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Abstract— We consider stochastic sensor scheduling with
application to networked control systems. We model sampling
instances (in a networked system) using jumps between states of
a continuous-time Markov chain. We introduce a cost function
for this Markov chain which is composed of terms depending
on the average sampling frequencies of the subsystems and the
effort needed for changing the parameters of the underlying
Markov chain. By extending Brockett’s recent contribution
in optimal control of Markov chains, we extract an optimal
scheduling policy to fairly allocate network resources (i.e.,
access to the network) among the control loops. We apply this
scheduling policy to a networked control system composed of
several scalar decoupled subsystems and compute upper bounds
for their closed-loop performance. We illustrate the developed
results numerically on a networked system composed of several
water tanks.

I. INTRODUCTION

In digital control literature, many rules have been in-
troduced for determining the sampling rates of continuous
time systems [1], [2]. However, these methods mostly yield
conservative results when applied to networked control sys-
tems because they often assume that the sampling is done
periodically with a fixed rate. This conservatism is stemming
from the fact that the subsystems are sampled with a fixed
sampling rate even if they are inactive. In addition, to avoid
interference between control loops, the network manager
should schedule the communication instances in a networked
system considering the worst-case possible scenario (i.e., the
maximum number of active control loops). This becomes
troublesome when dealing with ad-hoc networked control
systems where at any given time, several control loops may
join or leave the networked system or switch between active
and inactive states. Therefore, we need a scheduling policy to
set the sampling rates of the control loops adaptively accord-
ing to their required closed-loop performance and the overall
network resources. In this paper, we use continuous-time
Markov chains to develop an optimal stochastic scheduling
policy that can automatically determine the sampling rates of
the subsystems in a networked system based on the number
of active control loops.

Specifically, we use time instances of the jumps between
states of the aforementioned continuous-time Markov chain
to model the sampling instances of the subsystems. We
introduce a cost function for this Markov chain which is
the summation of the average sampling frequencies of the
subsystems and the effort needed for changing the scheduling
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policy. We extend the results presented in [3] to minimize
the described cost function. Doing so, we develop an opti-
mal scheduling policy which fairly allocates time instances
among the subsystems to transmit their state measurements
to corresponding subcontrollers. This optimal scheduling
policy works particularly well on ad-hoc networked sys-
tems because we can easily accommodate for the changes
in the networked system by adding an extra state to the
Markov chain whenever a new subsystem arrives or by
removing an old state from the Markov chain whenever
a subsystem leaves. Lastly, we study networked control
when using the purposed stochastic scheduling policy. We
consider networked control systems that are composed of
scalar decoupled subsystems in feedback interconnection
with impulsive controllers. We find an upper bound for their
closed-loop performance as a function of the measurement
noise statistics and the scheduling policy parameters. We
generalize this result to two more practical controllers; i.e.,
pulse and exponential controllers. We also illustrate these
results numerically on a networked control system composed
of several decoupled water tanks.

Using Markov chains for stochastic sensor scheduling has
been previously studied in [4]. However, in that paper, the
authors considered discrete-time Markov chains to derive a
numerically tractable algorithm for optimal sensor schedul-
ing. Their algorithm uses one of the sensors at each time step
while here, the continuous-time Markov chain can rest in one
of its states to avoid sampling any of the sensors. In addition,
the cost function in [4] was not written explicitly in terms of
the Markov chain parameters and instead, it was described
by the networked system performance when using a Markov
chain for sampling the sensors. However, our scheduling
policy results in a separation between designing the Markov
chain parameters and networked system controller which
enables us to describe the cost function (needed for deriving
the optimal sensor scheduling policy) only in terms of the
Markov chain parameters.

The rest of the paper is organized as follows. In Section II,
we introduce the optimal stochastic scheduling policy and
calculate its statistics. We study networked control system
performance when using the proposed scheduling policy in
Section III. In Section IV, we illustrate the developed results
numerically on a networked system composed of several
water tanks. Finally, we present the conclusions in Section V.

A. Notation

The sets of integer and real numbers are denoted by Z and
R, respectively. We use notations O and E to denote the sets
of odd and even numbers. For any n ∈ Z and x ∈ R, we



Fig. 1. Schematic diagram of the networked control system.

 

 

 

 

 

Fig. 2. Flow diagram of the continuous-time Markov chain used for
modeling the stochastic scheduling policy.

define Z>(≥)n = {m ∈ Z | m > (≥)n} and R>(≥)x = {y ∈
R | y > (≥)x}, respectively. We use calligraphic letters,
such as A and X , to denote any other set.

We use capital roman letters, such as A and B, to denote
matrices. For any matrix A, Ai denotes its i-th row and aij
denotes its entry in the i-th row and the j-th column.

Vector ei denotes a column vector (where its size will be
defined in the text) with all entries equal zero except i-th
entry which is equal to one. For any x ∈ Rn, we define the
entry-wise operator x.2 = [x2

1 . . . x2
n]>.

II. STOCHASTIC SENSOR SCHEDULING

Let us start by modeling our stochastic scheduling policy
using continuous-time Markov chains.

A. Sensor Scheduling Policy

Figure 1 illustrates the schematic diagram of a networked
control system, where L decoupled scalar subsystems are
connected to their subcontrollers over a wireless network. A
sensors in each subsystem sample its state and transmit the
measurement to the corresponding subcontroller at appropri-
ate time instances enforced by the network manager. Then,
the subcontroller calculates an actuation signal and apply it
directly to the subsystem. As an approximation of wireless
network, we assume that the communication is instantaneous.
However, we want to limit the amount of communication
per time unit to reduce the energy consumption. Here, we
use a continuous-time Markov chain to model the sampling
instances of the subsystems. Figure 2 shows the flow diagram
of this Markov chain. Every time that a jump from the idle
node I to a node S` occurs, we sample subsystem ` and
transmit its state measurement. The idle node I helps to tune
the sampling frequency of the subsystems independently. We
use unit vector representation [3], [5] to model this Markov
chain.

We define the set X = {e1, e2, . . . , en} ⊂ Rn where
n = L+ 1. The continuous-time Markov chain state x(t) ∈
Rn evolves on X , which is the reason behind naming this
representation as the unit vector representation. We associate
nodes S1, S2, . . . , SL, and I in the Markov chain with unit
vectors e1, e2, . . . , eL, and en, respectively. Following the
same approach as in [5], we can model the Markov chain in
Figure 2 by the Itô differential equation in

dx(t) =

L∑

`=1

(
G′`nx(t) dN ′`n(t) +G′n`x(t) dN ′n`(t)

)
, (1)

where {N ′n`(t)}t∈R≥0
and {N ′`n(t)}t∈R≥0

for 1 ≤ ` ≤ L,
are Poisson counter processes with rates λn`(t) and λ`n(t),
respectively. These Poisson counters determine the rates of
jump from S` to I and vice versa. In addition, for 1 ≤ ` ≤ L,
we have G′`n = (e`− en)e>n and G′n` = (en− e`)e>` . Let us
define m = 2L. Now, we can rearrange the Itô differential
equation in (1) as

dx(t) =

m∑

i=1

Gix(t) dNi(t), (2)

where {Ni(t)}t∈R≥0
for 1 ≤ i ≤ m, is a Poisson counter

process with rate

µi(t) =

{
λn,b(i−1)/2c+1(t), i ∈ O,
λb(i−1)/2c+1,n(t), i ∈ E, (3)

and

Gi =

{
G′n,b(i−1)/2c+1, i ∈ O,
G′b(i−1)/2c+1,n, i ∈ E. (4)

Noting that the continuous-time Markov chain in (1) models
the sampling instances {T `i }∞i=0 using the jumps that occur
in its state x(t), we can manipulate the average sampling
frequencies of different subsystems through rates µi(t).
Similar to [3], we assume that we can control the rates of
Poisson counters according to

µi(t) = µi,0 +

m∑

j=1

αijuj(t), (5)

and thereby, control the average sampling frequencies of
subsystems. Control signals uj(t) for all 1 ≤ j ≤ m, are
chosen in order to minimize the cost function

J= lim
T→∞

E

{
1

T

∫ T

0

L∑

`=1

ξ`e
>
n x(t)dN2`(t)+u(t)>u(t)dt

}
, (6)

where ξ` ∈ R≥0 for 1 ≤ ` ≤ L, are design parameter.
Note that the cost function in (6) consists of two types
of terms: the term 1

T

∫ T
0
e>n x(t)dN2`(t) for 1 ≤ ` ≤ L,

which denotes the average frequency of the jumps from
I to S` in the Markov chain (i.e., the average sampling
frequency of subsystem `) and the term 1

T

∫ T
0
u(t)>u(t)dt

which penalizes the network regulation effort. If the latter
term is removed, the problem would become ill-posed since
the rates µi(t) (and as a result, the average sampling rates
of subsystems) can be set to zero (i.e., the subsystems
would work open loop with probability one). Considering



the identity E{dN2`(t)} = µ2`,0 +
∑m
j=1 α2`,juj(t)dt, we

can rewrite the cost function in (6) as

J = lim
T→∞

E

{
1

T

∫ T

0

c>x(t) + u(t)>Sx(t) + u(t)>u(t) dt

}
,

where c = en
∑L
`=1 ξ`µ2`,0 and S ∈ Rm×n is a matrix

whose entries are sji =
∑L
`=1 ξ`α2`,j if i = n and

sji = 0 otherwise. In the next subsection, through extending
Brockett’s recent contribution in optimal control of Markov
chains [3], we find the unique minimizer of the above cost
function subject to the Markov chain dynamics in (2) and
the rates control law in (5). Doing so, we develop an optimal
scheduling policy to fairly allocate sampling instances to the
control loops in a networked system.

B. Optimal Sensor Scheduling
We start by minimizing the finite horizon version of the

cost function in (6).
THEOREM 2.1: Consider a continuous-time Markov

chain evolving on X = {e1, . . . , en} ⊂ Rn, generated
by (2). Let us define matrices A =

∑m
i=1 µi,0Gi and

Bi =
∑m
j=1 αijGj , where for all 1 ≤ i, j ≤ m, Gi and αij

are introduced in (4) and (5), respectively. Assume that, for
given T ∈ R>0 and c : [0, T ]→ Rn, differential equation

k̇(t)=−c(t)−A>k(t)+
1

4

m∑

i=1

(S>i +B>i k(t)).2; k(T )=kf ,

has a solution on [0, T ] such that, for each (t, x) ∈ [0, T ]×X ,
the operator A−∑m

i=1
1
2 (k(t)>Bi + Si)xBi is an infinites-

imal generator (see [6, pp. 124]). Then, the control law

ui(t, x) = −1

2

(
k(t)>Bi + Si

)
x(t),

for all 1 ≤ i ≤ m, minimizes

J = E
{

1

T

∫ T

0

c(t)>x(t) + u(t)>Sx(t)

+ u(t)>u(t)dt+
1

T
k>f x(T )

}
.

PROOF: The proof of this theorem follows the same
reasoning as in [3] to compute the optimal control law.
See [7] for the detailed proof.

We can use Theorem 2.1 to calculate the infinite-horizon
optimal policy through some algebraic manipulations.

COROLLARY 2.2: Consider a continuous-time Markov
chain evolving on X = {e1, . . . , en} ⊂ Rn, generated
by (2). Let us define matrices A =

∑m
i=1 µi,0Gi and Bi =∑m

j=1 αijGj , where for all 1 ≤ i, j ≤ m, Gi and αij are
introduced in (4) and (5), respectively. Assume that, for a
given c ∈ Rn, nonlinear equation
[
A> −1
1> 0

][
k0

α

]
− 1

4

[ ∑m
i=1(S>i +B>i k0).2

0

]
=

[
−c
0

]
,

has a solution such that, for all x ∈ X , the operator A −∑m
i=1

1
2 (k>0 Bi +Si)xBi is an infinitesimal generator. Then,

the control law

ui(t, x) = −1

2
(k>0 Bi + Si)x(t), (7)

for all 1 ≤ i ≤ m, minimizes

J = lim
T→∞

E

{
1

T

∫ T

0

c>x(t) + u(t)>Sx(t) + u(t)>u(t)dt

}
.

PROOF: First, noted that since x(t) ∈ X is always a
bounded vector (i.e., ‖x(t)‖2 = 1 for all t ≥ 0), we have
the identity in (8) for any kf ∈ Rn. Therefore, without loss
of generality, we can assume that kf = k0. According to
Theorem 2.1, for any given T > 0, we need to solve

k̇′(t) = −c(t)−A>k′(t) +
1

4

m∑

i=1

(S>i +B>i k
′(t)).2, (9)

with the final condition k′(T ) = kf = k0 to get the
optimal finite-horizon controller. Let us introduce the change
of variable k(t) = k′(T − t) to transform (9) into

k̇(t) = c(t) +A>k(t)− 1

4

m∑

i=1

(S>i +B>i k(t)).2; k(0) = k0.

Defining q(t) = k(t)− k0 − α1t, we get

q̇(t) = k̇(t)− α1

= A>k(t) + c− 1

4

m∑

i=1

(S>i +B>i k(t)).2 − α1

= A>(q(t) + k0 + α1t) + c− α1

− 1

4

m∑

i=1

(S>i +B>i (q(t) + k0 + α1t)).2.

Noting that A>1 = 0 and B>i 1 = 0 for all 1 ≤ i ≤ m [3],
we get

q̇(t) = A>(q(t) + k0) + c− α1

− 1

4

m∑

i=1

(S>i +B>i (q(t) + k0)).2

= A>q(t)− 1

4

m∑

i=1

(S>i +B>i (q(t) + k0)).2

+
1

4

m∑

i=1

(S>i +B>i k0).2.

(10)

Noting that q∗ = 0 is an equilibrium of the nonlinear
differential equation in (10), we realize that q(t) = 0 for
t ∈ [0, T ] since q(0) = k(0)− k0 = 0. Thus, we get k(T ) =
k0 +α1T , which results in (k(T )>Bi+Si) = (k>0 Bi+Si),
since 1>Bi = 0 for all 1 ≤ i ≤ m. As a result, the optimal
controller is

ui(t, x) = −1

2
(k>0 Bi + Si)x(t),

for all 1 ≤ i ≤ m.

Corollary 2.2 introduces an optimal scheduling policy for
allocating sampling instances among subsystems according
to the cost function introduced in (6). By changing the design
parameters ξ` for 1 ≤ ` ≤ L, we can tune the average
sampling frequencies of the subsystems according to their
required closed-loop performance. In addition, by adding an
extra term to (6) whenever a new subsystem arrives or by



lim
T→∞

E

{
1

T

∫ T

0

c>x(t)+u(t)>Sx(t)+u(t)>u(t)dt

}
= lim
T→∞

E

{
1

T

∫ T

0

c>x(t)+u(t)>Sx(t)+u(t)>u(t)dt+
1

T
k>f x(T )

}
. (8)

removing an old term from (6) whenever a subsystem leaves,
we can accommodate for the changes in an ad-hoc networked
system. In the remainder of this section, we analyze the
asymptomatic statistical properties of the proposed stochastic
scheduling policy.

C. Effective Sampling Frequencies
We use the notation {T `i }∞i=0 to denote the sequence of

time instances that subsystem ` is sampled. Mathematically,
we define these time instances as

T `0 = inf{t ≥ 0 | ∃ ε > 0 : x(t− ε) = en ∧ x(t) = e`}.
and

T `i+1 = inf{t ≥ T `i | ∃ ε > 0 : x(t− ε) = en ∧ x(t) = e`},
for all i ∈ Z≥0. Furthermore, we define the sequence of
random variables {∆`

i}∞i=0 such that ∆`
i = T `i+1 − T `i

for all i ∈ Z≥0. These new random variables denote the
time interval between any two successive sampling instances
and play a crucial role in the closed-loop performance of
the networked system. We also use the notation M `

t =
max

{
i ≥ 1 | T `i ≤ t

}
to count the number of samples prior

to any given time t ∈ R≥0. We make the following standing
assumption:

ASSUMPTION 2.3: P{T `
0 <∞} = 1 and P{T `

1 <∞} = 1.
This assumption is without loss of generality since oth-

erwise, subsystem ` would work open loop with a nonzero
probability. Furthermore, this assumption is trivially satisfied
if the number of subsystems is finite, the Markov chain is
irreducible, and the rates of Poisson processes are finite and
uniformly bounded away from zero.

LEMMA 2.4: {∆`
i}∞i=0 are independently and identically

distributed random variables. Furthermore, if the sequence
of sampling instances {T `i }∞i=0 satisfy Assumption 2.3, then

lim
t→∞

M `
t

t

as
=

1

E{∆`
i}
,

where x as
= y implies that P{x = y} = 1.

PROOF: The proof is a direct consequence of the Markov
property and the law of large numbers (see [8]). See [7] for
the detailed proof.

THEOREM 2.5: Let the sequence of sampling instances
{T `i }∞i=0 satisfy Assumption 2.3. Then, we have

f` = lim
T→∞

E

{
1

T

∫ T

0

e>n x(t) dN2`(t)

}
=

1

E{∆`
i}
.

PROOF: The proof is a direct consequence of using M `
T =∫ T

0
e>n x(t)dN2`(t) in Lemma 2.4.

Let us introduce p(t) = E{x(t)}. Following the same
reasoning as in [3], we get

ṗ(t) = Ap(t) + E
{ m∑

i=1

ui(t, x(t))Bix(t)

}
, (11)

with the initial condition p(0) = E {x(0)}. Substituting (7)
inside (11), we get

ṗ(t)=Ap(t)−1

2
E

{
m∑

i=1

(k>0 Bi + Si)x(t)Bix(t)

}

=Ap(t)−1

2
E





m∑

i=1

(k>0 Bi + Si)



x1(t)

...
xn(t)


Bi



x1(t)

...
xn(t)








=Ap(t)−1

2
E





m∑

i=1

Bi



x1(t)

∑n
j=1(k>0 Bi+Si)ejxj(t)

...
xn(t)

∑n
j=1(k>0 Bi+Si)ejxj(t)







.

Note that xh(t)
∑n
j=1(k>0 Bi + Si)ejxj(t) = (k>0 Bi +

Si)ehxh(t) since x(t) ∈ X (and elements of the set X are
unit vectors in Rn). Therefore, we get

ṗ(t)=Ap(t)− 1

2
E





m∑

i=1

Bi




(k>0 Bi + Si)e1x1(t)
...

(k>0 Bi + Si)enxn(t)








=

(
A− 1

2

m∑

i=1

Bi diag(k>0 Bi + Si)

)
p(t),

(12)

where

diag(k>0 Bi + Si)=



(k>0 Bi+Si)e1 . . . 0

...
. . .

...
0 . . . (k>0 Bi+Si)en


.

Now, assuming that p(t) converges exponentially to a
nonzero value as time goes to infinity, that is, the ordinary
differential equation in (12) is marginally stable (meaning all
its eigenvalues except one that is on the origin have negative
real parts), we can expand the expression for the effective
sampling rates of the subsystems as (13). In (13), the third
equality is a direct consequence of the fact that x(t) ∈ X .
We use this average sampling frequencies to bound the
closed-loop performance of the networked system when our
proposed optimal scheduling policy is implemented.

III. APPLICATIONS TO NETWORKED CONTROL

In this section, we study networked control as an ap-
plication of the proposed stochastic scheduling policy. Let
us start by presenting the system model and controller. To
simplify the proofs extensively, we first present the results for
networked systems with impulsive controllers. However, later
in Subsections III-C and III-D, we generalize these results
to pulse and exponential controllers, respectively.

A. System Model and Controller
Consider the networked system illustrated in Figure 1,

where subsystem ` for each 1 ≤ ` ≤ L, is a scalar stochastic
system described by the Itô differential equation

dz`(t)=(−γ`z`(t) + v`(t)) dt+ σ` dw`(t); z`(0)=0, (14)



f` = lim
T→∞

E

{
1

T

∫ T

0

e>n x(t)

(
µ2`,0 +

m∑
j=1

α2`,juj

)
dt

}
= lim

T→∞
E

{
1

T

∫ T

0

e>n x(t)

(
µ2`,0 −

1

2

m∑
j=1

α2`,j(k
>
0 Bj + Sj)x(t)

)
dt

}

= lim
T→∞

1

T

∫ T

0

e>n p(t)

(
µ2`,0 −

1

2

m∑
j=1

α2`,j(k
>
0 Bj + Sj)en

)
dt

=

(
µ2`,0 −

1

2

m∑
j=1

α2`,j(k
>
0 Bj + Sj)en

)
e>n lim

t→∞
p(t),

(13)

with model parameters γ`, σ` ∈ R≥0. In (14), v`(t) ∈ R
denotes the control input of subsystem `. For each 1 ≤ ` ≤
L, subcontroller ` receives noisy state measurements {y`i}∞i=0

at time instances {T `i }∞i=0, such that

y`i = z`(T
`
i ) + n`i ; ∀i ∈ Z≥0, (15)

where {n`i}∞i=0 denotes the measurement noise and is com-
posed of independently and identically distributed Gaussian
random variables with zero mean (i.e., E{n`i} = 0) and
standard deviation η` (i.e., E{(n`i)2} = η2

` ). We assume
that each subsystem is in feedback interconnection with a
subcontroller governed by the control law

v`(t) = −
∞∑

i=0

y`if(t− T `i ), (16)

where function f : R → R ∪ {∞} is chosen appropriately
to yield a causal controller (i.e., f(t) = 0 for all t < 0).
For instance, using f(·) = δ(·), where δ(·) is an impulse
function, results in an impulsive controller which simply
resets the state of the subsystem to a neighborhood of the
origin characterized by the amplitude of the measurement
noise whenever a new measurement is received. In the
next subsection, we start by analyzing impulsive controllers
because it is relatively easier to bound their closed-loop per-
formance explicitly. Other candidate functions f(·) are pulse
and exponential functions. These functions can approximate
the behavior of impulsive controllers in a more practical way.

B. Performance Analysis: Impulsive Controllers

In this subsection, we present an upper bound for the
closed-loop performance of subsystems described in (14)
when controlled by an impulsive controller. First, we need
to prove the following simple lemma.

LEMMA 3.1: Let the function g : R≥0 → R be defined as
g(t) = c1e

−2γt+ c2
2γ (1−e−2γt) with given scalars c1, c2 ∈ R

and γ ∈ R≥0 such that 2γc1 ≤ c2. Then,
(a) g is a non-decreasing function on its domain;
(b) g is a concave function on its domain.

PROOF: For part (a), note that if 2γc1 ≤ c2, the function
g(t) is continuously differentiable and dg(t)/dt = −(2γc1−
c2)e−2γt ≥ 0 for all t ∈ R≥0. Hence, g(t) is a non-
decreasing function on its domain (since it is continuous).
On the other hand, for part (b), note that if 2γc1 ≤ c2,
the function g(t) is double continuously differentiable and
d2g(t)/dt2 = 2γ(2γc1 − c2)e−2γt ≤ 0 for all t ∈ R≥0.
Therefore, g(t) is a concave function on its domain.

When using impulsive controllers, the closed-loop subsys-
tem ` is governed by

dz`(t) = −γ`z`(t) dt+ σ` dw`(t); z`(T
`
i ) = −n`i ,

for all t ∈ [T `i , T
`
i+1). The next theorem presents an upper

bound for the performance of this closed-loop system.
THEOREM 3.2: Assume that subsystem ` for 1 ≤ ` ≤

L, is described by (14). Furthermore, let the sequence of
sampling instances {T `i }∞i=0 satisfy Assumption 2.3. Then,
if η` ≤

√
1/(2γ`)σ`, we get

E
{
z2
` (t)

}
≤ η2

` e
−2γ`/f` +

σ2
`

2γ`

(
1− e−2γ`/f`

)
. (17)

otherwise, we get

E
{
z2
` (t)

}
≤ η2

` +
σ2
`

2γ`

(
1− e−2γ`/f`

)
. (18)

PROOF: Using Itô’s Lemma [6, p.49], we get

d(z2
` (t)) = (−2γ`z

2
` (t) + σ2

` )dt+ 2z`(t)σ`dw`(t).

for all t ∈ [T `i , T
`
i+1). Therefore, we get

d

dt
E{z2

` (t)} = −2γ`E{z2
` (t)}+ σ2

` , E{z2
` (T `i )} = η2

` ,

which result in

E
{
z2
` (t) | ∆`

i

}
≤ η2

` e
−2γ`t +

σ2
`

2γ`

(
1− e−2γ`t

)
.

First, let us assume that η` ≤
√

1/(2γ`)σ`. Then, we get

E
{
z2
` (t) | ∆`

i

}
≤η2

` e
−2γ`∆`

i +
σ2
`

2γ`

(
1− e−2γ`∆`

i

)
,

since according to Lemma 3.1 (a), when η` ≤
√

1/(2γ`)σ`,
the function η2

` e
−2γ`t + σ2

`/(2γ`)
(
1− e−2γ`t

)
is a non-

decreasing function of time. Therefore, we get

E
{
z2
` (t)

}
= E

{
E
{
z2
` (t) | ∆`

i

}}

≤ E
{
η2
` e
−2γ`∆`

i +
σ2
`

2γ`

(
1− e−2γ`∆`

i

)}
.

(19)

Using Lemma 3.1 (b) and Jensen’s inequality [6, p.320]
shows that

E
{
η2
` e
−2γ`∆`

i +
σ2
`

2γ`

(
1− e−2γ`∆`

i

)}

≤ η2
` e
−2γ`E{∆`

i} +
σ2
`

2γ`

(
1− e−2γ`E{∆`

i}
)
.

(20)

By substituting (20) into (19) while using Theorem 2.5, we
get the inequality in (17). Now, for the case that η` ≤



√
1/(2γ`)σ` is not satisfied, we can similarly derive the

upper bound

E
{
z2
` (t) | ∆`

i

}
≤η2

` +
σ2
`

2γ`

(
1− e−2γ`∆`

i

)
,

which results in (18) when using Lemma 3.1 (b) and Jensen’s
inequality [6, p.320]. This concludes the proof.

In the next two subsections, we generalize this result to
two more practical controllers, namely, pulse and exponential
controllers.

C. Performance Analysis: Pulse Controllers

In this subsection, we use a pulse function to approximate
the impulse function behavior. Let us pick a constant ρ ∈
R>0. For t ∈ [T `i , T

`
i+1), we use the control law

v`(t)=

{
−y`iγ`e−γ`ρ/(1−e−γ`ρ), T `i ≤t≤T `i + ρ,
0, T `i + ρ<t≤T `i+1,

if T `i + ρ ≤ T `i+1, and

v`(t) = −y`iγ`e−γ`ρ/(1− e−γ`ρ), T `i ≤ t ≤ T `i+1,

otherwise. This controller converges to the impulsive con-
troller as ρ tends to zero.

THEOREM 3.3: Assume that subsystem ` for 1 ≤ ` ≤
L, is described by (14). Furthermore, let the sequence of
sampling instances {T `i }∞i=0 satisfy Assumption 2.3. Then,
we get

E
{
z2
` (t)

}
≤
η2
` +

σ2
`

2γ`

(
1− e−2γ`/f`

)

1− P{T `i+1 − T `i < ρ} .
(21)

PROOF: The proof follows the same reasoning as in the
proof of Theorem 3.2. See [7] for the detailed proof.

Note that if ρ tends to zero in (21), we would recover
the same upper bound as in the case of the impulsive
controller (18). This is true if limρ→0 P{T `i+1 − T `i < ρ} =
0 since the probability distribution of hitting-times of the
underlying Markov chain is atom-less at the origin (which
is satisfied when the Poisson jump rates are finite).

D. Performance Analysis: Exponential Controllers

In this subsection, we use an exponential function to
approximate the impulse function behavior. Let us pick a
constant θ ∈ R>0 \ {γ`}. For all t ∈ [T `i , T

`
i+1), we use the

control law

v`(t) = (γ` − θ)y`ie−θ(t−T
`
i ). (22)

This controller converges to the impulsive controller as θ
approaches infinity.

THEOREM 3.4: Assume that subsystem ` for 1 ≤ ` ≤
L, is described by (14). Furthermore, let the sequence of
sampling instances {T `i }∞i=0 satisfy Assumption 2.3. Then,
we get

E
{
z2
` (t)

}
≤
η2
` +

σ2
`

2γ`

(
1− e−2γ`/f`

)

1− E{e−2θ(T `
i+1−T `

i )}
. (23)

…Tank Tank Tank

Fig. 3. An example of a networked system composed of several scalar
decoupled subsystems.
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Fig. 4. An example of the state of the continuous-time Markov chain used
in the optimal scheduling policy and its corresponding sampling instances
for both subsystems.

PROOF: The proof follows the same reasoning as in the
proof of Theorem 3.2. See [7] for the detailed proof.

Note that when θ tends to infinity, we would recover
the same upper bound as in the case of the impulsive
controller, since similarly limθ→+∞ E{e−2θ(T `

i+1−T `
i )} = 0

assuming that the probability distribution of hitting-times of
the underlying Markov chain is atom-less at the origin.

IV. NUMERICAL EXAMPLE

In this section, we demonstrate the developed results
on a networked system composed of L decoupled water
tanks illustrated in Figure 3, where each water tank can be
modeled, around its stationary water level h`, by

dz`(t)=−
(
a`
A`

√
g

2h`
z`(t) + v`(t)

)
dt+ dw`(t); z`(0) = 0.

In this model, A` is the cross-section of water tank `, a` is
the cross-section of its outlet hole, and g is the acceleration
of gravity. In addition, z`(t) and v`(t) denote the deviation
of the tank’s water level from its stationary point and its
control input, respectively. The initial condition z`(0) = 0
shows that the tank’s water level starts at its stationary level.
However, due to factors such as input flow fluctuations, the
water level drifts away from its stationary value.

We start by numerically demonstrating the developed
results on a networked system composed of only two tanks
(i.e., L = 2). Let us fix parameters A1 = A2 = 1.00m,
a1 = 0.20m, a2 = 0.10m, g = 9.80m/s2, h1 = 0.40m, and
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Fig. 5. An example of state and control of the closed-loop subsystems for
the optimal scheduling policy when using impulsive controllers.

0 1 2 3 4 5
−5

0

5

z �
(t

)

 

 

Subsystem 1

Subsystem 2

0 1 2 3 4 5
−30

−20

−10

0

10

20

v �
(t

)

Times (sec)

 

 

Subsystem 1

Subsystem 2

Fig. 6. An example of state and control of the closed-loop subsystems for
the optimal scheduling policy when using exponential controllers.

h2 = 0.54m. For these physical parameter, the water tanks
can be described by

dz1(t)=(−0.7z1(t) + v1(t))dt+ dw1(t); z1(0) = 0,

dz2(t)=(−0.3z2(t) + v2(t))dt+ dw2(t); z2(0) = 0.
(24)

We sample these subsystems using the continuous-time
Markov chain in (2) with m = 2L = 4. We assume that
µi(t) = µi,0 + ui(t) for 1 ≤ i ≤ 4, where µ2`,0 = 1 and
µ2`−1,0 = 10 for ` = 1, 2. We are interested in computing
ui(t) for 1 ≤ i ≤ 4, in order to minimize

J = lim
T→∞

E
{

1

T

∫ T

0

0.5e>3 x(t)dN2

+ 0.1e>3 x(t)dN4 + u(t)>u(t)dt

}
.

(25)

Using Corollary 2.2, we get u1(t)
u2(t)
u3(t)
u4(t)

 =

 −0.0228 0 0
0 0 −0.2272
0 −0.0228 0
0 0 −0.0272

x(t).
Figure 4 illustrates an example of the continuous-time

Markov chain state x(t) and the sampling instances {T `i }∞i=0

of both subsystems ` = 1, 2. Using (13), we can calculate the

TABLE I
EXAMPLE OF AVERAGE SAMPLING FREQUENCIES.

ξ1 ξ2 f1 f2

0.1 0.1 0.8040 0.8040
0.5 0.1 0.6577 0.8279
1.0 0.1 0.4656 0.8559
2.0 0.1 0.0451 0.9045

average sampling frequencies f1 = 0.6577 and f2 = 0.8280.
We can tune these average sampling frequencies by changing
the design parameters ξ` for ` = 1, 2, in (6). Table I
shows the average sampling frequencies of the subsystems
calculated using (13) versus various choices of the design
parameters ξ` for ` = 1, 2. It is evident that when increasing
(decreasing) ξ` for a given `, the average sampling frequency
of subsystem ` decreases (increases).

Let us assume that each estimator has access to state mea-
surements of its corresponding subsystem according to (15)
with noise variance η` = 0.3 for ` = 1, 2. Figures 5 and 6
illustrate the state and the control signal for both subsys-
tems when using the impulsive and exponential controllers,
respectively. For the exponential controller, we have fixed
θ = 10. Note that in Figure 5, the control signal of the
impulsive controller only portrays the energy that is injected
to the subsystem (i.e., the integral of the impulse function)
and not the exact value of the control input since by the
definition of the impulse function, the actual value is infinite
at sampling instances.

Figures 7 and 9 shows the closed-loop performance mea-
sure E{z2

` (t)} approximated with 1000 simulations when
using the impulsive and exponential controllers, respectively.
The horizontal lines in Figure 7 show the theoretical upper
bounds derived using Theorem 3.2; i.e., E{z2

1(t)} ≤ 0.6400
and E{z2

1(t)} ≤ 0.9028. As we expect from Section III,
the closed-loop performance of the exponential controller
is slightly worse than the closed-loop performance of the
impulsive controller.

A. Application to Ad-hoc Networked Systems

Consider a networked system that can admit up to ten
identical subsystems described by

dz`(t) = (−0.3z`(t) + v`(t))dt+ dw`(t); z`(0) = 0,

for 1 ≤ ` ≤ L = 10. When all the subsystems are active, we
sample these subsystems using the continuous-time Markov
chain in (2) with m = 2L = 20. We assume that µi(t) =
µi,0 + ui(t) for 1 ≤ i ≤ 20, where µ2`,0 = 1 and µ2`−1,0 =
5 for 1 ≤ ` ≤ 10. In this case, we are also interested in
calculating an optimal scheduling policy that minimizes

J= lim
T→∞

E

{
1

T

∫ T

0

10∑

`=1

0.1e>11x(t)dN2`+u(t)>u(t)dt

}
. (26)

However, when some of the subsystems are inactive, we
simply remove their corresponding nodes from the Markov
chain flow diagram in Figure 2 and set their corresponding
terms in (26) equal to zero. Let us assume that for t ∈ [0, 5),
only two subsystems are active but for t ∈ [5, 10], all ten
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Fig. 7. Closed-loop performance E{z2` (t)} approximated with 1000 simu-
lations for the optimal scheduling policy when using impulsive controllers.
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Fig. 8. Closed-loop performance E{z2` (t)} approximated with 1000 sim-
ulations when the number of subsystems increases from two to ten for the
optimal scheduling policy.

subsystems are active. Let us assume that the subsystems
are using impulsive controllers.

Figures 8 and 10 illustrate the closed-loop performance
E{z2

` (t)} approximated with 1000 simulations when using
the optimal scheduling policy and the periodic scheduling
policy, respectively. We set the sampling rates of periodic
sampling policy exactly the same as the average sampling
frequency of our optimal scheduling policy (when all the
subsystems are active). Note that the saw-tooth behavior in
this figure is due to the fact that for the periodic sampling
policy, the sampling instances are fixed deterministically
in advance to avoid transmission collision or interference.
Since in the periodic scheduling policy, we have to fix
the sampling instances in advance, we must determine the
sampling periods according to the worst-case scenario (i.e.,
when the networked system is composed of ten subsystems).
Hence, when using the periodic sampling, the networked
system is not using its true potential for t ∈ [0, 5).

V. CONCLUSIONS

We used a continuous-time Markov chain to optimally
schedule the sampling instances of the subsystems in a
networked system composed of several decoupled stable
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Fig. 9. Closed-loop performance E{z2` (t)} approximated with 1000 simu-
lations for the optimal scheduling policy when using exponential controllers.
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Fig. 10. Closed-loop performance E{z2` (t)} approximated with 1000 sim-
ulations when the number of subsystems increases from two to ten for the
periodic scheduling policy.

scalar subsystems. We studied the statistical properties of
this stochastic scheduling policy to compute bounds on the
closed-loop performance of these networked system. As a
future work, we could focus on extending the results to
networked control of higher order subsystems or networked
estimation.
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