
Asynchronism and convergence rates
in distributed optimization

Hamid Reza Feyzmahdavian, Arda Aytekin and Mikael Johansson
KTH - Royal Institute of Technology

Motivation

Optimization as iterative algorithms

Many optimization algorithms are iterations, e.g.

x(t+ 1) = x(t)− γ∇f(x(t)) :=Mx(t)

Optimizer x? is a fixed-point of M.

Easy to analyze when M is a contraction mapping

‖Mx−My‖ ≤ c‖x− y‖ ∀x, y ∈ Rn

for some c ∈ [0, 1) and some norm ‖ · ‖. Then ‖x(t)− x?‖ ≤ ct‖x(0)− x?‖

Ex. Gradient mapping when f is µ-strongly convex with L-Lipschitz gradient
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Motivation

Distributed implementations and asynchrony

Emerging applications require distributed implementations

Computa(on	  

Memory	  

M

x1

...
xn

M2

Mn

M1

x2

x1

xn

1

2

n

3

. . .

. . ....

Communication delays, lack of synchronization ⇒ asynchronous iterations
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Motivation

The impact of asynchrony

Asynchrony can cause otherwise stable iterations to diverge, or slow down.

x1(t+ 1) = x1(t)− 0.75x1(t)− 0.7x2(t− τ(t))

x2(t+ 1) = x2(t)− 0.75x2(t)− 0.7x1(t− τ(t))
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Need models and tools for asynchronous iterations!
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Motivation

A model for asynchronous iterations

A standard form for asynchronous iterations:

xi(t+ 1) =

{
Mi(x1(τ i1(t)), . . . , xn(τ in(t))) if t ∈ T i
xi(t) otherwise

Here,

T i is the set of times when node i executes an update, and

τ ij(t) is the time when the most recent version of xj available to
node i at time t was computed

Note: Can view t− τ ij(t) as information delay from node j to i at time t

Chazan and Miranker (1969), Baudet (1978), Bertsekas and Tsitsiklis (1989), . . .
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Motivation

Partially asynchronous algorithms

The iteration

xi(t+ 1) =

{
Mi(x1(τ i1(t)), . . . , xn(τ in(t))) if t ∈ T i
xi(t) otherwise

is called partially asynchronous if there exists B > 0 such that

a) For every i, t, at least one element of {t, t+ 1, . . . , t+B − 1} is in T i.
b) For every i, j and all t ∈ T i, we have 0 ≤ t− τ ij(t) ≤ B − 1.

c) There holds τ ii (t) = t for all i and all t ∈ T i

Bounded update intervals/information delays, direct access to “own” state
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Motivation

Totally asynchronous algorithms

The iteration

xi(t+ 1) =

{
Mi(x1(τ i1(t)), . . . , xn(τ in(t))) if t ∈ T i
xi(t) otherwise

is called totally asynchronous if

a) every set T i is an infinite subset of N0

b) for every sequence {tk} of elelements of T i that tends to infinity, it holds
that limk→∞ τ ij(tk) =∞ for all i, j.

No node ceases to update, old information eventually purged out of system.
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Motivation

Challenge: quantify the impact of asynchronism

We address two key questions:

1. quantify how B impacts convergence of partially asynchonus iterations

2. establish convergence rates for classes of totally asynchonous iterations

Synchronous	   Par-ally	  asynchronous	   Totally	  asynchronous	  

Linear	  

Max-‐norm	  
contrac-ons	  

Baudet:78	  

BeT:89	  

BeT:89	  

We then use this insight to design delay-insensitive optimization algorithms
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Problem formulation

Problem formulation

Consider iterations

x(t+ 1) =Mx(t)

where M is a pseudo-contraction

‖Mx− x?‖ ≤ c‖x− x?‖ ∀x ∈ Rn

with respect to a block-maximum norm

‖x‖wb = max
1≤i≤m

‖xi‖i
wi

(here x = (x1, . . . , xm) ∈ Rn, xi ∈ Rni and ‖ · ‖i is any norm)

Challenge: Quantify the impact of asynchrony on the iterates.
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Results

Our approach

Use a continuous decreasing function λ : R+ 7→ R+ satisfying

lim
t→∞

λ(t) = 0

and show that there is M > 0 such that

1

wi
‖xi(t)− x?i ‖i ≤Mλ(tik), ∀t ∈ (tik, t

i
k+1]

for all i, all t and every pair of consecutive elements tik and tik+1 in T i.

and shows that for all i = 1, . . . ,m, and for all t ∈ N0,

1

wi
‖xi(t)− x?i ‖i ≤Mλ(tik), t ∈ (tik, t

i
k+1],

where M is a positive constant, and tik and tik+1 are two
consecutive elements of T i. The function λ(t) quantifies how
fast the sequence of vectors generated by (2) converges to
the fixed point x?. For example, if λ(t) = ρt with ρ ∈ (0, 1),
{xi(tik)} converges geometrically to x?i ; and if λ(t) = t−ξ

with ξ > 0, then ‖xi(tik) − x?i ‖i is upper bounded by a
polynomial function of time. Similar to the asynchronous
iterates themselves, the upper bound on the convergence rate
is left unchanged when t /∈ T i and decreases after update
times; see Figure (1).

t
Mλ(t)

tik−1

Mλ(tik−1)

tik

Mλ(tik)

tik+1

Mλ(tik+1)

Fig. 1. Illustration of the upper bound on the convergence rate of the
asynchronous algorithm (2) for every node i.

Theorem 1 For the asynchronous algorithm (2), suppose
that the following conditions hold:
i) f is a pseudo-contraction with contraction modulus c

with respect to the block-maximum norm.
ii) There exist functions βi : R+ → R+ and ∆ ∈ N0 such

that for all t ≥ ∆,

t− tik ≤ βi(t) ≤ t, t ∈ (tik, t
i
k+1], (3)

where tik and tik+1 are two consecutive elements of T i.
iii) There is a decreasing function λ : R+ → R+ such that

lim
t→∞

λ(t) = 0,

and that for all i and j,

c lim
t→∞

λ
(
τ ij(t)− βj(τ ij(t))

)

λ(t)
< 1. (4)

Then, the sequence of vectors generated by (2) under total
asynchronism satisfies

1

wi
‖xi(t)− x?i ‖i ≤Mλ(tik), t ∈ (tik, t

i
k+1],

for all i and all t ∈ N0, where M is a positive constant.

Note that βi(tk+1) is an upper bound on the time interval
between node i’s kth and k+1st updates. Letting βi(t) = D
for all t means that node i performs at least one update during

any time interval of length D. In general, βi(t) may be
unbounded (we will will consider such a case in Example 1).

Proof: (of Theorem 1)
For each i = 1, . . . ,m, let ti0 be the first element of T i.

From Assumption 1b), there exists a time t̂ ∈ N0 large
enough such that for all i and j,

τ ij(t) ≥ max
{

∆, max
1≤i≤m

{ti0}+ 1
}
, ∀t ≥ t̂. (5)

By (4), we can find a sufficiently large time t̃ ∈ N0 so that

cλ
(
τ ij(t)− βj(τ ij(t))

)
≤ λ

(
t
)
, ∀t ≥ t̃. (6)

Let t = max{ t̂, t̃ }, and define

M =
‖x(0)− x?‖wb

λ(t)
.

According to Proposition 2.1 of Section 6.2 in [9], the
sequence {x(t)} generated by (2) satisfies

1

wi
‖xi(t)− x?i ‖i ≤ ‖x(0)− x?‖wb , ∀t ∈ N0,

for all i. Thus,

max
0≤t≤t

{
1

wi

‖xi(t)− x?i ‖i
λ(t)

}
≤ max

0≤t≤t

{‖x(0)− x?‖wb
λ(t)

}

≤ ‖x(0)− x?‖wb
λ(t)

= M,

where the second inequality follows from the fact that λ(t)
is decreasing on R+. It follows that

1

wi
‖xi(t)− x?i ‖i ≤Mλ(t), ∀t ∈ {0, . . . , t}.

For each tik ∈ T i, we have λ(t) ≤ λ(tik) when t ≥ tik. Thus,

1

wi
‖xi(t)− x?i ‖i ≤Mλ(tik), t ∈ (tik, t

i
k+1], (7)

for all t ∈ {0, . . . , t}. We will show by induction that (7)
also holds for all t ≥ t.
Assume for induction that (7) holds for all t up to some t′,
where t′ ≥ t. Let tik′ and tik′+1 be two consecutive elements
of T i such that t′ ∈ (tik′ , t

i
k′+1]. Using the induction

hypothesis, we have

1

wi
‖xi(t′)− x?i ‖i ≤Mλ(tik′). (8)

We now prove that xi(t′ + 1) satisfies (7).
Case 1) If t′ /∈ T i, then t′ + 1 ∈ (tik′ , t

i
k′+1]. Moreover,

from (2), xi(t′ + 1) = xi(t
′). It follows from (8) that

1

wi
‖xi(t′ + 1)− x?i ‖i =

1

wi
‖xi(t′)− x?i ‖i ≤Mλ(tik′).

Therefore, (7) is true for t′ + 1.
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Main results

Main result

Theorem 1. If

a) M is pseudo-contraction with modulus c w.r.t. block-maximum norm

b) There exist functions βi : R+ 7→ R+ and ∆ ∈ N0 such that, ∀t ≥ ∆

t− tik ≤ βi(t) ≤ t t ∈ (tik, t
i
k+1]

for every two consecutive elements tik and tik+1 in T i.
c) There is a decreasing function λ : R+ 7→ R+ with limt→∞ λ(t) = 0 and

c lim
t→∞

λ(τ ij(t)− βj(τ ij(t)))
λ(t)

< 1 ∀i, j

Then, the sequence generated by (2) under total asynchronism satisfies

1

wi
‖xi(t)− x?i ‖i ≤Mλ(tik), t ∈ (tik, t

i
k+1]

for all i and all t, where M is a positive constant.
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Main results

Main result (partially asynchronous iterations)

Theorem 2. Let M be a pseudo-contraction in the block-maximum norm.
Then, the iterates generated by (2) under partial asynchronism satisfy

1

wi
‖xi(t)− x?i ‖ ≤Mρt

i
k t ∈ (tik, t

i
k+1]

for every pair of consecutive elements tik and tik+1 in T i. Moreover,

ρ = c
1

2B−1

Note. Convergence rate still linear. Slows down with increasing B.

Proof uses Theorem 1 with βi(t) = B and λ(t) = ρt.
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Main results

Example (“retarding divider”)

Consider the iteration

x(t+ 1) =

{
1
2x(t), t ∈ T
x(t), t 6∈ T

where x(t) ∈ R and T = {2k | k ∈ N0}.

Since tk+1− tk = 2k, there is no uniform upper bound on inter-update times.

However, since

t− tk ≤
t

2
≤ t ∀t ∈ (tk, tk+1]

β(t) = t/2 and λ(t) = 1/t satisfy conditions of Theorem 1. It follows that

|x(t)| ≤ M

tk
, t ∈ (tk, tk+1]
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Main results

Main result (linearly bounded delays)

Theorem 3. If

a) M is a pseudo-contraction with modulus c w.r.t. a block-maximum norm

b) For each t ∈ T i, there exists t′ ∈ T i such that 1 ≤ t′ − t ≤ B.

c) It holds that 0 ≤ t− τ ij(t) ≤ αt for all i, j and all t ≥ tα.

Then, the sequence generated by (2) under total asynchronism satisfies

1

wi
‖xi(t)− x?i ‖i ≤M

(
tik
B

+ 1

)−ζ
t ∈ (tik, t

i
k+1]

where ζ = ln c/ ln(1− α).

Note. Bounded by polynomial function of time. Slower as delays increase.
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Main results

Discussion: iterate time vs. physical time

Upper bound decreases only at iteration times, stays constant in between.

In physical time, convergence rate depends on how update times grow large.

For partially asynchronous iterations t−B ≤ tik for t ∈ (tik, t
i
k+1], so

Mρt
i
k ≤Mρt−B := M ′ρt, t ∈ (tik, t

i
k+1]

Thus,

1

wi
‖xi(t)− x?i ‖i ≤M ′ρt,

so error decays as O(ρt)

M. Johansson (KTH) Embppt’14 - Lucca, Italy - September 8-9, 2014 16 / 40



Applications

Application: wireless power control

User i transmits at power pi, tries to maintain SINR target γi

SINRi =
giipi∑

j 6=i gijpj + νi
≥ γi

Transmit powers that minimize total energy satisfy

giipi∑
j 6=i gijpj + νi

= γi

or, equivalently

pi = Ii(p)

where Ii : Rn+ → R+ is the interference function.

!"#$"#$%

#%

Contractive interference functions and 
rates of convergence of  

distributed power control laws 

Hamid Reza Feyzmahdavian, Mikael Johansson and Themistoklis Charalambous 
School of Electrical Engineering and ACCESS Linnaeus Center  

KTH – Stockholm - Sweden 

User i  transmits at power   , tries to maintain SINR 
 
 
Optimal transmit powers satisfy 
 
 
or, equivalently 
 
 
where                   is the interference function. 
 
Q: When does distributed power control                          converge?  

Distributed power control 

User 1 

User 2 

User 3 

p3

p2

p1

pi γtgt
i

p = I(p)

I : RK
+ �→ RK

+

p(t + 1) = Ii(p(t))

Giipi�
j �=i Gijpj + σi

= γtgt
i i = 1, . . . , K

Plain DPC: linear iterations 

Basic DPC iterations are linear in transmit powers 
 
 
In vector form: 
 
 
with                    . Iterates converge if and only if              .  
 
Can say much more: 
 
 
 
Q: What can we say for general iterations                        ?  

ρ(M) < 1

�p(t) − p��v
∞ ≤ ρ(M)t�p(0) − p��v

∞

p(t + 1) = I(p(t))

M ≥ 0, N ≥ 0

p(t + 1) = Mp(t) + N

pi(t + 1) =
�

j �=i

γtgt
i Gij

Gii
+

γtgt
i σi

Gii
:=

�

j �=i

[M ]ijpj(t) + [N ]i

Standard interference functions of Yates 

Definition                   is called standard interference function if it satisfies 
a)  Positivity:  
b)  Monotonicity: 
c)  Scalability:   
 
 
Theorem Suppose that I is standard. If I has a fixed point                then 
a)  The fixed point is unique 
b)  The iterations                         converge to    for every initial           
 
 
Several extensions, e.g. [Sung and Leung, Boche et al.] but no convergence rates! 

I : Rn
+ �→ Rn

+

I(p) > 0

αI(p) > I(αp) ∀α > 1

I(p) ≥ I(p�) if p ≥ p�

p� = I(p�)

p(t + 1) = I(p(t)) p� p(0)
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Applications

Application: wireless power control

Transmit power control implements fixed-point iteration

pi(t+ 1) = Ii(p(t))

Definition 1. I : Rn
+ 7→ Rn

+ is a c-contractive interference function if

a) Ii(p) ≥ 0

b) If p ≥ p′ then Ii(p) ≥ Ii(p′)
c) There exists c ∈ [0, 1) and a vector v > 0 such that for all ε > 0

Ii(p+ εv) ≤ Ii(p) + cεvi

Proposition. If I : Rn+ 7→ Rn+ is a c-contractive interference function, then
it has a unique fixed-point p? ∈ Rn+ and

‖I(p)− I(p′)‖v∞ ≤ c‖p− p′‖v∞
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Applications

Application: wireless power control

Corollary. Consider the asynchronous power control iteration, and assume

a) every mobile updates its power at least once every B time units, and

b) no information is more than Dmax time units old.

If I(p) is a c-contractive interference function, then

1

vi
|pi(t)− p?i | ≤Mρt

i
k , t ∈ (tik, t

i
k+1]

where M > 0 and tik and tik+1 are consecutive elements of T i. Moreover,

ρ = c
1

B+Dmax
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Applications

Application: wireless power control

Simulations and bounds for two users in a four-user scenario

Linear interference functions, B = Dmax = 4.

Bounds valid, but not tight (for these users)
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Applications

Application: wireless power control

Assume that information delay for user 1 grows increasingly large

t− τ1j (t) = t− τ j1 (t) = b0.1tc

while other delays, execution times remain unchanged.

Simulations and bounds from Theorem 3.
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Proofs

Proof sketch

Theorem 1 (recollection and interpretation) If

a) M is pseudo-contraction with modulus c w.r.t. block-maximum norm

b) There exist functions βi : R+ 7→ R+ and ∆ ∈ N0 such that, ∀t ≥ ∆

t− tik ≤ βi(t) ≤ t t ∈ (tik, t
i
k+1]

for every two consecutive elements tik and tik+1 in T i.
c) There is a decreasing function λ : R+ 7→ R+ with limt→∞ λ(t) = 0 and

c lim
t→∞

λ(τ ij(t)− βj(τ ij(t)))
λ(t)

< 1 ∀i, j

Then, the sequence generated by (2) under total asynchronism satisfies

1

wi
‖xi(t)− x?i ‖i ≤Mλ(tik), t ∈ (tik, t

i
k+1]

for all i and all t, where M is a positive constant.
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Proofs

Proof sketch

Step 1. Find initial time t such that hypotheses satisfied for t = 0, . . . , t:

Let ti0 be smallest element of T i. By total asynchronism, there is t̂ such that

τ ij(t) ≥ max{∆, max
1≤i≤m

ti0 + 1} ∀t ≥ t̂

By condition c), we can find t̃ such that

cλ
(
τ ij(t)− βj(τ ij(t))

)
≤ λ(t) ∀t ≥ t̃

Let t = max{t̂, t̃} and define M = ‖x(0)− x?‖wb /λ(t).

Since {x | ‖x(t)− x?‖wb ≤ ‖x(0)− x?‖wb } is invariant and λ(t) decreasing

1

wi
‖xi(t)− x?i ‖i ≤Mλ(tik), t ∈ (tik, t

i
k+1].

for all t = 0, . . . , t.
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Proofs

Proof sketch

Step 2. Induction: assume true until t′, show that it holds for t′ + 1.

First consider t′ ∈ T i, and define k′ : t′ ∈ (t′k, t
′
k + 1]. Then, by a)

1

wi
‖xi(t′ + 1)− x?i ‖i ≤ c max

1≤j≤m

{
1

wj
‖xj(τ ij(t′))− x?j‖j

}

Noting that τ ij(t
′) ≤ t′, we apply the induction hypothesis and find

1

wj
‖xj(τ ij(t′))− x?j‖j ≤Mλ(tjkτ ) ≤Mλ(tij(t

′)− βj(τ ij(t′))) ≤
M

c
λ(t′)

It thus holds

1

wi
‖xi(t′ + 1)− x?i ‖i ≤Mλ(t′) = Mλ(tik′+1)

Since t′ + 1 ∈ (tik+1, t
i
k+2], the assertion holds for t′ + 1. (t′ 6∈ T i trivial)
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So far. . .

Established rather general convergence estimates for asynchronous iterations.

Psuedo-contraction in block-maximum norm essential to analysis.

When the gradient iteration

x(t+ 1) = x(t)− γ∇f(x(t))

is a contraction mapping, this is typically w.r.t. the Euclidean norm.

Can we use our insight to design delay-insensitive optimization algorithms?
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A delayed incremental gradient method

Delayed incremental gradient methods

Common set-up in machine-learning applications:

minimize 1
M
∑M
m=1 fm(x)

Centralized coordinator, workers that compute delayed (partial) gradients

Coordinator	  

worker	  1	   worker	  M	  

x(t)

· · ·

rf1(x(t + ⌧))

Computational delay time-varying, update order sometimes stochastic

Agarwal and Duchi (2011), Niu, Recht et al (2011),
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A delayed incremental gradient method

State-of-the art

The Hogwild! algorithm by Niu, Recht, et al (2011)

i(t) = U [1,M ]

x(t+ 1) = x(t)− γ∇fi(t)(x(t− τ(t)))

Converges linearly to ball around origin.

Limitations:

• Analysis asumes strong convexity and bounded gradients (!)

• Convergence proof valid for one particular value of γ.

• Step-size depends on M , max-delay and gradient norms at optimum

Note. Iterations mixing delayed and current states often hard to analyze.
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A delayed incremental gradient method

Delayed gradient iterations

Instead of updating based on delayed gradient

x(t+ 1) = x(t)− γ∇f(x(t− τ(t)))

we consider updating based on delayed gradient mapping,

x(t+ 1) = x(t− τ(t))− γ∇f(x(t− τ(t))) (1)

Proposition 1. Let f be µ-strongly convex and have L-Lipschitz continuous
gradient. If 0 ≤ τ(t) ≤ τmax for all t, then {x(t)} generated by (1) satisfies

‖x(t)− x?‖ ≤
(
κ− 1

κ+ 1

) t
τmax+1

where κ = L/µ.
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A delayed incremental gradient method

Delayed gradient iterations: quadratic objective functions

Consider minimization of the quadratic function

f(x) =
1

2
(Lx21 + µx22)

with τ(t) = 1 for all t.

Then, delayed gradient iteration has convergence factor

cg =
κ

κ+ 1

while the delayed prox iteration has convergence factor

cp =

√
κ2 − 1

κ+ 1
< cg

Potentially faster and easier to analyze
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A delayed incremental gradient method

Our algorithm

To minimize

f(x) =
1

M

M∑

m=1

fm(x)

we propose the following algorithm

i(t) = U [1,M ]

s(t) = x(t− τ(t))− γ∇fi(t)(x(t− τ(t)))

x(t+ 1) = (1− θ)x(t) + θs(t)
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A delayed incremental gradient method

Main result

Theorem 4. Assume that

a) each fm is convex and has Lm-Lipschitz gradient on Rn

b) the overall objective f is µ-strongly convex

Then, if γ ∈ (0, µ/maxm L
2
m) the iterates generated by our method satisfy

Et−1[f(x(t))]− f? ≤ ct(f(x(0))− f?) + e

with

c =

(
1− 2γµθ

(
1− γmaxm L

2
m

µ

))1/(τmax+1)

and

e =
γmaxm Lm

2M(µ− γmaxm L2
m)

M∑

m=1

‖∇fm(x?)‖

Note. Linear convergence to ball around optimum. Error/speed trade-off.
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A delayed incremental gradient method

Numerical results

Representative convergence behaviour
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A delayed incremental gradient method

Numerical results

Comparison with Hogwild!
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α = 0.0065561
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 = 0.0008967

Our algorithm converges faster with theoretically justified stepsizes.
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A delayed incremental gradient method

Proof sketch

Lemma 5. Let {V (t)} be a sequence of real numbers satsfying

V (t+ 1) ≤ pV (t) + q max
t−τ(t)≤s≤t

V (s) + r

for some non-negative numbers p, q and r. If p+ q < 1, and

0 ≤ τ(t) ≤ τmax

Then,

V (t) ≤ ctV (0) + e

where c = (p+ q)1/(1+τmax) and e = r/(1− p− q).
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A delayed incremental gradient method

Proof sketch

Proof of Lemma 5. First note that since p+ q < 1,

1 ≤ (p+ q)−τmax/(1+τmax)

so, since c = (p+ q)1/(1+τmax),

p+ qc−τmax = p+ q(p+ q)−
τmax

1+τmax ≤ (p+ q)(p+ q)−
τmax

1+τmax = c

Assertion holds for t = 0. Assume that it holds for t = 0, . . . t. Then

V (t) ≤ ctV (0) + e, V (s) ≤ csV (0) + e s = t− τmax, . . . , t

We then have

V (t+ 1) ≤ pctV (0) + pe+ q( max
t−τ(t)≤s≤t

cs)V (0) + qe+ r

≤ pctV (0) + pe+ qct−τmaxV (0) + qe+ r = ct+1V (0) + e.
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A delayed incremental gradient method

Proof sketch

Proof of Theorem 4. Consider

V (t+ 1) = Etf(x(t+ 1))− f? = Et−1
[
Et|t−1[f(x(t+ 1))]

]
− f?

Since f is convex and θ ∈ [0, 1],

f(x(t+ 1))− f? = f((1− θ)x(t) + θs(t))− f?
≤ (1− θ)(f(x(t))− f?) + θ(f(s(t))− f?)

We establish the following bound on f(s(t))− f?:

Et|t−1[f(s(t))]− f? ≤
(

1− 2µγ

(
1− αmaxm L

2
m

µ

))
(f(x(t− τ(t)))− f?)

+
γ2 maxm Lm

M

M∑

m=1

‖∇fm(x?)‖2

Allows to express V (t+ 1) in terms of V (t), . . . V (t− τmax) plus error term.
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A delayed incremental gradient method

Proof sketch

Specifically,

V (t+ 1) ≤ (1− θ)V (t)

+ θ

(
1− 2µγ

(
1− γmaxm L

2
m

µ

)
V (t− τ(t))

)

+
θγ2 maxm Lm

M

M∑

m=1

‖∇fm(x?)‖2

So Lemma 5 now yields

V (t) ≤ ctV (0) + e ∀t ∈ N0

with the desired convergence factors and error terms.
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Conclusions

Conclusions

• Convergence analysis of asynchronous iterations

• A general theorem covering both totally and partially asynchronism

• Asynchronism affects rates, not only factors

• A delayed incremental gradient method

• Running averages of delayed incremental gradient mappings

• Converges faster, and under less restrictive assumptions, than alternatives

• Not everything is in “the book” - many open problems!
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