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Distributed Interference-Aware
Energy-Efficient Power Optimization

Guowang Miao, Nageen Himayat, Geoffrey Ye Li, and Shilpa Talwar

Abstract—Power optimization techniques are becoming in-
creasingly important in wireless system design since battery tech-
nology has not kept up with the demand of mobile devices. They
are also critical to interference management in wireless systems
because interference usually results from both aggressive spectral
reuse and high power transmission and severely limits system
performance. In this paper, we develop an energy-efficient power
optimization scheme for interference-limited wireless communi-
cations. We consider both circuit and transmission powers and
focus on energy efficiency over throughput. We first investigate
a non-cooperative game for energy-efficient power optimization
in frequency-selective channels and reveal the conditions of the
existence and uniqueness of the equilibrium for this game. Most
importantly, we discover a sufficient condition for generic multi-
channel power control to have a unique equilibrium in frequency-
selective channels. Then we study the tradeoff between energy
efficiency and spectral efficiency and show by simulation results
that the proposed scheme improves both energy efficiency and
spectral efficiency in an interference-limited multi-cell cellular
network.

Index Terms—Interference, energy efficiency, power optimiza-
tion, OFDM, non-cooperative power control.

I. INTRODUCTION

AS more users need to share the same spectrum for
wideband multimedia communications and cellular net-

works move towards aggressive full frequency reuse sce-
narios [1], the performance of wireless cellular networks is
heavily impaired by interference. This motivates the use of
multi-cell power control and optimization for interference
management[1]–[4]. On the other hand, as higher capacity
wireless links are designed to meet increasing demand from
multimedia applications, the device power consumption also
increases. In contrast, the improvement in battery technology
is much slower, leading to an exponentially increasing gap
between the required and available battery capacity[5]. Hence,
power optimization is also important for maximizing the
battery life for mobile devices. Although, power optimization
plays a pivotal role in both interference management and
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energy utilization, little research has addressed their joint
interaction. Only an implicit discussion can be found in [6],
which summarizes existing approaches that addresses either
throughput or energy efficiency separately in the context of
power control for CDMA networks. In this paper, we will
address this topic and develop energy-efficient power opti-
mization, specifically for interference-limited environments.

Our previous work in [7]–[10] has studied energy efficiency
issue in uplink communications in single-cell orthogonal fre-
quency division multiple access (OFDMA) systems to improve
mobile battery consumption, where both circuit and transmis-
sion powers have been considered. Using throughput per Joule
as a performance metric, we have studied both link adapta-
tion and resource allocation techniques. We have observed
that in an interference free environment, a tradeoff between
energy efficiency (EE) and spectral efficiency (SE) exists as
increasing transmission power always improves throughput
but not necessarily EE. In this paper, we consider multi-cell
interference-limited scenarios and develop power optimization
and resource allocation schemes to improve EE. We note that
the general power optimization problem in the presence of
interference is intractable even when ideal user cooperation
is assumed. Therefore, we develop a non-cooperative game
for energy-efficient power optimization. We show that the
equilibrium always exists but may not always be unique,
unless there is only one subchannel or the channel experiences
flat fading. However, in frequency-selective channels, this is
not true in general as demonstrated by a counter example.
We reveal a sufficient condition that assures the uniqueness
of the equilibrium. Then we investigate the tradeoff between
EE and SE and show that in interference-limited scenarios,
increased transmission power also brings higher interference
to the network and SE is not necessarily increased. Due to
the conservative nature of energy-efficient power allocation,
interference from other cells is effectively controlled and
network throughput can be improved. We also discuss the im-
plementation of the non-cooperative power optimization game.
Compared with existing power control schemes, the simulation
results show that the proposed scheme improves both energy
efficiency and spectral efficiency in an interference-limited
cellular network.

The rest of the paper is organized as follows. We first
formulate the multi-channel interference-aware power control
problem in Section II. We then discuss a non-cooperative
energy-efficient power optimization game and study the ex-
istence and uniqueness of the equilibrium for this game in
Section III. In Section IV, we first investigate the equilibrium
characteristics for general multichannel power control schemes
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and then give a sufficient condition that will assure the
uniqueness of the equilibrium for the non-cooperative energy-
efficient power optimization game. In Section V, we study
the tradeoff between spectral and energy efficiency. In Section
VI, we develop a temporal iterative binary search algorithm
for the non-cooperative power optimization game and the
performance improvement is demonstrated by simulations in
Section VII. Finally, we conclude the paper in Section VIII.

II. PROBLEM DESCRIPTION

We introduce interference-aware energy-efficient power op-
timization in this section. Consider a system with 𝐾 subchan-
nels. Each of them experiences independent and flat fading
and additive white Gaussian noise (AWGN). There are 𝑁
users, each consisting of a pair of transmitter and receiver
and operating on these subchannels. All users interfere with
each other. Accurate channel state information is available to
any pair of transmitter and receiver. Denote the signal power
attenuation of User 𝑖 at subchannel 𝑘 to be 𝑔

(𝑘)
𝑖𝑖 and the

interference power gain from the transmitter of User 𝑖 to the
receiver of User 𝑗 at subchannel 𝑘 to be 𝑔(𝑘)𝑖𝑗 . The noise power
on each subchannel is 𝜎2. The power allocation of User 𝑛 on
all subchannels is denoted by vector p𝑛 = [𝑝

(1)
𝑛 𝑝

(2)
𝑛 ⋅ ⋅ ⋅ 𝑝(𝐾)

𝑛 ].
The interference on all subchannels of User 𝑛 is denoted by
vector I𝑛 = [𝐼

(1)
𝑛 𝐼

(2)
𝑛 ⋅ ⋅ ⋅ 𝐼(𝐾)

𝑛 ], where

𝐼(𝑘)𝑛 =

𝑁∑
𝑖=1,𝑖∕=𝑛

𝑝
(𝑘)
𝑖 𝑔

(𝑘)
𝑖𝑛 . (1)

Consequently, the signal-to-interference-plus-noise ratio
(SINR), 𝜂(𝑘)𝑛 , of User 𝑛 at subchannel 𝑘 can be expressed as

𝜂(𝑘)𝑛 =
𝑝
(𝑘)
𝑛 𝑔

(𝑘)
𝑛𝑛∑𝑁

𝑖=1,𝑖∕=𝑛 𝑝
(𝑘)
𝑖 𝑔

(𝑘)
𝑖𝑛 + 𝜎2

. (2)

The data rate at subchannel 𝑘 of User 𝑛, 𝑟(𝑘)𝑛 , is assumed
to be a function of 𝜂(𝑘)𝑛 and can be expressed as

𝑟(𝑘)𝑛 = 𝑅(𝜂(𝑘)𝑛 ), (3)

where 𝑅() is assumed to be strictly concave and increasing in
SINR with 𝑅(0) = 0. For capacity approaching coding [11],
𝑟
(𝑘)
𝑛 = 𝑤 log(1 + 𝜂

(𝑘)
𝑛 ), where 𝑤 is the bandwidth of each

subchannel.
Let the data rate vector of User 𝑛 across the 𝐾 subchannels

be r𝑛 = [𝑟
(1)
𝑛 , 𝑟

(2)
𝑛 , ⋅ ⋅ ⋅ , 𝑟(𝐾)

𝑛 ], then the overall data rate is

𝑟𝑛 =

𝐾∑
𝑘=1

𝑟(𝑘)𝑛 . (4)

The total transmission power is

𝑝𝑛 =
𝐾∑
𝑘=1

𝑝(𝑘)𝑛 . (5)

Note that as in [7], [9], both transmission power and circuit
power, 𝑝𝑐, are important for energy-efficient communications.
While transmission power is used for reliable data transmis-
sion, circuit power represents average energy consumption
of device electronics. As in [9], we optimize the energy

efficiency, defined as

𝑢𝑛 =
𝑟𝑛

△𝑒/△ 𝑡
=

𝑟𝑛
𝑝𝑛 + 𝑝𝑐

, (6)

where 𝑟𝑛 is given by (4) and 𝑝𝑛 by (5). 𝑢𝑛 is called EE of
User 𝑛.

If the overall transmission power is fixed, the objective
of Equation (6) is equivalent to maximizing the overall
throughput of all subchannels and existing water-filling power
allocation approach [11] gives the solution. However, besides
power distributions on all subchannels, the overall transmis-
sion power needs to be adapted according to the states of
all subchannels to maximize energy efficiency. Hence, the
solution to Equation (6) is in general different from the
existing power allocation schemes that maximize throughput
with power constraints. The power control in a multi-cell
setting to optimize the overall network energy efficiency is
also different from traditional power control schemes that
emphasize throughput improvement.

The EE of the overall network can be defined as

𝑢 =

𝑁∑
𝑛=1

𝑢𝑛, (7)

which is a function of 𝑝(𝑘)𝑛 for all 𝑛 and 𝑘. This definition is
based on summation of EE of all users rather than the ratio of
sum network throughput to sum network power consumption
because powers of different users can not be shared and so
are their throughput and EE.

We need to determine power allocation of all users to
optimize the overall network EE subject to the interference
scenario. Note that the solution maximizing sum network EE
is difficult to obtain as the objective function is in general
non-concave in 𝑝(𝑘)𝑛 . More users and subchannels in the system
will result in more local maximums and searching the globally
optimal power allocation would be a daunting task. Even if
the globally optimal solution can be found, it is still imprac-
tical since the central controller requires complete network
knowledge, including interference channel gains. Hence, we
consider distributed power optimization in this paper.

III. DISTRIBUTED ENERGY-EFFICIENT COMMUNICATIONS

In this section, we will discuss distributed energy-efficient
communications, where no cooperation among users is as-
sumed and all users apply the same policy using their own
local information. In the following, we model the non-
cooperative energy-efficient power optimization from a game-
theory perspective and then investigate the existence and
uniqueness of its equilibrium.

A. Non-cooperative Energy-Efficient Power Optimization
Game

Since the network energy efficiency depends on the behav-
iors of two or more users, we model the power control to
be a non-cooperative game in game theory [12]. Rooted in
economics, game theory has been broadly applied in wireless
communications for random access and power control opti-
mizations [2], [3].
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Consider the power allocation of User 𝑛 and denote the
power vectors of other users to be vector

p−𝑛 = (p1,p2, ⋅ ⋅ ⋅ ,p𝑛−1,p𝑛+1, ⋅ ⋅ ⋅ ,p𝑁 ). (8)

Given the power allocation of all other users, p−𝑛, the best
response of the power allocation of User 𝑛 is given by

p𝑜
𝑛 = 𝑓𝑛(p−𝑛) = argmax

p𝑛

𝑢𝑛(p𝑛,p−𝑛), (9)

where 𝑢𝑛 is given by (6) and is a function of both p𝑛 and
p−𝑛. 𝑓𝑛(p−𝑛) is called the best response function of User 𝑛.
The existence and uniqueness of p𝑜

𝑛, i.e. the best response, is
assured by Theorem I in our previous work [9], which is also
summarized in Appendix B when we prove Theorem 1 of this
paper.

Note that non-cooperative power control is not efficient in
terms of SE optimization since users tend to act selfishly by
increasing their transmission power beyond what is reasonable
[2]. Hence, pricing mechanisms are introduced to regulate
the aggressive power transmission by individuals to produce
more socially beneficial outcome towards improving sum
throughput of all users [3]. Different from SE optimal power
control, energy-efficient power optimization desires a power
setting that is greedy in EE but chary of power. Furthermore,
Problem (9) is equivalent to

p𝑜
𝑛 = argmax

p𝑛

log(𝑢𝑛(p𝑛,p−𝑛))

= argmax
p𝑛

(log(𝑟𝑛)− log(𝑝𝑛 + 𝑝𝑐)) ,
(10)

which implies that energy-efficient power control can be
regarded as a variation of traditional spectral-efficient one with
power pricing [3]. Since this power-conservative expression
is socially favorable in interference-limited scenarios, energy-
efficient power control is desirable to reduce interference and
improve throughput in a non-cooperative setting.

Each user optimizes their power independently. The varia-
tion of power allocation of one user impacts those of all others.
Equilibrium is the condition of a network in which competing
influences are balanced assuming invariant channel conditions.
Its properties are important to network performance. Hence,
we characterize the equilibrium of non-cooperative energy-
efficient power optimization in the following three sections.

B. Existence of Equilibrium

In a non-cooperative game, a set of strategies is said to
be at Nash equilibrium if no user can gain individually by
unilaterally altering its own strategy. Denote the equilibrium
as

p∗ = (p∗
1,p

∗
2, ⋅ ⋅ ⋅ ,p∗

𝑁 ). (11)

Nash equilibrium can be strictly described by the following
definition.

Definition 1. In an energy-efficient non-cooperative game,
an equilibrium is a set of power allocation that no user
can unilaterally improve its energy efficiency by choosing a
different set of power allocation, i.e.

p∗=𝑓(p∗) = (𝑓1(p
∗
−1), 𝑓2(p

∗
−2), ⋅ ⋅ ⋅ , 𝑓𝑁(p∗

−𝑁 )), (12)

where 𝑓(p) is the network response function.

The network response relies on energy efficiency of all
users. In the following, we first address the properties of
energy efficiency function and then study the existence of
equilibrium. To facilitate our discussion, we introduce the
concept of quasiconcavity [13].

Definition 2. A function 𝑧, which maps from a convex set
of real 𝑛-dimensional vectors, 𝒟, to a real number, is called
strictly quasiconcave if for any x1,x2 ∈ 𝒟 and x1 ∕= x2,

𝑧(𝜆x1 + (1− 𝜆)x2) > min{𝑧(x1), 𝑧(x2)}, (13)

for any 0 < 𝜆 < 1.

According to the above definition, the quasiconcavity of the
energy efficiency function can be proved in Appendix A and
is summarized in the following lemma.

Lemma 1. 𝑢𝑛(p𝑛,p−𝑛) is strictly quasiconcave in p𝑛.

Based on Lemma 1, the existence of the equilibrium p∗ is
given in Theorem 1. A necessary and sufficient condition for
a set of power allocation to be an equilibrium is proved in in
Appendix B and summarized in Theorem 1.

Theorem 1 (Existence). There exists at least one equilibrium
p∗ in the non-cooperative energy-efficient power optimization
game defined by (9). A set of power allocation of all users,
p∗ = (p∗

1,p
∗
2, ⋅ ⋅ ⋅ ,p∗

𝑁 ), is an equilibrium if and only if it
satisfies that, for any subchannel 𝑖 of any User 𝑛,

(i) if 𝑅
′
(0)𝛾

(𝑖)∗
𝑛 ≥

∑
𝑗 ∕=𝑖 𝑟

(𝑗)∗
𝑛

𝑝𝑐+
∑

𝑗 ∕=𝑖 𝑝
(𝑗)∗
𝑛

,
∂𝑢𝑛(p𝑛,p

∗
−𝑛)

∂𝑝
(𝑖)
𝑛

∣∣∣
p𝑛=p∗

𝑛

= 0,

i.e. 𝑅
′
(𝛾

(𝑖)∗
𝑛 𝑝

(𝑖)∗
𝑛 )𝛾

(𝑖)∗
𝑛 = 𝑢(p∗

𝑛,p
∗
−𝑛);

(ii) otherwise, 𝑝(𝑖)∗𝑛 = 0,

where 𝛾
(𝑖)∗
𝑛 =

𝑔(𝑖)
𝑛𝑛∑

𝑁
𝑗=1,𝑗 ∕=𝑛 𝑝

(𝑖)∗
𝑗 𝑔

(𝑖)
𝑗𝑛+𝜎2

.

In (𝑖) of Theorem 1,
∑

𝑗 ∕=𝑖 𝑟
(𝑗)∗
𝑛

𝑝𝑐+
∑

𝑗 ∕=𝑖 𝑝
(𝑗)∗
𝑛

is the overall energy

efficiency of User 𝑛 when subchannel 𝑖 is idle. Subchannel 𝑖
should be used only if using it can improve the overall energy
efficiency of User 𝑛 and this is determined by how good the

state of subchannel 𝑖 is. If 𝑅
′
(0)𝛾

(𝑖)∗
𝑛 ≥

∑
𝑗 ∕=𝑖 𝑟

(𝑗)∗
𝑛

𝑝𝑐+
∑

𝑗 ∕=𝑖 𝑝
(𝑗)∗
𝑛

, which

is equivalent to 𝑔
(𝑖)
𝑛𝑛 ≥

∑
𝑗 ∕=𝑖 𝑟

(𝑗)∗
𝑛

𝑝𝑐+
∑

𝑗 ∕=𝑖 𝑝
(𝑗)∗
𝑛

∑𝑁
𝑗=1,𝑗 ∕=𝑛 𝑝

(𝑖)∗
𝑗 𝑔

(𝑖)
𝑗𝑛+𝜎2

𝑅′ (0) , the

state of subchannel 𝑖 is good enough for data transmission
and the power allocated on it satisfies 𝑅

′
(𝛾

(𝑖)∗
𝑛 𝑝

(𝑖)∗
𝑛 )𝛾

(𝑖)∗
𝑛 =

𝑢(p∗
𝑛,p

∗
−𝑛). When the power allocations of all users satisfy

(𝑖) or (𝑖𝑖) in Theorem 1, the network is in an equilibrium
state.

C. Uniqueness of Equilibrium in Flat Fading Channels

In this section, we discuss the uniqueness of the equilibrium.
First, we consider a special case when there is a single
subchannel in a network and

𝑝𝑜𝑛 = 𝑓𝑛(p−𝑛) = argmax
𝑝𝑛

𝑢𝑛(𝑝𝑛,p−𝑛). (14)

In this case, the properties of the response functions, proved
in Appendix C, can be stated in Lemma 2.

Lemma 2. When there is only one subchannel, the power
allocation, i.e. the response functions, of all users satisfy
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∙ Concavity: 𝑓𝑛(p−𝑛) is strictly concave in p−𝑛;
∙ Positivity: 𝑓𝑛(p−𝑛) > 0;
∙ Monotonicity: If p−𝑛 ≻ q−𝑛, 𝑓𝑛(p−𝑛) > 𝑓𝑛(q−𝑛);
∙ Scalability: For all 𝛼 > 1, 𝛼𝑓𝑛(p−𝑛) > 𝑓𝑛(𝛼p−𝑛),

where ≻ denotes vector inequality and each element of the
vector satisfies the inequality.

Note that the monotonicity indicates that increasing inter-
ference results in increasing transmission power while the
scalability indicates that variation of transmission power is
always smaller than that of the interference power. These
assure the convergence to a unique equilibrium.

The properties in Lemma 2 can be extended to networks
with multiple subchannels where all subchannels experience
the same channel gain, i.e. flat-fading channels. This can be
done by defining 𝑓𝑛(p−𝑛) to be the optimal total transmission
power on all subchannels and the four properties can be easily
verified by the approaches in Appendix C.

Theorem 2 (Uniqueness). When the channel experiences
flat fading, there exists one and only one equilibrium p∗ in
the non-cooperative energy-efficient power optimization game
defined by (9).

Proof: It has been shown in [14] that a non-cooperative
power control with positivity, monotonicity, and scalability has
a unique fixed point p = 𝑓(p). Hence, we have the above
theorem.

D. Uniqueness of Equilibrium in Frequency-Selective Chan-
nels

When there are multiple subchannels that experience
frequency-selective fading, whether there is a unique equilib-
rium depends on channel conditions.

As an example, consider a network with two users. Let
𝑝𝑐 = 1, 𝑤 = 1, 𝜎2 = 1, 𝑔

(1)
11 = 𝑔

(2)
11 = 𝑔

(1)
22 = 𝑔

(2)
22 = 1, 𝑔

(1)
12 =

𝑔
(1)
21 = 1𝑒−10, 𝑔

(2)
12 = 𝑔

(2)
21 = 1𝑒10. We show in Appendix

D that one of the equilibrium has the form p∗
1 = [𝑝𝛼 𝑝𝛽 ]

and p∗
2 = [𝑝𝛾 0], where 𝑝𝛼, 𝑝𝛽 , and 𝑝𝛾 are positive. Due

to the symmetry of network conditions, p1 = [𝑝𝛾 0] and
p2 = [𝑝𝛼 𝑝𝛽 ] must be another equilibrium. Hence, the network
has at least two equilibria. When there are more users and
subchannels, more equilibria may exist. However, when the
interfering channels satisfy a certain condition, there will be
a unique equilibrium, as shown in the next section.

IV. EQUILIBRIUM OF DISTRIBUTED POWER CONTROL IN

MULTICHANNEL SYSTEMS

In this section, we first consider the equilibrium character-
istics of general multichannel power control schemes and then
give a sufficient condition that will assure the uniqueness of
the equilibrium for the energy-efficient power optimization.

We consider a general non-cooperative power con-
trol over multiple subchannels where each user selfishly
chooses power allocation to maximize its own utility in
an interference-limited environment. The utility, denoted by
𝑈𝑛(p𝑛, I𝑛(p−𝑛)), is assumed to be quasiconcave in p𝑛

given I𝑛, interference on all subchannels. I𝑛 is a function
of p−𝑛 and is determined by (1). An example of utility,

𝑈𝑛(p𝑛, I𝑛(p−𝑛)), is energy efficiency, 𝑢𝑛 in (6). The best
response of the power allocation of User 𝑛 is denoted to be

p𝑜
𝑛 = 𝐹𝑛(p−𝑛) = 𝐹𝑛(I𝑛(p−𝑛))

= argmax
p𝑛

𝑈𝑛(p𝑛, I𝑛(p−𝑛)).
(15)

The non-cooperative energy-efficient power optimization in
(9) is an example of (15).

Since 𝑈𝑛(p𝑛, I𝑛(p−𝑛)) is continuous and quasi-concave in
p𝑛, the equilibrium always exists [15]. Denote the Jacobian
matrix of 𝐹𝑛 at I𝑛 to be ∂𝐹𝑛

∂I𝑛
and the Jacobian matrix of

I𝑛 at p−𝑛 to be ∂I𝑛
∂p−𝑛

. Denote ∣∣𝐴∣∣ to be the Frobenius

norm of matrix 𝐴 = (𝑎𝑖𝑗), i.e. ∣∣𝐴∣∣ =
√∑

𝑖,𝑗 𝑎
2
𝑖𝑗 . We know

that when a contraction mapping has a fixed point, the fixed
point is unique [16]. Readily, we have the following sufficient
condition, which comes from [15], which assures a unique
equilibrium.

Theorem 3 (Uniqueness). In frequency selective channels, if
for any User 𝑛, ∣∣𝐹𝑛(p−𝑛) − 𝐹𝑛(p̌−𝑛)∣∣ < ∣∣p−𝑛 − p̌−𝑛∣∣
for any different p−𝑛 and p̌−𝑛, there exists one and only one
equilibrium p∗ in the non-cooperative power control game
defined by (15).

Intuitively, Theorem 3 indicates that if other users change
their transmission powers by some amount, the best power
allocation of the user is altered by a lesser amount, then
the equilibrium is unique. Note that the transmission powers
of other users and the best response 𝐹𝑛(p−𝑛) in (15) are
related through interference channel gains, which therefore
determines the variation of the best response and whether the
sufficient condition can be guaranteed. Stronger interference
channel gains result in higher correlation and vice versa. The
above two-user network illustrates an example where one
subchannel has extremely strong interference channel gains.
In this case, the sufficient condition is violated and there are
multiple equilibria.

Based on Theorem 3, Theorem 4 explicitly shows the im-
pact of interference channel gains on the number of equilibria
and is proved in Appendix E.

Theorem 4 (Uniqueness). In frequency selective channels, if
for any User 𝑛, ∣∣∣∣∣∣∣∣ ∂I𝑛

∂p−𝑛

∣∣∣∣∣∣∣∣ < 1

supI𝑛

∣∣∣∣∣∣∂𝐹𝑛

∂I𝑛

∣∣∣∣∣∣ , (16)

where supI𝑛 is the supremum on all feasible I𝑛, there exists
one and only one equilibrium p∗ in the non-cooperative power
control game defined by (15).

The Jacobian matrix of 𝐹𝑛 at I𝑛 is

∂𝐹𝑛

∂I𝑛
=

⎛⎜⎜⎜⎝
∂𝑝(1)𝑜

𝑛

∂𝐼
(1)
𝑛

⋅ ⋅ ⋅ ∂𝑝(𝐾)𝑜
𝑛

∂𝐼
(1)
𝑛

...
. . .

...
∂𝑝(1)𝑜

𝑛

∂𝐼
(𝐾)
𝑛

⋅ ⋅ ⋅ ∂𝑝(𝐾)𝑜
𝑛

∂𝐼
(𝐾)
𝑛

⎞⎟⎟⎟⎠ , (17)
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while the Jacobian matrix of I𝑛 at p−𝑛 is

∂I𝑛
∂p−𝑛

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑔
(1)
1𝑛 0

. . .

0 𝑔
(𝐾)
1𝑛

...

𝑔
(1)
(𝑛−1)𝑛 0

. . .

0 𝑔
(𝐾)
(𝑛−1)𝑛

𝑔
(1)
(𝑛+1)𝑛 0

. . .

0 𝑔
(𝐾)
(𝑛+1)𝑛

...

𝑔
(1)
𝑁𝑛 0

. . .

0 𝑔
(𝐾)
𝑁𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (18)

where 0 indicates all elements at that side are 0. Hence, the
left hand side of (16) is∣∣∣∣∣∣∣∣ ∂I𝑛

∂p−𝑛

∣∣∣∣∣∣∣∣ =
√√√⎷ 𝑁∑

𝑖=1,𝑖∕=𝑛

𝐾∑
𝑘=1

𝑔
(𝑘)2
𝑖𝑛 , (19)

which measures the strength of the interference on all sub-
channels that all other users bring to User 𝑛. It is easy to
see that

∣∣∣∣∣∣ ∂I𝑛
∂p−𝑛

∣∣∣∣∣∣ depends only on the interference channel
gains, which is mostly determined by the relative locations of
different communication pairs that interfere with each other,
i.e. how closely the network is coupled. On the other hand,
the right hand side of (16) is independent of interference
channel gains as it is the supreme of

∣∣∣∣∣∣∂𝐹𝑛

∂I𝑛

∣∣∣∣∣∣ on all possible

interference channels. Furthermore, supI𝑛

∣∣∣∣∣∣∂𝐹𝑛

∂I𝑛

∣∣∣∣∣∣ depends on
signal channel gains. Hence, the number of equilibria is de-
termined by how strong interference channel gains and signal
channel gains are. Consider an example where different users
are sufficiently far away and all interference channel gains
are close to zero. It is easy to see that transmission powers
of other users have almost no effect on the best response of
the user and there is a unique equilibrium. However, when
users are moving closer to each other, (19) is getting larger
and larger and once they are close enough such that (16) is
violated, there may be multiple equilibria.

Note that while a sufficient condition of a unique equilib-
rium for distributed power control over a single channel is
given in [14], we provide sufficient conditions of a unique
equilibrium for distributed multichannel power controls in
Theorems 3 and 4, which can be applied to different kinds
of distributed multiple input multiple output (MIMO) and
orthogonal frequency-division multiplexing (OFDM) systems.

Given Theorems 3 and 4, a sufficient condition to assure
a unique equilibrium of the non-cooperative energy-efficient
power optimization follows immediately.

Theorem 5 (Uniqueness). In frequency selective channels,

the non-cooperative energy-efficient power optimization game
defined by (9) has a unique equilibrium if for any User 𝑛,
∣∣𝑓𝑛(p−𝑛) − 𝑓𝑛(p̌−𝑛)∣∣ < ∣∣p−𝑛 − p̌−𝑛∣∣ for any different

p−𝑛 and p̌−𝑛 or
∣∣∣∣∣∣ ∂I𝑛

∂p−𝑛

∣∣∣∣∣∣ < 1

supI𝑛 ∣∣ ∂𝑓𝑛
∂I𝑛

∣∣ .
Note that the above theorem only gives sufficient conditions

of uniqueness that may not be necessary ones. For example
for a single-channel network, due to the strict concavity of
𝑓𝑛(p−𝑛), sup𝐼𝑛

∣∣∣∣∣∣∂𝑓𝑛∂𝐼𝑛

∣∣∣∣∣∣ = ∂𝑓𝑛
∂𝐼𝑛

∣∣∣
𝐼𝑛=0

. However, for all inter-

ference channel gains, there is always a unique equilibrium,
as shown in Theorem 2.

V. TRADEOFF BETWEEN SPECTRAL AND ENERGY

EFFICIENCY

In this section, we investigate the tradeoff between non-
cooperative energy-efficient and spectral-efficient power con-
trol schemes. To facilitate analysis and get insights, consider
a symmetric single-channel network. There are 𝑁 users, all
experiencing the same channel power gain 𝑔. All interference
channels have the same power gain 𝑔. To characterize inter-
ference level, we need to use a metric that is independent of
transmission powers. Define the network coupling factor

𝛼 =
𝑔

𝑔
, (20)

which characterizes what level different links interfere with
each other. Higher 𝛼 represents a heavier interfering sce-
nario. According to Theorem 2, the equilibrium state of non-
cooperative energy-efficient power optimization is unique. Due
to the assumption of network symmetry, all users transmit with
the same power in the equilibrium. Denote the transmission
power of all users to be 𝑝.

The overall network EE will be

𝑢(𝑝) =

𝑁∑
𝑛=1

𝑤 log
(
1 + 𝑝𝑔∑

𝑖,𝑖∕=𝑛 𝑝𝑔+𝜎2

)
𝑝+ 𝑝𝑐

=

𝑁𝑤 log

(
1 + 𝑝

(𝑁−1)𝛼𝑝+𝜎2

𝑔

)
𝑝+ 𝑝𝑐

,

(21)

and the network SE will be

𝑟(𝑝) = 𝑁 log

(
1 +

𝑝

(𝑁 − 1)𝛼𝑝+ 𝜎2

𝑔

)
. (22)

With non-cooperative spectral-efficient power control, every
user allocates power to selfishly maximize its SE. Without
power limit, the transmission power tends to infinity in the
equilibrium. Besides, we can see that 𝑟(𝑝) is strictly increasing
in 𝑝. Hence, the maximum network SE is obtained in the
equilibrium and the upperbound is

𝑟𝑆𝐸 = lim
𝑝→∞ 𝑟(𝑝) = 𝑁 log(1 +

1

(𝑁 − 1)𝛼
) (23)

with the corresponding EE 𝑢𝑆𝐸 = lim𝑝→∞ 𝑢(𝑝) = 0, which is
completely energy inefficient and non-cooperative SE optimal
power control is not desired for energy efficiency.

With non-cooperative energy-efficient power optimization,
the network energy efficiency at the equilibrium is 𝑢𝐸𝐸 =
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Fig. 1. Tradeoff of EE and SE with different interfering scenarios: left Y axis is for curves without markers and indicates the achieved EE while the SE
is as in X axis; right Y axis is for curves with markers and indicates the required transmission power to achieve the spectral efficiency given in X axis.
(𝑝𝑐 = 1, 𝑔 = 1, 𝜎2 = 0.01, 𝑁 = 2).

𝑢(𝑝∗) with the corresponding SE 𝑟𝐸𝐸 = 𝑟(𝑝∗). Hence, the
SE penalty of energy-efficient power optimization is

𝑟𝑡𝑟 = 𝑟𝑆𝐸 − 𝑟𝐸𝐸 = 𝑁 log(1 +
1

(𝑁 − 1)𝛼
)− 𝑟(𝑝∗). (24)

In an interference-free scenario, i.e. 𝑁 = 1 or 𝛼 = 0, the
penalty is infinite. Otherwise, whenever interference exists, it
is bounded.

To further understand the tradeoff, Figure 1 illustrates a case
when two users transmit with the same power and interfere
with each other. Curves with markers draw the relationship
between transmission power and SE when the network has
different couplings while those without markers draw the
corresponding energy efficiency. When 𝛼 = 0, arbitrary SE
can be obtained by choosing enough transmission power.
When 𝛼 > 0, regions beyond the SE upperbound is not
achievable. Furthermore, EE is much more sensitive to power
selection than SE. For example when 𝛼 = 0.1, the transmis-
sion power is chosen to be −3 dBw for energy-efficient power
optimization. The SE achieved is 4.2 bits/s/Hz while the EE is
2.8 bits/Joule. If we further increase the transmission power,
the EE decreases very fast while the SE only improves slightly.
Hence, in interference-limited scenarios, increasing transmis-
sion power beyond the optimal power for EE has little SE
improvement but significantly hurts EE. Furthermore, power
optimization to achieve the highest energy efficiency will also
have reduced SE penalty with the increase of 𝛼. Figure 2
shows the transmission power in the equilibrium when the
network has different couplings and numbers of users. The
equilibrium power decreases with either user number or 𝛼
and automatically alleviates network interference.
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Fig. 2. Non-cooperative energy-efficient power optimization in the
equilibrium(𝑃𝑐 = 1, 𝑔 = 1, 𝜎2 = 0.01).

VI. IMPLEMENTATION ISSUES

In the previous section we know that energy-efficient power
optimization is advantageous in interference-limited scenarios
due to its conservative power allocation nature. In this section,
we will develop practical approaches for non-cooperative
energy-efficient power optimization.

In (9), the best response of User 𝑛 depends on the trans-
mission power vectors of all other users, p−𝑛, which can not
be obtained in a non-cooperative setting. Instead, we observe
that p−𝑛 affects the best response in the form of interference,
which thus contains sufficient information of p−𝑛 to determine
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the best response and can be acquired locally. Hence, we
let each user measure interferences on all subchannels to
determine the power optimization.

At time 𝑡 − 1, the measured interference powers on all
subchannels of User 𝑛 are denoted by I𝑛[𝑡 − 1] = [𝐼

(1)
𝑛 [𝑡 −

1], 𝐼
(2)
𝑛 [𝑡− 1], ⋅ ⋅ ⋅ , 𝐼(𝐾)

𝑛 [𝑡− 1]]. Denote the predicted SINR to
be

𝜂(𝑘)𝑛 [𝑡] =
𝑝
(𝑘)
𝑛 [𝑡]𝑔

(𝑘)
𝑛𝑛

𝐼
(𝑘)
𝑛 [𝑡] + 𝜎2

=
𝑝
(𝑘)
𝑛 [𝑡]𝑔

(𝑘)
𝑛𝑛

𝐼
(𝑘)
𝑛 [𝑡− 1] + 𝜎2

. (25)

Hence, the predicted EE is

𝑢𝑛[𝑡](p𝑛[𝑡]) =
𝑟𝑛[𝑡]

𝑝𝑛[𝑡] + 𝑝𝑐
=

∑
𝑘 𝑅(𝜂

(𝑘)
𝑛 [𝑡])∑

𝑘 𝑝
(𝑘)
𝑛 [𝑡] + 𝑝𝑐

. (26)

The best response at time 𝑡 of User 𝑛 is

p𝑜
𝑛[𝑡] = argmax

p𝑛[𝑡]
𝑢𝑛[𝑡](p𝑛[𝑡]). (27)

Due to the strict quasi-concavity of 𝑢𝑛[𝑡], numerical meth-
ods like gradient ascent algorithms can be used to find the
optimal power allocation at each time slot. A Binary Search
Assisted Ascent algorithm has been developed in [9]. However,
if we obtain the optimal power allocation at each time slot,
it requires intensive computations. Instead, we introduce a
temporal iterative binary search (TIBS) algorithm to track
channel temporal variation and search for the optimal power
allocation with reduced complexity.

The basic idea of TIBS is to search a better power allocation
along the gradient at each time slot and enable iterative search
along time. The power at 𝑡 is updated by

p𝑛[𝑡] = p𝑛[𝑡− 1] + 𝜇(∇𝑢𝑛[𝑡])p𝑛[𝑡−1], (28)

where (∇𝑢𝑛[𝑡])p𝑛[𝑡−1] is the gradient of 𝑢𝑛[𝑡] at p𝑛[𝑡−1] and
𝜇 is a small step size. Fixing channel states and transmission
powers of all other users, the EE at 𝑡 will always be bigger than
that at 𝑡− 1 with sufficiently small step size except when the
gradient is zero, i.e. p𝑛[𝑡−1] is already optimal [17]. However,
small step size leads to slow convergence and channel tracking
capability. Denote

𝑔(𝜇) = 𝑢𝑛[𝑡](p𝑛[𝑡− 1] + 𝜇(∇𝑢𝑛[𝑡])p𝑛[𝑡−1]). (29)

It is easy to show that 𝑔(𝜇) is also strictly quasi-concave in
𝜇 and binary search can be used for rapid location of the
optimal step size 𝜇∗ to find p𝑜

𝑛[𝑡] [9]. The TIBS algorithm is
summarized in the following.

Algorithm Temporal Iterative Binary Search (TIBS)
(∗ non-cooperative energy-efficient power optimization ∗)
Input: p[𝑡− 1], I[𝑡− 1]
Output: p[𝑡]
1. use Gradient Assisted Binary Search([9]) to find the

optimal step size 𝜇∗;
2. p[𝑡] = p[𝑡− 1] + 𝜇∗(∇𝑢[𝑡])p[𝑡−1],
3. return p[𝑡]

VII. SIMULATION RESULTS

In this section, we present simulation results for an
interference-limited uplink OFDMA cellular network and ob-
serve the performance of the network in equilibrium.

TABLE I
SYSTEM PARAMETERS

Carrier frequency 1.5 GHz
Number of subchannels 96
Subchannel bandwidth 10 kHz

Target BER 10−3

Thermal noise power, 𝑁𝑜 -141 dBW/MHz
Circuit power, 𝑃𝐶 100 mW

Maximum transmission power 33 dBm
Propagation model Okumura-Hata model

Shadowing Log-normal
Fading Rayleigh flat fading

Modulation Uncoded M-QAM

The network consists of seven hexagonal cells and the
center cell is surrounded by the other six. The frequency
reuse factor is one. Users are uniformly dropped into each cell
at each simulation trial. The system parameters are listed in
Table I. The base station schedules subchannels to maximize
different network performance metrics. All schedulers and
corresponding power control schemes are listed in Table II.
Since the energy-efficient scheduling for frequency-selective
channels is still an open problem, we use Rayleigh flat-
fading channel and apply the energy-efficient schedulers both
with and without proportional fairness for flat-fading OFDMA
in [7]. The traditional proportional fair scheduler assigns
subchannels to the user with the highest 𝑟

𝑇 , where 𝑟 is the
instantaneous data rate on that subchannel and 𝑇 the average
total throughput [18]. While energy-efficient schedulers assign
subchannels to different users to maximize EE either with
or without fairness, the traditional proportional fair scheduler
assigns all subchannels to one user at each time slot due to
flat fading. We also implement a soft power control scheme
proposed in 802.16m [19]. In this scheme, transmission power
is controlled based on interference strength and path loss. The
parameters in the soft power control scheme are selected to
maximize the throughput of cell-edge users while not hurting
the throughput of other users too much.

Figure 3 compares the average sum network EE and the
corresponding throughput performance respectively. For fixed-
power transmission, the transmission powers are shown in
the legend. To see performance loss due to interference, the
energy-efficient scheduler without fairness and the traditional
proportional scheduler with the maximum transmission power
is also simulated in a single cell network. We can see
that transmitting with the highest power brings the highest
interference and causes significant throughput loss for the
traditional scheduler. In contrast, energy-efficient power con-
trol effectively reduces network interference and has much
less throughput loss. While our previous results in [7] show
that EE and throughput efficiency do not necessarily agree
for an interference-free single cell scenario, the situation is
different for a multi-cell interference-limited network. Here
energy-efficient schemes optimize both throughput and energy
utilization and exhibit an improved SE tradeoff.

Figure 4 further shows the cumulative distribution functions
(CDFs) of energy efficiency and throughput when there are
nine users in the network. Observe the throughput CDF of the
soft power control scheme. Compared with other traditional
schemes, it maximizes cell-edge throughput that is illustrated
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Fig. 3. Performance comparison of different schemes.

TABLE II
SCHEDULING AND POWER CONTROL

Legend Scheduler Power control
OptEE Energy-efficient TIBS

scheduler w/o fairness
PropEE Energy-efficient scheduler TIBS

w/ proportional fairness
Trad-Prop Traditional proportional fair Fixed power

S-Pwr Traditional proportional fair Adaptive power control

in low-throughput range. However, it performs much worse
than other traditional schemes in high-throughput range. From
the CDFs, we can see that the proposed EE schemes not only
improve the sum energy efficiency and throughput, but also
uniformly improve the performance of all users in the cell.

VIII. CONCLUSION

We investigated energy-efficient power optimization
schemes for interference-limited communications in this
paper. We developed a non-cooperative energy-efficient power
optimization game. We further studied the properties of the
equilibrium for this game and showed that the equilibrium of
this game always exists. When there is only one subchannel
or the channel experiences flat fading, there will be a unique
equilibrium. However, in frequency-selective channels, this is
not true in general. We have found a sufficient condition that
assures the uniqueness and developed a practical approach of
the non-cooperative power optimization game. Our study on
the existence and uniqueness of equilibrium guarantees that
the system is stable using non-cooperative energy efficient
power optimization. Since theoretical equilibrium analysis
of the network is difficult because of the non-convexity of
the energy efficiency function as well as the multi-channel
and multi-user dimension of the power control, we use
Monte Carlo simulation to demonstrate that, the proposed
scheme improves not only energy efficiency but also spectral
efficiency uniformly for all users due to the conservative
nature of power optimization, which reduces other-cell

interference to improve the overall network throughput.
The proposed scheme can be applied in different types of
networks, e.g. cellular networks, ad hoc networks and sensor
networks, to improve system spectral efficiency and device
energy efficiency.
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APPENDIX A
PROOF OF LEMMA 1

Proof: Denote the upper contour sets of 𝑢𝑛(p𝑛,p−𝑛)
as 𝑆𝛼 = {p𝑛 ર 0∣𝑢𝑛(p𝑛,p−𝑛) ≥ 𝛼}, where symbol
ર denotes vector inequality and R ર 0 means each ele-
ment of R is non-negative. According to Proposition C.9
of [13], 𝑢𝑛(p𝑛,p−𝑛) is strictly quasiconcave in p𝑛 if and
only if 𝑆𝛼 is strictly convex for any real number 𝛼. It is
obvious that when 𝛼 ≤ 0, 𝑆𝛼 is strictly convex. Now we
investigate the case when 𝛼 > 0. Since 𝑢𝑛(p𝑛,p−𝑛) =
∑𝐾

𝑘=1 𝑅(
𝑝
(𝑘)
𝑛 𝑔

(𝑘)
𝑛𝑛∑𝑁

𝑖=1,𝑖∕=𝑛
𝑝
(𝑘)
𝑖

𝑔
(𝑘)
𝑖𝑛

+𝜎2
)

𝑝𝑐+
∑

𝐾
𝑘=1 𝑝

(𝑘)
𝑛

≥ 𝛼, 𝑆𝛼 is equivalent to

𝑆𝛼 = {p𝑛 ર 0

∣∣∣∣∑𝐾
𝑘=1 𝑅(

𝑝(𝑘)
𝑛 𝑔(𝑘)

𝑛𝑛∑
𝑁
𝑖=1,𝑖∕=𝑛 𝑝

(𝑘)
𝑖 𝑔

(𝑘)
𝑖𝑛 +𝜎2

) − (𝑝𝑐 +∑𝐾
𝑘=1 𝑝

(𝑘)
𝑛 )𝛼 ≥ 0}. Since 𝑅() is strictly concave in SINR,

𝑅() of User 𝑛 is also strictly concave in the transmission
power 𝑝(𝑘)𝑛 given the transmission powers of all other users,
i.e. 𝑝(𝑘)𝑖 where 𝑖 ∕= 𝑛. Obviously, 𝑆𝛼 is also strictly convex.
Hence, we have Lemma 1.

APPENDIX B
PROOF OF THEOREM 1

Proof: In [15], it has been shown a Nash equilibrium
exists in a non-cooperative game if for any 𝑛, (1) p𝑛 is a non-
empty, convex, and compact subset of some Euclidean space
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(b) Throughput.

Fig. 4. Comparison of different schemes.

ℜ𝐿 and (2) 𝑢𝑛(p𝑛,p−𝑛) is continuous and quasi-concave in
p𝑛, both of which are satisfied in our non-cooperative energy-
efficient control game. Hence, the existence of the equilibrium
immediately follows. According to our previous work in [9],
in a point-to-point energy-efficient transmission, the necessary
and sufficient condition for a data rate vector of User 𝑛, r𝑜𝑛 =

[𝑟
(1)𝑜
𝑛 , 𝑟

(2)𝑜
𝑛 , ⋅ ⋅ ⋅ , 𝑟(𝐾)𝑜

𝑛 ], to be globally optimal is given by, for
any subchannel 𝑖,

(i) if
𝑝𝑐+

∑
𝑗 ∕=𝑖 𝑝

(𝑗)
𝑛∑

𝑗 ∕=𝑖 𝑟
(𝑗)
𝑛

≥ ∂(
∑

𝑗 𝑝
(𝑗)
𝑛 )

∂𝑟
(𝑖)
𝑛

∣∣∣∣
r𝑛=r

(𝑖0)
𝑛

,

∂𝑢𝑛(p𝑛,p−𝑛)

∂𝑟
(𝑖)
𝑛

∣∣∣
r𝑛=r𝑜𝑛

= 0, i.e.
∂(

∑
𝑗 𝑝

(𝑗)
𝑛 )

∂𝑟
(𝑖)
𝑛

∣∣∣∣
r𝑛=r𝑜𝑛

=

1
𝑢(p𝑜

𝑛,p−𝑛)
;

(ii) otherwise, 𝑟(𝑖)𝑜𝑛 = 0,
where

r(𝑖0)𝑛 = [𝑟(1)𝑜𝑛 , 𝑟(2)𝑜𝑛 , ⋅ ⋅ ⋅ , 𝑟(𝑖−1)𝑜
𝑛 , 0, 𝑟(𝑖+1)𝑜

𝑛 , ⋅ ⋅ ⋅ , 𝑟(𝐾)𝑜
𝑛 ].

By transformation of parameters, ∂𝑓

∂𝑟
(𝑖)
𝑛

= ∂𝑓

∂𝑝
(𝑖)
𝑛

/
∂𝑟(𝑖)𝑛

∂𝑝
(𝑖)
𝑛

=
∂𝑓

∂𝑝
(𝑖)
𝑛

1

𝑅′ (𝜂(𝑖)
𝑛 )𝛾

(𝑖)
𝑛

, where 𝑅
′
() is the first order derivative of

𝑅() and 𝛾
(𝑖)
𝑛 =

𝜂(𝑖)
𝑛

𝑝
(𝑖)
𝑛

=
𝑔(𝑖)
𝑛𝑛∑

𝑁
𝑗=1,𝑗 ∕=𝑛 𝑝

(𝑖)
𝑗 𝑔

(𝑖)
𝑗𝑛+𝜎2

. Hence, we have

the following equivalent condition for each user. For any
subchannel 𝑖,

(i) if
∑

𝑗 ∕=𝑖 𝑟
(𝑗)
𝑛

𝑝𝑐+
∑

𝑗 ∕=𝑖 𝑝
(𝑗)
𝑛

≤ 𝑅
′
(0)𝛾

(𝑖)
𝑛 , ∂𝑢𝑛(p𝑛,p−𝑛)

∂𝑝
(𝑖)
𝑛

∣∣∣
p𝑛=p𝑜

𝑛

= 0,

i.e.
𝑅

′
(𝛾(𝑖)

𝑛 𝑝(𝑖)𝑜𝑛 )𝛾(𝑖)
𝑛 = 𝑢(p𝑜

𝑛,p−𝑛); (B.30)

(ii) otherwise, 𝑝(𝑖)𝑜𝑛 = 0.
It is easy to see that the network achieves an equilibrium if
and only if the power settings of all users satisfy the above
conditions. Theorem 1 is readily obtained.

APPENDIX C
PROOF OF LEMMA 2

Proof: 𝑝𝑜𝑛 = 𝑓𝑛(p−𝑛) = argmax𝑝𝑛 𝑢𝑛(𝑝𝑛,p−𝑛). Since
𝑢𝑛(0,p−𝑛) = 0 and 𝑢𝑛(𝑝𝑛,p−𝑛) > 0 for any 𝑝𝑛 > 0,

𝑓𝑛(p−𝑛) > 0 and we have the positivity. Denote 𝐼𝑛 =∑𝑁
𝑗=1,𝑗 ∕=𝑛 𝑝𝑗𝑔𝑗𝑛 and 𝛾𝑛 = 𝑔𝑛𝑛

𝐼+𝜎2 . According to (B.30), 𝑝𝑜𝑛
satisfies

𝑅
′
(𝛾𝑛𝑝

𝑜
𝑛)𝛾𝑛 = 𝑢(𝑝𝑜𝑛,p−𝑛) =

𝑅(𝛾𝑛𝑝
𝑜
𝑛)

𝑝𝑐 + 𝑝𝑜𝑛
. (C.31)

Substituting 𝑅(𝜂) = 𝑤 log(1 + 𝜂) in to (C.31), we have the
following equivalent condition,

𝑄(𝑝𝑜𝑛, 𝐼) =

𝑔𝑛𝑛(𝑝𝑐 + 𝑝𝑜𝑛)− (𝑝𝑜𝑛𝑔𝑛𝑛 + 𝐼 + 𝜎2) log(1 +
𝑝𝑜𝑛𝑔𝑛𝑛
𝐼 + 𝜎2

)

= 0.

(C.32)

Hence, ∂𝑝𝑜
𝑛

∂𝐼 = −∂𝑄
∂𝐼

/
∂𝑄
∂𝑝𝑜

𝑛
=

𝑝𝑜
𝑛𝛾𝑛−log(1+𝑝𝑜

𝑛𝛾𝑛)
𝑔𝑛𝑛 log(1+𝑝𝑜

𝑛𝛾𝑛)
. Since 𝑥 >

log(1+𝑥) for all 𝑥 > 0, we have ∂𝑝𝑜
𝑛

∂𝐼 > 0. The monotonicity
follows immediately. Furthermore,

∂2𝑝𝑜𝑛
∂𝐼2

=
∂
∂𝑝𝑜

𝑛

∂𝐼

∂𝐼

= − 𝑝𝑜𝑛(−𝑝𝑜𝑛𝛾𝑛 + (1 + 𝑝𝑜𝑛𝛾𝑛) log(1 + 𝑝𝑜𝑛𝛾𝑛))

(𝐼 + 𝜎2)(𝐼 + 𝜎2 + 𝑝𝑜𝑛𝑔𝑛𝑛) log(1 + 𝑝𝑜𝑛𝛾𝑛)
2
.

(C.33)

We can easily show that (1+ 𝑥) log(1+ 𝑥) > 𝑥 for all 𝑥 > 0
since (1 + 0) log(1 + 0) = 0 and (1 + 𝑥) log(1 + 𝑥) − 𝑥 has
positive first-order derivative when 𝑥 > 0. Thus, ∂2𝑝𝑜

𝑛

∂𝐼2 < 0.
Since 𝐼 is a linear combination of p−𝑛, 𝑓𝑛(p−𝑛) is strictly
concave in p−𝑛. Let 𝐹 (𝛼) = 𝛼𝑓𝑛(p−𝑛)− 𝑓𝑛(𝛼p−𝑛) and we
need to show 𝐹 (𝛼) > 0 for all 𝛼 > 1 to prove the scalability.
Note that 𝐹 (1) = 0 and ∂2𝐹 (𝛼)

∂𝛼2 > 0, it is sufficient to show

that ∂𝐹 (𝛼)
∂𝛼

∣∣∣
𝛼=1

= 𝑓𝑛(p−𝑛) − p−𝑛𝑓
′
𝑛(p−𝑛) > 0, which is

obvious because of the positivity and concavity of 𝑓𝑛(p−𝑛).
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APPENDIX D
PROOF OF TWO EQUILIBRIA IN FREQUENCY-SELECTIVE

CHANNELS

Proof: We need to show that one of the equilibrium
has the form p∗

1 = [𝑝𝛼𝑝𝛽 ] and p∗
2 = [𝑝𝛾0], where 𝑝𝛼, 𝑝𝛽 ,

and 𝑝𝛾 are positive. We only need to verify that there exist
𝑝𝛼, 𝑝𝛽 , and 𝑝𝛾 that satisfy Theorem 1. Suppose p∗

2 = [𝑝𝛾0].
After some calculation, it is easy to see that 𝜎2 ≫ 𝑝𝛾𝑔

(1)
21

and 𝜂
(1)
1 ≈ 𝑝𝛼𝑔

(1)
11

𝜎2 . Hence, both subchannels of User 1
have approximately the same SINR condition. Thus in the
equilibrium, the transmission powers on the two subchannels
of User 1 are almost the same. Besides, they cannot be
zero. Hence, both are positive and satisfy the first condition
of Theorem 1. Assume p∗

1 = [𝑝𝛼𝑝𝛽]. Now we verify p∗
2.

Since User 2 does not transmit on the second subchannel,∑
𝑗 ∕=1 𝑟

(𝑗)∗
𝑛

𝑝𝑐+
∑

𝑗 ∕=1 𝑝
(𝑗)∗
𝑛

= 0 and the first condition of Theorem 1 should

be satisfied. Hence, a positive power is allocated on the first
subchannel in the equilibrium of User 2. Regarding the second

subchannel, 𝛾
(2)∗
𝑛 =

𝑔(2)
𝑛𝑛

𝑝𝛽𝑔
(2)
12 +𝜎2

= 1
𝑝𝛽1𝑒10+1 → 0. Hence,

∑
𝑗 ∕=2 𝑟

(𝑗)∗
2

𝑝𝑐+
∑

𝑗 ∕=2 𝑝
(𝑗)∗
𝑛

> 𝑅
′
(0)𝛾

(2)∗
𝑛 → 0 and condition 2 of Theorem

1 is satisfied. Hence, p∗
2 = [𝑝𝛾0]. Numerical methods can be

used to determine the exact values of 𝑝𝛼, 𝑝𝛽 , and 𝑝𝛾 .

APPENDIX E
PROOF OF THEOREM 4

Proof: For any two power vectors p−𝑛 and p̌−𝑛, define
the function 𝔉𝑛(𝜃) = 𝐹𝑛(p̌−𝑛 + 𝜃(p−𝑛 − p̌−𝑛)). It is clear
that 𝔉𝑛(0) = 𝐹𝑛(p̌−𝑛) and 𝔉𝑛(1) = 𝐹𝑛(p−𝑛); By the chain
rule, we know that ∂𝔉𝑛

∂𝜃 = (p−𝑛 − p̌−𝑛)
∂𝐹𝑛

∂(p̌−𝑛+𝜃(p−𝑛−p̌−𝑛))
.

Hence, we have

𝐹𝑛(p−𝑛)− 𝐹𝑛(p̌−𝑛) = 𝔉𝑛(1)− 𝔉𝑛(0)

=

∫ 1

0

𝔉
′
𝑛(𝜃)𝑑𝜃

= (p−𝑛 − p̌−𝑛)

∫ 1

0

∂𝐹𝑛

∂(p̌−𝑛 + 𝜃(p−𝑛 − p̌−𝑛))
𝑑𝜃.

(E.34)

Thus,

∣∣𝐹𝑛(p−𝑛)− 𝐹𝑛(p̌−𝑛)∣∣

=

∣∣∣∣
∣∣∣∣(p−𝑛 − p̌−𝑛)

∫ 1

0

∂𝐹𝑛

∂(p̌−𝑛 + 𝜃(p−𝑛 − p̌−𝑛))
𝑑𝜃

∣∣∣∣
∣∣∣∣

≤ ∣∣(p−𝑛 − p̌−𝑛)∣∣
∣∣∣∣
∣∣∣∣
∫ 1

0

∂𝐹𝑛

∂(p̌−𝑛 + 𝜃(p−𝑛 − p̌−𝑛))
𝑑𝜃

∣∣∣∣
∣∣∣∣

≤ ∣∣(p−𝑛 − p̌−𝑛)∣∣
∫ 1

0

∣∣∣∣
∣∣∣∣ ∂𝐹𝑛

∂(p̌−𝑛 + 𝜃(p−𝑛 − p̌−𝑛))

∣∣∣∣
∣∣∣∣ 𝑑𝜃

≤ ∣∣(p−𝑛 − p̌−𝑛)∣∣
∫ 1

0

∣∣∣∣∣
∣∣∣∣∣supp−𝑛

∂𝐹𝑛

∂p−𝑛

∣∣∣∣∣
∣∣∣∣∣ 𝑑𝜃

= ∣∣(p−𝑛 − p̌−𝑛)∣∣
∣∣∣∣∣
∣∣∣∣∣supp−𝑛

∂𝐹𝑛

∂p−𝑛

∣∣∣∣∣
∣∣∣∣∣ .

Besides, according to the chain rule,

∂𝐹𝑛

∂p−𝑛
=

∂I𝑛
∂p−𝑛

∂𝐹𝑛

∂I−𝑛
; (E.35)

Hence, we have

∣∣𝐹𝑛(p−𝑛)− 𝐹𝑛(p̌−𝑛)∣∣
∣∣p−𝑛 − p̌−𝑛∣∣ ≤ sup

p−𝑛

∣∣∣∣∣∣∣∣ ∂𝐹𝑛

∂p−𝑛

∣∣∣∣∣∣∣∣
= sup

p−𝑛

∣∣∣∣∣
∣∣∣∣∣ ∂I𝑛
∂p−𝑛

∂𝐹𝑛

∂I−𝑛

∣∣∣∣∣
∣∣∣∣∣

≤
∣∣∣∣∣∣∣∣ ∂I𝑛
∂p−𝑛

∣∣∣∣∣∣∣∣ sup
I−𝑛

∣∣∣∣∣
∣∣∣∣∣ ∂𝐹𝑛

∂I−𝑛

∣∣∣∣∣
∣∣∣∣∣ ;

When
∣∣∣∣∣∣ ∂I𝑛

∂p−𝑛

∣∣∣∣∣∣ < 1

supI𝑛

∣∣∣
∣∣∣ ∂𝐹𝑛
∂I𝑛

∣∣∣
∣∣∣
, ∣∣𝐹𝑛(p−𝑛)−𝐹𝑛(p̌−𝑛)∣∣

∣∣p−𝑛−p̌−𝑛∣∣ < 1. The

uniqueness of equilibrium follows immediately from Theorem
3.
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