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Abstract— This paper develops a comprehensive stability
analysis framework for continuous-time power control al-
gorithms in wireless networks under bounded time-varying
communication delays. Our first set of results establish global
asymptotic stability of power control laws involving two-sided
scalable interference functions, and include earlier work on
standard interference functions as a special case. We then
consider contractive interference functions and demonstrate
that the associated continuous-time power control laws always
have unique fixed points, which are exponentially stable even
in the presence of bounded heterogeneous time-varying delays.
For this class of interference functions, we derive an explicit
bound on the decay rate that allows us to quantify the impact
of delays on the convergence time of the algorithm. Numerical
simulations illustrate our theoretical results.

I. INTRODUCTION

The seminal work by Foschini and Miljanic [1] on
continuous- and discrete-time power control triggered off
numerous publications for both continuous-time power con-
trol (e.g., [2]–[5]) and discrete-time power control (e.g., [6]–
[8]). An elegant axiomatic framework for studying a general
class of discrete-time power control, the so-called standard
interference functions, was proposed by Yates [6]. This
framework includes the discrete-time Foschini-Miljanic (FM)
algorithm [1] and several nonlinear power control algorithms
as special cases. This framework was later extended by Sung
and Leung [7] to a more general class, the so-called two-
sided scalable interference functions, to allow for simple
and powerful analysis of certain opportunistic power control
laws. While these frameworks are general and guarantee
synchronous and asynchronous convergence of discrete-time
power control algorithms in their class, the existence of
fixed points has to be established separately, and there is
no information about the convergence rate of the algorithms.
Recently, a new framework, called contractive interference
functions, was proposed by Feyzmahdavian et al. [8] that
guarantees contractivity of the interference functions and
hence unique fixed points, as well as linear convergence rates
for discrete-time synchronous and asynchronous iterations.

While communication delays are inevitably omnipresent
in networks, they have not been considered for continuous-
time power control until recently. Charalambous et al. [2]
using the multivariate Nyquist criterion showed that the
continuous-time FM algorithm is asymptotically stable for
arbitrary constant delays, while Zappavinga et al. [4] using
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theory for positive systems proved that the FM algorithm
is asymptotically stable even in the presence of bounded
time-varying communication delays and topology changes.
The continuous-time counterpart of the standard interference
functions firstly appeared in [9] and it was later analysed
in [3] using Lyapunov-Razumikhin functions.

In this paper, we consider general classes of continuous-
time distributed power control algorithms, which are
continuous-time versions of those proposed in [7] and [8].
We analyze the continuous-time two-sided scalable inter-
ference functions (for which standard interference functions
constitute a special case) and contractive interference func-
tions. Firstly, we prove that if there exists a feasible steady
state power vector, power-control laws involving two-sided
scalable interference functions are asymptotically stable for
arbitrary bounded heterogeneous time-varying delays. Next,
for the contractive interference functions, we prove that
associated continuous-time power control algorithms con-
verge exponentially to the unique fixed points, even in the
presence of bounded communication delays. For this class
of interference functions, we derive an explicit bound on
the decay rate, thus quantifying the impact of delays on
the convergence time of the algorithm. The validity of our
theoretical results is demonstrated via an illustrative example
for the continuous-time version of the Utility-Based Power
Control (UBPC) algorithm proposed by Xiao et al. [10].

The remainder of the paper is organized as follows. In
Section II, we introduce the notation that will be used
throughout the paper and review some required preliminaries
that are useful for the development of the results in this
paper. Section III gives a description of the problem under
consideration, while the main results of this paper are stated
in Sections IV and V. An illustrative example is presented
in Section VI, justifying the validity of our results. Finally,
concluding remarks are given in Section VII.

II. NOTATION AND PRELIMINARIES

A. Notation

Vectors are written in bold lower case letters and matrices
in capital letters. We have R, N, and N0 for the set of real
numbers, natural numbers, and the set of natural numbers
including zero, respectively. The non-negative orthant of the
n-dimensional real space Rn is represented by Rn+. The ith

component of a vector x ∈ Rn is denoted by xi, and the
notation x ≥ y implies that xi ≥ yi for all components i.
For a matrix A ∈ Rn×n, aij denotes the entry in row i and
column j. The spectral radius of a matrix A is the largest



magnitude of the eigenvalues of A and is denoted by ρ(A).
Given a vector v > 0, the weighted l∞ norm is defined by

‖x‖v∞ = max
1≤i≤n

|xi|
vi
.

The function sgn(x) is the signum function defined by
sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0, and sgn(0) = 0.
For a given τmax > 0, C denotes the space of continuous
functions mapping the interval [−τmax, 0] into Rn. We also
denote

C++ =
{
ϕ(·) ∈ C | ϕ(θ) > 0, θ ∈ [−τmax, 0]

}
.

B. Preliminaries

Next, we review the key definitions and results necessary
for developing the main results of this paper. The following
definition introduce contraction mappings.

Definition 1 A mapping f : Rn → Rn is called a c-
contraction if there exists a constant c ∈ [0, 1) such that

‖f(x)− f(y)‖ ≤ c ‖x− y‖, ∀x, y ∈ Rn,

where ‖ · ‖ is some norm on Rn.

An attractive feature of contraction mappings is that they
always have a unique fixed point.

Proposition 1 ( [11, Chapter 3]) If f : Rn → Rn is a c-
contraction, then f has a unique fixed point, i.e.,

∃ x? ∈ Rn such that f(x?) = x?.

III. PROBLEM STATEMENT

We consider a wireless system consisting of n mobile
users communicating over the same frequency channel. The
continuous-time power control algorithm, firstly considered
in its general form by [9], is given by

dpi(t)

dt
= ki

(
−pi(t) + Ii(p(t))

)
, i = 1, . . . , n. (1)

Here, pi(t) is the transmitted power of user i at time t,
Ii : Rn+ 7→ R+ is the interference function modeling the
interference and noise experienced by the intended receiver
of user i, and ki is a positive constant. The well-known
continuous-time Foschini–Miljanic (FM) algorithm [1], for
example, considers the linear interference function given by

Ii(p) = γi

∑
j 6=i gijpj + ηi

gii
, i = 1, . . . , n, (2)

where gij is the channel gain on the link between user j and
the receiver of user i, γi is the target Signal-to-Interference-
and-Noise Ratio (SINR) of user i, and ηi is the background
noise at the receiver of user i.

In practice, there will always be a signalling delay as-
sociated with transmitting the perceived interference at the
transmitter to the receiver, so that it can adjust the power
according to the power control law. Consequently, a realistic
analysis of the continuous-time power control algorithm must
consider heterogeneous time-varying delays. More precisely,

the continuous-time power control algorithm (1), when the
time delay is introduced becomes

dpi(t)

dt
= ki

(
−pi(t) + Ii(p

di(t))
)
, t ≥ 0,

pi(t) = ϕi(t), t ∈ [−τmax, 0], i = 1, . . . , n.
(3)

Here, ϕ(·) = [ϕ1(·), . . . , ϕn(·)]T is a continuous vector
valued function specifying the initial condition of the system,
and

pdi(t) = [p1(t− τ i1(t)), . . . , pn(t− τ in(t))]T .

The delays τ ij(t) are assumed to be time-varying continuous
functions with respect to t and satisfy

0 ≤ τ ij(t) ≤ τmax, ∀i, j, t ≥ 0,

where τmax is a positive constant providing an upper bound
on the maximum allowable delay. Moreover, no restriction
on the derivative of τ ij(t) is imposed.

To put our work in context, note that the discrete-time
analog of (3) consists of iterations of the type

pi(t+ 1) = Ii
(
pdi(t)

)
, t ∈ N0. (4)

Such iterations have been studied under three frameworks;
standard interference functions [6], two-sided scalable in-
terference functions [7], and contractive interference func-
tions [8]. Specifically, it was shown that if I(p) is a standard
or two-sided scalable interference function, and a power
vector p? satisfying p? = I(p?) exists, then the iterates
generated by (4) converge asymptotically to p? [7, Theorem
12]. If I(p) is contractive, then the iterates (4) converges to
a unique fixed point at a linear rate [8, Theorem 9], i.e.,
the distance between the iterates and the fixed point decays
exponentially.

The aim of this paper is to develop a stability analy-
sis framework for the continuous-time power control algo-
rithm (3) that is equally comprehensive as the theory for its
discrete-time counterpart. Our main objectives are therefore
to (i) study the asymptotic stability of the continuous-time
power control algorithm with heterogeneous time-varying
delays described by (3) when the interference function I(p)
is two-sided scalable; and to (ii) analyse the exponential
stability of (3) when the interference function is contractive
and determine how the convergence rate depends on the
magnitude of the time delays.

IV. STANDARD AND TWO-SIDED SCALABLE
INTERFERENCE FUNCTIONS

As observed by Yates [6], many interference functions
share important properties that allow them to be analyzed in
a common framework. This observation led to the definition
of standard interference functions.

Definition 2 A function I : Rn+ → Rn+ is called a standard
interference function, if for all p ≥ 0 the following properties
are satisfied.
• Positivity: I(p) > 0,



• Monotonicity: If p ≥ p′, then I(p) ≥ I(p′),
• Scalability: For all α > 1, αI(p) > I(αp).

Sung and Leung [7] introduced the following generalized
class of interference functions, which are useful for analyzing
certain classes of opportunistic power control laws.

Definition 3 A function I : Rn+ → Rn+ is called a two-sided
scalable interference function, if for all p ≥ 0, I(p) satisfies
• Positivity: I(p) > 0,
• Two-sided scalability: For all α > 1,

1

α
p ≤ p′ ≤ αp⇒ 1

α
I(p) < I(p′) < αI(p).

Even though the monotonicity and scalability conditions of
standard interference functions have been replaced by the
two-sided scalability condition, one can show that every
standard interference function is also two-sided scalable [7,
proposition 4]. However, the following example shows that
the converse is, in general, not true. Consider the function

I(p) =


√
p, 0 < p ≤ 1,

1
√
p
, p > 1,

which is two-sided scalable. However, monotonicity property
does not hold and, hence, the function is not standard.

The main properties of two-sided scalable interference
functions can be summarized as follows.

Proposition 2 ( [7], [12]) Let I : Rn+ → Rn+ be a two-sided
scalable interference function. Then,
(a) I(p) is continuous at p for all p > 0.
(b) If I(p) has a fixed point, then that fixed point is unique.
(c) If p 6= p′, then d

(
I(p), I(p′)

)
< d(p,p′), where

d(p,p′) = max
i=1,...,n

{
max

{
pi
p′i
,
p′i
pi

}}
. (5)

We begin by studying the asymptotic stability of the
continuous-time power control algorithm (3) with I(p) being
a two-sided scalable interference function. Thanks to ki
being a positive constant and Ii(·) being positive, differential
equation (3) defines a positive system1 [14, Chapter 3].
Therefore, the physical constraint that the power should
be nonnegative (pi(t) ≥ 0) is automatically fulfilled. The
following theorem is our first key result, which shows that
if a two-sided scalable interference function I(p) has a
fixed point p? > 0, then the solution to (3) converges
asymptotically to p? for any initial condition ϕ(·) ∈ C++.

Theorem 1 Suppose a two-sided scalable interference func-
tion I : Rn+ → Rn+ has a fixed point p? > 0. Then, the
continuous-time power control algorithm (3) is asymptoti-
cally stable for any initial condition ϕ(·) ∈ C++, and for
any proportionality constant, ki > 0.

1A dynamical system is said to be positive if every trajectory of the
system starting from nonnegative initial conditions remains forever in the
positive orthant [13]–[20].

Proof: See Appendix A.

Remark 1 The delay independence of continuous-time
power control algorithms with standard interference func-
tions was previously considered in [3, Theorem 4], using
a Lyapunov-Razumikhin approach. Since every standard in-
terference function is also two-sided scalable, Theorem 1
recovers the delay independence of standard interference
functions as a special case.

V. CONTRACTIVE INTERFERENCE FUNCTIONS

Two-sided scalable interference functions do not neces-
sarily have fixed points in the positive orthant (consider for
example I(p) = p+ 1), and the existence of fixed points has
to be verified separately. Furthermore, no guarantees about
the convergence rate of (3) are given. In [8], contractive
interference functions, a slight modification of the standard
interference functions, were introduced to allow for a more
powerful analysis of distributed power control algorithms.

Definition 4 A function I : Rn+ → Rn+ is said to be a c-
contractive interference function if it, for all p ≥ 0, satisfies
the following conditions
• Positivity: I(p) > 0,
• Monotonicity: If p ≥ p′, then I(p) ≥ I(p′),
• Contractivity: There exists a constant c ∈ [0, 1), and a

vector v > 0 such that for all ε > 0,

I(p + εv) ≤ I(p) + cεv.

Contrary to the result for standard and two-sided scalable
interference functions, contractive interference functions al-
ways define contraction mappings in the weighted l∞ norm,
hence I(p) = p has a unique solution in Rn+:

Proposition 3 ( [8]) If I : Rn+ → Rn+ is a c-contractive
interference function, then it has a unique fixed point
p? ∈ Rn+, and

‖I(p)− I(p′)‖v∞ ≤ c‖p− p′‖v∞, ∀p,p′ ∈ Rn,

where c ∈ [0, 1).

In [8], it was shown that the linear interference function (2),
as well as many practical interference functions from the
literature are contractive. In particular, all the examples
provided in Yate’s original paper [6] were shown to be
contractive.

Throughout this section we will use the following concept
of exponential stability.

Definition 5 The solution p(t) = p? of (3) is said to be
globally exponentially stable if there exist positive reals α
and β such that for every initial function ϕ(·), the solution
p(t) of (3) satisfies

‖p(t)− p?‖ ≤ βe−αt
(

sup
−τmax≤s≤0

‖ϕ(s)− p?‖
)
, ∀t ≥ 0.

Clearly, exponential stability implies asymptotic stability.



We will now show that if the interference function is
c-contractive, then the continuous-time power control law
described by (3) converges exponentially to the unique fixed
point. Moreover, an explicit bound on the convergence rate
of (3) is provided that allows us to quantify the impact of
the magnitude of the time delays on the convergence rate.
Note that contractive interference functions are also positive
and hence, the physical constraint that the power should be
nonnegative (pi(t) ≥ 0) is fulfilled.

Theorem 2 Suppose I : Rn+ → Rn+ is c-contractive. Then,
the unique fixed point p? of the continuous-time power
control algorithm (3) is exponentially stable for any initial
condition ϕ(·) ∈ C++ and for any proportionality constant,
ki > 0. In particular, for all t ≥ 0,

‖p(t)− p?‖v∞ ≤ e−kmin(1−c̄)t
(

sup
−τmax≤s≤0

‖ϕ(s)− p?‖v∞
)
,

where kmin = min1≤i≤n ki, and c̄ is the unique positive
solution of the equation

c̄ = c ekmin(1−c̄)τmax . (6)

Proof: See Appendix B.
Although Equation (6) does not admit an explicit solution,

its solution c̄ is always unique and satisfies

c ≤ c̄ < 1.

Moreover, c̄ is monotonically increasing with τmax and
approaches one as τmax tends to infinity. Hence, while the
power control law remains exponentially stable for arbitrary
delays and proportionality constant, the convergence rate
deteriorates with increasing delays

VI. NUMERICAL EXAMPLES

We consider a continuous-time implementation of the
Utility-Based Power Control (UBPC) algorithm from [10],
whose associated interference function is

Iui (p) =

(∑
j 6=i gijpj + ηr

gii

)
f−1
i

(
αi

∑
j 6=i gijpj + ηr

gii

)
,

where i = 1, . . . , n, and αi is a price coefficient. Here,
fi(SIRi) = U ′i(SIRi) in the concave part of Ui where Ui
is a utility function of user i. In their paper, Xiao et al. use
a sigmoidal utility function

Ui(SIRi) =
1

1 + e−ai(SIRi−bi)
, (7)

where

bi = γi − a−1
i ln(aiγi − 1) . (8)

Let us define M b = [mb
ij ] to be

mb
ij =

{
bi
gij
gii
, j 6= i,

0, j = i.

In [8], it is shown that if c = ρ(M b) < 1, then Iu is a
c-contractive interference function. We will next show that
Theorem 2 provides an explicit bound on the decay rate of

UBPC algorithm that allows us to analytically quantify the
impact of delays on the convergence rate of the algorithm.

Consider a wireless network with 4 users, characterized
by matrix (9),

M =


0 0.3558 0.0354 0.1737

0.0522 0 0.0012 0.0229
0.2169 1.2433 0 0.5503
1.1938 0.8062 0.0206 0

 . (9)

The SINR threshold and the thermal noise for each node is
set to γi = 1.5 and ηi = 0.04 mWatts, respectively. The
parameter αi is set to 5000. We assume that four users in
the system use sigmoidal utility function with ai = 1.33,
and bi is found according to (8). The spectral radius of the
network is ρ(M b) = 0.88297, hence c = 0.88297. The initial
power pi(0) for all users is set to 1 mWatt. A simulation
of the network characterized by the matrix (9) shows that
SINRs converge to the desired SINR and power levels to the
minimal power vector; see Figure 1.
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Fig. 1. Convergence of the UBPC algorithm with desired SINR γi = 1.5,
thermal noise η = 0.04 mWatts and proportionality gain ki = 0.1
for all users. The solid, dashed, dot-dashed and dotted lines illustrate the
convergence of the algorithm in the presence of delays with maximum delay
0, 5, 20 and 40, respectively.

The theoretical upper bounds on the decay rate of the
UBPC algorithm as obtained in Theorem 2 have been com-
pared with the actual decay rate of the UBPC algorithm
for the wireless network characterized by the matrix (9),
see Figure 2. Since the delays are time-varying and usually
smaller than the maximum, there is a gap between the
theoretical and the actual decay rates that one observes in
simulations. As we have already shown, when delays are
introduced, c̄ increases monotonically with τmax, meaning
that the decay rate decreases. For this network, we have
numerically calculated c̄ for the values of delays we consider
in the simulations and we have c̄5 = 0.9193, c̄20 = 0.9588
and c̄40 = 0.9752.

VII. CONCLUSIONS

This paper developed a comprehensive stability analysis
framework for continuous-time power control laws under
bounded time-varying communication delays. The first set of
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Fig. 2. Comparison of upper bound on the decay rate of the UBPC
algorithm and the actual decay rate of the UBPC algorithm for the wireless
network characterized by matrix (9), for τmax = 5, 20 and 40. The dashed
lines show the theoretical upper bound on the decay rate, while the solid
lines show the actual decay rate of the UBPC algorithm.

results established global asymptotic stability of power con-
trol laws involving two-sided scalable interference functions.
Next, we proved global exponential stability of power control
laws involving contractive interference functions and derived
explicit bounds on the decay rate which allows to, for the
first time, quantify the impact of delays on the convergence
rate of the transmit powers.

APPENDIX

A. Proof of Theorem 1

First note that if p? is a fixed point of the two-sided
scalable interference function I(p), then p? = I(p?) > 0.
Since the initial condition ϕ(·) is assumed to be positive
(ϕ(·) > 0) and I(p) > 0 for all p ≥ 0, the solutions of
the positive system (3) satisfy p(t) > 0 for all t ≥ 0 [14,
Chapter 3]. This allows us to use the Lyapunov function

V (p) = d
(
p,p?

)
− 1,

where d(·, ·) is defined as in (5). Let m be the index for
which the maximum is achieved at time t. That is,

m = arg max
1≤i≤n

{
max

{
pi(t)

p?i
,
p?i
pi(t)

}}
.

This implies that

V (p) = max

{
pm(t)

p?m
,
p?m
pm(t)

}
− 1.

It is clear that V (p) > 0 for all p 6= p?. The time-derivative
of the candidate Lyapunov function along the trajectories
of (3) is given by

V̇ (p) =


ṗm(t)

p?m
, if pm(t) > p?m,

0, if pm(t) = p?m,

− p?m
p2
m(t)

ṗm(t), if pm(t) < p?m.

a) If pm(t) > p?m, then

V̇ (p) = km

(
−
pm(t) + Im

(
pdm(t)

)
p?m

)

= km

(
−pm(t)

p?m
+
Im
(
pdm(t)

)
Im(p?)

)
,

where we used the fact that p?m = Im(p?) to get the second
equality. Since d

(
p(t),p?

)
= pm(t)

p?m
, and

Im
(
pdm(t)

)
Im(p?)

≤ d
(
I(pdm(t)), I(p?)

)
,

we have

V̇ (p) ≤ km
(
−d(p(t),p?) + d(I(pdm(t)), I(p?))

)
. (10)

On the other hand, by Proposition 2(c), we obtain

d
(
I(pdm(t)), I(p?)

)
< d
(
pdm(t),p?

)
= max

1≤i≤n

{
max

{
pi(t− τmi (t))

p?i
,

p?i
pi(t− τmi (t))

}}
≤ max

1≤i≤n
d
(
p(t− τmi (t)),p?

)
≤ max
t−τmax≤s≤t

d
(
p(s),p?

)
, (11)

where the last inequality follows from the fact that
τmi (t) ≤ τmax. Combining (10) and (11) gives

V̇ (p) < km
(
−d
(
p(t),p?

)
+ max
t−τmax≤s≤t

d(p(s),p?)
)

= km
(
−V (p(t)) + max

t−τmax≤s≤t
V (p(s))

)
. (12)

b) Similarly, if pm(t) < p?m, we have

V̇ (p) ≤ km
Im

(
p(t)

)
pm(t)

(
−d(p(t),p?) + d(I(pdm(t)), I(p?))

)
< km

Im
(
p(t)

)
pm(t)

(
−V (p(t)) + max

t−τmax≤s≤t
V (p(s))

)
. (13)

In order to address the asymptotic stability of the continuous-
time power control algorithm (3), we now apply the
Invariance-Principle theorem for delay differential equa-
tions [21, Corollary 1], [22, Corollary 3.3.2]. In the light
of this theorem, we are interested in the case

max
t−τmax≤s≤t

V
(
p(s)

)
= V

(
p(t)

)
.

It follows from (12) and (13) that while the above condition
holds, V̇ (p) < 0 for all p 6= p?. Therefore, p = p? is
globally asymptotically stable.

B. Proof of Theorem 2

We use the candidate Lyapunov function

V (p) = ‖p− p?‖v∞ = max
1≤i≤n

1

vi
|pi − p?i |.



Let m be the index for which the maximum is achieved at
time t. Calculating the time derivative of V (p) along the
solutions of (3), we get

V̇ (p) =
1

vm
sgn(pm(t)− p?m)ṗm(t)

=
1

vm
sgn
(
pm(t)− p?m

)
km
(
−pm(t) + Im(pdm(t))

)
= km

(
− 1

vm
sgn(pm(t)− p?m)(pm(t)− p?m)

)
+ km

( 1

vm
sgn(pm(t)− p?m)(Im(pdm(t))− Im(p?))

)
≤ km

(
− 1

vm

∣∣pm(t)− p?m
∣∣+

1

vm

∣∣Im(pdm(t))− Im(p?)
∣∣). (14)

where we used the fact that p?m = Im(p?) to obtain the third
equality. The interference function I(p) is c-contractive.
Thus,

1

vm

∣∣Im(pdm(t)
)
− Im(p?)

∣∣ ≤ ∥∥I(pdm(t))− I(p?)
∥∥v
∞

≤ c‖pdm(t)− p?‖v∞, (15)

where we used the definition of weighted l∞ norm to get
the first inequality, and Proposition 3 to obtain the second
inequality. Substituting (15) into (14) yields

V̇ (p) ≤ km
(
−‖p(t)− p?‖v∞ + c‖pdm(t)− p?‖v∞

)
= km

(
−‖p(t)− p?‖v∞ + c max

1≤i≤n

1

vi

∣∣pi(t− τmi (t))− p?i
∣∣)

≤ km
(
−‖p(t)− p?‖v∞ + c max

1≤i≤n
‖p(t− τmi (t))− p?‖v∞

)
= km

(
−V

(
p(t)

)
+c max

1≤i≤n
V
(
p(t− τmi (t))

))
≤ km

(
−V

(
p(t)

)
+c max

t−τmax≤s≤t
V
(
p(s)

))
.

Since V (p) ≥ 0, by Halanay Inequality [23, pp. 389–390],
we obtain

V
(
p(t)

)
≤
(

sup
−τmax≤s≤0

V
(
p(s)

))
e−ηmt, t ≥ 0,

where ηm is the unique positive solution of the equation

ηm = km(1− ceηmτmax).

Let ηi be the positive solution of the equation

ηi = ki(1− ceηiτmax),

for i = 1, . . . , n. Since ηi, as a function of ki > 0, is
monotonically increasing, we have η ≤ ηi for all i where

η = kmin(1− ceητmax).

This implies that η ≤ ηm, and hence e−ηmt ≤ e−ηt for
t ≥ 0. Therefore,

V
(
p(t)

)
≤
(

sup
−τmax≤s≤0

V
(
p(s)

))
e−ηt.

Letting c̄ = 1− η
kmin

, the result follows immediately.
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