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Abstract—Energy efficiency is becoming increasingly impor-
tant for small form factor mobile devices, as battery technology
has not kept up with the growing requirements stemming
from ubiquitous multimedia applications. This paper addresses
link adaptive transmission for maximizing energy efficiency, as
measured by the “throughput per Joule” metric. In contrast to
the existing water-filling power allocation schemes that maximize
throughput subject to a fixed overall transmit power constraint,
our scheme maximizes energy efficiency by adapting both overall
transmit power and its allocation, according to the channel states
and the circuit power consumed. We demonstrate the existence
of a unique globally optimal link adaptation solution and develop
iterative algorithms to obtain it. We further consider the special
case of flat-fading channels to develop an upper bound on energy
efficiency and to characterize its variation with bandwidth,
channel gain and circuit power. Our results for OFDM systems
demonstrate improved energy savings with energy optimal link
adaptation as well as illustrate the fundamental tradeoff between
energy-efficient and spectrum-efficient transmission.

Index Terms– energy efficiency, link adaptation, frequency
selective channel, energy aware, OFDM

I. INTRODUCTION

The quality of wireless channel varies with time and fre-
quency. Therefore, link adaptation can be used to improve
transmission performance. With link adaptation, modulation
order, coding rate, and transmit power can be selected accord-
ing to channel state information (CSI).

Earlier research on link adaptation focuses on power allo-
cation to improve channel capacity subject to overall power
constraint. Optimal power allocation for frequency-selective
channels has been investigated in [1]. Here the highest data
rate on a band-limited channel is achieved when the total
received signal power at each frequency, consisting of channel
noise and desired signal component, is a constant. The termi-
nology, adaptive modulation, was first used in [2] even though
work on adaptive modulation [3] had been reported before.

In addition to throughput improvement, energy efficiency is
becoming increasingly important for mobile communications
because of the slow progress of battery technology [4] and
growing requirements of anytime and anywhere multimedia
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applications. With sufficient battery power, link adaptation
can be geared toward peak performance delivery. However,
with limited battery capacity, link adaptation could be adapted
toward energy conservation to minimize battery drain. Energy-
efficient communication also has the desirable benefit of reduc-
ing interference to other co-channel users as well as lessening
environmental impacts, e.g. heat dissipation and electronic pol-
lution. Hence, recent research has focused on energy-efficient
link adaptation techniques [5]–[7]. It is shown in [5] that when
the transmission bandwidth approaches infinity, the minimum
received signal energy per bit for reliable communication over
additive white Gaussian noise (AWGN) channels, approaches
−1.59 dB. For band-limited transmission, the lowest order
modulation should be used [6]. However, the investigation
in [5], [6] does not account for additional circuit power
consumed during transmission. Energy dissipation of both
transmitter circuits and radio-frequency output is investigated
in [8], where the modulation level is adapted to minimize the
energy consumption according to the simulation observations.
In [7], these ideas are extended to a detailed analysis of circuit
and transmit powers for both adaptive multiple quadrature
amplitude modulation (M-QAM) and multiple frequency shift
keying (MFSK) in AWGN channels for short range energy-
efficient communications.

Orthogonal frequency division multiplexing (OFDM) has
emerged as a primary modulation scheme for the next-
generation broadband wireless standards [9], [10]. The power
allocation and bit-loading algorithms for OFDM are summa-
rized in Chapter 3 of [11]. While extensive research has been
conducted to improve throughput [11], [12], limited work has
been done to address the energy-efficient communication for
OFDM systems. In this paper, we address the energy-efficient
link adaptation for frequency-selective fading channels. We
account for both circuit and transmit powers when designing
link adaptation schemes and emphasize energy efficiency
over peak rates or throughput. The proposed link adaptation
balances circuit power consumption and transmission power to
achieve the maximum energy efficiency, which is defined as
the number of bits transmitted per Joule of energy. In contrast
to the existing water-filling power allocation schemes that
maximize throughput subject to overall transmit power con-
straints, our scheme adapts both the overall transmit power and
its allocation according to the states of all subchannels and the
circuit power consumption to maximize the energy efficiency.



We demonstrate the existence of a unique globally optimal
link adaptation solution and provide iterative algorithms to
obtain this optimum. While the usefulness of our technique
is illustrated using frequency selective OFDM as an example
in this paper, the solution developed is applicable to more
general transmission scenarios where transmission occurs over
resources experiencing different channel conditions.

The rest of the paper is organized as follows. In Section III,
we investigate optimal conditions for energy-efficient trans-
mission and develop algorithms to obtain the globally optimal
solution. In Section III-B, we consider a special case when the
channel is with flat fading. We also consider energy-efficient
link adaptation when the user has either data rate requirement
or peak power limit in Section IV. As an example of energy-
efficient link adaptation, we apply the energy-efficient scheme
in OFDM systems and provide simulation results to demon-
strate energy efficiency improvement in Section VI. Finally,
we conclude the paper in Section VII.

II. PROBLEM FORMULATION

In this section, we formulate the problem of energy-efficient
link adaptation.

Assume that K subchannels are used for transmission, each
with a different channel gain. An example of this scenario
is OFDM transmission over frequency-selective channels. As-
sume block fading [13], [14], that is, the channel state remains
constant during each data frame and is independent from one
to another. Denote the data rate on Subchannel i as ri and the
data rate vector on all subchannels as

R = [r1, r2, · · · , rK ]T , (1)

where []T is the transpose of a vector. The data rate vector,
R, depends on the channel state, coding, and power allocation.
Correspondingly, the overall data rate is

R =
K∑

i=1

ri. (2)

For a given channel state, the transmit power on each sub-
channel is determined by the requirement of reliable data
transmission. If we denote W as the subchannel bandwidth,
No the power spectral density, gi the power gain, and PTi

the
allocated transmit power on Subchannel i, the channel output
signal-to-noise ratio (SNR) will be

ηi =
PTi

gi

NoW
(3)

and the achievable data transmission rate ri is determined by
[15]

ri = W log(1 +
ηi

Γ
), (4)

where Γ is the SNR gap that defines the gap between
the channel capacity and a practical coding and modulation
scheme. The SNR gap depends on the coding and modulation
scheme used and on the target probability of error. For a coded
quadrature amplitude modulation (QAM) system, the gap is
given by [15]

Γ = 9.8 + γm − γc (dB), (5)

where γm is the system design margin and γc is the coding
gain. For Shannon capacity [16], Γ = 0 dB. Denote the overall
transmit power as PT (R) and

PT (R) =
∑K

i=1 PTi

ζ
=

K∑

i=1

(e
ri
W − 1)

NoWΓ
giζ

, (6)

where ζ ∈ [0, 1] is the power amplifier efficiency and depends
on the design and implementation of the transmitter. PT (R) is
strictly convex and monotonically increasing in R. In fact, the
developed theory and approaches can be used for any PT (R)
that is strictly convex and monotonically increasing in R with
PT (0) = 0, where 0 = [0, 0, · · · , 0]T .

In addition to transmit power, mobile devices also incur
additional circuit power during transmissions which is rela-
tively independent of the transmission rate [8], [17]. While
the transmit power models all the power used for reliable data
transmission, we let the circuit power represents the average
energy consumption of device electronics, such as mixers,
filters, and digital-to-analog converters, and this portion of
energy consumption excludes that of the power amplifier and is
independent of the transmission state. If we denote the circuit
power as PC , the overall power consumption given a data rate
vector will be

P (R) = PC + PT (R). (7)

For energy-efficient communications, it is desirable to max-
imize the amount of data sent with a given amount of energy.
Hence, given any amount of energy 4e consumed in a
duration, 4t, i.e. 4e = 4t(PC + PT (R)), the mobile wants
to send a maximum amount of data by choosing the data rate
vector to maximize

R4 t

4e
, (8)

which is equivalent to maximizing

U(R) =
R

4e/4 t
=

R

PC + PT (R)
. (9)

U(R) is called energy efficiency. The unit of the energy
efficiency is bits per Joule, which has been frequently used in
literature for energy-efficient communications [5], [6], [18]–
[20]. The optimal energy-efficient link adaptation achieves
maximum energy efficiency, i.e.

R∗ = arg max
R

U(R) = arg max
R

R

PC + PT (R)
. (10)

Note that if we fix the overall transmit power, the objective
of Equation (10) is equivalent to maximizing the overall
throughput and the existing water-filling power allocation
approach [1] gives the solution. However, besides adapting the
power distributions on all subchannels, the overall transmit
power can also be adapted according to the states of all
subchannels to maximize the energy efficiency. Hence, the
solution to Equation (10) is in general different from existing
power allocation schemes that maximize throughput with
power constraints.
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III. PRINCIPLES OF ENERGY-EFFICIENT LINK
ADAPTATION

In the following, we demonstrate that a unique globally
optimal data rate vector always exists and give the necessary
and sufficient conditions for a data rate vector to be globally
optimal.

A. Conditions of Optimality

The concept of quasiconcavity will be used in our discussion
and is defined as [21].

Definition 1. A function f , which maps from a convex set
of real n-dimensional vectors, D, to a real number, is called
strictly quasiconcave if for any x1,x2 ∈ D and x1 6= x2,

f(λx1 + (1− λ)x2) > min{f(x1), f(x2)}, (11)

for any 0 < λ < 1.

Any strictly monotonic function is quasiconcave. Besides,
any strictly concave function is also strictly quasiconcave but
the reverse is not generally true. An example is the Gaussian
function, which is strictly quasiconcave but not concave.

It is proved in Appendix I that U(R) has the following
properties.

Lemma 1. If PT (R) is strictly convex in R, U(R) is strictly
quasiconcave. Furthermore, U(R) is either strictly decreasing
or first strictly increasing and then strictly decreasing in any
ri of R, i.e. the local maximum of U(R) for each ri exists at
either 0 or a positive finite value.

For strictly quasiconcave functions, if a local maximum
exists, it is also globally optimal [21]. Hence, a unique
globally optimal transmission rate vector always exists and
its characteristics are summarized in Theorem 1 according to
the proofs in Appendix I.

Theorem 1. If PT (R) is strictly convex, there exists a
unique globally optimal transmission data rate vector R∗ =
[r∗1 , r∗2 , · · · , r∗K ]T for (10), where r∗i is given by

(i) when PC+PT (R
(0)
i )

R
(0)
i

≥ ∂PT (R)
∂ri

∣∣∣
R=R

(0)
i

, ∂U(R)
∂ri

∣∣∣
R=R∗

=

0, i.e. 1
∂PT (R∗)

∂r∗
i

= R∗
PC+PT (R∗) = U(R∗);

(ii) when PC+PT (R
(0)
i )

R
(0)
i

< ∂PT (R)
∂ri

∣∣∣
R=R

(0)
i

, r∗i = 0,

where R(0)
i = [r∗1 , r∗2 , · · · , r∗i−1, 0, r∗i+1, · · · , r∗K ] and R

(0)
i =∑

j 6=i r∗j , i.e. the overall data rate on all other subchannels
except i.

Theorem 1 has clear physical insights. PC +PT (R(0)
i ) is the

power consumption of both circuit and all other subchannels
when Subchannel i is not used. PC+PT (R

(0)
i )

R
(0)
i

is the per-bit
energy consumption when Subchannel i is not used and the
overall per-bit energy consumption needs to be minimized
for energy-efficient communications. ∂PT (R)

∂ri

∣∣∣
R=R

(0)
i

is the

per-bit energy consumption transmitting infinitely small data
rate on Subchannel i conditioned on the optimal status of all
other subchannels. Hence, Subchannel i should not transmit

anything when PC+PT (R
(0)
i )

R
(0)
i

< ∂PT (R)
∂ri

∣∣∣
R=R

(0)
i

. Otherwise,

there should be a tradeoff between the desired data rate
on Subchannel i and the incurred power consumption. The
tradeoff closely depends on the power consumption of both
circuits and transmission on all other subchannels and can be
found through the unique zero derivative of U(R) with respect
to ri.

To further understand Theorem 1, we consider an example
when each subchannel achieves the Shannon capacity and the
transmit power on each subchannel is given in (6) with Γ = 0
dB and ζ = 1. The overall transmit power is

PT (R) =
K∑

k=1

(e
rk
W − 1)

NoW

gk
. (12)

According to Condition (i) of Theorem 1, when rk > 0, we
have

1
∂PT (R)

∂rk

=
1

e
rk
W

No

gk

= U(R∗). (13)

Hence, the transmit power on Subchannel k is

PTn = (e
rk
W − 1)

NoW

gk
=

W

U(R∗)
− NoW

gk
, (14)

which is a water-filling to level W
U(R∗) . Since the water level

is determined by the optimal energy efficiency, we refer to
our scheme as dynamic energy-efficient water-filling. Note that
while the absolute value of power allocation is determined by
the maximum energy efficiency U(R∗), which relies on both
the circuit power and channel state, the relative differences of
power allocations on different subchannels depend only on the
channel gains on those subchannels.

B. A Special Case: When the Channel is Flat Fading

To facilitate the understanding of the fundamental depen-
dence of energy efficiency on the channel gain, circuit power,
and bandwidth, we consider a special case that the channel is
experiencing flat fading in this section. Hence, all subchannels
are with the same channel gain and the same link adaptation
is applied on all subchannels. The overall data rate is

R = Kr. (15)

According to Theorem 1, the optimal transmission data rate
follows immediately and is summarized by Theorem 2, where
the upper bound is proved in Appendix II.

Theorem 2. If PT (R) is monotonically increasing and strictly
convex in R, there exists a unique globally optimal transmis-
sion data rate to maximize energy efficiency and is given by

R∗ =
PC + PT (R∗)

P
′
T (R∗)

, (16)

where P
′
T (·) is the first order derivative of function PT (·).

Besides, energy efficiency is upper bounded by 1
P
′
T (0)

.

When Shannon capacity is achieved in AWGN channels,
the upper bound is g

No
.

In the following, we investigate some basic properties
of energy-efficient link adaptation. Propositions 1, 2, and 3

3



summarize the impact of channel gain, circuit power, and
the number of subchannels on the optimal energy-efficient
transmission, and are proved in Appendix III.

Proposition 1. Both the data rate and energy efficiency
increase with channel gain.

Proposition 2. The data rate increases with circuit power,
while the energy efficiency decreases with it. With zero circuit
power, the highest energy efficiency, 1

P
′
T (0)

, is obtained by
transmitting with infinite small data rate.

From Proposition 2, when circuit power dominates power
consumption, which is usually true with short-range com-
munication, the highest data rate should be used to finish
transmission as soon as possible, which has been commonly
assumed by most MAC layer energy-efficient optimization
schemes as describe in the introduction of this paper. However,
when the circuit power is negligible, which is usually true
with long-range communication like satellite communications,
the lowest data rate should be used, which coincides with the
results in [6] and [22].

Proposition 3. The data rate on each subchannel decreases
with increasing number of subchannels while the energy effi-
ciency increases with it. With infinite number of subchannels,
the highest energy efficiency, 1

P
′
T (0)

, is obtained by transmitting
with infinite small data rate.

Propositions 1, 2, and 3 discover three ways to improve
energy efficiency: increasing channel power gain, reducing
circuit power, and allocating more subchannels. The energy-
efficiency upper bound is achieved by transmitting with infinite
small data rate when either circuit power is zero or infinite
number of subchannels is assigned.

IV. CONSTRAINED ENERGY-EFFICIENT LINK ADAPTATION

In this section, we study energy-efficient link adaptation
when user has either a data rate requirement or a peak power
limit.

With a data rate requirement Γ, the energy-efficient link
adaptation is given by

R̂∗ = arg max
R

R

PC + PT (R)
, (17a)

subject to
R ≥ Γ. (17b)

If the optimal data rate vector without constraint in (10)
satisfies R∗ ≥ Γ, it is also the solution to Problem (17), i.e.
R̂∗ = R∗. Otherwise, Problem (17) is equivalent to

R̂∗ = arg max
Γ

Γ
PC + PT (R)

= arg min
R

PT (R), (18a)

subject to
R = Γ. (18b)

Since PT (R) is strictly convex, a unique globally optimal R̂∗

exists. Denote
fk(rk) =

∂PT (R)
∂rk

(19)

and its inverse function to be f−1
k (). Then R̂∗ can be easily

obtained via the Lagrangian technique [23] and is

r̂∗k = max
{
f−1

k (λ), 0
}

(20)

for k = 1, · · · ,K, where λ is determined by
K∑

k=1

r̂∗k = Γ. (21)

When the channel capacity is achieved on each subchannel,
the corresponding optimal power allocation is a water-filling
allocation, which achieves the sum channel capacity Γ.

Similarly, with a maximum transmit power constraint, the
problem is to find

R̃∗ = arg max
R

R

PC + PT (R)
, (22a)

subject to
PT (R) ≤ Pm. (22b)

If the optimal data rate vector without constraint in (10)
satisfies PT (R∗) ≤ Pm, it is also the solution to Problem (22),
i.e. R̃∗ = R∗. Otherwise, via the the Lagrangian technique
again, we have the unique optimal solution as follows

r̃∗k = max
{
f−1

k (λ), 0
}

, k = 1, · · · ,K, (23)

where λ is determined by

PT (R̃∗) = Pm. (24)

When channel capacity is achieved on each subchannel, the
power allocation is the classical water-filling where the water
level is determined by Pm [1].

V. ALGORITHM DESIGN

Theorem 1 provides the necessary and sufficient conditions
for a rate vector to be the unique and globally optimum
one. However, it is usually difficult to directly solve the joint
nonlinear equations according to Theorem 1 to obtain the
optimal vector R∗. Therefore, we develop iterative methods
to search the optimal R for maximizing U(R). The global
optimality of the proposed methods is guaranteed by the strict
quasiconcavity of U(R). In the following, we describe our
low-complexity iterative algorithms.

A. Gradient Assisted Binary Search

When there is only one subchannel, Lemma 1 shows that
function U(r) has a unique r∗ such that for any r < r∗,
dU(r)

dr > 0, and for any r > r∗, dU(r)
dr < 0. Hence, we have

the following lemma to seek two points r1 and r2 such that
r1 ≤ r∗ ≤ r2.

Proposition 4. Let the initial setting r[0] > 0 and set α > 1.
For any i ≥ 0, let

r[i+1] =

{
r[i]

α
dU(r)

dr

∣∣∣
r[0]

< 0

αr[i] otherwise
. (25)
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Repeat (25) until r[I] such that dU(r)
dr

∣∣∣
r[I]

has a different sign

from dU(r)
dr

∣∣∣
r[0]

. Then r∗ must be between r[I] and r[I−1].

To locate r∗ between r1 and r2, let r̂ = r1+r2
2 . If dU(r)

dr

∣∣∣
r̂

=

0, r∗ is found. If dU(r)
dr

∣∣∣
r̂

< 0, r1 < r∗ < r̂ and replace r2

with r̂; otherwise, replace r1 with r̂. This leads to the gradient
assisted binary search (GABS) for maximizing U(r), which
is summarized in Table I.

Algorithm GABS(ro)
(∗ algorithm for single-subchannel transmission. ∗)
Input: initial guess: ro > 0
Output: optimal transmission rate: r∗

1. r1 = ro, h1 ← dU(r)
dr

∣∣∣
r1

, initialize α > 1 (e.g.10)
2. if h1 < 0

(∗ seek r1 and r2 such that r1 < r∗ < r2 ∗)
3. then r2 ←r1, r1 ← r1

α , and h1 ← dU(r)
dr

∣∣∣
r1

4. while h1 < 0
5. do r2 ←r1, r1 ← r1

α , and h1 ← dU(r)
dr

∣∣∣
r1

6. else r2 ←r1 ∗ α and h2 ← dU(r)
dr

∣∣∣
r2

7. while h2 > 0
8. do r1 ←r2, r2 ←r2 ∗ α, and h2 ← dU(r)

dr

∣∣∣
r2

9. while no convergence
(∗ seek r∗ between r1 and r2 ∗)

10. do r̂← r2+r1
2 ; ĥ ← dU(r)

dr

∣∣∣
r̂

11. if ĥ > 0
12. then r1 = r̂;
13. else r2 = r̂
14. return r̂

TABLE I: Gradient assisted binary search

B. Binary Search Assisted Ascent

To find the optimal data rate vector for the multiple sub-
channel case, we design a gradient ascent method to produce
a maximizing sequence R[i], n = 0, 1, · · · , and

R[i+1] =
[
R[i] + µ∇U(R[i])

]+

, (26)

where [R]+ sets the negative part of the vector R to be zero,
µ > 0 is the search step size, and ∇U(R[i]) is the gradient
at iteration i. With sufficiently small step size, U(R[i+1]) will
be always bigger than U(R[i]) except when ∇U(R[i]) = 0
that indicates the optimality of R[i] [23]. However, small
step size leads to slow convergence. Besides, each element of
the gradient depends on the corresponding subchannel power
gain, which potentially differs from each other by orders of
magnitude. Hence, a line search of the optimal step size needs
to cover a large range to assure global convergence on all
subchannels, which is computationally expensive. Therefore,
at each R[i], an efficient algorithm is needed to find the optimal
step size. Denote

fi(µ) = U(
[
R[i] + µ∇U(R[i])

]+

). (27)

Similar to the proof of Lemma 1, it is easy to show that gi(µ)
is also strictly quasiconcave in µ and has a unique globally
maximum µ∗ such that for any µ < µ∗, dfi(µ)

dµ > 0, and for
any µ > µ∗, dfi(µ)

dµ < 0. Let ∇U(R[i]) = [ĝ1, ĝ2, · · · , ĝK ].
Replace dU(r)

dr in GABS to be

dfi(µ)
dµ

= [∇U(R[i+1])]T G̃[i], (28)

where G̃[i] =
d[R[i]+µ∇U(R[i])]+

dµ = [g̃1, g̃2, · · · , g̃K ], in which
g̃k = ĝk if the kth component of R[i] +µ∇U(R[i]) is positive
and g̃k = 0 otherwise. Then GABS can be used for quick
location of the optimal step size. This leads to the binary
search assisted ascent (BSAA) algorithm in Table II.

Algorithm BSAA(Ro)
(∗ algorithm for multi-subchannel transmission. ∗)
Input: initial guess: Ro(default transmission rate can be used)
Output: optimal transmission rate vector: R∗

1. R = Ro,
2. while no convergence
3. do use GABS to find the optimal step size µ∗;
4. R = [R + µ∗∇U(R)]+

5. return R
TABLE II: Binary search assisted ascent

C. The Rate of Convergence
While the global convergence of both GABS and BSAA

is guaranteed by the strict quasiconcavity of U(R) [24], we
further study the convergence rate in this section.

Theorem 3 characterizes the convergence of GABS and is
proved in Appendix IV.

Theorem 3. GABS converges to the globally optimal trans-
mission data rate r∗. A rate r, which satisfies |r − r∗| ≤ ε,
can be found within at most M iterations, where M is the
minimum integer such that M ≥ log2(

(α−1)r∗

ε − 1).

It is difficult to theoretically analyze the global convergence
rate of BSAA because of the nonconcavity of U(R). Instead,
we run numerical simulations and observe the convergence.
Figure 1(a) illustrates the improvement of energy efficiency
with iterations. Here we assume the channel gain of each
subchannel has Rayleigh distribution with a unit average. The
circuit power is 5. The noise power on each subchannel is
0.01. The transmit power is given by Equation (6) with Γ = 0
dB. The energy efficiency is normalized by the optimal value
and the curves are the ensemble averages of 5000 channel
instances. Figure 1(b) shows the corresponding probability
distribution functions of the numbers of iterations necessary
for convergence. In both figures, we vary the number of
subchannels to verify its impact on the convergence rate. We
can see that BSAA converges very fast to the global optimum,
even with 1024 subchannels.

VI. SIMULATION RESULTS FOR OFDM
The proposed energy-efficient link adaptation is general

and can be applied to different kinds of OFDM, MIMO, and
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(a) Converging process: relationship between ensemble average and iterations
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(b) Probability distribution function of the number of iterations for convergence

Fig. 1: Convergence rate of BSAA.

MIMO-OFDM systems. To apply it, we only need to find the
transmit power relationship PT (R) of those systems. In this
section, we discuss the optimal energy-efficient link adaptation
for OFDM with subchannelization as an example.

A. Modeling of OFDM with Subchannelization

In OFDM systems with subchannelization, subcarriers are
grouped into subchannels and the subcarriers forming one
subchannel may, but not necessarily be adjacent, such as
the contiguous and distributed subchannelization schemes in
802.16e [9]. Each subchannel is treated to be flat fading
and the effective channel power gain, g, rather than physical
channel power gain of each subcarrier, is used as a metric.
For simplicity, g is the average of channel power gains of all
subcarriers within the subchannel. Note that classical OFDM
is a special case when each subchannel has one subcarrier. The
frame structure is shown in Figure 2. Each transmission slot
consists of a data interval, Ts, and a signalling interval, τ . In
each data interval, l symbols are transmitted. We use uncoded
M-QAM. The transmit power on each subchannel needs to be
determined.

Sym 1 Sym lSym 2 Sym 3 Sym l-1
Ts

Data Interval n Sym 1
τ

Signaling Interval

Fig. 2: Frame structure

Consider Subchannel i that consists of ci subcarriers. The
number of bits transmitted per symbols on each subcarrier is
bi =

ri
c (Ts+τ)

l . Hence, the modulation order M is given by
Mi = 2bi = 2Biri , where Bi = (Ts+τ)

cil
. The bit-error rate

(BER) for coherently detected M-QAM with Gray mapping
over an AWGN channel is approximated by [25]

Pe(γ) ≈ 0.2 exp
(
− 1.5γ

M − 1

)
, (29)

where γ is the signal-to-noise ratio (SNR). For a BER target,
Pe, the required SNR on Subchannel i is

γi =
2
3
(1−Mi) ln(5Pe) =

2
3
(1− 2Biri) ln(5Pe). (30)

Hence, the overall transmit power on Subchannel i is

PTi
(ri) =

γiciNoW

gi

= Ai(1− 2Biri), (31)

where W is the signal bandwidth of each subcarrier and

Ai =
2ci ln(5Pe)NoW

3gi

. (32)

Assuming no coupling between transmit powers among sub-
channels, the overall transmit power will be the cumulative of
the transmit powers of all subchannels, that is,

PT (R) =
K∑

i=1

PTi(ri), (33)

which is monotonically increasing and strictly convex in R.
The energy-efficient link adaptation immediately follows from
Section III.

B. Performance Comparison

In this section, we compare the performance of energy-
efficient OFDM transmission with that of traditional transmis-
sion schemes. The system parameters are listed in Table III.
The International Telecommunication Union (ITU) pedestrian
channel model B [26] is used to implement the multipath
frequency-selective fading. We implement two subchanneliza-
tion schemes as in Figure 3, fixed-interval and contiguous,
both of which group 10 subcarriers into a subchannel. In the
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Carrier frequency 1.5 GHz
Subcarrier number 256

Subcarrier bandwidth 10 kHz
BER requirement 10−3

Symbol number of data interval, l 100
Time duration of data interval, Ts 0.01s

Time duration of signalling interval, τ 0.001s
Thermal noise power, No -141 dBW/MHz

User antenna height 1.6 m
BS antenna height 40 m

Environment Macro cell in urban area
Circuit power, PC 100 mW

Modulation Uncoded M-QAM
Subchannelization Fixed-interval and contiguous
Propagation Model Okumura-Hata model

Shadowing Log-normal with standard
deviation of 10 dB

Frequency-selective fading ITU pedestrian channel B
User speed 3 km/h

TABLE III: System parameters

fixed-interval subchannelization, one draws subcarriers out of
all subcarriers with a fixed interval to form a subchannel, while
in the contiguous one, each subchannel consists of a block of
contiguous subcarriers.

Subcarrier index

Contiguous Subchannelization Subchannel 1 Subchannel 2
1 2 C+1

Subcarrier index

Fixed-interval Subchannelization Subchannel 1 Subchannel 2
1 2 K+1 K+2

C C+2
Fig. 3: OFDM subchannelization (K subchannels, each with
c subcarriers)

Figures 4(a) and 4(b) and Figures 5(a) and 5(b) compare
energy efficiency and throughput of different transmission
schemes with contiguous subchannelization and with fixed-
interval subchannelization respectively. Two energy-efficient
OFDM transmission schemes are implemented: FS EE, that
is the optimal energy-efficient transmission developed in this
paper, and flat EE, that treats the channel as flat fading.
Transmissions with both fixed and adaptive QAM modulations
are also implemented for comparison. For fixed modulation,
the transmit power is adapted to meet BER requirement
while not exceeding 15 dBm maximum power constraint.
For adaptive modulation, transmit power is equally distributed
over all subchannels and the modulation is adapted to meet
BER requirement. From Figures 4(a) and 4(b), fixed and
adaptive modulations perform closely to each other, especially
when far away from BS, for both energy efficiency and
throughput, when the maximum transmit power is 15 dBm.
By increasing the transmit power from 15 dBm to 25 dBm,

the throughput of adaptive modulation increases, however, the
energy efficiency first increased and then decreases. Due to the
global optimality, the proposed energy-efficient transmission
for frequency-selective channels always achieves the highest
energy efficiency, and outperforms the others by at least 15%.
However, the throughput is not necessarily maximum; the
other schemes, especially the adaptive QAM modulation with
25 dBm transmit power, sacrifice power to obtain higher
throughput. Similar results can also be observed in Figures
5(a) and 5(b). Furthermore, we note that when fixed-interval
subchannelization is used, different subchannels have trivial
differences in average channel gain and the energy-efficient
transmission treating the channel to be flat fading performs
the same as the one considering the difference of different
subchannels. This indicates energy-efficient link adaptation
treating channels to be flat fading is sufficient for performance
optimization.

VII. CONCLUSION

In this paper, we have investigated the energy-efficient link
adaptation. While the usefulness of the proposed technique is
illustrated using frequency-selective OFDM as an example, the
solution developed is applicable to more general transmission
scenarios where transmission occurs over resources experi-
encing different channel conditions. Joint circuit and transmit
power consumptions are taken into account to maximize
energy efficiency rather than throughput. We demonstrate the
existence of a unique globally optimal link adaptation solution
and provide iterative algorithms to obtain this optimum. The
optimal power allocation is shown to be a dynamic water-
filling where the water level is determined by the maximum
energy efficiency. We further consider a special case when
the channel is experiencing flat fading and show the upper
bound of energy efficiency as well as two ways to achieve
this bound. We explicitly demonstrate that energy efficiency
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Fig. 4: Performance comparison for contiguous subchannelization.
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Fig. 5: Performance comparison for fixed-interval subchannelization.

is improved by increasing channel power gain, bandwidth, and
by reducing circuit power consumption. From the simulation
results, we observed at least 15% improvement in energy
utilization when frequency selectivity is exploited and the
improvement depends on how much frequency diversity exists
within the channels.

APPENDIX I
PROOF OF LEMMA 1

Proof: Denote the upper contour sets of U(R) as

Sα = {R º 0|U(R) ≥ α}, (I.34)

where symbol º denotes vector inequality and R º 0 means
each element of R is nonnegative. According to Proposition
C.9 of [21], U(R) is strictly quasiconcave if and only if Sα is
strictly convex for any real number α. When α < 0, no points
exist on the contour U(R) = α. When α = 0, only 0 is on the

contour U(0) = α. Hence, Sα is strictly convex when α ≤ 0.
Now we investigate the case when α > 0. Sα is equivalent
to Sα = {R º 0|αPC + αPT (R) − R ≤ 0}. Since PT (R)
is strictly convex in R, Sα is also strictly convex. Hence, we
have the strict quasiconcavity of U(R).

The partial derivative of U(R) with ri is

∂U(R)
∂ri

=
PC + PT (R)−RP

′
T (R)

(PC + PT (R))2
, β(ri)

(PC + PT (R))2
,

(I.35)

where P
′
T (R) is the first partial derivative of PT (R) with

respect to ri. According to Lemma 1, if r∗i exists such that
∂U(R)

∂ri

∣∣∣
ri=r∗i

= 0, it is unique, i.e. if there is a r∗i such that

β(r∗i ) = 0, it is unique. In the following, we investigate the
conditions when r∗i exists.
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The derivative of β(ri) is

β
′
(ri) = −RP

′′
T (R) < 0, (I.36)

where P
′′
T (R) is the second partial derivative of PT (R) with

respect to ri. Hence, β(ri) is strictly decreasing. According
to the L’Hopital’s rule, it is easy to show that

lim
ri−>∞

β(ri) = lim
ri−>∞

(PC + PT (R)−RP
′
T (R))

= lim
ri−>∞

(
PC + PT (R)−RP

′
T (R)

ri
ri

)

= lim
ri−>∞

(
P
′
T (R)− P

′
T (R)−RP

′′
T (R)

1
ri

)

= lim
ri−>∞

−P
′′
T (R)Rri < 0.

(I.37)

Besides,

lim
ri−>0

β(ri) = lim
ri−>0

(PC + PT (R)−RP
′
T (R))

= PC + PT (R(0)
i )−R

(0)
i P

′
T (R(0)

i ),
(I.38)

where R(0)
i = [r1, r2, · · · , ri−1, 0, ri+1, · · · , rK ]T and R

(0)
i =∑

j 6=i rj .
(1o)When PC + PT (R(0)

i ) − R
(0)
i P

′
T (R(0)

i ) ≥ 0,
limri−>0 β(ri) ≥ 0. Together with (I.37), we see that t∗i
exists and U(R) is first strictly increasing and then strictly
decreasing in ri.

(2o)When PC + PT (R(0)
i ) − R

(0)
i P

′
T (R(0)

i ) < 0,
limri−>0 β(ri) < 0. Together with (I.36) and (I.37), t∗i does
not exist. However, U(R) is always strictly decreasing in ri.
Hence, U(R) is maximized at ri = 0.

Lemma 1 is readily obtained.

APPENDIX II
PROOF OF THE UPPERBOUND IN THEOREM 2

Proof: U(R) = R
PC+PT (R) ≤ R

PT (R) . Denote Û(R) =
R

PT (R) . Û
′
(R) = dÛ(R)

dR = PT (R)−RP
′
T (R)

P 2
T (R)

. According to the

L’Hopital’s rule, limR→0 Û
′
(R) = limR→0

PT (R)−RP
′
T (R)

P 2
T (R)

=

limR→0
−RP

′′
T (R)

2PT (R)P
′
T (R)

= limR→0
−P

′′
T (R)

2(P
′
T (R))2

≤ 0. Besides

PT (R)−RP
′
T (R) is 0 when R = 0 and has negative derivative

when R > 0. Hence, PT (R) − RP
′
T (R) < 0 when R > 0.

Thus, Û
′
(R) is negative when R > 0 and Û(R) is maximized

when R approaches zero, i.e. U(R) ≤ limR→0
R

PT (R) =
1

P
′
T (0)

.

APPENDIX III
PROOF OF PROPOSITIONS 1, 2, AND 3

Proof: Denote PR(r) to be the received power on a
subchannel for reliable detection when the data rate on the
subchannel is r. We have PT (R) = KPR(r)

g = KPR( R
K )

g ,
where g is the channel power gain. It is easy to see
that PR(r) is monotonically increasing and strictly convex,
and PT (0) = PR(0) = 0. According to Theorem 2, we
have R∗P

′
T (R∗) = PC + PT (R∗), which is equivalent to

R∗P
′
R(R∗

K ) − KPR(R∗
K ) = PCg. By differentiating the left

hand side with respect to R∗,
∂

(
R∗P

′
R( R∗

K )−cPR( R∗
K )

)

∂R∗ =
R∗
K P

′′
R(R∗

K ) > 0. Hence, the left hand side is strictly increasing
in R∗. Therefore, higher data rate should be used when the
channel has higher power gain. Suppose g1 > g2, and the cor-
responding optimal modulation and coding result in data rates
R∗1 and R∗2 respectively. Hence, U1(R∗1) > U1(R∗2). Besides,
U1(R∗2) = R∗2

PC+
KPR(R∗2/K)

g1

>
R∗2

PC+
KPR(R∗2/K)

g2

= U2(R∗2).

Hence, the energy efficiency increase with channel gain.
According to Theorem 2, R∗P

′
T (R∗) − PT (R∗) = PC .

The derivative of the left hand side is R∗P
′′
T (R∗) > 0.

Hence, R∗ increases with PC . The proof that the energy
efficiency decreases with circuit power is similar to the proof
that energy efficiency increases with channel gain. When
PC = 0, according to proof in II, U(R) is maximized when
R approaches zero, i.e. Umax = limR→0

R
PT (R) = 1

P
′
T (0)

.

R = Kr and PT (R) = KPT ( R
K ), where PT (r) is the

transmit power on each subchannel, and is monotonically
increasing and strictly convex in r. According to Theorem 2,
we have R∗P

′

T (R∗
K ) = PC + KPT (R∗

K ), which is equivalent

to r∗P
′

T (r∗)−PT (r∗) = PC

K . The left hand side is increasing
in r∗ while the right hand side is decreasing in K. Hence, the
data rate on each subchannel should decrease with increasing
number of subchannels assigned. The proof that the energy
efficiency increases with the number of subchannels assigned
is also similar to the proof in III and is omitted. The highest
energy efficiency is obtained with infinite number of subchan-
nels, i.e. U(R) = limK→∞ R

PC+PT (R) = r
P T (r)

. Similar to
the proof in II, U(R) is maximized when r approaches zero.
We have Umax = limr→0

r
P T (r)

= 1
P
′
T (0)

.

APPENDIX IV
PROOF OF THEOREM 3

Proof: The global convergence is straightforward from
Lemmas 1. Since r

[0]
2 = αr

[0]
1 and r

[i]
1 ≤ r∗ ≤ r

[i]
2 , with

induction, we have r
[i]
2 − r

[i]
1 = r

[0]
2 −r

[0]
1

2i ≤ (α−1)r∗

2i . Hence,

r̂[i] = r
[i]
1 +r

[i]
2

2 ≥ (2r
[i]
2 − (α−1)r∗

2i )/2 ≥ r∗− (α−1)r∗

2i+1 and r̂[i] ≤
r∗+ (α−1)r∗

2i+1 . Then |r̂[i]−r∗| ≤ (α−1)r∗

2i+1 . Let (α−1)r∗

2i+1 ≤ ε. We
have i ≥ log2(

(α−1)r∗

ε − 1). Theorem 3 follows immediately.
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