljanic [2] on continuous- and discrete-time power control triggered off numerous
publications for both continuous-time power control (e.g., [3]–[9]) and discrete-time power control (e.g., [10]–[16]). Continuous-
and discrete-time power control in wireless networks has been also considered within the context of noncooperative game theory
(see for example [17]–[20] and references therein), where each wireless node is assigned a utility as a function of the power it
consumes and SINR it attains, and hence dynamically decides its transmission power level so as to maximize its own utility.

An elegant axiomatic framework for studying a general class of discrete-time power control laws, the so-called standard
interference functions, was proposed by Yates [11]. This framework includes the discrete-time Foschini-Miljanic (FM) algorithm
[2] and several nonlinear power control algorithms as special cases. Monotone convergence of standard interference functions
was also obtained by Altman et al. [18] within the context of noncooperative game theory. This framework was later extended by
Sung and Leung [12] to a more general class, the so-called two-sided scalable interference functions, which includes the standard
interference functions as a special case, and allows for a simple and powerful analysis of certain opportunistic power control laws
that the standard framework cannot handle. While these frameworks are general and guarantee synchronous and asynchronous
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convergence of discrete-time power control algorithms in their class, the existence of fixed points has to be established
separately, and there is no information about the convergence rate of the algorithms. Recently, Feyzmahdavian et al. [16]
explored the connections between the standard interference function framework and the theory for fixed-point iterations. They
showed that standard interference functions do, in general, not define contraction mappings and introduced a new framework,
called contractive interference functions, that guarantees existence and uniqueness of fixed-point along with linear convergence
of iterates. They also demonstrated that several important distributed power control algorithms proposed in the literature are
contractive and derived the associated convergence rates.

The continuous-time power control, apart from its motivational aspects, offers a simple model that can be used for future
studies on high-level wireless systems. For example, while in the literature it is assumed that power control takes place in
discrete time intervals (and can only be used as long as the time duration for successive adjustments of transmitter powers is
less than the coherence time of the channel), in continuous-time power control there is no restriction on how fast the wireless
channel is varying (see, e.g., [3]). While communication delays are inevitably omnipresent in networks, their impact on stability
of continuous-time power control laws have not been considered until recently. Charalambous et al. [5] used the multivariate
Nyquist criterion to show that the continuous-time FM algorithm is asymptotically stable for arbitrary constant time-delays,
while Zappavinga et al. [7] used theory for positive linear systems to prove that the FM algorithm is asymptotically stable even
in the presence of bounded time-varying communication delays and topology changes. The continuous-time counterpart of the
standard interference functions firstly appeared in [4] and it was later analyzed in [8] using Lyapunov-Razumikhin approach.

In this paper, we consider general classes of continuous-time distributed power control algorithms, which are continuous-time
versions of those proposed in [12] and [16]. We analyze the continuous-time two-sided scalable interference functions (for
which standard interference functions constitute a special case) and contractive interference functions. More specifically, we
make the following contributions. Firstly, we prove that if there exists a feasible steady state power vector, power-control laws
involving two-sided scalable interference functions are asymptotically stable for arbitrary bounded heterogeneous time-varying
delays. Next, for the contractive interference functions, we prove that associated continuous-time power control algorithms
converge exponentially to the unique fixed points, even in the presence of bounded communication delays. For this class of
interference functions, we derive explicit bounds on the decay rate, thus quantifying the impact of delays on the convergence
time of the algorithm. When interference functions are linear, we also show that contractivity is necessary and sufficient
for exponential stability of continuous-time power control algorithms with time-varying delays. Finally, the validity of our
theoretical results is demonstrated via illustrative examples for the continuous-time FM algorithm [2] and the continuous-time
version of the Utility-Based Power Control (UBPC) algorithm proposed by Xiao et al. [21]. The improved understanding of
the continuous-time power control that we develop can potentially be used in various stochastic analysis frameworks that rely
on ODE-limits (e.g., mean-field games and stochastic approximation).

The remainder of the paper is organized as follows. In Section II, we introduce the notation that will be used and review
some preliminaries that are useful for the development of the results in this paper. Section III gives a description of the problem
under consideration, while our main results for two-sided scalable, contractive and linear interference functions are stated in
Sections IV, V and VI, respectively. Illustrative examples are presented in Section VII, justifying the validity of our results.
Finally, concluding remarks are given in Section VIII.

II. NOTATION AND PRELIMINARIES

A. Notation

Throughout the paper, vectors are written in bold lower case letters and matrices in capital letters. We let R, N, and N0

denote the set of real numbers, natural numbers, and the set of natural numbers including zero, respectively. The non-negative
orthant of the n-dimensional real space Rn is represented by Rn+. The ith component of a vector x ∈ Rn is denoted by xi,
and the notation x ≥ y means that xi ≥ yi for all components i. Given a vector v > 0, the weighted l∞ norm is defined by

‖x‖v∞ = max
1≤i≤n

|xi|
vi
.

For a matrix A ∈ Rn×n, aij denotes the entry in row i and column j. The spectral radius of a matrix A is the largest magnitude
of its eigenvalues and is denoted by ρ(A). The function sgn(x) is the signum function defined by

sgn(x) =


1, if x > 0,
0, if x = 0,
−1, if x < 0.

The upper-right Dini-derivative of a function h : R→ R is denoted by D+h(·). For a given τmax > 0, C denotes the space of
all real-valued continuous functions on [−τmax, 0] taking values in Rn. We also denote

C++ =
{
ϕ(·) ∈ C | ϕ(θ) > 0, θ ∈ [−τmax, 0]

}
.
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B. Preliminaries

Next, we review the key definitions and results necessary for developing the main results of this paper. We start with the
definition of non-negative and Metzler matrices.

Definition 1 A matrix A ∈ Rn×n is said to be non-negative if aij ≥ 0 for all i and j. It is called a Metzler matrix if aij ≥ 0
for all i 6= j.

The next proposition provides some known properties of non-negative matrices. These conditions are useful when analyzing
the stability of power control algorithms involving linear interference functions.

Proposition 1 ([22, Chapter 6]) Let A ∈ Rn×n be non-negative. Then, the following statements are equivalent.
(a) There exists a vector v > 0 such that Av < v.
(b) There exists a vector v > 0 such that ‖A‖v∞ < 1.
(c) ρ(A) < 1.

For nonlinear power control laws, our analysis relies on contraction mappings, defined next.

Definition 2 A mapping f : Rn → Rn is called a c-contraction if there exists a constant c ∈ [0, 1) such that

‖f(x)− f(y)‖ ≤ c ‖x− y‖, ∀x, y ∈ Rn,

where ‖ · ‖ is some norm on Rn.

An attractive feature of contraction mappings is that they always have a unique fixed point.

Proposition 2 ([23, Chapter 3]) If f : Rn → Rn is a c-contraction, then f has a unique fixed point, i.e.,

∃ x? ∈ Rn such that f(x?) = x?.

The following proposition helps us to study the exponential stability of continuous-time power control algorithms in the
presence of bounded time-varying delays.

Proposition 3 ([24, pp. 389–390]) Let τmax, α and β be constants with 0 < α < β, and τmax ≥ 0. If a continuous nonnegative
function y(t) satisfies

ẏ(t) ≤ −βy(t) + α

(
sup

t−τmax≤s≤t
y(s)

)
, t ≥ 0,

then

y(t) ≤
(

sup
−τmax≤s≤0

y(s)

)
e−ηt,

holds for all t ≥ 0, where η is the unique positive solution to

η = β − αeητmax .

III. PROBLEM STATEMENT

We consider a wireless network consisting of n mobile users communicating over the same frequency band. The continuous-
time power control algorithm, firstly considered in its general form by [4], is given by

dpi(t)

dt
= ki

(
−pi(t) + Ii(p(t))

)
, i = 1, . . . , n. (1)

Here, pi(t) is the transmitted power of user i at time t, Ii : Rn+ 7→ R+ is the interference function modeling the interference
and noise experienced by the intended receiver of user i, and ki is a positive constant representing the proportionality constant.
The well-known continuous-time Foschini–Miljanic algorithm [2], for example, considers the linear interference function given
by

Ii(p) = γi

∑
j 6=i gijpj + ηi

gii
, i = 1, . . . , n, (2)

where gij ≥ 0 is the channel gain on the link between user j and the receiver of user i, γi is the target Signal-to-Interference-
and-Noise Ratio (SINR) of user i, and ηi is the background noise at the receiver of user i.
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In practice, there will always be a signaling delay associated with transmitting the perceived interference at the transmitter
to the receiver, so that it can adjust the power according to the power control law. Consequently, a realistic analysis of the
continuous-time power control algorithm must consider heterogeneous time-varying delays. More precisely, the continuous-time
power control algorithm (1), when the time delay is introduced becomes{

dpi(t)
dt = ki

(
−pi(t) + Ii(p

di(t))
)
, t ≥ 0,

pi(t) = ϕi(t), t ∈ [−τmax, 0].
(3)

Here, τmax ≥ 0, ϕ(·) = [ϕ1(·), . . . , ϕn(·)]T ∈ C is the vector-valued function specifying the initial condition of the system,
and

pdi(t) =
[
p1(t− τ i1(t)), . . . , pn(t− τ in(t))

]T
.

The delays τ ij(t) are assumed to be time-varying continuous functions with respect to time and satisfy

0 ≤ τ ij(t) ≤ τmax,

for all i and j and all t ≥ 0. Note that τ ij(t) are not necessarily continuously differentiable and no restriction on their derivative
(such as τ̇(t) < 1) is imposed.

To put our work in context, note that the discrete-time analog of (1) consists of iterations of the type

p(t+ 1) = I
(
p(t)

)
, t ∈ N0. (4)

Such iterations have been studied under three frameworks; standard interference functions [11], two-sided scalable interference
functions [12], and contractive interference functions [16]. Specifically, it was shown that if I(p) is standard or two-sided
scalable, and a power vector p? > 0 satisfying p? = I(p?) exists, then the iterates generated by (4) converge asymptotically
to p? [12, Theorem 10]. If I(p) is contractive, then the iterates (4) converges to a unique fixed point at a linear rate [16,
Theorem 1], i.e., the distance between the iterates and the fixed point decays exponentially.

The aim of this paper is to develop a stability analysis framework for continuous-time power control algorithms that is equally
comprehensive as the theory for its discrete-time counterpart. Our main objectives are therefore to (i) study the asymptotic
stability of the continuous-time power control algorithm described by (1) (without delays) and (3) (under bounded heterogeneous
time-varying delays) when the interference function I(p) is two-sided scalable; and to (ii) analyse the exponential stability
of (1) when the interference function is contractive and determine how the convergence rate of (3) depends on the magnitude
of the time delays.

IV. STANDARD AND TWO-SIDED SCALABLE INTERFERENCE FUNCTIONS

As observed by Yates, many interference functions share important properties that allow them to be analyzed in a common
framework. This observation led to the definition of standard interference functions.

Definition 3 ([11]) A function I : Rn+ → Rn+ is called a standard interference function, if for all p ≥ 0, the following
properties are satisfied:
• Positivity: I(p) > 0.
• Monotonicity: If p ≥ p′, then I(p) ≥ I(p′).
• Scalability: For all α > 1, αI(p) > I(αp).

The monotonicity property of standard interference functions requires a user to increase its transmit power when other users
increase their powers. Opportunistic power control algorithms, however, work in the opposite way as they allow users with large
channel gain and low interference to transmit at high power while they limit users with poor channels and high interference
to transmit at low (or even zero) power [25]–[27]. In this way, opportunistic algorithms exploit fluctuations in the channel
gains to transmit when the quality of communication links is favorable. Since opportunistic power control algorithms violate
the monotonicity condition, they cannot be handled by the standard interference function framework. However, in certain cases
they can be analyzed using the following class of generalized interference functions, introduced by Sung and Leung [12]:

Definition 4 ([12]) A function I : Rn+ → Rn+ is called a two-sided scalable interference function, if for all p ≥ 0, I(p)
satisfies
• Positivity: I(p) > 0.
• Two-sided scalability: For all α > 1,

1

α
p ≤ p′ ≤ αp⇒ 1

α
I(p) < I(p′) < αI(p).
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Even though the monotonicity and scalability conditions of standard interference functions have been replaced by the two-
sided scalability condition, one can show that every standard interference function is also two-sided scalable [12, proposition
4]. The following example shows that the converse is, in general, not true. Consider the interference function

I(p) =


√
p+ 1

100 , 0 ≤ p ≤ 1,

1
√
p

+
1

100
, p > 1,

which is two-sided scalable. However, monotonicity property does not hold and, hence, the interference function is not standard.
The main properties of two-sided scalable interference functions can be summarized as follows.

Proposition 4 ([12], [14]) Let I : Rn+ → Rn+ be a two-sided scalable interference function. Then,
(a) I(p) is continuous at p for all p > 0.
(b) If I(p) has a fixed point, then that fixed point is unique.
(c) If p 6= p′, then d

(
I(p), I(p′)

)
< d(p,p′), where the distance function d(·, ·) is defined as

d(p,p′) = max
1≤i≤n

{
max

{
pi
p′i
,
p′i
pi

}}
. (5)

We begin by studying the asymptotic stability of (1) with I(p) being a two-sided scalable interference function. Thanks to
ki being a positive constant and Ii(p) being positive on Rn+, differential equations (1) and (3) define positive systems1 [29,
Chapter 3]. Therefore, the physical constraint that the power should be non-negative (pi(t) ≥ 0) is automatically fulfilled. The
following theorem is our first key result, which shows that if a two-sided scalable interference function I(p) has a fixed point
p? > 0, then the solution to (1) converges asymptotically to p? for any positive initial condition p(0).

Theorem 1 (Nominal Power Control Algorithm) If a two-sided scalable interference function I : Rn+ → Rn+ has a fixed
point p? > 0, then the continuous-time power control algorithm (1) is asymptotically stable for any initial condition p(0) > 0,
and for any proportionality constant ki > 0.

Proof: Let p? be the fixed point of the interference function I(p), i.e., p? = I(p?), and let K = diag(k1, . . . , kn). It
follows from Lagrange’s formula [31, pp. 242] that the solution p(t) to (1) is given by

p(t) = e−Ktp(0) +

∫ t

0

e−K(t−s)KI(p(s))ds, t ≥ 0,

where e−Kt = diag(e−k1t, . . . , e−knt). Since the initial condition p(0) is assumed to be positive and I(p) > 0 for all p ≥ 0,
it follows that p(t) > 0 for all t ≥ 0 [29]. This allows us to use the Lyapunov function

V
(
p(t)

)
= d
(
p(t),p?

)
− 1,

where d(·, ·) is defined in (5). It is clear that V (p) > 0 for all p 6= p?. Let m ∈ {1, . . . , n} be an index such that

m = arg max
1≤i≤n

{
max

{
pi(t)

p?i
,
p?i
pi(t)

}}
.

This together with the definition of d(·, ·) implies that

V
(
p(t)

)
= max

{
pm(t)

p?m
,
p?m
pm(t)

}
− 1.

The upper-right Dini-derivative of V
(
p(t)

)
along the trajectories of (1) is given by

D+V
(
p(t)

)
=


ṗm(t)

p?m
, pm(t) > p?m,

0, pm(t) = p?m,

− p?m
p2
m(t)

ṗm(t), pm(t) < p?m.

1A dynamical system is said to be positive if any trajectory of the system starting from non-negative initial conditions remains forever in the positive
orthant [28]–[35].
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Case 1) If pm(t) > p?m, then

D+V
(
p(t)

)
= km

(
−pm(t) + Im(p(t))

p?m

)
= km

(
−pm(t)

p?m
+
Im(p(t))

Im(p?)

)
,

where the second equality holds, since p?m = Im(p?). From the definition of d(·, ·), we have

Im(p(t))

Im(p?)
≤ d
(
I(p(t)), I(p?)

)
.

Moreover, d(p(t),p?) = pm(t)/p?m, since pm(t) > p?m. Thus,

D+V
(
p(t)

)
≤ km

(
−d(p(t),p?) + d(I(p(t)), I(p?))

)
. (6)

Case 2) Similarly, if pm(t) < p?m, then

D+V
(
p(t)

)
= −km

p?m
p2
m(t)

(
−pm(t) + Im(p(t))

)
= km

Im(p(t))

pm(t)

(
− p?m
pm(t)

+
Im(p?)

Im(p(t))

)
≤ km

Im(p(t))

pm(t)

(
−d(p(t),p?) + d(I(p(t)), I(p?)

)
. (7)

By Proposition 4(c), d(I(p(t)), I(p?)) < d(p(t),p?) for p(t) 6= p?. It follows from (6) and (7) that

D+V
(
p(t)

)
< 0,

for all p(t) 6= p?. This proves that the fixed point p? is globally asymptotically stable.

Remark 1 For the particular case when the interference function is standard, Theorem 1 recovers a very recent result in [8].

The next result proves that continuous-time power control laws involving two-sided scalable interference functions still
converge asymptotically to the fixed point (provided that one exists), when arbitrary bounded heterogeneous time-varying
delays are introduced to the interference function I(p).

Theorem 2 (Delayed Power Control Algorithm) If a two-sided scalable interference function I : Rn+ → Rn+ has a fixed point
p? > 0, then the continuous-time power control algorithm (3) is asymptotically stable for any initial condition ϕ(·) ∈ C++,
and for any proportionality constant ki > 0.

Proof: Consider the candidate Lyapunov function

V
(
p(t)

)
= d
(
p(t),p?

)
− 1.

As in the proof of Theorem 1, we have

D+V
(
p(t)

)
=


ṗm(t)

p?m
, pm(t) > p?m,

0, pm(t) = p?m,

− p?m
p2
m(t)

ṗm(t), pm(t) < p?m,

where the index m satisfies

max

{
pi(t)

p?i
,
p?i
pi(t)

}
≤ max

{
pm(t)

p?m
,
p?m
pm(t)

}
,

for all i ∈ {1, . . . , n}.
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Case 1) If pm(t) > p?m, then

D+V
(
p(t)

)
= km

(
−
pm(t) + Im

(
pdm(t)

)
p?m

)

= km

(
−pm(t)

p?m
+
Im
(
pdm(t)

)
Im(p?)

)
,

≤ km
(
−d(p(t),p?) + d(I(pdm(t)), I(p?))

)
. (8)

On the other hand, by Proposition 4(c), we obtain

d
(
I(pdm(t)), I(p?)

)
< d
(
pdm(t),p?

)
= max

1≤i≤n

{
max

{
pi(t− τmi (t))

p?i
,

p?i
pi(t− τmi (t))

}}
≤ max

1≤i≤n
d
(
p(t− τmi (t)),p?

)
≤ max
t−τmax≤s≤t

d
(
p(s),p?

)
, (9)

where the last inequality holds, since τmi (t) ≤ τmax for all i. Substituting (9) into (8) gives

D+V
(
p(t)

)
< km

(
−d
(
p(t),p?

)
+ max
t−τmax≤s≤t

d(p(s),p?)
)

= km
(
−V (p(t)) + max

t−τmax≤s≤t
V (p(s))

)
. (10)

Case 2) Similarly, if pm(t) < p?m, we have

D+V
(
p(t)

)
≤ km

Im
(
p(t)

)
pm(t)

(
−d(p(t),p?) + d(I(pdm(t)), I(p?))

)
< km

Im
(
p(t)

)
pm(t)

(
−V (p(t)) + max

t−τmax≤s≤t
V (p(s))

)
. (11)

In order to address the asymptotic stability of (3), we now use the Invariance-Principle theorem for delay differential
equations [36, Corollary 1], [37, Corollary 3.3.2]. According to this theorem, since V (p?) = 0 and V (p) > 0 for all p ∈
Rn+ − {p?}, the continuous-time power control algorithm (3) is asymptotically stable for any ϕ(·) ∈ C++ if D+V

(
p(t)

)
< 0

whenever

max
t−τmax≤s≤t

V
(
p(s)

)
= V

(
p(t)

)
.

It follows from (10) and (11) that whenever the above condition holds, D+V
(
p(t)

)
< 0. Hence, p = p? is globally

asymptotically stable for all ϕ(·) ∈ C++.

Remark 2 The delay independence of continuous-time power control with standard interference functions was previously
considered in [8, Theorem 4], using a Lyapunov-Razumikhin approach. Since every standard interference function is also
two-sided scalable, Theorem 2 recovers the delay independence of standard interference functions as a special case. Note,
however, that our proof differs significantly from the analysis in [8]. The stability proof for standard interference functions
in [8] made heavy use of the fact that standard interference functions are monotonic, which can not be assumed for two-sided
scalable interference functions (cf. Definitions 3 and 4).

Remark 3 We have shown that continuous-time power control with two-sided scalable interference functions converges
asymptotically, but have not provided any guarantees on convergence rates. This is not due to a conservative analysis, since
there are two-sided scalable interference functions for which (1) may converge arbitrarily slowly, see [16, Example 2].
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V. CONTRACTIVE INTERFERENCE FUNCTIONS

Two-sided scalable interference functions do not necessarily have fixed points in the positive orthant (consider for example
I(p) = p+1), and the existence of fixed points has to be verified separately. Furthermore, no guarantees on the convergence rate
of continuous-time power control algorithms involving two-sided scalable interference functions are given. In [16], contractive
interference functions, a slight modification of the standard interference functions, were introduced to allow for a more powerful
analysis of distributed power control algorithms.

Definition 5 ([16]) A function I : Rn+ → Rn+ is said to be a c-contractive interference function if for all p ≥ 0, it satisfies
the following conditions:
• Positivity: I(p) > 0.
• Monotonicity: If p ≥ p′, then I(p) ≥ I(p′).
• Contractivity: There exists a constant c ∈ [0, 1), and a vector v > 0 such that for all ε > 0,

I(p + εv) ≤ I(p) + cεv.

Contrary to the result for standard and two-sided scalable interference functions, contractive interference functions define
contraction mappings in the weighted l∞ norm, which implies that I(p) = p always admits a unique solution in Rn+.

Proposition 5 ([16]) If I : Rn+ → Rn+ is a c-contractive interference function, then it has a unique fixed point p? ∈ Rn+, and

‖I(p)− I(p′)‖v∞ ≤ c‖p− p′‖v∞, ∀p,p′ ∈ Rn+.

In [16], it was shown that the linear interference function (2), as well as many practical interference functions from the literature
are contractive. In particular, all the examples provided in Yates’s original paper [11] were shown to be contractive.

We will now show that if the interference function is c-contractive, then the continuous-time power control law described
by (1) converges exponentially to the unique fixed point. Note that contractive interference functions are also positive and
hence, the physical constraint that the power should be non-negative (pi(t) ≥ 0) is fulfilled.

Theorem 3 (Nominal Power Control Algorithm) If an interference function I : Rn+ → Rn+ is c-contractive, then the
continuous-time power control algorithm (1) is exponentially stable for any initial condition p(0) > 0, and for any pro-
portionality constant ki > 0. In particular, the solution p(t) of (1) satisfies

‖p(t)− p?‖v∞ ≤ ‖p(0)− p?‖v∞ e−kmin(1−c)t, t ≥ 0,

where kmin = min1≤i≤n ki.

Proof: Consider the Lyapunov function

V
(
p(t)

)
=
∥∥p(t)− p?

∥∥v
∞.

It follows from the definition of the weighted l∞ norm that

V
(
p(t)

)
=

1

vm

∣∣pm(t)− p?m
∣∣,

where the index m ∈ {1, . . . , n} satisfies
1

vi

∣∣pi(t)− p?i ∣∣ ≤ 1

vm

∣∣pm(t)− p?m
∣∣, ∀i = 1, . . . , n.

The upper-right Dini-derivative of V
(
p(t)

)
along the trajectories of (1) is given by

D+V
(
p(t)

)
=

1

vm
sgn
(
pm(t)− p?m

)
ṗm
(
t
)

=
1

vm
sgn
(
pm(t)− p?m

)
km
(
−pm(t) + Im (p(t))

)
= km

(
− 1

vm
sgn
(
pm(t)− p?m

)(
pm(t)− p?m

))
+ km

(
1

vm
sgn
(
pm(t)− p?m

)(
Im(p(t))− Im(p?)

))
≤ km

(
− 1

vm

∣∣pm(t)− p?m
∣∣+

1

vm

∣∣Im(p(t))− Im(p?)
∣∣), (12)
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where we have used the fact that p?m = Im(p?) to obtain the third equality. Since I(p) is c-contractive, it follows from
Proposition 5 that

1

vm

∣∣Im (p(t))− Im(p?)
∣∣ ≤ ∥∥I(p(t))− I(p?)

∥∥v
∞

≤ c‖p(t)− p?‖v∞
=

c

vm
|pm(t)− p?m|. (13)

Combining (12) and (13) yields

D+V
(
p(t)

)
≤ −km(1− c) 1

vm

∣∣pm(t)− p?m
∣∣

= −km(1− c)V
(
p(t)

)
≤ −kmin(1− c)V

(
p(t)

)
, (14)

where kmin = min1≤i≤n ki. Integrating both sides of (14) implies

V
(
p(t)

)
≤ V

(
p(0)

)
e−kmin(1−c)t, t ≥ 0,

which completes the proof.
Convergence time is a critical parameter in the evaluation of a distributed power control algorithm. Specifically, the

convergence time Tδ of the algorithm (1) is defined to be the smallest t ≥ 0 such that ‖p(t)− p?‖v∞ ≤ δ. If an interference
function I(p) is c-contractive, then, according to Theorem 3,

‖p(t)− p?‖v∞ ≤ R0e
−kmin(1−c)t,

where R0 = ‖p(0)− p?‖v∞. It follows that

Tδ =
1

kmin(1− c)
ln
R0

δ
,

and ‖p(t)− p?‖v∞ ≤ δ for all t ≥ Tδ . We can see that the guaranteed convergence time of the continuous-time power control
algorithm (1) goes to ∞ as c tends to one.

The following theorem shows that power-control laws involving contractive interference functions are still exponentially
stable when arbitrary bounded heterogeneous time-varying delays are introduced into (1). Moreover, it provides an explicit
bound on the convergence rate of (3) that allows us to quantify the impact of the magnitude of the time delays on the
convergence rate.

Theorem 4 (Delayed Power Control Algorithm) If an interference function I : Rn+ → Rn+ is c-contractive, then the unique
fixed point p? of the continuous-time power control algorithm (3) is exponentially stable for any initial condition ϕ(·) ∈ C++

and for any proportionality constant ki > 0. In particular,

‖p(t)− p?‖v∞ ≤
(

sup
−τmax≤s≤0

‖ϕ(s)− p?‖v∞
)
e−kmin(1−c̄)t, (15)

holds for all t ≥ 0, where kmin = min1≤i≤n ki, and c̄ is the unique positive solution to

c̄ = c ekmin(1−c̄)τmax . (16)

Proof: Consider the following Lyapunov function

V
(
p(t)

)
= ‖p(t)− p?‖v∞.

Similar to the proof of Theorem 3, taking the upper-right Dini-derivative of V (p(t)) along the trajectories of (3) yields

D+V (p(t))

≤ km
(
− 1

vm

∣∣pm(t)− p?m
∣∣+

1

vm

∣∣Im(pdm(t))− Im(p?)
∣∣)

≤ km
(
− 1

vm
|pm(t)− p?m|+ c‖pdm(t)− p?‖v∞

)
,

where the index m ∈ {1, . . . , n} satisfies

1

vi

∣∣pi(t)− p?i ∣∣ ≤ 1

vm

∣∣pm(t)− p?m
∣∣, ∀i = 1, . . . , n,
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and we have used the fact that I(p) is c-contractive to get the second inequality. Then,

D+V
(
p(t)

)
≤ km

(
−‖p(t)− p?‖v∞ + c‖pdm(t)− p?‖v∞

)
≤ km

(
−V (p(t)) + c max

1≤i≤n
‖p(t− τmi (t))− p?‖v∞

)
= km

(
−V
(
p(t)

)
+c max

1≤i≤n
V
(
p(t− τmi (t))

))
≤ km

(
−V
(
p(t)

)
+c max

t−τmax≤s≤t
V
(
p(s)

))
.

Since V (p) ≥ 0 and 0 < c < 1, by applying Proposition 3, we obtain

V
(
p(t)

)
≤
(

sup
−τmax≤s≤0

V
(
p(s)

))
e−ηmt, t ≥ 0,

where ηm is the unique positive solution of the equation

ηm = km(1− ceηmτmax).

For each i ∈ {1, . . . , n}, let ηi be the unique positive solution to

ηi = ki(1− ceηiτmax).

Since ηi, as a function of ki > 0, is monotonically increasing, we have η ≤ ηi for all i, where

η = kmin(1− ceητmax).

This implies that e−ηmt ≤ e−ηt for t ≥ 0, and hence

V
(
p(t)

)
≤
(

sup
−τmax≤s≤0

V
(
p(s)

))
e−ηt.

Letting c̄ = 1− η
kmin

, the result follows immediately.

Although Equation (16) does not admit an explicit solution, its solution c̄ is always unique and satisfies

c ≤ c̄ < 1.

Moreover, c̄ is monotonically increasing with τmax and approaches one as τmax tends to infinity (see Figure 1). Hence, while
the power control law involving contractive interference functions remains exponentially stable for arbitrary bounded time-
varying delays, the convergence rate deteriorates with increasing delays. Furthermore, the convergence time for the delayed
continuous-time power control algorithm (3) is given by

Tδ =
1

kmin(1− c̄)
ln
R0

δ
, (17)

where

R0 = sup
−τmax≤s≤0

‖ϕ(s)− p?‖v∞.

Thus, the guaranteed convergence time goes to ∞ as τmax tends to ∞.

Remark 4 In [16], it has been shown that discrete-time power control algorithms involving contractive interference functions
converge exponentially to the unique fixed point, even in the presence of bounded time-varying delays. However, the extension
of discrete-time results to the continuous-time domain is non-trivial. The reason for this is that discrete-time power control
iterations with contractive interference functions fall within a comprehensive framework, the Totally Asynchronous Algorithmic
Model, for studying the stability of discrete-time systems with heterogeneous time-varying delays [23, Ch. 6]. To the best
of our knowledge, however, there does not exist a corresponding framework for continuous-time systems with heterogeneous
time-varying delays and, hence, the methodology used in this paper is completely different to the one used in [16]. Also
note that our proof technique uses neither the Lyapunov-Krasovskii functional method nor the Lyapunov-Razumikhin method
widely used to analyze the stability of continuous-time systems with time delays, since the Lyapunov-Krasovskii method often
requires the time delay τ(t) to satisfy conservative conditions on its variation, and the Lyapunov-Razumikhin method often
gives a sufficient condition for asymptotic stability. Our proof technique allows us not only to impose minimal restrictions
on time-varying delays, but also to derive explicit exponential bounds on the decay rate of continuous-time power control
algorithms involving contractive interference functions.
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Fig. 1. Upper bound on the convergence rate (c̄) with respect to the maximum delay bound τmax. c̄ is monotonically increasing with τmax and approaches
one as τmax tends to infinity. In this example, c = 0.6, kmin = 1 and τmax varies from 0 to 100.

VI. THE FOSCHINI-MILJANIC ALGORITHM

While the Foschini-Miljanic (FM) algorithm falls within all three interference classes, neither the standard nor the two-sided
scalable interference frameworks are able to guarantee exponential convergence rate and provide a guaranteed convergence
time in the presence of heterogeneous time-varying delays. To show that the concept of contractive interference functions is
useful for analyzing continuous-time power control algorithms, we consider the linear interference function described in (2).
Equation (2) can be rewritten as

Ii(p) =

n∑
j=1

mijpj + ηi, i = 1, . . . , n,

where ηi = γi
ηi
gii

, and

mij =

 γi
gij
gii
, j 6= i,

0, j = i.
(18)

Define M as an n× n matrix that has mij as its elements. It is shown in [16] that if ‖M‖v∞ < 1 for some v > 0, the linear
interference function is c-contractive with c = ‖M‖v∞. In this case, the interference function has a unique fixed point and,
according to Theorem 3, the associated continuous-time power control algorithm (1) is exponentially stable. That is, there exists
a set of powers to which all transmitters converge exponentially fast, such that all transmitters meet their QoS requirements
(minimum SINR for successful reception). This also coincides with the analysis in [2].

Since M is a square non-negative matrix, according to Proposition 1, ρ(M) < 1 is a necessary and sufficient condition for
the existence of a positive vector v for which ‖M‖v∞ < 1. In this case, the following set of linear inequalities in v{

Mv < v,

v > 0,
(19)

is feasible. According to Theorem 3, any feasible solution v to the Linear Programming (LP) problem (19) ensures that the
solution p(t) of the nominal continuous-time power control algorithm (1) is globally exponentially convergent to the unique
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fixed point p? with the convergence rate

α = kmin(1− ‖M‖v∞).

It is easily seen that the decay rate α depends on the choice of vector v. Since ρ(M) ≤ ‖M‖v∞, we always have the following
upper bound for the guaranteed convergence rate

α ≤ α = kmin

(
1− ρ(M)

)
.

Note that if M is irreducible, which is often a reasonable assumption (since we are not considering isolated groups of links
that do not interact with each other), the positive right Perron-Frobenius eigenvector vPF of M satisfies

ρ(M) = ‖M‖vPF
∞ .

In this case, α = α and the solution p(t) of (1) satisfies

‖p(t)− p?‖vPF
∞ ≤ ‖p(0)− p?‖vPF

∞ e−kmin(1−ρ(M))t, t ≥ 0.

Therefore, the vector vPF gives the best convergence rate of the the nominal continuous-time power control algorithm (1) that
our results can guarantee, provided that M is irreducible.

We will now show that c-contractivity is a necessary and sufficient condition for exponential stability of the continuous-time
Foschini–Miljanic algorithm with bounded heterogenous time-varying delays.

Theorem 5 Consider the continuous-time FM algorithm given by

dpi(t)

dt
= ki

(
−pi(t) +

n∑
j=1

mijpj
(
t− τ ij(t)

)
+ ηi

)
, (20)

where mij and ηi are defined in (18). Let M = [mij ] ∈ Rn×n. Then, the following statements are equivalent.
(a) ρ(M) < 1.
(b) ‖M‖v∞ < 1 for some v > 0.
(c) The FM algorithm (20) is exponentially stable for any initial condition ϕ(·) ∈ C++, for any proportionality constant

ki > 0, and for all bounded heterogeneous time-varying delays.
Moreover, every solution p(t) of (20) satisfies

‖p(t)− p?‖v∞ ≤
(

sup
−τmax≤s≤0

‖ϕ(s)− p?‖v∞
)
e−kmin(1−c̄)t,

where c̄ is the unique positive solution to

c̄ = ‖M‖v∞ e−kmin(1−c̄)τmax . (21)

Proof:
(a)⇔ (b): The matrix M is non-negative. Hence, the equivalence of (a) and (b) follows directly from Proposition 1.
(b)⇒ (c): If ‖M‖v∞ < 1 for some v > 0, the linear interference functions is c-contractive with c = ‖M‖v∞ [16, Theorem

1]. It now follows from Theorem 4 that (b) implies (c).
(c)⇒ (b) Assume that (20) is exponentially stable for any arbitrary bounded time delays. Particularly, let τmax = 0. Then,

the following linear system is exponentially stable

ẋ(t) = K(−In +M)x(t),

where K = diag(k1, . . . , kn), and In is the n×n identity matrix. It follows that K(−In +M) is a Hurwitz matrix, i.e., all its
eigenvalues have negative real parts. Moreover, −In +M is a Metzler matrix, since M is non-negative. Note that for Metzler
matrices, Hurwitz stability is equivalent to diagonal stability [38, Theorem 2.2.1]. More precisely, K(−In+M) is stable if and
only if −In +M is stable. Therefore, the linear system ẋ(t) = (−In +M)x(t) is also exponentially stable. Since −In +M
is Metzler and Hurwitz, there is a vector v > 0 such that (−In +M)v < 0 [34, Proposition 2], which implies that Mv < v.
Therefore, ‖M‖v∞ < 1. This completes the proof of the theorem.

As shown in Theorem 5, the FM algorithm is exponentially stable for all bounded heterogeneous time-varying delays if and
only if the LP problem (19) is feasible. Moreover, any vector v satisfying (19) can be used to find a guaranteed convergence
rate by computing the associated c̄ in (21). Equation (21) has three parameters: the maximum delay bound τmax, the positive
vector v, and c̄. For any fixed τmax ≥ 0, and any fixed v > 0, (21) is a nonlinear equation with respect to c̄. Clearly, the
exponential bound on the decay rate that Theorem 5 can provide depends on the choice of vector v, and that an arbitrary
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feasible v not necessarily gives a tight bound on the actual decay rate. For any fixed τmax ≥ 0, since c̄ is monotonically
increasing in ‖M‖v∞, we have c̄ ? ≤ c̄, where c̄ ? is the unique solution to

c̄? = ρ(M) e−kmin(1−c̄?)τmax .

Hence, the convergence rate of (20) is always upper bounded by

α ≤ α = kmin(1− c̄?),

which implies that if M is irreducible, the positive right Perron-Frobenius eigenvector vPF of M also gives the best convergence
rate of the delayed FM algorithm that our bound can guarantee.

Remark 5 The asymptotic stability of the FM algorithm was investigated for constant delays in [5] using the multivariate
Nyquist criterion [39], and for bounded time-varying delays in [7] within the context of positive linear systems. Similar to
Theorem 5, the stability conditions presented in these works are necessary and sufficient, but for asymptotic stability. In this
paper, however, we show that the condition for exponential stability is also necessary and sufficient. Furthermore, the impact
of delays on the convergence rate of (20) has been missing in [5], [7], whereas Theorem 5 provides an explicit bound on the
convergence rate that allows us to quantify the impact of delays on the convergence rate.

VII. NUMERICAL EXAMPLES

In this section, we demonstrate the validity of our analytical results and illustrate the accuracy of our guaranteed bounds on
the convergence rate of continuous-time power control algorithms. We first consider a linear power control algorithm – the FM
algorithm [2] – and include (i) an example for which the algorithm converges for bounded time-varying delays to show that
our convergence rate bound accurately captures the true system behavior; and (ii) an example for which the linear interference
function does not satisfy ρ(M) < 1 and hence diverges, to justify that the derived condition is necessary and sufficient. Next,
we consider a nonlinear power control algorithm – the UBPC algorithm [21] – in a scenario where the algorithm converges
for bounded time-varying delays. We explore the impact of the maximum delay bound on the system response and on the
accuracy of our decay rate bound and find that the guaranteed bound estimates the true system dynamics well, despite that the
analysis of this case is only sufficient.

A. Linear Interference function

We consider a wireless network with 4 users, characterized by the matrix

G =


0.4000 0.0082 0.0419 0.0579
0.0160 0.8530 0.0424 0.0043
0.0200 0.0017 0.1405 0.0010
0.1030 0.0036 0.0104 0.4050

× 10−3. (22)

For this example, the SINR threshold and the thermal noise for each node is set to γi = 3 and ηi = 0.04 mWatts, respectively.
The initial power pi(0) for all users is set to 1 mWatt. The time-varying delays have, somewhat arbitrarily, been set to evolve
as τ(t) = 0.5τmax + 0.5τmax sin(t). We consider an implementation of the Foschini–Miljanic algorithm, with proportionality
constant ki = 0.8. It is easy to verify that the spectral radius of the network is ρ(M) = 0.7146 < 1, where the matrix
M is defined in (18). Therefore, according to Theorem 5, the FM algorithm with bounded time-varying delays converges
exponentially to the unique fixed point. A simulation of the network characterized by the matrix (22) show that SINRs indeed
converge to the desired SINR and power levels to the minimal power vector; see Figure 2.

The theoretical upper bounds on the decay rate of the FM algorithm as obtained in Theorem 5 have been compared with
the actual decay rate of the FM algorithm for the wireless network characterized by the matrix (22). Since the delays are
time-varying and usually smaller than the maximum bound, there is a gap between the theoretical and the actual decay rates
that one observes in simulations, see Figure 3. As M is irreducible, ‖M‖v∞ = ρ(M) = 0.7146. For this network, we then
have numerically calculated the solution to the equation (21) for the values of maximum delay bounds we consider in the
simulations and we have c̄5 = 0.9332, c̄20 = 0.9802 and c̄40 = 0.9898. We observe that when time delays are introduced, c̄
increases monotonically with τmax, meaning that the convergence rate decreases.

We now increase the SINR threshold to γi = 4.25, while keeping all the other parameters fixed. The spectral radius of the
network becomes ρ(M) = 1.0123 > 1 and the power levels diverge, see Figure 4. This example justifies that the stability
condition is both necessary and sufficient.
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Fig. 2. Convergence of the FM algorithm with desired SINR γi = 3, thermal noise η = 0.04 mWatts and proportionality gain ki = 0.8 for all users. The
solid, dashed and dotted lines illustrate the convergence of the algorithm in the presence of delays with maximum delay bound 5, 20 and 40, respectively.

B. Nonlinear Interference function

Next, we consider a continuous-time implementation of the Utility-Based Power Control (UBPC) algorithm from [21], whose
the associated interference function is

Iui (p) =

(∑
j 6=i gijpj + ηr

gii

)
f−1
i

(
αi

∑
j 6=i gijpj + ηr

gii

)
, (23)

where i = 1, . . . , n, and αi is a price coefficient. Here, fi(SIRi) = U ′i(SIRi) in the concave part of Ui where Ui is a utility
function of user i. In their paper, Xiao et al. use a sigmoidal utility function

Ui(SIRi) =
1

1 + e−ai(SIRi−bi)
, (24)

where

bi = γi − a−1
i ln(aiγi − 1) . (25)

Let us define M b = [mb
ij ] to be

mb
ij =

{
bi
gij
gii
, j 6= i,

0, j = i.

In [16], it is shown that if c = ρ(M b) < 1, then Iu is a c-contractive interference function. We will next show that Theorem 4
provides an explicit bound on the decay rate of UBPC algorithm that allows us to analytically quantify the impact of delays
on the convergence rate of the algorithm.

Again, we consider a wireless network with 4 users, characterized by matrix (26),

G =


0.5930 0.0559 0.0416 0.0419
0.0189 0.4860 0.0160 0.0266
0.0199 0.0407 0.1890 0.0267
0.0699 0.0499 0.0541 0.4950

× 10−3. (26)

The SINR threshold for each node is set to γi = 3 and the thermal noise is given by ηi = 0.004 mWatts. The parameter αi
is set to 1. The time-varying delays have been also in this case been simulated using τ(t) = 0.5τmax + 0.5τmax sin(t). We
assume that four users in the system use sigmoidal utility function with ai = 5000, and bi = 2.998 is found according to
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Fig. 3. Comparison of upper bound on the convergence rate of the FM algorithm as obtained in Theorem 5 and the actual convergence rate of the FM algorithm
for the wireless network characterized by matrix (22), for τmax = 5, 20 and 40. The dashed lines show the theoretical upper bound on the convergence rate,
while the solid lines show the actual convergence rate of the FM algorithm.

(25). Since ρ(M b) = 0.81244 < 1, according to Theorem 4, the UBPC algorithm with bounded time-varying delays converges
exponentially to the unique fixed point. A simulation of the network characterized by the matrix (26) show that SINRs converge
to the desired SINR and power levels to the minimal power vector; see Figure 5.

The theoretical upper bounds on the decay rate of the UBPC algorithm as obtained in Theorem 4 have been compared with
the actual decay rate of the UBPC algorithm for the wireless network characterized by the matrix (26), see Figure 6. For this
network, we have numerically calculated c̄ in (16) for the values of maximum delay bounds we consider in the simulations
and we have c̄5 = 0.95863, c̄20 = 0.98778 and c̄40 = 0.99371.

VIII. CONCLUSIONS

This paper considered the dynamics of continuous-time power control laws under an anthology of important classes of
interference functions. We developed a comprehensive stability analysis framework that accounts for bounded heterogeneous
time-varying delays. The first set of results established global asymptotic stability of power control laws involving two-sided
scalable interference functions, and include previous work on standard interference functions as a special case. Next, we proved
global exponential stability of power control laws involving contractive interference functions and derived explicit bounds on
the decay rate which allows to, for the first time, quantify the impact of delays on the rate of convergence of the transmit
powers. For the case of linear interference functions, we demonstrated that our results were necessary and sufficient. Illustrative
examples demonstrated the validity of our theoretical results.
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