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Energy Efficient Pilot and Link Adaptation for
Mobile Users in TDD Multi-User MIMO Systems

Yunesung Kim, Guowang Miao, and Taewon Hwang

Abstract—In this paper, we develop an uplink pilot and down-
link link adaptation approach to improve the energy efficiency
(EE) of mobile users in time division duplexing (TDD) multi-
user multiple input and multiple output (MU-MIMO) systems.
Assuming reciprocity between uplink and downlink channels, the
downlink transmission is based on uplink channel estimation.
While more uplink pilot power ensures more accurate channel
estimation and better downlink performance, it incurs higher
energy consumption of mobile users. This paper reveals the
relationship and tradeoff among pilot power, channel estimation,
and downlink link adaptation that achieves the highest energy
efficiency for mobile users. We show that the energy efficiency of
different users can be decoupled because the downlink average
throughput of each user is independent of the pilot powers of
other users and energy-efficient design can be done on a per-
user basis. Based on the analysis, we propose an uplink pilot and
downlink link adaptation algorithm to improve the EE of mobile
users. Simulation results are finally provided to demonstrate the
significant gain in energy efficiency for mobile users.

Index Terms—Energy efficiency, rate adaptation, power allo-
cation, TDD, multiuser MIMO.

I. INTRODUCTION

THE demand of cellular data traffic has grown significantly
in recent years. To accommodate the need, cellular infras-

tructures are getting denser and denser and consuming more
and more energy resulting in a large amount of carbon dioxide
emission and high capital and operating expenditures [1].
On the other hand, mobile terminals also desire high energy
efficiency (EE) because the development of battery technology
has not kept up with the demand of mobile communications
[2]. Thus, energy-efficient design is becoming more and more
important for both mobile operators to fulfill their social
responsibility in preserving environments and to minimize
their costs and mobile terminals to extend their battery lives
[3], [4].

In the past decades, significant efforts have been dedicated
to improving the EE of wireless systems [5]-[18]. In [5], an
adaptive modulation strategy that minimizes the total energy
consumption for transmitting a given number of bits in a
single input and single output (SISO) AWGN channel is
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investigated. It shows that using the lowest modulation order
is not always energy efficient if circuit energy consumption
is considered. Energy-efficient link adaptation for a single
user multicarrier system is studied in [6]-[9]. In [10], energy-
efficient link adaptation and subcarrier allocation scheme is
proposed for uplink OFDMA systems assuming flat fading
channels. It is proved that, for a given channel gain and
constant circuit energy consumption, there exists a unique
optimal transmission rate that maximizes EE. That work is
extended to frequency-selective channels in [11]. In [12], link
adaptation for MIMO-OFDM wireless systems is formulated
as a convex optimization problem and optimal transmission
mode is chosen to maximize EE with quality of service
(QoS) constraints. In [13], the problem of energy-efficient
input covariance matrix is investigated when terminals have
multiple antennas. In [14], an energy-efficient power allocation
algorithm for a single antenna OFDM system is developed.
That work is later extended to the power loading problem for
a single-carrier MIMO-SVD system in [15]. In [16], the EE
capacity for an uplink MU-MIMO system is defined and a
low-complexity power allocation algorithm that achieves this
capacity is developed. In [17], an energy-efficient waterfilling
algorithm for the downlink MU-MIMO system is developed.
In [18], assuming BS uses the zero-frocing precoder, the opti-
mal power allocation that maximizes the EE in the downlink
of a multiuser multicarrier system is studied.

These studies [5]-[18] assume the availability of perfect
channel state information (CSI). However, in practice, it is
impossible to obtain perfect CSI because of channel estimation
error and CSI can not be obtained without additional cost.
Hence, an energy-efficient system design should consider both
energy consumption for channel estimation and the perfor-
mance degradation as a result of imperfect channel estima-
tion. In [19], an energy-efficient pilot design in a training-
based downlink system is studied for a single user case and
the optimal overall transmit power and the power allocation
between pilots and data symbols are investigated. This idea
is later extended to a downlink multiuser OFDMA system
in [20]. Both [19] and [20] consider energy-efficient pilot
power allocation for single-antenna systems. To the best of
our knowledge, there has been no research in literature that
investigates energy-efficient pilot power allocation for multi-
user multiple-input and multiple-output (MU-MIMO) systems.

In this paper, we study the EE of users in a time division
duplexing (TDD) MU-MIMO system, where each user sends
an uplink pilot sequence for channel estimation by the BS
assuming perfect reciprocity between uplink and downlink
channels. Based on the estimate, the BS performs zero-forcing
(ZF) beamforming and transmits data to users. With higher
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Fig. 1. TDD multiuser MIMO system model.

pilot power, higher downlink rate can be achieved because the
BS can perform ZF beamforming with higher accuracy and
the interference between users can be suppressed. However,
higher pilot power indicates higher user power consumption.
This paper will find the optimal uplink pilot power for each
user. Our modeling considers channel estimation error and we
show that the average throughput of each user is independent
from the pilot power of others. The EE is defined as the
average throughput per total energy consumed by the user
and we find that the objective function is not quasi-concave
in general. However, since the variables are uncoupled and
the objective function is quasi-concave with respect to each
variable in practice, we propose an iterative algorithm to find
optimal uplink pilot power and downlink transmission rate that
maximizes the EE of all the users in the network.

The rest of the paper is organized as follows. In Section
II, we describe the system model. In Section III, we analyze
the downlink average throughput of the TDD MU-MIMO
system based on the ZF precoder. In Section IV, we define the
downlink EE of each user and propose an algorithm that finds
the optimal uplink pilot power and downlink transmission rate
to maximize the EE of each user. In Section V, simulation
results are provided to demonstrate the performance of the
proposed algorithm and the paper is concluded in Section VI.

Notations: (·)T and (·)H denote transpose and Hermitian
transpose, respectively. IN denotes an N by N identity matrix.

II. SYSTEM MODEL

Consider the TDD MU-MIMO system shown in Fig. 1,
where a BS is serving K users. The BS has M antennas
and each user has one antenna. We consider zero-forcing
(ZF) precoding at the BS because it is a practical low-
complexity linear precoding scheme and it performs optimal
among all the linear precoders at high SNR. Moreover, the
SINR analysis under imperfect CSI at the transmitter is
tractable when ZF precoder is employed. Due to these nice
properties, ZF precoder has been frequently adopted in the
system model of the papers on limited feedback such as
[22], [25]-[27]. Following typical assumptions in MU-MIMO
research, e.g., [21]-[22], we consider a narrowband system
with flat fading channels. By assuming flat fading channel, the
discussion on the tradeoff between the uplink pilot power and
the downlink rate of users in a multiuser MIMO system can be
simplified. However, the discussion for narrowband channels
can be extended to frequency-selective channels by employing

T

upτ
tr up dnTτ τ τ−= −dnτ

Fig. 2. Downlink frame structure of TDD system.

orthogonal frequency division multiplexing (OFDM) because
in OFDM systems the wideband channel is divided into many
narrowband sub-bands, each experiencing flat fading. Denote√
βkh

T
k to be the downlink channel from the BS to the kth

user, where βk models large-scale fading that incorporates
path-loss and shadowing and hT

k ∼ CN (0, IM ), a 1 × M
vector, models small-scale fading. The received signal at the
kth user is

rk =
√
βkh

T
k x+ nk (1)

where x and nk ∼ CN (0, σ2) are the M × 1 transmitted
signal vector and complex additive white Gaussian noise,
respectively. Assume ideal channel reciprocity and the uplink
channels are the same as the downlink channels. In addition,
assume block fading and the channel is constant in each frame.
The large-scale fading coefficient βk is known and the small-
scale fading vector hk needs to be estimated.

A. Communication Procedure

As shown in Fig. 2, the system consists of three phases:
1) uplink channel estimation, 2) downlink effective channel
estimation, and 3) downlink data transmission. Each frame
has T symbols. We allocate τup symbols for uplink channel
estimation, τdn symbols for downlink effective channel esti-
mation, and the remaining τtr � T − τup − τdn symbols for
downlink data transmission.

1) Uplink Channel Estimation: To estimate hk at the BS,
the kth user transmits a 1 × τup orthogonal pilot sequence
vector

√
pkψ

T
k with ‖ψT

k ‖2 = τup, where pk denotes the
transmit power of the uplink pilot symbols. The M × τup

received signal matrix at the BS can be written as

Y = H
(
Λ

1
2ΨT

)
+N

where H = [h1, · · · ,hK ], Λ = diag(β1p1, β2p2, · · · , βKpK),
Ψ = [ψ1, · · · ,ψK ], and N is a M × τup noise matrix with its
element in the ith row and the jth column nij ∼ CN (0, σ2).
Due to the orthogonality of the pilot sequences, ΨTΨ∗ =
τupIτup . As shown in [23], the MMSE estimate of H can be
written as

Ĥ = YΨ∗Λ
1
2
(
τupΛ+ σ2IK

)−1
.

The channel estimation error of the MMSE channel estimator
is

W�H− Ĥ

=Eσ(τupΛ+ σ2IK)−
1
2 (2)

where E is a M×K matrix with its element in the ith row and
the jth colum eij ∼ CN (0, 1). Here, the estimation error W
is independent of estimated channel Ĥ. Using the estimated
channel, the BS designs its ZF precoder Â = [â1 · · · âK ]
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where âk is the kth normalized column vector of (ĤT )† =

Ĥ∗
(
ĤT Ĥ∗

)−1

.
2) Downlink Effective Channel Estimation: Assume co-

herent symbol detection and each user needs to know its
effective downlink channel hT

k âk. Therefore, before the BS
transmits data symbols, it sends K distinct 1× τdn orthogonal
pilot sequences. For example, in the LTE-Advanced system,
precoded downlink pilot signal called user equipment specific
reference signal (UE-RS) is employed to enable each user
to estimate its effective downlink channel [24]. The accuracy
of the estimated effective downlink channel depends on the
downlink pilot power of the BS. Since this paper investigates
the EE of users, we assume the downlink pilot power of the
BS is sufficiently high and each user has perfect knowledge
of its downlink effective channel. The focus of this paper is
on phases 1 and 3 and on how to determine the uplink pilot
power and the downlink rate of users to help them achieve the
highest EE.

3) Downlink Data Transmission: Then, the BS transmits
the precoded data symbol vector

x =
K∑

k=1

âkuk (3)

where uk is the message symbol for the kth user with
E[|uk|2] = pdn/K .

From (1) and (3), the received signal at the kth user can be
rewritten as

rk =
√
βkh

T
k âkuk︸ ︷︷ ︸

signal

+

K∑
j=1,j �=k

√
βkh

T
k âjuj︸ ︷︷ ︸

interference

+ nk︸︷︷︸
noise

.

The SINR of the kth user can be written as

Sk =
βkp

dn

K |hT
k âk|2

K∑
j=1,j �=k

βkpdn

K |hT
k âj |2 + σ2

. (4)

From (2), hk can be written as

hk = ĥk +

√
σ2

τupβkpk + σ2
ek (5)

where ĥk and ek are the kth columns of Ĥ and E, respectively.
Using (5) and the nulling property of a ZF precoder, i.e.,

ĥT
l âj = 0 (6)

for all l �= j, we have

|hT
k âj |2 =

σ2

τupβkpk + σ2
|eTk âj |2 (7)

for all j �= k. From (7), we can see that the power of the inter-
user interference experienced by user k depends only on its
own pilot power pk when the ZF precoder is used at the BS.
It can be intuitively explained as follows. From the nulling
property of a ZF precoder in (6), we see that the BS designs
âj such that it lies in N (sp({ĥl}l�=j)), which denotes the null
space spanned by {ĥl}l�=j . If user k (k �= j) uses a higher
pilot power pk to make its estimated channel ĥk more accurate

(closer to hk), then âj , which is perfectly orthogonal to ĥk,
becomes closer to the null space of hk, and the magnitude of
the inner product hT

k âj , which is due to the channel estimation
error and causes interference to user k, decreases. Furthermore,
the channel estimation error of each user, as shown in (2), is
independent of the pilot powers of other users. Therefore, the
interference power experienced by user k depends only on its
pilot power pk. Define Xk � |hT

k âk|2 and Yk,j � |eTk âj |2.
Then, using (7), (4) can be expressed as

Sk =
ρkp

dn

K Xk

ρkpdn

K

τupρkpk+1

K∑
j=1,j �=k

Yk,j + 1

(8)

where ρk � βk

σ2 is the channel to noise ratio of the kth user.

III. AVERAGE THROUGHPUT ANALYSIS

In this section, we derive the SINR distribution and the
downlink average throughput of each user in the TDD MU-
MIMO system. For analytic simplicity, similar to [25]-[27],
we assume M = K for the rest of the paper. In a multiuser
MIMO scenario, if the number of users Ku who want to access
the channel is larger than the number of BS antennas, i.e.,
Ku > M , a multiuser scheduler can be used to select only
K =M users out of those Ku users to be serviced at the same
time using multiuser MIMO [22]. This is usually the case in
cellular communications. For example in LTE-A Release 10,
the BS may have up to four antennas but there are usually
more than ten or dozens of active users. So scheduling is
always used. Therefore, the case of K =M has a significant
meaning in a multiuser MIMO scenario.

A. SINR Distribution

To find the distribution of Sk, we will calculate the dis-
tributions of Xk and Yk,j , respectively. First, we show that
Xk = |hT

k âk|2 is independent of all pilot powers pl’s when
M = K . From (6), âk ∈ N (sp{ĥj}j �=k), whose dimension
reduces to one whenM = K . This implies that when M = K ,
âk is uniquely determined by ĥj’s (j �= k) and independent of
ĥk. So, âk is independent of pk. Moreover, since ĥj’s (j �= k)
are statistically independent of hk, âk is also independent of
hk. Since hk ∼ CN (0, IM ) is a Gaussian random vector and
âk is an M × 1 random unit-norm vector independent of hk,
by lemma 1,

Xk = |hT
k âk|2 ∼ Exp(1) (9)

where Exp(m) denotes the exponential distribution with mean
m. It is clear from (9) that the distribution of Xk = |hT

k âk|2
is independent of the other users’ pilot powers {pl}l�=k.

Lemma 1: Consider an M × 1 Gaussian random vector
g ∼ CN (0, IM ) and an M × 1 unit-norm random vector u
independent of g. Then,

|gTu|2 ∼ Exp(1).

Similarly, using lemma 1, we show that

Yk,j = |eTk âj |2 ∼ Exp(1) (10)
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where we use the fact that ek ∼ CN (0, IM ) and âj is a unit
norm vector independent of ek. Define

Zk �
K∑

j=1,j �=k

Yk,j . (11)

Then, (8) can be rewritten as

Sk =
ρkp

dn

K Xk

ρkpdn

K

τupρkpk+1Zk + 1

. (12)

From (12) and our discussion above, we can see that the SINR
of the kth user Sk depends only on its pilot power pk and is
independent of the other users’ pilot powers {pj}j �=k when
M = K . From (12), the probability density function (PDF)
of Sk can be written as

fSk
(s) =

∫ ∞

0

fSk|Zk
(s|z)fZk

(z)dz (13)

where fZk
(z) is the PDF of Zk. From (9) and (12), we have

fSk|Zk
(s|z) = θze

−θzs (s ≥ 0) (14)

where

θz =
1

τupρkpk + 1
z +

K

ρkpdn
.

Next, we calculate the PDF of Zk in (11). As shown in
Appendix A, {Yk,j}Kj=1 are not independent. However, we ap-
proximate the PDF of Zk by treating {Yk,j}Kj=1 as independent
(exponential) random variables. Then, the approximated PDF
of Zk is a chi-square distribution with 2(K − 1) degrees of
freedom [28], that is,

f app
Zk

(z) =
zK−2e−z

Γ(K − 1)
(z ≥ 0). (15)

Then, the approximated PDF of Sk is given by

f app
Sk

(s) =

∫ ∞

0

fSk|Zk
(s|z)f app

Zk
(z)dz. (16)

We show in Appendix B that although the approximation error
of f app

Zk
(z) is not negligible, the approximation error of f app

Sk
(s)

is small for a moderate number of M = K . As shown in
Appendix C, we can calculate the CDF of Sk from (16)

FSk
(s)≈ 1− e

− K

ρkpdn s
(

τupρkpk + 1

τupρkpk + 1 + s

)K−1

. (17)

Fig. 3 and Fig. 4 show that the accuracy of our CDF approxi-
mation in (17) is reasonable for all practical ranges of ρk, pk,
and M = K .

B. Average Throughput

We consider the average throughput

R̄k = rk
(
1− P out

k

)
(18)

where rk is the downlink transmission rate of the kth user and

P out
k =Pr{log2 (1 + Sk) < rk}

= FSk
(2rk − 1) (19)
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is the the outage probability of the kth user. Using (17) and
(19), (18) can be rewritten as

R̄k(rk, pk) ≈ R̄pf
k (rk) · fk(rk, pk) (20)

where

R̄pf
k (rk) � rke

− K

ρkpdn (2
rk−1)

(21)

is the average throughput of the kth user when the BS has
perfect channel knowledge and

fk(rk, pk)�
(
τupρkpk + 1

τupρkpk + 2rk

)K−1

(22)

represents the throughput-loss factor due to the imperfect
channel knowledge at the BS. As shown in Appendix D,
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fk(rk, pk) is a strictly increasing function of pk and

1

2(K−1)rk
≤ fk(rk, pk) ≤ 1. (23)

Also, it is easy to see that fk(rk, pk) is decreasing in rk .

IV. ENERGY-EFFICIENT ADAPTATION OF UPLINK PILOT

POWER AND DOWNLINK RATE

We are interested in the trade-off between the downlink
rate that each user achieves and the uplink pilot power that
the user consumes in the TDD MU-MIMO system. Therefore,
we define the EE of each user as

ηk � τtrR̄k

τuppk + Ecir
(24)

where Ecir
1 � Tpcir is the circuit energy consumption during

a frame and pcir is the circuit power of a mobile user which
includes power consumption in a mixer, a frequency syn-
thesizer, low noise amplifiers (LNA), analog-to-digital (A/D)
converters, and filters, etc.

Since the EE of a user ηk does not depend on the other
users’ pilot power {pj}j �=k, each user can find optimal pk
to maximize its EE individually. Therefore, we formulate the
following EE optimization problem.

(P1) maximize
rk,pk

ηk(rk, pk)

subject to pk ≤ pmax,

rk ≥ rmin

where

ηk(rk, pk) =
τtrrke

− K

ρkpdn (2
rk−1)

(
τupρkpk+1

τupρkpk+2rk

)K−1

τuppk + Ecir
(25)

and pmax is the maximum pilot power and rmin is the minimum
downlink transmission rate.

We can show that ηk(rk, pk) is strictly quasi-concave in rk.
Also, we can show that ηk(rk, pk) is strictly quasi-concave in
pk if practical values are used for system parameters Ecir and
ρk. Now, we prove the strictly quasi-concavity of ηk in each
coordinate.

A. Quasi-concavity of ηk(pk)

We use the following lemma in [29] to check the quasi-
concavity of ηk(pk).

Lemma 2: A continuous function f : R → R is strictly
quasi-concave if and only if at least one of the following
conditions holds:
• f is strictly decreasing.
• f is strictly increasing.
• There is a point c ∈ dom f such that for t ≤ c (and
t ∈ dom f ), f is strictly increasing, and for t ≥ c (and
t ∈ dom f ), f is strictly decreasing.

1In more detail, the circuit energy consumption can be written as Ecir =
τuppcir,up + τdnpcir,dn + τtrpcir,tr where pcir,up, pcir,dn, and pcir,tr are the circuit
powers during uplink channel estimation phase, downlink effective channel
estimation phase, downlink data transmission phase, respectively.

Consider the first-order derivative of ηk(pk)

∂ηk(pk)

∂pk
= ηk

τup · hk(pk)
(τupρkpk + 2rk)(τupρkpk + 1)(τuppk + Ecir)

(26)
where

hk(pk) =−τ2upρ
2
kp

2
k − (K − (K − 2)2rk)τupρkpk

+(2rk − 1)(K − 1)ρkEcir − 2rk . (27)

Since the sign of hk(pk) is equal to that of ∂ηk

∂pk
, we only need

to consider hk(pk) to characterize the shape of ηk(pk). Note
that the two roots of hk(pk) are

ω1 �
(K − 2)2rk −K −√

Dk

2ρkτup
(28)

ω2 �
(K − 2)2rk −K +

√
Dk

2ρkτup
(29)

where

Dk = (2rk − 1)
(
4(K − 1)ρkEcir + 2rk(K − 2)2 −K2

)
(30)

is the discriminant of hk(pk). We consider the following cases
of Dk.
• Case I (Dk > 0)
In this case, (27) can be written as

hk(pk) = a(pk − ω1)(pk − ω2)

where a = −ρ2kτ2up < 0 and ω1 and ω2 (ω1 < ω2) are real
numbers. Therefore, ηk(pk) is strictly decreasing for pk ∈
(−∞, ω1), strictly increasing for pk ∈ (ω1, ω2), and strictly
decreasing for pk ∈ (ω2,∞). Depending on the location of
ω1 and ω2, we consider the following three cases.

• Case I-a (ω1 < ω2 < 0): ηk(pk) is strictly decreasing for
pk ∈ (0,∞). ηk(pk) is strictly quasi-concave.

• Case I-b (ω1 < 0 < ω2): ηk(pk) is strictly increasing for
pk ∈ (0, ω1) and decreasing for pk ∈ (ω1,∞). ηk(pk) is
strictly quasi-concave.

• Case I-c (0 < ω1 < ω2): ηk(pk) is strictly decreasing
for pk ∈ (0, ω1), strictly increasing for pk ∈ (ω1, ω2),
and strictly decreasing for pk ∈ (ω2,∞). ηk(pk) is not
strictly quasi-concave.

• Case II (Dk ≤ 0)
In this case, hk(pk) ≤ 0 for all pk ≥ 0. Therefore, ηk(pk)
is a strictly decreasing function of pk and thus it is strictly
quasi-concave.

Remark: From (28) and (29), the condition for Case I-a
(ω1 < ω2 < 0) is equivalent to

max

(
K

2
, (K − 1)ρkEcir

)
< 1 +

1

2rk − 1
. (31)

Since (K − 1)ρkEcir is usually larger than K
2 , (31) can be

rewritten as

rk < log2

(
1 +

1

(K − 1)ρkEcir − 1

)
. (32)

which implies that Case I-a happens when rk is very low.
Similarly, the condition for Case I-b (ω1 < 0 < ω2) is
equivalent to

rk > log2

(
1 +

1

(K − 1)ρkEcir − 1

)
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which implies that Case I-b happens when rk is not very
low. However, as shown in Appendix E, Case I-c and Case II
hardly occur under practical system parameters. Thus ηk(pk)
is strictly quasi-concave in pk if we use practical system
parameters.

B. Quasi-concavity of ηk(rk)

To check the quasi-concavity of ηk(rk), we consider its
first-order derivative

∂ηk(rk)

∂rk
= ηk(rk)gk(rk) (33)

where

gk(rk)�
1

rk
− K

ρkpdn
2rk ln 2− (K − 1)2rk ln 2

τupρkpk + 2rk
. (34)

Since the sign of gk(rk) is equal to that of ∂ηk

∂rk
, we only

need to consider gk(rk) to characterize the shape of ηk(rk).
As shown in Appendix F, ηk(rk) is strictly increasing for all
rk ∈ (0, νk) and strictly decreasing for all rk ∈ (νk,∞) where
νk is the unique solution of gk(rk) = 0 or

ρkp
dn2νk + τupρ

2
kp

dnpk
K2νk + (K − 1)ρkpdn +Kτupρkpk

= νk2
νk ln 2. (35)

Unfortunately, νk can not be expressed in a closed form.
However, it can be easily found using a numerical algorithm,
e.g. bisection method. From lemma 2, we can see that ηk(rk)
is strictly quasi-concave.

C. Proposed Algorithm

Since ηk is strictly quasi-concave in each coordinate, we use
the cyclic coordinated search method [32], which alternatively
updates rk and pk by solving the following two subproblems.
• Subproblem A: Optimize pk for a given rk , i.e.,

maximize
pk

ηk(pk)

subject to pk ≤ pmax.

From the four cases in subsection IV-A, we can see that the
solution of subproblem A depends on the values of ω1 and
ω2. In summary, the solution of subproblem A is

p
k(rk) =

⎧⎪⎨
⎪⎩
0 (Case I-a or Case II)
min (ω2, pmax) (Case I-b)
arg max

{0,min(ω2,pmax)}
ηk(pk) (Case I-c)

(36)

• Subproblem B: Optimize rk for a given pk, i.e.,

maximize
rk

ηk(rk)

subject to rk ≥ rmin.

From subsection IV-B, νk is the unique maximum point of
ηk(rk). Since the feasible set of subproblem B is rk ≥ rmin,
its unique solution is

r
k(pk) = max(νk, rmin). (37)

Using the solutions of subproblem A and B, we obtain the
following cyclic coordinated search algorithm.

Algorithm 1

Initialize: Choose r
(1)
k ≥ rmin and a tolerance ε > 0.

Iterations: i ≥ 1

1) Calculate p(i+1)
k = p
k(r

(i)
k ).

2) Calculate r(i+1)
k = r
k(p

(i+1)
k ).

3) Set x(i+1) = [r
(i+1)
k , p

(i+1)
k ].

4) If ‖x(i+1) − x(i)‖ ≤ ε then stop; else set i = i + 1 and
repeat next iteration.

D. Convergence Property

Now, we establish the convergence of the proposed algo-
rithm under the assumption of using practical values for the
system parameters, which excludes Case I-c and Case II. As
proved in Appendix G, we have the following properties of
p
k(rk) and r
k(pk):
1) Excluding Case I-c and Case II, p
k(rk) is increasing in rk.
2) r
k(pk) is increasing in pk.
3) r(i)k is upper bounded by rmax � r
k(pmax).
Let {x(i) = [r

(i)
k , p

(i)
k ]}∞i=1 be the sequence of points (vectors)

generated by Algorithm 1 and A(·) be the mapping from x(i)

to x(i+1), that is, x(i+1) = A(x(i)). The following theorem
guarantees the existence of a fixed point of Algorithm 1.

Theorem 1: Algorithm 1 always has a fixed point x̄ ∈ F �
{(r(i)k , p

(i)
k )|0 ≤ pk ≤ pmax, rmin ≤ rk ≤ rmax}, that is,

lim
i→∞

x(i) = x̄ ∈ F .
Proof: See Appendix H

Define the set of fixed points of Algorithm 1 as

Sk � {x ∈ F |x = A(x)} .
From theorem 1, we know that the solution set Sk �= ∅ and
the proposed algorithm always converges. Also, any solution
of Algorithm 1 has the following property.

Theorem 2: Any fixed point of Algorithm 1 satisfies the
first-order necessary condition (FONC). In other words, for
any x̄ ∈ Sk,

dT∇ηk(x̄) ≤ 0

where d is any feasible direction at x̄.
Proof: See Appendix I

From theorem 2, we see that any fixed point of Algorithm 1
is a local maximum.

V. SIMULATION RESULTS

In this section, we provide simulation results to demonstrate
the performance of the proposed algorithm.

The system parameters are listed in Table I. Since W = 10
kHz and N0 = −174 dBm/Hz, the noise power σ2 = N0W =
−134 dBm. We use the channel parameters for the macrocell
system in [30]. Then, the large-scale fading coefficient of the
kth user is

βk (dB) = −L(lk) (dB) +GT (dBi) +GR (dBi) + σ2
Ω (dB)

(38)
where lk is the distance between the BS and the kth user in
km,

L(lk) = 128.1 + 37.6 log10(lk) (39)
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TABLE I
SYSTEM PARAMETERS

System bandwidth W 10 kHz
Thermal noise N0 −174 dBm/Hz

Frame length T 30 symbols
Total BS Tx power pdn 30 dBm

Maximum Tx power of user pmax 25 dBm
Path loss L 128.1 + 37.6 log10(l) dB, l in km

Shadowing standard deviation 8 dB
Inter-site distance (ISD) I 1732 m

BS antenna gain GT 14 dBi
User antenna gain GR 0 dBi

is pathloss, GT = 14 dBi is the BS antenna gain, GR = 0 dBi
is the user antenna gain, and σ2

Ω (dB) is shadowing modeled
as a Gaussian random variable with standard deviation of 8
dB, i.e., σ2

Ω (dB) ∼ N (0, 82).
The typical value of the circuit power of a mobile terminal

is pcir = 20 dBm (100 mW) [31]. We consider the circuit
power in the range of 15 dBm ≤ pcir ≤ 31 dBm. Then,
since T = 30, the circuit energy is in the range of 0 dB
≤ Ecir ≤ 15 dB. Also, we assume that τup = τdn = K .

Algorithm 2 One-dimensional Exhaustive Search
1) We partition [rmin, rmax] into Nr > 0 smaller intervals,

i.e.,

rmin = ψ
(0)
k < ψ

(1)
k < · · · < ψ

(Nr)
k = rmax.

2) The nth interval is characterized by its mid-point, i.e.,

r
(n)
k =

ψ
(n)
k + ψ

(n−1)
k

2
, n = 1, · · · , Nr.

3) For each r(n)k , calculate p(n)k = p
k(r
(n)
k ).

4) Find a point which maximizes ηk(rk, pk) among Nr

candidate points, (p(n)k , r
(n)
k ).

We compare three algorithms: 1) Algorithm 1, 2) a one-
dimensional exhaustive search algorithm, 3) a spectral effi-
ciency (SE) maximization algorithm. Using the closed-form
solution of subproblem A, we employ the following one-
dimensional exhaustive search algorithm to maximize the EE
of users. It is clear that this one-dimensional exhaustive search
algorithm can find a point arbitrarily close to the global
optimal point with a sufficiently large Nr. In simulation, we
partition [rmin, rmax] into Nr intervals of equal length 0.01.
Also, we consider the SE maximization problem under the
same constraints, i.e.,

(P2) maximize
rk,pk

R̄k(rk, pk) = R̄pf
k (rk)fk(rk, pk)

subject to rk ≥ rmin,

pk ≤ pmax.

Since fk(rk, pk) is a strictly increasing function of pk, we
can easily see that optimal solution to (P2) is the solution of
subproblem B at pmax, i.e., r
k(pmax).

Here, we briefly compare the complexity of the proposed
algorithm and that of the exhaustive search. The proposed
algorithm calculates at each iteration: i) p
k(rk) using (36)
and ii) r
k(pk) using (37). In calculating (36), ω2 is given
in a closed-form expression by (29). But, to calculate νk
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( )k kp r�

( )k kr p�
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(1) 4kr =
(1) 18kr =

  

(mW)
kp

(2) (1)( )k krr >

70 dBkρ =

Fig. 5. Convergence of Algorithm 1 for two different initial values r
(1)
k =

4, 18. (ρk = 40, 70 dB, Ecir = 10 dB, M = K = 4, rmin = 1).

that appears in (37), we solve (35) for νk using the bisec-
tion algorithm. Since calculating (29) and (35) require only
several multiplications and divisions, the main complexity of
the proposed algorithm is that of the bisection algorithm to
calculate νk. The complexity of the bisection is O(log2Nr),
where Nr is the number of subintervals in [rmax, rmin]. In
contrast, the complexity of the one-dimensional exhaustive
search to calculate νk is O(Nr). The complexity of the
complete exhaustive search to find p
 and r
 is O(NrNp),
where Np is the number of subintervals in [0, pmax]. Let I
denote the number of iterations required for convergence.
Then, from above the total complexity of Algorithm 1 is
I × O(log2Nr). It is usually difficult to find the number of
iterations required for convergence I in an analytical way for
iterative algorithms. According to our simulation results (see
Fig. 4), usually I = 4 or 5 iterations is sufficient for the
convergence of Algorithm 1.

Fig. 5 shows the convergence of Algorithm 1 for two
different initial values r

(1)
k = 4, 18. We can check that

when r
(2)
k > r

(1)
k (r(2)k < r

(1)
k ), r(i)k and p

(i)
k are increasing

(decreasing) sequences for all i = 2, 3, · · · as expected in the
increasing properties of p
k(rk) and r
k(pk). As shown in the
figure, for two different starting points, the proposed algorithm
converges to the same fixed point within a few iterations. Fig.
6 shows optimal uplink pilot power and downlink transmission
rate pairs {(pop

k , r
op
k )}’s found by Algorithm 1 and 2, respec-

tively. As shown in the figure, Algorithm 1 and Algorithm 2
yield the same solutions for all system parameters ρk and Ecir.
The reason is that although the objective function ηk(rk, pk)
is not jointly quasi-concave in general, experimentally, we
can verify that ηk(rk, pk) is jointly quasi-concave for nearly
all practical parameters and thus the point satisfies FONC
coincides with the globally optimal solution of (P1).

Also, from the figure, we know how system parameters ρk
and Ecir affect optimal point (pop

k , r
op
k ). First, as Ecir increases,

pop
k increases and eventually reaches the pmax which is the

solution of the SE maximization scheme. This is clear because
Ecir can be viewed as a fixed cost of communication which is
consumed even if we do not send any uplink pilot. Therefore,
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Fig. 6. Optimal uplink pilot power and downlink transmission rate (rop
k , pop

k )
for all 4 dB ≤ ρk ≤ 84 dB (Ecir = 0, 5, 10, 15 dB, M = K = 4, rmin = 0).

when Ecir is sufficiently large, the EE maximization algorithm
is the same as the SE maximization algorithm. Second, as ρk
increases, rop

k increases too. Since ρk represents the channel to
noise ratio, it is natural. The relationship between ρk and pop

k

is more interesting. As shown in the figure, pop
k is increasing

in ρk when ρk is low while pop
k is decreasing in ρk when ρk

is sufficiently high.
Fig. 7 and Fig. 8 show the EE and the SE of the kth user

for 0 dBm ≤ pdn ≤ 50 dBm and Ecir = 5 dB, respectively.
By optimizing the uplink pilot power {pk}Kk=1 and down-
link transmission rate {rk}Kk=1 in terms of EE, Algorithm
1 enhances the EE of the users significantly compared to
that obtained from the SE maximization algorithm at the
expense of a relatively small SE loss. As ρk increases, the
EE gap between Algorithm 1 and SE maximization algorithm
increases too because in the high ρk regime, pop

k of Algorithm
1 is a decreasing function of ρk as shown in Fig. 6, but pop

k

of SE maximization algorithm is unchanged and pop
k = pmax.

VI. CONCLUSION

In this paper, we have investigated the EE of users in a
TDD MU-MIMO system. We have derived the closed-form
expression of the average throughput and shown that the
average throughput of the kth user is independent of the uplink
pilot powers of the other users. Therefore, each user can max-
imize its EE independently. Unfortunately, the EE ηk(rk, pk)
function is not quasi-concave in general. But, with practical
system parameters, we have shown that the EE function is
strictly quasi-concave with respect to each coordinate, rk and
pk. Therefore, we have proposed an iterative uplink pilot
power and downlink transmission rate adaptation algorithm
to maximize the EE of users. We have proved that for any
arbitrary starting point, the algorithm converges to a point that
satisfies the first-order necessary condition. Comprehensive
simulation results have been provided to demonstrate how
system parameters affect optimal settings as well as the
performance gain. From the simulation results, we can see
that the proposed algorithm converges to the globally optimal
solution within a few iterations and significantly enhances the
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EE of users. Currently, our work considers the case of M = K
in a single-cell environment. Extending this work to the case
of M > K and to a multi-cell environment will be interesting
future research topics.

APPENDIX A
PROOF OF DEPENDENCY OF Yk,i AND Yk,j (i �= j)

Consider Yk,i and Yk,j (i �= j). Let θi,j denote the angle
between âi and âj , that is,

θi,j � cos−1 |âHi âj | ∈ [0, π/2].

Then, âi can be written as the sum of âj (j �= i) and one of
its orthonormal vectors, that is,

âi = cos θi,j âj + sin θi,jgi,j (40)
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where gi,j is a unit norm vector isotropically distributed in
the nullspace of âHj and is independent of sin θi,j . From (10)
and (40), Yk,i can be rewritten as

Yk,i = cos2 θi,j |eTk âj |2 + sin2 θi,j |eTk gi,j |2
= cos2 θi,jYk,j + sin2 θi,jY

⊥
k,j (41)

where Y ⊥
k,j � |eTk gi,j |2 ∼ Exp(1). Since cos2 θi,j , Yk,j , and

Y ⊥
k,j are independent, from (41), we have

Cov[Yk,iYk,j ] =E[Yk,iYk,j ]− E[Yk,i]E[Yk,j ]

=E[cos2 θi,jY
2
k,j ] + E[sin2 θi,jY

⊥
k,jYk,j ]− 1

= 2E[cos2 θi,j ] + E[sin2 θi,j ]− 1

=E[cos2 θi,j ]. (42)

Since the columns of a ZF precoding matrix âi’s are not
orthogonal in general, cos θk,i �= 0. Therefore, from (42), it is
clear that Yk,i and Yk,j are not independent.

APPENDIX B
APPROXIMATION OF SINR PDF

The approximation error eS(s) � fSk
(s) − f app

Sk
(s) can be

written as

eS(s) =

∫ ∞

0

fSk|Zk
(s|z)eZ(z)dz (43)

where eZ(z) � fZk
(z)−f app

Zk
(z). The outline of our argument

that eS(s) is reasonable for sufficiently small M = K is as
follows. We show experimentally in Fig. 9-(a) that the energy
of eZ(z) increases as M = K increases. Since from (14)
fSk|Zk

(s|z) = θze
−θzs where θz = 1

τupρkpk+1z +
K

ρkpdn , for a
sufficiently small θz or a sufficiently large θz , fSk|Zk

(s|z) is
small and the contribution of eZ(z) to eS(s) diminishes. As
shown in Fig. 3-(b), even for intermediate values of θz (ρk =
30 dB, pdn = 30 dBm, pk = 15, 20 dBm) that might maximize
fSk|Zk

(s|z), the approximation error eS(s) is small enough
as long as M = K is not too large. Fig. 9-(a) shows eZ(z)
when M = K = 4, 8. We can see that the approximation
error increases as M = K increases. Also, eZ(z) is positive
for [0, a], eZ(z) is negative for (a, b], eZ(z) is positive for
(b, c], and eZ(z) is negligible for [c,∞). From (11) and (15),
we know that eZ(z) depends only on M = K . In other words,
a, b, c > 0 depends only on M = K and is independent of
other parameters. Therefore, (43) is upper-bounded by

eS(s)≤ a1

∫ a

0

eZ(z)dz + a2

∫ b

a

eZ(z)dz + a3

∫ c

b

eZ(z)dz (44)

where a1 = max
z∈[0,a]

(
fSk|Zk

(s|z)), a2 = min
z∈(a,b]

(
fSk|Zk

(s|z)),

and a3 = max
z∈(b,c]

(
fSk|Zk

(s|z)). Similarly, (43) is lower-

bounded by

eS(s)≥ b1

∫ a

0

eZ(z)dz + b2

∫ b

a

eZ(z)dz + b3

∫ c

b

eZ(z)dz (45)

where b1 = min
z∈[0,a]

(
fSk|Zk

(s|z)), b2 = max
z∈(a,b]

(
fSk|Zk

(s|z)),

and b3 = min
z∈(b,c]

(
fSk|Zk

(s|z)). Since we have the closed-form

expression of fSk|Zk
(s|z) in (14), we can always find the exact

solution of max
z∈[x1,x2]

(
fSk|Zk

(s|z)) or min
z∈[x1,x2]

(
fSk|Zk

(s|z))

(
)
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Fig. 9. (a) eZ(z) and (b) eS(s) and its upper and lower bounds in (44) and
(45), respectively. (M = K = 4, 8, τup = K , pdn = 30 dBm, ρk = 30 dB,
pk = 5 dBm)

for an arbitrary interval [x1, x2]. Also, by numerical integra-
tion,

∫ x2

x1
eZ(z)dz can be calculated for an arbitrary interval

[x1, x2]. For example, when M = K = 4, from Fig. 9, we
have a = 1.5, b = 5.9, c = 20 and

∫ 1.5

0 eZ(z)dz = 0.1152,∫ 5.9

1.5
eZ(z)dz = −0.1598,

∫ 20

5.9
eZ(z)dz = 0.0442. Using these

values, we can easily evaluate the upper and lower bounds of
eS(s) given by (44) and (45), respectively.

Fig. 9-(b) shows eS(s) and its upper and lower bounds given
by (44) and (45) when M = K = 4, 8. Though the input error
eZ(s) is not negligible, the resulting error eS(s) is relatively
small. For example, when M = K = 8, the maximum value
of eZ(s) is close to 0.1. But, the resulting error eS(s) ≤
0.005 for nearly all s. The reason is twofold. First, as s →
∞, fSk|Zk

(s|z) = θze
−θzs converges to zero very fast and

it alleviates the error propagation. Second, even for small s,
since e(z) in [0, a] and (a, b] have different signs and thus
the resulting errors in these two intervals cancel each other.
Therefore, we conclude that the accuracy of our SINR PDF
approximation is reasonable for small M = K .

APPENDIX C
PROOF OF EQUATION (17)

From (14) and (15), (16) can be rewritten as

f app
Sk

(s) =

∫ ∞

0

(
1

μk
z +

K

ρkpdn

)
e
−
(

1
μk

z+ K

ρkpdn

)
s

·zK−2
k

e−z

Γ(K − 1)
dz

=
1

μk
· e

− K

ρkpdn s

Γ(K − 1)

∫ ∞

0

zK−1e
−
(

s
μk

+1
)
z
dz

+
K

ρkpdn
· e

− K

ρkpdn s

Γ(K − 1)

∫ ∞

0

zK−2e
−
(

s
μk

+1
)
z
dz(46)

where

μk = τupρkpk + 1.
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Using the following integration in [33]
∞∫
0

xne−axdx =
Γ(n+ 1)

an+1
,

(46) can be written as

f app
Sk

(s)≈ K − 1

μk
e
− K

ρkpdn s
(

1

μk
s+ 1

)−K

+
K

ρkpdn
e
− K

ρkpdn s
(

1

μk
s+ 1

)−(K−1)

. (47)

From (47), the approximated CDF of Sk can be written as

F app
Sk

(s) =

∫ ∞

0

f app
Sk

(x)dx

=
K − 1

μk

∫ s

0

e
− K

ρkpdn x
(

1

μk
x+ 1

)−K

dx

+
K

ρkpdn

∫ s

0

e
− K

ρkpdn x
(

1

μk
x+ 1

)−(K−1)

dx

= 1− e
− K

ρkpdn s
(

τupρkpk + 1

τupρkpk + 1 + s

)K−1

.

APPENDIX D
PROPERTY OF fk(rk, pk)

fk(rk, pk) is a strictly increasing function of pk because

∂fk
∂pk

= fk(rk, pk)
(K − 1)τupρk(2

rk − 1)

(τupρkpk + 2rk)(τupρkpk + 1)
> 0

for all pk ≥ 0. Also, from (22), we have

lim
pk→0

fk(pk, rk) =
1

2(K−1)rk
,

lim
pk→∞ fk(pk, rk) = 1.

Therefore, we obtain (23).

APPENDIX E
REMARK ON CASE I-C AND CASE II

The condition for Case I-c (0 < ω1 < ω2) is equivalent to

pcir <
K

2Tρk(K − 1)

or

pcir(dBm) <
K

2(K − 1)
(dB)− T (dB) + σ2(dBm)− βk(dB).

(48)
We use the practical system parameters in Table I and choose
K = 4. Then, (48) can be written as

pcir(dBm) < −150.5− βk(dB). (49)

Since the inter-site distance (ISD) of a typical macrocell is
ISD = 1732 m [30], the maximum distance between the BS
and a user is ISD/2 = 0.866 km, that is, lk ≤ 0.866 km.
Thus, the path loss L(lk) in (39) is upper bounded by

L(lk) ≤ 125.75 dB. (50)

Since σ2
Ω(dB) ∼ N (0, 82), σ2

Ω(dB) ≥ −2.33 × 8 dB with
probability of 0.99. From (38) and (50), we have

βk(dB) ≥ −130.39 dB (51)

TABLE II
POSSIBLE COMBINATIONS OF p�k(rk,1) AND p�k(rk,2)

p�k(rk,1) p�k(rk,2)
Case 1 0 0
Case 2 0 min(ω2(rk,2), pmax)
Case 3 min(ω2(rk,1), pmax) 0
Case 4 min(ω2(rk,1), pmax) min(ω2(rk,2), pmax)

with probability of 0.99 even at the user located farthest from
the BS, i.e., lk = 0.866 km. From (51), the righthand side of
(49) is no more than −20.14 dBm with probability of 0.99.
However, pcir is much larger than −20.14 dBm (9.68 μW).
For example, in [31], the typical value of the circuit power of
mobile user is pcir = 20 dBm (100 mW). Therefore, Case I-c
hardly occurs under practical system parameters.

From (30), the condition for Case II (Dk ≤ 0) is equivalent
to

4(K − 1)Tpcirρk + 2rk(K − 2)2 ≤ K2. (52)

For the same system parameters as above and pcir = 20 dBm
(100 mW), (52) becomes 36ρk+4·2rk ≤ 16, which is satisfied
for only impractically small ρk and rk. Therefore, we conclude
that Case II hardly occurs in practice.

APPENDIX F
PROOF OF QUASI-CONCAVITY OF ηk(rk)

From (34), we have

∂gk
∂rk

=− 1

r2k
− K

ρkpdn
2rk(ln 2)2 − (K − 1)2rk(ln 2)2τupρkpk

(τupρkpk + 2rk)2

< 0. (53)

which implies that gk(rk) is strictly decreasing over rk ∈
(0,∞). Since

lim
rk→0

gk(rk) =∞,

lim
rk→∞ gk(rk) =−∞

and gk(rk) is continuous, we know that there exists a unique
νk ∈ (0,∞) such that gk(νk) = 0. Since the sign of gk(rk)
is same as that of ηk(rk), we conclude that ηk(rk) is strictly
increasing over rk ∈ (0, νk) and strictly decreasing over rk ∈
(νk,∞).

APPENDIX G
PROOF OF PROPERTY OF p
k(rk) AND r
k(pk)

A. Proof of Increasing Property of p
k(rk)

For rk,2 > rk,1, we prove p
k(rk,2) ≥ p
k(rk,1). Since we
exclude Case I-c and Case II from (36), we only need to
consider the four cases listed in table II.

In Case 1 and Case 2, the proof is trivial. Consider Case
4. From (29), ω2(rk) is a strictly increasing function in rk.
Therefore, in Case 4, we have

p�k(rk,2) = min(ω2(rk,2), pmax) ≥ min(ω2(rk,1), pmax) = p�k(rk,1).

Finally, we show that Case 3 is impossible. For Case 3,
p
k(rk,1) = min(ω2(rk,1), pmax), which implies ω1(rk,1) <
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0 < ω2(rk,1) (Case I-b). This condition is equivalent to
ω1(rk,1)ω2(rk,1) < 0. Then, we have

(K − 1)ρkEcir >
(a)

1 +
1

2rk,1 − 1
>
(b)

1 +
1

2rk,2 − 1
(54)

where (a) follows from ω1(rk,1)ω2(rk,1) < 0 and (27),
and (b) follows from rk,2 > rk,1. From (54), we have
ω1(rk,2)ω2(rk,2) < 0 (Case I-b) and in this case p
k(rk,2) =
min(ω2(rk,2), pmax), which contradicts p
k(rk,2) = 0 for case
3.

B. Proof of Increasing Property of r
k(pk)

First, we show that ∂νk
∂pk

> 0 for all pk < ∞. By
differentiating (35) with respect to pk, we have

∂νk
∂pk

=
τρkak

2νkbk + ck
(55)

where

ak =
1

νk
−A2νk , (56)

bk =
1

ν2k
− ln 2

1

νk
+ (K − 1)(ln 2)2 (57)

and
ck = A2νk ln 2(2νk+1 + τρkpk) +

τρkpk
ν2k

(58)

with
A =

K ln 2

ρkpdn
.

Define
νmax = argmax

rk
R̄pf

k (rk).

Then, for rk > νmax, we have

R̄pf
k (rk)fk(rk, pk) ≤ R̄pf

k (νmax)fk(νmax, pk) (59)

where we use the facts that i) R̄pf
k (rk) ≤ R̄pf

k (νmax) and ii)
fk(rk, pk) is strictly decreasing in rk. Therefore, for any given
pk <∞,

νk =
(c)

argmax
rk

R̄pf
k (rk)fk(rk, pk)

< νmax. (60)

where (c) follows from (20) and (24).
Since fk(rk, pk) → 1 as pk → ∞, we see that νk → νmax as

pk → ∞. Therefore, νmax needs to satisfy (35) when pk → ∞,
that is,

1

νmax
−A2νmax = 0. (61)

From (56) we can easily see that ak is a strictly decreasing
function of νk. Also, from (61) we have ak = 0 when νk =
νmax. But, νk < νmax from (60). Therefore, we have ak > 0,
which implies that the numerator of (55) is positive for all
pk <∞.

Now, we show that the denominator of (55) is positive for
all pk < ∞. Since ck > 0 from (58), we only need to show
that bk > 0. From (57), bk is a second order polynomial of
1
νk

> 0 with a positive second order coefficient. Since the
discriminant of (57) is (ln 2)2(5 − 4K) < 0 for all K ≥ 2,
we obtain bk > 0.

From above, (55) is positive and νk is an increasing function
of pk. Therefore, it is clear that r
k(pk) = max(νk, rmin) in
(37) is also an increasing function of pk.

C. Proof of the Upper Limit of r(i)k

Since pk ≤ pmax and r
k(pk) is an increasing function of pk,
r
(i)
k is upper bounded by rmax � r
k(pmax).

APPENDIX H
PROOF OF THEOREM 1

Suppose r(2)k ≥ r
(1)
k . Since p(i+1)

k = p
k(r
(i)
k ) and p
k(rk) is

a increasing function of rk , we have p(3)k ≥ p
(2)
k . Then, since

r
(i+1)
k = r
k(p

(i+1)
k ) and r
k(pk) is a increasing function of pk,

we have r(3)k ≥ r
(2)
k , which also implies p(4)k ≥ p

(3)
k . From

above,
r
(i+1)
k ≥ r

(i)
k and p

(i+1)
k ≥ p

(i)
k

for i ≥ 2. Since r
(i)
k and p

(i)
k are increasing and bounded

sequences in F , by the monotone convergence theorem [34],
r
(i)
k and p(i)k converge. Therefore, x(i) = [r

(i)
k , p

(i)
k ] converges

to x̄ = [r̄k, p̄k] ∈ F . For the case r(2)k < r
(1)
k , theorem 1 can

be similarly proved.

APPENDIX I
PROOF OF THEOREM 2

Since x̄ ∈ Sk, A(x̄) = x̄. From steps 1 and 2 of Algorithm
1, we have

max
t1:x̄k+t1u1∈F

ηk(x̄k + t1u1) = ηk(x̄k)

max
t2:x̄k+t2u2∈F

ηk(x̄k + t2u2) = ηk(x̄k).

where u1 = [0, 1] and u2 = [1, 0]. Since ηk(rk, pk) is
strictly quasi-concave with respect to each coordinate rk and
pk, optimal t1 and t2 are zero. For any t1 �= 0 such that
x̄k + t1u1 ∈ F ,

ηk(x̄k + t1u1) < ηk(x̄k). (62)

For any t2 �= 0 such that x̄k + t2u2 ∈ F ,

ηk(x̄k + t2u2) < ηk(x̄k). (63)

Clearly, 0 ≤ p̄k ≤ pmax. This can be split into three cases.
• Case a: x̄k = [r̄k, p̄k] is an interior point, 0 < p̄k < pmax.
From (62), we have

∂ηk
∂pk

∣∣∣∣
xk=x̄k

= 0.

• Case b: x̄k = [r̄k, p̄k] is a boundary point, p̄k = 0.
From (62), we have

∂ηk
∂pk

∣∣∣∣
xk=x̄k

< 0.

• Case c: x̄k = [r̄k, p̄k] is a boundary point, p̄k = pmax.
From (62), we have

∂ηk
∂pk

∣∣∣∣
xk=x̄k

> 0.

For rmin ≤ r̄k, we can obtain similar results from (63). Since

∇ηk(x̄) =
[
∂ηk
∂pk

∣∣∣∣
xk=x̄k

,
∂ηk
∂rk

∣∣∣∣
xk=x̄k

]T

,

we have obtained the theorem.
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