
Coordinating Truck Platooning by Clustering
Pairwise Fuel-Optimal Plans

Sebastian van de Hoef, Karl H. Johansson and Dimos V. Dimarogonas

Abstract—We consider the fuel-optimal coordination of trucks
into platoons. Truck platooning is a promising technology that
enables trucks to save significant amounts of fuel by driving close
together and thus reducing air drag. We study how fuel-optimal
speed profiles for platooning can be computed. A first-order fuel
model is considered and pairwise optimal plans are derived. We
formulate an optimization problem that combines these pairwise
plans into an overall plan for a large number of trucks. The
problem resembles a medoids clustering problem. We propose
an approximation algorithm similar to the partitioning around
medoids algorithm and discuss its convergence. The method is
evaluated with Monte Carlo simulations. We demonstrate that
the proposed algorithm can compute a plan for thousands of
trucks and that significant fuel savings can be achieved.

I. INTRODUCTION

Platooning is a common element in intelligent transporta-
tion systems. It refers to a group of vehicles forming a road
train without any physical coupling between the vehicles. A
short inter-vehicle distance is maintained by automatic control
and vehicle-to-vehicle communication. Platooning is beneficial
in various ways. Due to the small inter-vehicle gaps the total
road throughput can be increased [1]. It can also help facilitate
the driverless operation of the trailing vehicles. In this paper,
our main motivation to study platooning is the potential to
reduce the fuel consumption of the follower vehicles in the
platoon. Similar to what racing cyclists exploit, the follower
vehicles experience a reduction in air drag which translates
into reduced fuel consumption [2].

Using platooning to reduce fuel consumption leads to a
challenging coordination problem. This differs from a classical
setting where platoons are primarily a measure to increase
road throughput and where a majority of the vehicles can
platoon. Consider two trucks that travel between the same two
regions but from different locations within the regions and
at approximately the same time. Then the trucks can adjust
their speeds slightly at the beginning of their journeys, form a
platoon at the start of the common part of their route and thus
save fuel during most of their journeys. The catch is that this
might involve one of the trucks having to drive faster before
the two merge, which increases air-drag and consequently fuel
consumption during that phase. One truck might also slow
down to let the other truck catch up but then travel at an
increased speed later on to arrive at its destination on time. If
many trucks are involved, it is not straightforward to compute
a plan for all trucks that would be globally fuel-optimal. This
is the problem we address in this paper.

The authors are with the ACCESS Linnaeus Center and the School of Elec-
trical Engineering, KTH Royal Institute of Technology, SE-100 44, Stockholm,
Sweden. {shvdh, kallej, dimos}@kth.se. This work was supported
by the COMPANION EU project, the Knut and Alice Wallenberg Foundation,
and the Swedish Research Council.

Variations of this problem have been considered in litera-
ture. In [3] the authors formulate a mixed integer linear pro-
gramming problem, without considering the speed dependency
of fuel consumption, and prove that the problem is NP-hard. In
[4] the authors consider a simple catch-up coordination scheme
and evaluate it on real fleet data. In [5] local controllers for
coordinating the formation of platoons are proposed. In [6]
the authors use data-mining to identify economic platoons
based on different criteria. They allow that trucks wait for
other trucks to form the platoon. In [7] the problem is
formulated as an optimization problem. The proposed method
is, however, not applicable to large numbers of trucks due to
the combinatorial complexity.

Clustering is present in a variety of different contexts.
A large body of research focuses on clustering methods as
an analysis tool to structure, understand, and classify large
data sets [8], [9]. Examples include the clustering of graphs
in the scope of community detection [10], [11], [12]. Our
clustering algorithm is inspired by partitioning around medoids
[13]. A closely related area to our subproblem of choosing
coordination leaders is leader election, where a group of
agents has to jointly determine a leader [14], [15]. When
we interpret pairwise fuel savings as preferences for trucks
being coordination leaders, we can see our algorithm as local
leader election. In one variant of the proposed clustering
algorithm we consider that leader and follower share their
benefit from platooning according to a fixed ratio. This setting
is related to coalitional game theory [16], which is a widely
used framework in communication theory.

We derive a powerful, efficient, and scalable method to
coordinate platooning of a large number of trucks in a fuel-
optimal way. The main contribution is that the coordination
problem is formulated as a clustering problem based on
pairwise fuel-optimal speed profiles. We derive pairwise fuel-
optimal plans based on a first-order fuel model and propose
a clustering algorithm. We discuss the convergence of the
clustering algorithm and demonstrate the entire method using
Monte Carlo simulations.

The paper is organized as follows. We start in Section II by
modeling a single truck as a hybrid system, where the discrete
jumps model transitions between road segments. In Section III
we develop a fuel-optimal plan for two trucks, where the leader
keeps a constant speed and the the follower adapts its speed
to merge with the leader. In Section IV we build on these
pairwise plans to construct a similarity graph and formulate
the problem to select good leaders and match followers to
each of them. In Section V we propose a clustering algorithm
to find approximate solutions to the problem and analyze its
convergence. In Section VI the method is demonstrated by
Monte Carlo simulations.

t

x

t̂[1] = tS t̂[P + 1] = tD

p[1] p[2] p[3] p[4]

W [1]

W [2]
W [3]

W [4]

t̂[2] t̂[3] t̂[P]

Figure 1. A trajectory of the hybrid truck model

II. MODELING

In this section we model a single truck as a hybrid system,
define platooning, and introduce a fuel consumption model.

We consider a highway network in which a set of geo-
graphic locations are connected by one-way road segments.
We model the road network as a weighted, directed graph
G = (N , E ,W), where the nodes N correspond to geographic
locations. An edge (i, j) ∈ E ⊂ N×N models a road segment
from the location of node i to the location of node j. The
weight W (e) > 0 of edge e ∈ E models the length of the
road segment. The state of a truck (x, `) comprises the edge
` ∈ E that corresponds to the truck’s current road segment and
the distance x ∈ [0,W (`)] from the beginning of that road
segment.

Definition 1 (Hybrid Truck Model). A truck is modeled as a
hybrid system with flow map (1), flow set {x ≤ W (`(t))},
jump map (2), and jump set {x ≥W (`(t))}:

ẋ(t) = v(t), (1)
x+ = 0, `+ ∈ {(i, j) ∈ E : (·, i) = `}, (2)

where the speed v(t) ∈ [vmin, vmax] and the next edge `+

are control inputs. We assume vmax ≥ vmin > 0, i.e., trucks
cannot stop or travel backwards.

As long as the system state (x, `) is in the flow set,
x evolves continuously according to (1). When the state
reaches the jump set, i.e., when the truck reaches the end
of the segment, the state is reset according to the jump map
(2). Figure 1 illustrates the trajectory of such a system. For
theoretical considerations of such models see [17].

A truck has a transport assignment to travel through the
road network from a start node nS ∈ N at time tS to a destina-
tion node nD ∈ N where it must arrive at time tD. We assume
that there is a unique shortest path p̄ = p̄[1], p̄[2], . . . , p̄[P],
p̄[i] ∈ E for i ∈ {1, . . . , P} from nS to nD with respect to W
and we let the truck travel along that path: `+(p̄[i]) = p̄[i+1].
With this notation we can define the trajectory of a truck
(compare to Figure 1).

Definition 2 (Trajectory). We call (x(t), l(t)) : [tS, tD) →
R × E a trajectory of a truck if there exists a finite series
of jump times t̂[1] < t̂[2] < · · · < t̂[P] < t̂[P + 1] with
t̂[1] = tS, t̂[P + 1] = tD and for i ∈ {1, . . . , P}: x(t̂[i]) = 0,

lim
t↗t̂[i+1]

x(t) = W (p̄[i]) and for t ∈ [t̂[i], t̂[i+ 1]) it holds that

x(t) ≤W (p̄[i]), `(t) = p̄[i], and ẋ(t) = v(t).

In the following we introduce a system composed of K
trucks. We introduce for each truck k ∈ {1, . . . ,K} its state
(xk, `k). Truck k starts at node nS

k at time tSk and must arrive
at node nD

k at time tDk . Its shortest path is denoted p̄k and has
length Pk. Its speed is denoted vk. We have the start position
(xS

k, `
S
k) = (0, p̄k[1]) and the destination position (xD

k , `
D
k) =

(W (p̄k[Pk]), p̄k[Pk]).

Platooning

Next, we formalize platooning. For the purpose of coordi-
nation we neglect the small inter-vehicle distance and let trucks
that platoon with each other assume the same position.

Let P ⊂ {1, . . . ,K} be a set of trucks. Let (xk(t), `k(t))
be the trajectory of truck k ∈ P . If trucks P platoon from
time tM to tSp, then (xi(t), `i(t)) = (xj(t), `j(t)) for all pairs
(i, j) ∈ P × P and all t ∈ [tM, tSp]. We assign exactly one
truck in the platoon the role of a platoon leader and the other
trucks the role of platoon followers. Only the fuel consumption
of platoon followers is reduced.

We model the fuel consumption per distance traveled as
first-order polynomials of the speed. We believe that this type
of model approximates the real fuel consumption in the interval
[vmin, vmax] well enough for our purpose. When a truck is not
in a platoon or is a platoon leader, its fuel consumption is
f0(v) = F 1v + F 0 where v is the speed and F 1, F 0 ∈ R
are constants. When a truck is a platoon follower the fuel
consumption is modeled by fp(v) = F 1

p v + F 0
p where F 1

p ,
F 0
p are other constants. Typically, F 1 > F 1

p > 0 and f0(v) >
fp(v) for v ∈ [vmin, vmax]. The total fuel consumption of truck
k from start to destination is

fc,k =

Pk∑
i=1

W (`k[i])∫
0

fk
(
vk(tk(x, `k[i])), tk(x, `k[i])

)
dx, (3)

where fk(v, t) = fp(v), if the truck is a platoon follower
at time t, and fk(v, t) = f0(v) otherwise. The function
tk(x, `k[i]) is the time instant at which truck k is at position
(x, `k[i]).

III. OPTIMAL SPEED ADAPTATION FOR PLATOONING

In this section we derive a pairwise fuel-optimal speed
plan. We consider a pair of trucks: a coordination leader
(CL) and a coordination follower (CF). These concepts differ
from the concepts of a platoon leader and platoon follower
that were introduced in Section II. The CL keeps a constant
speed while the CF selects at the beginning of its journey a
speed that allows it to merge into a platoon with the CL. Then
the two platoon until they split up, followed by that the CF
selects a speed so that it arrives at its pre-specified arrival
time at its destination. Figure 2 illustrates these three phases.
We first derive the optimal speed during the first and the last
phase neglecting that trucks can only platoon on common road
segments. We add this constraint in the second part of the
section. In Section IV, we build on such pairwise plans and
obtain an overall plan for all K trucks. First, we define the
default speed profile, i.e., a constant speed.

Time

Po
si

tio
n

CL
CF

tS1 tM tSp tD1

−∆dS

∆dSp

dS

dSp

Figure 2. Speed profiles of the CL and the CF.

Definition 3 (Default Speed Profile). The default speed profile
for a truck k is the constant speed

vk(t) =

Pk∑
i=1

W (p̄k[i])

tDk − tSk
, (4)

for t ∈ [tSk, t
D
k). The resulting fuel consumption is f̄c,k.

The following proposition gives the optimal rendezvous
speed for a CF when there are no restrictions as to where
the CL and the CF can meet.

Proposition 1. Assume the following. The speed of truck 0 is
constant ẋ0 = v0 with v0 ∈ R, v0 > 0. The state of truck
0 at time tS is (x0(tS), `). The state of truck 1 at time tS is
(x1(tS), `). Truck 1 platoons with truck 0 between time tM and
tSp with tSp > tM. Truck 1 has constant speed ẋ1 = vs for
time tS to tM and ẋ1 = v0 from time tM to tSp. The rendezvous
speed vs is constrained to the interval [vmin, vmax]. The road
segment corresponding to ` is sufficiently long.

Then the rendezvous speed v∗s that minimizes fuel consump-
tion from time tS to tSp is given by

v∗s =
max

(
v0

(
1−

√
1− F 1

p

F 1 + ∆F 0

F 1v0

)
, vmin

)
if ∆d < 0

min

(
v0

(
1 +

√
1− F 1

p

F 1 + ∆F 0

F 1v0

)
, vmax

)
if ∆d > 0

v0 if ∆d = 0,
(5)

where ∆d = x0(tS)− x1(tS) and ∆F 0 = F 0 − F 0
p .

The proof of Proposition 1 can be found in the Appendix.

The optimal speed after splitting up for the CF to meet
its deadline is also the appropriate v∗s depending on whether
the CF has to speed up or slow down in order to arrive at the
specified time.

In the remainder of this section, we discuss how Proposi-
tion 1 can be used to compute an optimal speed profile when
the CL and the CF travel on different but intersecting paths.
Figure 2 illustrates the discussion.

To this end, we define the distance dp between two states
(x1, `1), (x2, `2) with respect to a path p.

Definition 4 (Distance). Let i1 be such that p[i1] = `1 and i2
be such that p[i2] = `2 and assume i2 ≥ i1. Then,

dp
(
(x1, `1), (x2, `2)

)
=

∣∣∣∣∣x2 − x1 +

i2−1∑
i=i1

W (p[i])

∣∣∣∣∣ (6)

Consider a CL with index 0 and a CF with index 1. Two
trucks can platoon only on the road segments corresponding to
common edges of their paths. Because their paths are shortest
paths it can be shown that the shared edges between two paths
form a path as well (Lemma 1 in [7]), i.e., two paths meet and
split up at most once. Trucks 0,1 start at (xS

0 , `
S
0), (xS

1 , `
S
1) at

time tS0 , tS1 and arrive at (xD
0 , `

D
0), (xD

1 , `
D
1) at time tD0 , tD1 ,

respectively. We denote the position at which the CL and the
CF start platooning at time tM as (xM, `M) and where they
split at time tSp as (xSp, `Sp). These meeting points have to
lie on the trajectory of the CL with constant speed v0:

dp̄0

(
(xS

0 , `
S
0), (xM, `M)

)
= v0(tM − tS0)

dp̄0

(
(xS

0 , `
S
0), (xSp, `Sp)

)
= v0(tSp − tS0).

When platooning with the CL the planned trajectory of
the CF consists of three phases: from start to the meeting
point with speed vS, from meeting point to the split point
platooning as platoon follower of 0 with speed v0, and from the
split point to the destination with speed vSp. We define dS =
dp̄1

(
(xS

1 , `
S
1), (xM, `M)

)
and dSp = dp̄1

(
(xSp, `Sp), (xD

1 , `
D
1)
)
.

We have the relations

dS = vS(tM − tS1), dSp = vSp(tD1 − tSp).

We define the virtual position difference at the start/end of the
CF’s trajectory as

∆dS = dS − (tM − tS1)v0

∆dSp = dSp − (tD1 − tSp)v0,
(7)

which is equivalent to ∆d in Proposition 1. If ∆dS > 0 then
vS > v0, if ∆dS < 0 then vS < v0, if ∆dSp > 0 then vSp >
v0, and if ∆dSp < 0 then vSp < v0. Then, we can compute
according to (14) the appropriate v∗ for the first and the last
phase.

This derivation has ignored so far that the first possible
point to merge is when the CL’s and the CF’s paths meet. If
v∗ leads to a distance from (xS

1 , `
S
1) to the merge point that is

too small, then the CL selects a speed that lets the CL and CF
merge at the position where the two paths meet, denoted here
(0, `F). This speed is vS = dp̄1

(
(xS

1 , `
S
1), (`F , 0)

)
/(tM − tS1).

The corresponding case might occur at split up, so that vSp
1 =

dp̄1

(
(W (`L), `L), (xD

1 , `
D
1)
)
/(tD1 − tSp), where (W (`L), `L) is

the position where the CL’s and the CF’s paths split up.

The first check to test if platooning is possible and benefi-
cial is, whether the calculated merge point lies before the split
point or not, i.e., whether dS + dSp < dp̄1

(
(xS

1 , `
S
1), (xD

1 , `
D
1)
)
.

If this condition is fulfilled, we can calculate the fuel cost for
the CF with the speed profile that is adapted for platooning
with the CL as follows

fp = dSf0(vS) + dSpf0(vSp)

+
(
dp̄1

(
(xS

1 , `
S
1), (xD

1 , `
D
1)
)
− dS − dSp

)
fp(v0).

(8)

We summarize the results of the Section in definition of
the adapted speed profile.

Definition 5 (Adapted Speed Profile). The adapted speed
profile of a CF with index 1 to a CL with index 0 consists
of three phases with constant speed: vS from tS1 to tM, then
v0 from tM to tSp, and finally vSp from tSp to tD1 , where the
CF is platoon follower of the CL from time tM to tSp. The
resulting fuel consumption is fp as in (8). Jumps in the speed
at time tM and tSp are continuously approximated.

IV. COORDINATION LEADER SELECTION

In this section we combine default speed profiles and
adapted speed profiles from Section III in order to minimize the

total fuel consumption
K∑

k=1

fc,k. We select a number of CLs

that stick to their default speed profile. All other trucks are
assigned to their best CL if there is one. The best CL for a CF
is the one that yields the largest fuel saving for the CF. Since
the speed profile of the CL is not affected by the CF, we can
assign several CFs to a CL independently. Note that the method
presented in this section can accommodate default and adapted
speed profiles different from the ones presented in Section III.
Like this factors such as traffic, different fuel models, soft
constraints on the arrival time, etc. can be considered.

Based on the results from Section III, we calculate the
potential fuel savings gained from platooning for all pairs of
trucks, where one takes the role of the CL and the other the role
of the CF. We collect the results in a weighted directed graph,
which we call the coordination graph. Recall that the total
fuel consumption of a truck i with the default speed profile is
denoted f̄c,k. We denote the fuel consumption of a CF i with
CL j as fp,(i,j). If i and j platooning with i being the CF of
j is not possible, then fp,(i,j) = f̄c,k.

Definition 6 (Coordination Graph). The coordination graph is
a weighted directed graph Gc = (Nc, Ec,Wc). Nc is a set of
K nodes, where each node represents a truck. Ec ⊆ Nc ×Nc

is a set of edges, and Wc : Ec → R+ are non-negative edge
weights. There is an edge (i, j), if i saves fuel when it selects
j as CL, i.e., Ec = {(i, j) ∈ Nc ×Nc : fp,(i,j) < f̄c,i, i 6= j},
and Wc

(
(i, j)

)
= f̄c,i − fp,(i,j). If platooning is not possible

or beneficial, there is no edge.

We introduce the set of in-neighbors of a node n as
Ni(n) = {i ∈ Nc : ∃(i, n) ∈ Ec} and the set of out-neighbors
of a node n as No(n) = {i ∈ Nc : ∃(n, i) ∈ Ec}. We define
that the maximum over an empty set is zero, i.e., max

i∈∅
(·) = 0.

Next, we formulate the problem of finding a fuel optimal
set of CLs Nl.

Problem 1. Find a subset Nl ⊂ Nc of nodes that maximizes
fce(Nl) where

fce(Nl) =
∑

i∈Nc\Nl

max
j∈No(i)∩Nl

Wc(i, j). (9)

If (i, j) ∈ Ec with i ∈ Nc \ Nl and j =
arg max

j∈No(i)∩Nl

(Wc(i, j)), we say that i is the CF of j and

j is the CL of i. If j has no out-neighbor in Nl, then
maxj∈(No(i)∩Nl)(Wc(i, j)) = maxj∈∅(Wc(i, j)) = 0.

This problem is similar to k-medoids clustering [13].
Medoids clustering means selecting a, typically fixed, number
of cluster centers from a set of data points. The remaining data
points are assigned to the closest cluster center. The objective
is to find cluster centers in such a way that the sum of the
distances of all nodes to the closest cluster center is minimal.
In our problem we can identify the CLs with the medoids.

Albeit similar to k-medoids clustering, there are some
significant differences. We maximize similarity within the
cluster as opposed to minimizing the distance. Similarity from
node i to node j is here how much fuel is saved if node i selects
node j as a CL. This implies that the similarity between two
nodes is not symmetrical, non-negative, and can be zero. The
number of clusters is not fixed but part of the optimization
and not every node has to be assigned to a cluster. It is easy
to see, that a solution with zero or K clusters is not optimal
if Ec 6= ∅. This is different from an application where the
sum of the distances to the cluster centers is minimized. If
every node is a cluster center, this trivially corresponds to the
smallest possible objective value. Thus, it is not trivial to find
(approximate) solutions to the problem.

V. LEADER SELECTION CLUSTERING ALGORITHM

In this section, we describe four variants of an approx-
imation algorithm (Algorithm 1) to Problem 1 inspired by
partitioning around medoids (PAM) [13]. Algorithm 1 works
according to the following scheme. At the beginning Nl is
empty, i.e., there are no CLs. In each round a node n ∈ Nc is
selected for which it is beneficial to be added to Nl or removed
from Nl, and Nl is updated accordingly. This is repeated until
no further improvement is possible. We introduce a function
∆u(n,Nl) that measures how much is gained from switching
whether n belongs to Nl or not.

Algorithm 1
Input: Gc

Output: Nl

Nl ← ∅
while {n̄ ∈ Nc : ∆u(n̄,Nl) > 0} 6= ∅ do

Select n ∈ {n̄ ∈ Nc : ∆u(n̄,Nl) > 0}
if n ∈ Nl then
Nl ← Nl \ {n}

else
Nl ← Nl ∪ {n}

end if
end while

We consider two methods to select n and two choices of
∆u(n,Nl). The first method for selecting n is to select it
in a greedy manner according to n = arg max

n̄∈Nc

∆u(n̄,Nl).

This corresponds to what is done in the “build phase” of
PAM. The second method is to choose n randomly with equal
probability from the set {n̄ ∈ Nc : ∆u(n̄,Nl) > 0}. The two
different choices for ∆u(n,Nl) are elaborated in the following
Sections V-A and V-B.

A. Total Gain

The most obvious choice for ∆u(n,Nl) is to consider how
much fce as defined in (9) changes. This can be calculated

locally, which means only considering one-hop and two-hop
neighbors of n. We get, if n /∈ Nl,

fce(Nl ∪ {n})− fce(Nl) =∑
i∈Ni(n)\Nl

(
max

j∈No(i)∩(Nl∪{n})
Wc(i, j)− max

j∈No(i)∩Nl

Wc(i, j)

)
− max

i∈No(n)∩Nl

Wc(n, i).

The sum over i covers nodes that can select n as their new
CL. The last summand accounts for n possibly not being a CF
any longer. Similarly, if n ∈ Nl,

fce(Nl \ {n})− fce(Nl) =∑
i∈Ni(n)\Nl

(
max

j∈No(i)∩(Nl\{n})
Wc(i, j)− max

j∈No(i)∩Nl

Wc(i, j)

)
+ max

i∈No(n)∩(Nl\{n})
Wc(n, i).

The sum over i covers nodes that can have n as their CL
before the change. The last summand accounts for n possibly
becoming a CF. Finally we get

∆u(n,Nl) =

{
fce(Nl \ {n})− fce(Nl) if n ∈ Nl

fce(Nl ∪ {n})− fce(Nl) otherwise .
(10)

B. Pairwise Gain

Instead of considering the global objective fce, we can
consider that the pairwise fuel savings from platooning are
divided between CF and CL according to a fixed ratio. We
think of this as a simple compensation scheme for trucks
from different operators platooning with each other. The trucks
acting as platoon leaders need to have an incentive since they
do not get any fuel savings from platooning. If i is the CF of
j, then j gets the utility ρlW (i, j) with ρl ∈ (0, 1) ⊂ R and i
gets the utility ρfW (i, j) with ρf = 1− ρl from this CF. The
total utility of the CL is the sum of the utilities from all its
CFs. The gain ∆u(n̄,Nl) for a node n̄ is the change of its
utility from switching whether n belongs to Nl or not.

The utility of a node i /∈ Nl is

uf(i,Nl) = ρf max
j∈No(i)∩Nl

Wc(i, j).

With a set of CLs Nl given, the CL of a CF, as introduced
in Section IV, is the truck in Nl that maximizes the utility
of a CF. The utility ul(j,Nl) of a CL j is the sum of the
utilities due to its CFs Nf(j) = {i ∈ (Nc \ Nl) : j =
arg maxk∈N0(i)∩Nl

W (i, k)}

ul(j,Nl) =
∑

i∈Nf (j)

ρlW (i, j) =
∑

i∈Nf (j)

ρl

ρf
uf(i,Nl).

If n /∈ Nl, then the gain by becoming a CL, i.e., adding n to
Nl, is ul(n,Nl∪{n})−uf(n,Nl). If n ∈ Nl, then the gain by
becoming a CF, i.e., removing n from Nl, is uf(n,Nl \{n})−
ul(n,Nl). The larger ρl the larger the incentive to be a CL.
Finally we have

∆u(n,Nl) =

{
uf(n,Nl \ {n})− ul(n,Nl) if n ∈ Nl

ul(n,Nl ∪ {n})− uf(n,Nl) otherwise.
(11)

3

1

2

6 5

4

1 1

1

.1

.1.1

Figure 3. Graph for which Algorithm 1 with ∆u as in (11) does not converge.

The gain ∆u(n,Nl) can be calculated locally with the knowl-
edge of: the edges of n, the utilities of the in-neighbors of n,
and which neighbors belong to Nl.

C. Convergence

In this section we analyze the convergence of Algorithm 1.
Algorithm 1 converges when it reaches a state where {n̄ ∈ Nc :
∆u(n̄,Nl) > 0} is empty. We call such a state equilibrium.
We have the following result for the central objective.

Proposition 2. Algorithm 1 converges to an equilibrium with
∆u according to (10) if in each iteration n is selected as
n = arg max

n̄∈Nc

∆u(n̄,Nl). If n is selected randomly with equal

probability from {n̄ ∈ Nc : ∆u(n̄,Nl) > 0}, Algorithm 1
converges with probability 1.

Proof: fce(Nl) increases in each iteration when n with the
largest ∆u(n,Nl) is selected, but since Nl ⊂ Nc, the number
of possible Nl is finite. When n is selected randomly and
Algorithm 1 does not converge, there must be one node n0 with
∆u(n0,Nl) > 0 which never gets selected. The probability of
this happening goes to zero as the number of iterations goes
to infinity.

Using the individual objective (11), Algorithm 1 is not
guaranteed to converge to an equilibrium. The following
example illustrates a case.

Example 1. Figure 3 shows a graph Gc for which Algorithm 1
does not converge with criterion (11). When the algorithm
starts, the gain from becoming a CL is positive and the same
for nodes 1, 2, and 3. Assume that node 1 is selected. Then
nodes 3 and 4 become its CFs. Assume ρf/ρl > 1.1. Then it
is not beneficial for node 3 to become a CL. Since there is
no CL for node 2, it is beneficial for node 2 to become one.
Since ρf/ρl > 1.1, it is more beneficial for node 1 to become
a CF. Then node 3 becomes a CL and so on. If ρf/ρl < 1.1,
we get a similar cyclic behavior with reversed direction.

VI. SIMULATIONS

In this section we present a simulation study of the platoon
coordination method developed in this paper. The road network
that was used in the simulations was generated randomly by
sampling 100 location points uniformly in a square of side
length 800. All combinations of these locations were sorted by

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

Figure 4. Randomly generated road network used in the simulation.
Start/destination nodes are marked by a blue circle.

their Euclidean distance. Then, starting from the combination
with the shortest distance, the combinations of locations were
connected by two road segments (one in each direction) with
length according to the Euclidean distance, if there had not
already been a path between the two locations that was at
most 1.5 times longer than the Euclidean distance. The road
network is shown in Figure 4.

We evaluated Algorithm 1 in four variants (greedy/random
node selection and total/pairwise gain) with Monte Carlo
simulations. In the figures and the following discussion we
use “total”/“pairwise” to refer to ∆u according to (10)/(11),
and “greedy”/“random” to refer to selecting the node with
largest ∆u or a random node in each iteration. We considered
a nominal speed of 80 according to which arrival times were
set, i.e., the constant speed of a CL j is vj = 80. For the
fuel model we considered that F 0 = 1, F 1 = 1/80, and
F 0
p = .9F 0, F 1

p = .9F 1. We get that (14) evaluates to
80±35.777 = (44.223, 115.777). For pairwise gain we termi-
nated Algorithm 1 additionally once a specific Nf reoccurred
in order to avoid ending up in an infinite loop as described in
Example 1.

We conducted simulations for different numbers of trucks
K. For each K, 100 simulations were conducted. The starting
times were sampled uniformly in the interval of [0, 1]. Start and
destination nodes were randomly selected from a subset of 10
nodes. The arrival times were calculated assuming a speed of
80. We set vmin = 70, vmax = 90. In each simulation we ran
Algorithm 1 for the four combinations of using either total or
pairwise gain, and either greedy or random node selection. For
the pairwise gain we used ρl = ρf = 0.5. Figure 5 shows a plot
of the fuel savings compared to the case where all trucks travel
at a speed of 80 and do not platoon. Additionally we calculated
fuel savings which would result from spontaneous platooning
according to the following scheme. We assumed that all trucks
travel with the nominal speed of 80. For each segment in the
road network and for all trucks traversing a particular road

0 1000 2000 3000 4000 5000 6000 7000

K

0

1

2

3

4

5

6

7

8

9

A
ve

ra
ge

re
la

tiv
e

fu
el

sa
vi

ng
s

in
%

total, greedy
total, random
pairwise, greedy
pairwise, random
spontaneous platooning

Figure 5. Average relative fuel savings for different numbers of trucks K.

0 1000 2000 3000 4000 5000 6000 7000

K

0

2

4

6

8

10

12

A
ve

ra
ge
|∆

d
S
|

total, greedy
total, random
pairwise, greedy
pairwise, random

Figure 6. Average |∆dS| for different numbers of trucks K.

segment, we collected the times when the trucks traverse the
segment. Then, in the order of these points in time, we grouped
trucks into platoons in such a manner that the difference in
the traversal time within the platoon is at most 0.01. We
assumed that these platoons can platoon over the whole road
segment with no coordination phase. Figure 6 shows |∆dS|
averaged over all CL-CF pairs within one simulation and over
the simulations for a specific K. Furthermore, we conducted
simulations for different sizes of the band [vmin, vmax] around
the nominal speed of 80 in which trucks can select their
rendezvous speed. K was fixed to 400. Figure 9 shows the
relative fuel savings for different sizes of the band averaged
over 100 simulations for each size.

In Figure 5 we can see that the relative fuel savings increase
with the number of trucks. The relative fuel savings increase
quickly with K for small values of K and then increase slowly
for larger values. While the relative fuel savings with total
gain keep increasing for large values of K, they are almost
constant for pairwise gain. Note that the relative fuel savings

0 1000 2000 3000 4000 5000 6000 7000

K

0

500

1000

1500

2000

2500
A

ve
ra

ge
nu

m
be

r
of

C
L

s

total, greedy
total, random
pairwise, greedy
pairwise, random

Figure 7. Average number of CLs for different numbers of trucks K.

0 1000 2000 3000 4000 5000 6000 7000

K

0

500

1000

1500

2000

2500

3000

3500

4000

4500

It
er

at
io

ns

total, greedy
total, random
pairwise, greedy
pairwise, random

Figure 8. Average number of iterations until the algorithm terminates for
different numbers of trucks K.

in the simulations are upper bounded by 10%. To reach this
upper bound each truck needs to be a platoon follower during
its entire journey. The difference between greedy and random
node selection is small. For small K the ratio between the
relative fuel savings due to the coordination algorithm and
those due to spontaneous platooning is relatively large and
gets smaller for increasing K. Figure 6 shows that the average
|∆dS| is relatively large for small K and that it drops quickly
to smaller values as K increases. The values for pairwise gain
are consistently smaller than those for total gain. Figure 7
shows the average number of CLs for different K. We see
that the number increases with K. For total gain it increases
sub-linearly. The number of CLs is smaller for total gain
compared to pairwise gain. For pairwise gain the number of
CLs is proportional to K. The number of iterations until the
algorithm terminates, shown in Figure 8, is almost proportional
to the number of CLs, the difference being that random node
selection leads to a significantly higher number of iterations

0 5 10 15 20 25 30 35 40 45

(vmax − vmin)/2

0

1

2

3

4

5

6

A
ve

ra
ge

re
la

tiv
e

fu
el

sa
vi

ng
s

in
%

total, greedy
total, random
pairwise, greedy
pairwise, random

Figure 9. Average relative fuel savings for different vmax − vmin with
K = 400.

than greedy node selection, in particular for total gain. Figure 9
shows that fuel savings quickly increase for small vmax−vmin

and only increase moderately for larger bands.

We can conclude that the coordination of platooning is
crucial for a small number of trucks and can significantly
improve the overall fuel savings for a large number of trucks
compared to spontaneous platooning. With coordination, al-
ready a small number of platooning enabled trucks can achieve
significant reduction in fuel consumption. Pairwise gain creates
more CLs and less coordination effort (smaller |∆dS|) than
total gain. Total gain yields superior performance. Random
and greedy node selection give similar results but random
node selection leads to more iterations. However, random node
selection might be interesting for a distributed and parallel
implementation since it does not require coordination amongst
all nodes to determine which node is updated. Relatively small
adjustments of the speed are sufficient to achieve most of the
fuel savings possible. One should also keep in mind that fuel
consumption per distance traveled is highly non-linear over
the whole range of speeds a truck can attain and a first order
fuel model is only accurate in a small range of speeds. Fuel
consumption per distance traveled changes with speed in such
a way that we expect large adjustments of the speed to be even
less beneficial than predicted by the linear model.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we started from a hybrid model of a single
truck traveling in a road network. Using a first order fuel
model, we derived a pairwise plan for two vehicles. Those
pairwise plans, evaluated for all pairs of vehicles, served as
the input data to a clustering algorithm that determines a set of
coordination leaders. All other trucks in a cluster adapt their
speed profile to the coordination leader of that cluster. We
proposed four different variants of this algorithm and analyzed
their convergence properties. We showed in simulation that
this method can quickly find plans for a large number of
trucks. The simulations also gave insight in how our approach
behaves for different number of trucks in the network and
different velocity constraints and supported that coordination

of platooning is crucial to leverage its full potential to save
fuel.

In future work we are interested in characterizing the
equilibria of the algorithm analytically and establishing bounds
on the performance. We are interested in studying the al-
gorithm when applied in a receding horizon fashion where
the plans are recalculated repeatedly. We plan to consider
more complex pairwise plans that feature more complicated
dynamics, different speed limits, traffic, etc. Finally, we plan
to test the algorithm on real data and look into distributed
implementations.

APPENDIX

Proof of Proposition 1: Let ds = x1(tM)−x1(tS). Let
D = x1(tSp)− x1(tS). We have the relation

ds =
vs

vs − v0
∆d. (12)

At time tM we have x0 = x1. After the meeting point, both
trucks platoon at speed v0. Assume that 1 is the platoon leader.
Hence the total fuel consumption of 0 up to some distance
from the current position D which fulfills D > ds becomes
f0(vs)ds + fp(v0)(D− ds) = (f0(vs)− fp(v0))ds + fp(v0)D.
The fuel consumption of 1 is not affected by vs. We see that the
term fp(v0)D is not a function of vs, so the optimal rendezvous
speed does not depend on the total distance traveled. In order
to find the optimal vs, we can therefore consider the remaining
terms denoted as fr(vs) and get with (12) and the definitions
of f0, fp

fr(vs) = (f0(vs)− fp(v0))ds

= (F 1vs − F 1
p v0 + ∆F 0)

vs

vs − v0
∆d,

with ∆F 0 = F 0 − F 0
p . We take the derivative of the above

expression in order to find its extrema

∂

∂vs
fr(vs) =

=
∆d

(vs − v0)2
(F 1v2

s − 2F 1v0vs + F 1
p v

2
0 −∆F 0v0).

In order to find the extrema ṽs, we check where this expression
is zero. We can assume that ∆d 6= 0, otherwise ds = 0 which
means that the trucks can directly start platooning. Therefore

0 = (F 1(ṽs)
2 − 2F 1v0ṽs + F 1

p v
2
0 −∆F 0v0) (13)

ṽs = v0

1±

√
1−

F 1
p

F 1
+

∆F 0

F 1v0

 . (14)

We have to differentiate between two cases. Either ∆d > 0
which implies vs > v0, i.e., the CF speeds up, or ∆d < 0
which implies vs < v0, i.e., the CF slows down. Otherwise ds

becomes negative. There are two solutions for ṽs, one where
ṽs > v0, and the other ṽs < v0. The appropriate one depending
on ∆d is ṽs, the optimal unconstrained rendezvous speed.

We can verify that this is indeed a minimum by considering
the asymptotic behavior of fr(vs) when fr(vs) approaches
±∞ and when it approaches v0. Assume ∆d > 0 so that
ṽs > v0. We have lim

vs→∞
fr(vs) =∞, lim

vs→v+
0

fr(vs) =∞ where

we used that f0(v0) > fp(v0) so that the term f0(v0)−fp(v0)
becomes positive, which is the prerequisite to save fuel by
platooning. When we have ∆d < 0, so that ṽs < v0, then

lim
vs→−∞

fr(vs) = ∞, lim
vs→v−

0

fr(vs) = ∞. This shows that if

ṽs > vmax, then v∗s = vmax, if ṽs < vmin, then v∗s = vmax,
and v∗s = ṽs otherwise.

In order to have real solutions for (13), we need

1−
F 1
p

F 1
+

∆F 0

F 1v0
> 0⇔ F 1

p v0 + F 0
p < F 1v0 + F 0

⇔ fp(v0) < f0(v0),

which is the condition that the CF saves fuel when platooning.
The larger the difference f0(v0)−fp(v0) the larger the absolute
difference between v0 and v∗, i.e., the longer the trucks
platoon.

REFERENCES

[1] R. Horowitz and P. Varaiya, “Control design of an automated highway
system,” Proceedings of the IEEE, vol. 88, no. 7, pp. 913–925, July
2000.

[2] C. Bonnet and H. Fritz, “Fuel consumption reduction in a platoon:
Experimental results with two electronically coupled trucks at close
spacing,” SAE Technical Paper 2000-01-3056, 2000.

[3] E. Larsson, G. Sennton, and J. Larson. (2014) The vehicle platooning
problem: Computational complexity and heuristics. [Online]. Available:
http://www.optimization-online.org/DB\ FILE/2013/09/4030.pdf

[4] K.-Y. Liang, J. Mårtensson, and K. H. Johansson, “When is it fuel
efficient for a heavy duty vehicle to catch up with a platoon?” in 7th
IFAC Symposium on Advances in Automotive Control, 2013.

[5] J. Larson, K.-Y. Liang, and K. H. Johansson, “A distributed framework
for coordinated heavy-duty vehicle platooning,” Intelligent Transporta-
tion Systems, IEEE Transactions on, vol. 16, no. 1, pp. 419–429, Feb
2015.

[6] P. Meisen, T. Seidl, and K. Henning, “A data-mining technique for
the planning and organization of truck platoons,” in International
Conference on Heavy Vehicles, Heavy Vehicle Transport Technology.
ISTE & Wiley., 2008, pp. 389–402.

[7] S. van de Hoef, K. H. Johansson, and D. V. Dimarogonas, “Fuel-optimal
coordination of truck platooning based on shortest paths,” in American
Control Conference (ACC), 2015, to be published.

[8] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1988.

[9] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern
Recognition Letters, vol. 31, no. 8, pp. 651 – 666, 2010.

[10] V. Blondel, J. Guillaume, R. Lambiotte, and E. Mech, “Fast unfolding
of communities in large networks,” J. Stat. Mech, p. P10008, 2008.

[11] S. Harenberg, G. Bello, L. Gjeltema, S. Ranshous, J. Harlalka, R. Seay,
K. Padmanabhan, and N. Samatova, “Community detection in large-
scale networks: a survey and empirical evaluation,” Wiley Interdisci-
plinary Reviews: Computational Statistics, vol. 6, no. 6, pp. 426–439,
2014.

[12] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3–5, pp. 75 – 174, 2010.

[13] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An intro-
duction to Cluster Analysis. John Wiley & Sons, Inc., 2008.

[14] H. Garcia-Molina, “Elections in a distributed computing system.” IEEE
Transactions on Computers, vol. C-31, no. 1, pp. 48–59, 1982.

[15] S. Singh and J. Kurose, “Electing “good” leaders,” Journal of Parallel
and Distributed Computing, vol. 21, no. 2, pp. 184 – 201, 1994.

[16] W. Saad, Z. Han, M. Debbah, A. Hjorungnes, and T. Basar, “Coali-
tional game theory for communication networks,” Signal Processing
Magazine, IEEE, vol. 26, no. 5, pp. 77–97, September 2009.

[17] R. Goebel and R. Sanfelice, Hybrid Dynamical Systems: Modeling,
Stability, and Robustness. Princeton University Press, 2012.

