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Abstract

This paper presents a distributed event-based control strategy for
a networked dynamical system consisting of N linear time-invariant
interconnected subsystems. Each subsystem broadcasts its state over
the network according to certain triggering rules which depend on lo-
cal information only. The system can converge asymptotically to the
equilibrium point under the proposed control design, and the exis-
tence of a lower bound for the broadcasting period is guaranteed. A
novel model-based approach is derived to reduce the communication
between the agents. Simulation results show the effectiveness of the
proposed approaches and illustrate the theoretical results.

1 Introduction

Event-based methods in control systems are intended to reduce the commu-
nication between the sensors, the controller, and the actuators in a control
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loop. They invoke a communication between these components when a cer-
tain condition in the state is violated [1]. This policy is in contrast with
the time-driven control approach, in which sampling, control and actuation
take place at equidistant instants of time. Recently, event-triggered control
has been proposed in Networked Control Systems (NCS) for allowing a more
efficient usage of the limited bandwidth of the network [2]-[6].

Large-scale systems are traditionally characterized by a large number of
variables and uncertainties. They are usually decomposed into smaller and
more manageable subsystems to better understand and cope with them. The
centralized control of large-scale systems in a networked environment would
require a very accurate knowledge of the interaction between these subsys-
tems and the consumption of a lot of computation and network resources.
Hence, there is a natural interest in applying event-triggering to decentralized
NCS.

There are some recent contributions on distributed event-triggered control
[7]-[13]. The basic idea is that each subsystem (also called agent or node)
decides when to transmit the measurements based only on local information.
In the most common implementations, an event is triggered when the error
of the system exceeds a tolerable bound. How this error and this bound are
defined separates the different approaches in the literature, e. g. deadband
control [4], Lyapunov approaches to event-based control [2, 14, 15] or self-
triggered control [16, 17].

A distributed event-triggered control has been proposed in [7, 12] re-
stricted to multi-agent system and average consensus problems. In [10] self-
triggered policies are proposed to avoid the constant checking of the trigger
condition. However, the control system is less robust against disturbances
under these policies since these cannot be detected in the inter-event times.
In [13] a decentralized control for large-scale systems is proposed under the
assumption of week coupling. The design of the event triggering thresh-
old is based on Lyapunov methods and it ensures input-to-state stability of
nonlinear systems. However, a positive lower bound for the broadcasting pe-
riod, i.e., the difference between successive broadcasting times, may not be
achievable when the system approaches the origin. This might cause severe
problems since it would require the detection of events and transmission of
data infinitely fast due to possible Zeno behaviors. In a previous work of
the same authors [14], the design is restricted to linear systems with perfect
decoupling.
A distributed event-triggered control has also been examined in [8], in which
the gains measuring the degree of interconnection satisfy a generalized small-
gain condition. This design does not prevent from Zeno behavior and a vari-
ation including a constant threshold-like condition is proposed to overcome
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this issue.
The previous approaches hold a constant control input in the inter-event

time. In contrast, model-based control [18] takes advantage of the knowledge
of the dynamics of the system to generate a control signal based on the pre-
diction given by the model. Few publications have exploited this idea with
event-triggered sampling. An emulation approach is presented in [6] for a
single loop in which a control input generator and an event generator emu-
late the continuous-time state feedback controller. In [12], the control signal
is sampled by a first-order hold, according to the double-integrator dynam-
ics. In [19], centralized and decentralized approaches of model-based event-
triggered control are presented. Finally, in [9], a preliminary distributed
model-based design has been presented for perfect decoupled interconnected
linear systems.

In this paper we present a distributed event-based control for intercon-
nected linear systems with no perfect decoupling, in contrast to [9] in which
the control design perfectly decouples the neigboring nodes. The neighbor-
ing relationship is defined in the sense of dynamical interaction between the
subsystems, and it is not required to be symmetric, in contrast to [14], [19].

Furthermore, we propose a novel trigger mechanism with time-dependent
trigger functions for interconnected linear systems, which has been proposed
for consensus control in [12]. If the parameters of these trigger functions are
adequately selected, the system presents asymptotic stability to the equilib-
ria while guaranteing a lower bound for the minimum inter-event time. With
regards to [13, 14, 19], the triggering mechanism does not continuously de-
pend on the state of the system but on the error between the current and
the latest broadcasted state, which results in that the number of generated
events decreases when the system is close to the equilibrium point.

Another contribution is the analysis of the inter-event times for a dis-
tributed model-based approach with model uncertainty, which is, to the best
of our knowledge addressed for the first time in this paper. For instance, in
the decentralized model-based approach of [19] no analysis of the inter-event
times is conducted. We also prove that, when the model uncertainty fulfills
a certain condition, the model-based approach gives larger minimum inter-
event times. The broadcasted states by the neighbors are used by the agent
to generate the control action, and the error between the states estimation
and the actual states are reset to zero at event times. Respect to the afore-
mentioned work of [6], we assume that the dynamics of each subsystem are
not perfectly known and we evaluate the effect of these model uncertainties.
Moreover, in the design of [6] an invertibility condition is impossed to the
matrix A which describes the system-free dynamics. This constraint is not
required here.

3



The rest of the paper is organized as follows: Section 2 contains the
problem statement for this work. The proposed event-based control strategy
is presented in Section 3. In Section 4, a constraint for the model uncertainty
is derived so that the model-based approach performs better. Numerical
simulations in Section 5 show the efficiency of the proposed strategy with
respect to previous results. The conclusions in Section 6 end the paper.

2 Problem Statement

Consider a system of N linear time-invariant subsystems. The dynamics of
each subsystem are given by

ẋi(t) = Aixi(t) +Biui(t) +
∑
j∈Ni

Hijxj(t), ∀i = 1, ..., N (1)

where Ni is the set of “neighbors” of subsystem i, i.e., set of subsystems that
directly drive agent i’s dynamics, and Hij is the interaction term between
agent i and agent j, and Hij 6= Hji might hold. The state xi of the ith agent
has dimension ni, ui is the mi-dimensional local control signal of agent i, and
Ai, Bi and Hij are matrices of appropriate dimensions.

A digital communication network is used, and so every subsystem can
only broadcast its state information to its neighbors j ∈ Ni at discrete time
instances. The control law is given by

ui(t) = Kix̃i(t) +
∑
j∈Ni

Lijx̃j(t), ∀i = 1, ..., N (2)

where Ki is the feedback gain for the nominal subsystem i. We assume that
Ai +BiKi is Hurwitz. Lij is a set of decoupling gains, and x̃j(t) is the latest
state that was broadcasted by the agent j at time t. The times at which
the agent i broadcasts its state generate a sequence of broadcasting times
{tik}∞k=0, where tik < tik+1 for all k. Hence, (2) can be rewriten as

ui(t) = Kixi(t
i
k) +

∑
j∈Ni

Lijx̃j(t), ∀t ∈ [tik, t
i
k+1) (3)

Let us define the error ei(t) between the state and the latest broadcasted
state as

ei(t) = xi(t
i
k)− xi(t), t ∈ [tik, t

i
k+1). (4)

Rewriting (1) in terms of ei(t) and the control law (3), we obtain

ẋi(t) = AK,ixi(t)+BiKiei(t)+
∑
j∈Ni

(
∆ijxj(t)+BiLijej(t)

)
, ∀i = 1, ..., N (5)
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where AK,i = Ai + BiKi, and ∆ij = BiLij + Hij are the coupling terms. In
general, ∆ij 6= 0 since the interconnections between the subsystems may be
not well known, there might be model uncertainties or the matrix Bi does
not have full rank. The case of perfect decoupling has already been treated
in [9] and we present here a more general and realistic result.

We also define

AK = diag(AK,1, AK,2, ..., AK,N) (6)

B = diag(B1, B2, ..., BN) (7)

K =


K1 L12 · · · L1N

L21 K2 · · · L2N
...

...
. . .

...
LN1 LN2 · · · KN

 (8)

∆ =


0 ∆12 · · · ∆1N

∆21 0 · · · ∆2N
...

...
. . .

...
∆N1 ∆N2 · · · 0

 (9)

F = AK + ∆ (10)

and the stack vectors x = (xT1 , x
T
2 , ..., x

T
N)T and

e = (eT1 , e
T
2 , ..., e

T
N)T (11)

as the state and error vectors of the overall system. Note that Hij, Lij,∆ij :=

0 if j /∈ Ni. Let also be n =
N∑
i=1

ni the state and error dimension.

The dynamics of the overall system are given by

ẋ(t) = Fx(t) +BKe(t). (12)

As the broadcasted states x̃i remain constant between consecutive events,
the error dynamics in each interval are given by

ė(t) = −Fx(t)−BKe(t). (13)

3 Event-based control strategy

The occurrence of an event, i.e., a broadcast over the network and a con-
trol law update, is defined by trigger functions fi which depend on local
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information of agent i only and take values in R. The sequence of broad-
casting times tik are determined recursively by the event trigger function as
tik+1 = inf{t : t > tik, fi(t) > 0}.

Particularly, we consider trigger functions of the form

fi(ei(t)) = ‖ei(t)‖ − (c0 + c1e
−αt), α > 0 (14)

where c0 ≥ 0, c1 ≥ 0 but both parameters cannot be zero simultaneously.
The motivations of these trigger functions (14) are the following. On

one hand, static trigger functions (c1 = 0) have been vastly studied in the
literature, see e. g. [4, 6]. In that case, the error is bounded by ‖ei(t)‖ ≤ c0 ∀t
and c0 determines the ultimate set in which the state of the plant is confined
around the equilibrium. Large values of c0 allow reducing the number of
events but degrades the performance. On the contrary, small values of c0 give
better performance but the average inter-event time decreases considerably.
On the other hand, event-triggering rules derived using Lyapunov analysis
are usually of the form ‖ei(t)‖ ≤ αi‖xi(t)‖. The asymptotic convergence
to the equilibrium is guaranteed but a positive lower bound for the inter-
event time may not be guaranteed when approaching the desired equilibria
([13, 19]). In contrast, we will prove that trigger functions (14) can give
good performance while decreasing the number of events and guaranteing a
minimum inter-event time even if c0 = 0, if the parameters are adequately
selected.

The following theorem states that the system (12) with trigger functions
defined as in (14) asymptotically converges to a specified region around
the equilibrium point which, without loss of generality, is assumed to be
(0, . . . , 0)T . Moreover, if c0 = 0 the convergence is asymptotical to the ori-
gin. The functions (14) bound the errors ‖ei(t)‖ ≤ c0 +c1e

−αt, since an event
is triggered as soon as the norm of ei(t) crosses the threshold c0 + c1e

−αt.

Assumption 1. We assume that AK,i, i = 1, . . . , N is diagonalizable so that
the Jordan form of AK,i is diagonal and its elements are the eigenvalues of
AK,i, λk(AK,i) k = 1, . . . , ni.

This assumption facilitates the calculations, but we argue that the exten-
sion to general Jordan blocks is achievable and provide a related analysis of
this in the Appendix.

We have mentioned before that perfect decoupling is difficult to achieve
in practice. However, some assumptions on ∆ are required to derive the
analytical results in the sequel.

Assumption 2. F is assumed to be a diagonal dominant matrix [20] and
‖∆‖ < min{‖AK‖, |λmax(AK)|}, where ‖ · ‖ is the induced 2-norm and
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λmax(AK) = max{<e(λk(AK)) : ∀k = 1, . . . n}. Furthermore, the Tay-
lor series expansion of e∆ can be truncated to the first order term, that
is e∆ ≈ I + ∆ +O(∆2).

With these assumptions, we can now state the following theorem.

Theorem 3. The state norm of the closed-loop system (12) with trigger
functions of the form (14) with α < |λmax(AK)| − ‖∆‖, and for all initial
conditions x(0) ∈ Rn and t > 0, fulfills

‖x(t)‖ ≤κ0β0 + e−|λmax(AK)|t
(
k0‖x(0)‖ − κ0β0 − κ1β1

+ ‖∆‖t(k0‖x(0)‖ − κ0 − κ1)
)

+ e−αtκ1β1. (15)

where k0 is a positive constant k0 = ‖V ‖‖V −1‖ being V the matrix of the
eigenvectors of AK, and

β0 = 1 +
‖∆‖

|λmax(AK)|
> 0

β1 = 1 +
‖∆‖

|λmax(AK)| − α
> 0

κ0 = k0
‖BK‖

√
Nc0

|λmax(AK)|
≥ 0

κ1 = k0
‖BK‖

√
Nc1

|λmax(AK)| − α
≥ 0, (16)

with κ0 +κ1 > 0. Furthermore, the closed-loop system does not exhibit Zeno-
behavior.

Proof. The analytical solution of (12) is

x(t) = eFtx(0) +

t∫
0

eF (t−s)BKe(s)ds. (17)

From Assumption 1 the matrix AK is diagonalizable by construction
(since each is AKi). Then it follows that eAK = V eDV −1, where D is the
diagonal matrix that contains the eigenvalues of AK and V is the matrix
with the corresponding eigenvectors as its columns.

Thus, from (10)

eF = eAK+∆ = eAKe∆ = V eDV −1e∆.
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Hence, and from Assumption 2, the norm of the state can be bounded as:

‖x(t)‖ ≤ ‖e(AK+∆)tx(0)‖+

t∫
0

‖e(AK+∆)(t−s)‖‖BKe(s)‖ds

≈ ‖eAKt(I + ∆t)x(0)‖+

t∫
0

‖eAK(t−s)(I + ∆(t− s))‖‖BKe(s)‖ds

≤ ‖eAKt‖‖I + ∆t‖‖x(0)‖+

t∫
0

‖eAK(t−s)‖‖I + ∆(t− s)‖‖BK‖‖e(s)‖ds.

Trigger functions (14) bound the error as ‖ei(t)‖ ≤ c0 + c1e
−αt. Thus

‖x(t)‖ ≤ k0

( t∫
0

e−|λmax(AK)|(t−s)(1 + ‖∆‖(t− s))‖BK‖
√
N(c0 + c1e

−αs)ds

+ ‖x(0)‖e−|λmax(AK)|t(1 + ‖∆‖t)
)

= k0

(
‖x(0)‖e−|λmax(AK)|t(1 + ‖∆‖t)

+ ‖BK‖
√
Nc0

t∫
0

e−|λmax(AK)|(t−s)(1 + ‖∆‖(t− s))ds

+ ‖BK‖
√
Nc1e

−|λmax(AK)|t

t∫
0

e(|λmax(AK)|−α)s(1 + ‖∆‖(t− s))ds
)
.

For the first integral term, we have

t∫
0

e−|λmax(AK)|(t−s)(1 + ‖∆‖(t− s))ds

=
1

|λmax(AK)|

(
1 +

‖∆‖

|λmax(AK)|
− e−|λmax(AK)|t(1 +

‖∆‖

|λmax(AK)|
+ ‖∆‖t

))
.

Analogously, the second integral term

e−|λmax(AK)|t

t∫
0

e(|λmax(AK)|−α)s(1 + ‖∆‖(t− s))ds

=
e−αt

|λmax(AK)|−α

(
1 +

‖∆‖

|λmax(AK)|−α

)
− e−|λmax(AK )|t

|λmax(AK)|−α

(
1 +

‖∆‖

|λmax(AK)|−α
+ ‖∆‖t

)
8



Thus

‖x(t)‖ ≤ k0

[
‖x(0)‖e−|λmax(AK)|t(1 + ‖∆‖t)

+
‖BK‖

√
Nc0

|λmax(AK)|

(
1 +

‖∆‖

|λmax(AK)|
− e−|λmax(AK)|t(1 +

‖∆‖

|λmax(AK)|
+ ‖∆‖t

))
+

‖BK‖
√
Nc1

|λmax(AK)|−α

(
e−αt(1 +

‖∆‖

|λmax(AK)|−α
)− e−|λmax(AK)|t(1 +

‖∆‖

|λmax(AK)|−α
+ ‖∆‖t)

)]

Recalling the definitions of β1, β2, κ0 and κ1 in (16) and reordering terms, it
yields

‖x(t)‖ ≤κ0β0 + e−|λmax(AK)|t
(
k0‖x(0)‖ − κ0β0 − κ1β1

+ ‖∆‖t(k0‖x(0)‖ − κ0 − κ1)
)

+ e−αtκ1β1. (18)

Moreover, the equation above can be upper bounded, by omitting the nega-
tive terms, as

‖x(t)‖ ≤ κ0β0 + e−|λmax(AK)|tk0‖x(0)‖(1 + ‖∆‖t) + e−αtβ1. (19)

We next show that Zeno behavior is excluded. Let’s first assume that
c0, c1 6= 0, and therefore κ0, κ1 6= 0. Let us denote the last event time
occurrence as t∗. Thus, ‖ei(t∗)‖ = 0, and fi(t

∗) = −c0 − c1e
−αt∗ < 0.

Therefore agent i cannot trigger at the same time instant. From (4) it fol-
lows that between two consecutive events we have ėi(t) = −ẋi(t). Further-
more, from definition (11) we have ‖ei(t)‖ ≤ ‖e(t)‖, and from (13) we derive
‖ė(t)‖ ≤ ‖F‖‖x(t)‖+ ‖BK‖‖e(t)‖ ≤ ‖F‖‖x(t)‖+ ‖BK‖

√
N(c0 + c1e

−αt∗).
If the last event occurred at time t∗ > 0

‖ei(t)‖ ≤ ‖e(t)‖ ≤
t∫

t∗

(
‖F‖‖x(s)‖+ ‖BK‖e(s)

)
ds,

and ‖x(t)‖ ≤ ‖x(t∗)‖ holds in (19). Thus, defining the following constants

k1 = k0‖x(0)‖‖F‖

k2 = κ1β1‖F‖+ ‖BK‖
√
Nc1 = ‖BK‖

√
Nc1

(
1+

k0‖F‖β1
|λmax(AK)|−α

)
k3 = κ0β0‖F‖+ ‖BK‖

√
Nc0 = ‖BK‖

√
Nc0

(
1+

k0‖F‖β0
|λmax(AK)|

)
, (20)
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the error can be bounded as

‖ei(t)‖ ≤
t∫

t∗

(
k1e
−|λmax(AK)|t∗(1 + ‖∆‖s) + k2e

−αt∗ + k3

)
ds

= (k1e
−|λmax(AK)|t∗ + k2e

−αt∗ + k3)(t− t∗) +
k1‖∆‖e−|λmax(AK )|t∗

2
(t2 − t∗2)

= (k1e
−|λmax(AK)|t∗(1 + ‖∆‖t∗) + k2e

−αt∗ + k3)τ +
k1‖∆‖e−|λmax(AK )|t∗

2
τ 2

≤ (k1 + k2 + k3)τ +
k1‖∆‖

2
τ 2, (21)

where τ = t−t∗ is the inter-event time. Note that it holds that e−|λmax(AK)|t∗(1
+ ‖∆‖t∗) < 1,∀t∗ > 0.

The next event will not be triggered before ‖ei(t)‖ = c0 + c1e
−αt ≥ c0.

Thus a lower bound on the inter-events time is the solution of

aτ 2 + bτ = c0 (22)

where

a =
k1‖∆‖

2
b = k1 + k2 + k3. (23)

Since a and b are positive constants, only one of the solutions of (22) is
strictly positive and hence feasible, and is given by

τ =
−b+

√
b2 + 4ac0

2a
. (24)

Remark 4. Note that the integrability of e(t) in (17) is justified by the defini-
tion of the event-triggered functions fi(ei(t)), which by continuity guarantee
that ei(t) cannot be updated to zero immediately after it had done so. Thus
there is an arbitrarily small, yet positive lower bound on the interexecution
times. Thus the right hand side of the ODE that described the closed loop
system is piecewise continuous. Note that the specific lower bounds on the
interexecution times is established in the final part of the proof.

We next analyze two particular cases: static trigger functions, i.e., c1 = 0,
and pure exponential trigger functions, i.e., c0 = 0. After that, we particu-
larize the derived expressions to perfect decoupling with ∆ = 0.
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3.1 Static trigger functions

If c1 = 0 in (14), the error is bounded by ‖ei(t)‖ ≤ c0. The analytical
expressions of Theorem 3 can be adapted to this case, and hence, the state
is bounded by

‖x(t)‖ ≤ κ0β0 + e−|λmax(AK)|t
(
k0‖x(0)‖ − κ0β0 + ‖∆‖t(k0‖x(0)‖ − κ0)

)
,

(25)

since κ1 = 0 (see (16)). Also, the lower bound for the inter-event time (24)
is a feasible solution if c1 = 0, since it yields k2 = 0 but k1, k3 > 0 (see (20)).
Thus, a and b in (23) are strictly positive and there is always a positive
solution of τ in (24).

3.2 Pure exponential trigger functions

In the case c0 = 0 the error is bounded by ‖ei(t)‖ ≤ c1e
−αt, and so the

error goes to zero when times goes to infinity. The analysis to derive a lower
bound for the inter-event time is more involved in this case. However, the
state bound (15) can be particularized for pure exponential trigger functions.
The bound is computed as

‖x(t)‖ ≤ e−|λmax(AK)|t
(
k0‖x(0)‖ − κ1β1 + ‖∆‖t(k0‖x(0)‖ − κ1)

)
+ e−αtκ1β1.

(26)

In order to prove that the Zeno behavior is excluded, we consider the bound
on ‖ei(t)‖ defined in (21) before the last inequality, i.e.

‖ei(t)‖ ≤ (k1e
−|λmax(AK)|t∗(1 + ‖∆‖t∗) + k2e

−αt∗)τ +
k1‖∆‖e−|λmax(AK )|t∗

2
τ 2,

where k1, k2 are defined in (20). Note that k3 = 0 since c0 = 0.
The next event is not triggered before ‖ei(t)‖ = c1e

−αt. Then it yields

k1‖∆‖

2c1
e(α−|λmax(AK)|)t∗τ 2 +

(
k1

c1
(1 + ‖∆‖t∗)e(α−|λmax(AK)|)t∗ +

k2

c1

)
τ = e−ατ .

(27)

The right hand side of (27) is always positive. Moreover, the left hand side
is strictly positive as well if α < |λmax(AK)| − ‖∆‖, and it is upper bounded

by the function of τ̄ ∈ R ξ1(τ̄) = k1‖∆‖
2c1

τ̄ 2 +
(
k1
c1

+ k2
c1

)
τ̄ and lower bounded

by the function ξ2(τ̄) = k2/c1τ̄ . The solution τ of (27) can be regarded as

11



τ̄

e
−ατ̄

ξ2(τ̄)
Solution of (28)

ξ1(τ̄)

τ

Figure 1: Graphical solution of (27).

the intersection of two real functions of τ̄ . This solution τ̄ = τ is positive
∀t∗ ≥ 0, and hence the lower bound for the inter-event times.

The existence of the solution τ can also be depicted graphically (see Figure
1). The solution is given by the intersection of the exponential curve and a
parabola of the form ξ(τ̄) = aτ̄ 2 + bτ̄ , whose parameters a > 0 and b > 0
depend on t∗ and ‖∆‖. Moreover, there is a single solution since the vertex
coordinates of the parabola are both negative

(
−b
2a
, −b2

4a

)
.

3.3 Perfect decoupling

Perfect decoupling implies that ∆ij = 0, ∀i, j, i.e., the decoupling gains Lij
compensate the physical coupling between neighbors Hij. In this case, the
analysis is simplified. Specifically, the dynamics of the system are ẋ(t) =
AKx(t) + BKe(t) and the state x(t) can be bounded for trigger functions
(14) at any time t > 0 as

‖x(t)‖ ≤κ0 + e−|λmax(AK)|t
(
k0‖x(0)‖ − κ0 − κ1

)
+ e−αtκ1, (28)

where κ0, κ1 have been defined in (16). Note that β0, β1 are 1.
Also, the lower bound for the inter-event time has a simpler expression

than (24) since the quadratic term is zero. Thus

τ =
c0

k1 + k2 + k3

, (29)
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where the values of k1, k2, k3 are also simplfied:

k1 = k0‖x(0)‖‖F‖ = k0‖x(0)‖‖AK‖

k2 = κ1β1‖F‖+ ‖BK‖
√
Nc1 = ‖BK‖

√
Nc1

(
1+

k0‖AK‖
|λmax(AK)|−α

)
k3 = κ0β0‖F‖+ ‖BK‖

√
Nc0 = ‖BK‖

√
Nc0

(
1+

k0‖AK‖
|λmax(AK)|

)
. (30)

The details of the analysis for the perfect decoupling can also be found in
[9].

4 Model-based control

The event-based strategy analyzed previously is based on a control law which
maintains its value between two consecutive events and is based on the latest
broadcasted state. One alternative to this control law can be achieved by
considering that each agent has knowledge of the dynamics of its neighbor-
hood.

In particular, let us define the control law for each agent based on a model
as

ui(t) = Kiz̃i(t) +
∑
j∈Ni

Lij z̃j(t) (31)

where z̃i now represents the state estimation of xi given by the model (Ãi, B̃i)
of each isolated agent, and let us define ÃK,i = Ãi + B̃iKi. Let us also define
ÃK = diag(ÃK,1, . . . , ÃK,n).

The error ei(t) is redefined as

ei(t) = z̃i(t)− xi(t) (32)

and is reset at events’ occurrence. In particular, z̃i(t) is computed in the
inter-event times as

z̃i(t) = eÃK,i(t−t
i
k)xi(t

i
k), ∀t ∈ [tik, t

i
k+1) (33)

Note that (33) does not include the coupling effect since the decoupling
gains Lij are designed to compensate the model of the interconnections Hij,
meaning that if ∆ij 6= 0 it is because these interconnections are partially
unknown or perfect decoupling may not be possible due to, e.g., the matrix
Bi not having full rank.

Therefore, each agent i has a model of its dynamics and of its neigh-
borhood Ni. Based on this model, it estimates its state denoted as z̃i(t) to
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ttik tik+1

z̃i(t) fi(ei(t
i
k+1)) > 0

x̃i(t)

xi(t
i
k+1)

xi(t
i
k)

Figure 2: Model-based event-triggered control.

compute ui(t) in (31). When this estimation differs from a given quantity to
xi(t), which depends on the trigger function, a new event is generated and
the estimation is reset to the new measured state. For instance, z̃i might
deviate from xi due to model uncertainties on AK,i, disturbances and the
effect of the non-perfect decoupling. Furthermore, the agent i broadcasts
the new measurement through the network to its neighbors that also update
their estimations according to the new value received from agent i.

Figure 2 shows an example of the previous idea. In the previous sections
the control law of each agent i was computed based on the broadcasted
measurements and it was a piecewise constant function, now we compute the
control law in a model-based way between events and the error is reset at
event times as we did before.

Remark 5. Note that z̃i(t) is used instead of xi(t) in the control law (31) in
order to preserve the property that the agent i and all its neighbors have the
same version of ei(t). Alternatively, (12) can be redefined to deal with the
aforementioned approach.

If we consider the trigger function defined in (14) and for the new error
defined in (32), the state will be also bounded by (15). However, the lower
bound for the inter-event time will have a different expression.

Assumption 6. Let ĀK = ÃK −AK be the difference between the model and
the real plant closed loop dynamics. We assume that the values of c0 and c1

14



satisfy the following constraint:
√
N(c0 + c1)

κ0β0 + κ1β1

<
‖F‖ − (‖ĀK‖+ ‖∆‖)

‖ÃK‖
, (34)

where κ0, κ1, β0, β1 have been defined in (16).

Remark 7. Equation (34) is feasable only if the right hand side is strictly pos-
itive, since c0 +c1 > 0. This gives a maximum value of the model uncertainty
for a given bound on the norm of the coupling terms matrix or viceversa.

Theorem 8. If Assumption 6 holds, the lower bound of the broadcasting
period for the system (12) when the control law for each agent is based on
state estimations of the form (33), with triggering functions (14), 0 < α <
|λmax(AK)| − ‖∆‖, is greater than (24).

Proof. Define the overall system state estimation as z̃(t) = (z̃T1 , . . . , z̃
T
N)T .

Let’s prove that the bound for the inter-events time is larger in the model-
based approach. We have

ė(t) = ˙̃z(t)− ẋ(t)

= ÃK z̃(t)− (Fx(t) +BKe(t))

= (ĀK −∆)x(t) + (ÃK −BK)e(t).

Then

‖ė(t)‖ ≤ (‖ĀK‖+ ‖∆‖)‖x(t)‖+ ‖ÃK −BK‖‖e(t)‖
≤ (‖ĀK‖+ ‖∆‖)‖x(t)‖+ ‖ÃK −BK‖

√
N(c0 + c1e

−αt) (35)

Assume that the last event occurred at a time t∗ ≤ t and consider the case
when c0, c1 6= 0. It follows that c0 + c1e

−αt ≤ c0 + c1e
−αt∗ . Moreover, the

state norm can be bounded as in (19), thus, the error

‖ei(t)‖ ≤
t∫

t∗

‖ė(s)‖ds ≤ (‖ĀK‖+ ‖∆‖)k0‖x(0)‖‖∆‖e−|λmax(AK )|t∗

2
(t2 − t∗2)

+
(

(‖ĀK‖+ ‖∆‖)(κ0β0 + k0‖x(0)‖e−|λmax(AK)|t∗ + κ1β1e
−αt∗)

+ ‖ÃK −BK‖
√
N(c0 + c1e

−αt∗)
)

(t− t∗), (36)

that can be rewritten as

‖ei(t)‖ ≤ (k̃1e
−|λmax(AK)|t∗ + k̃2e

−αt∗ + k̃3)(t− t∗) +
k̃1e
−|λmax(AK )|t∗‖∆‖(t2−t∗2)

2
.

(37)
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As in (21), it follows that ‖ei(t)‖ ≤ ãτ 2 + b̃τ , where τ = t− t∗, and

k̃1 = k0‖x(0)‖(‖ĀK‖+ ‖∆‖)
k̃2 = κ1β1(‖ĀK‖+ ‖∆‖) + ‖ÃK −BK‖

√
Nc1

k̃3 = κ0β0(‖ĀK‖+ ‖∆‖) + ‖ÃK −BK‖
√
Nc0

ã =
k̃1‖∆‖

2

b̃ = k̃1 + k̃2 + k̃3. (38)

The next event will not occur before ‖ei(t)‖ = c0 + c1e
−αt ≥ c0. This

condition gives a lower bound for the broadcasting period

τ ′ =
−b̃+

√
b̃2 + 4ãc0

2ã
(39)

that is larger than the lower bound in (24) if ã < a and b̃ < b, which implies
that

‖ĀK‖+ ‖∆‖ < ‖F‖ (40)

(‖ĀK‖+ ‖∆‖)(κ0β0 + κ1β1) + ‖ÃK −BK‖
√
N(c0 + c1)

< ‖F‖(κ0β0 + κ1β1) + ‖BK‖
√
N(c0 + c1), (41)

or equivalently:
√
N(c0 + c1)

κ0β0 + κ1β1

<
‖F‖ − (‖ĀK‖+ ‖∆‖)
‖ÃK −BK‖ − ‖BK‖

. (42)

The denominator on the right hand side can be bounded as:

‖ÃK −BK‖ − ‖BK‖ ≤ ‖ÃK‖+ ‖BK‖ − ‖BK‖ = ‖ÃK‖.

Then if Assumption 6 holds, (42) is fulfilled. Then, the lower bound for the
broadcasting period is larger for the model-based approach.

Remark 9. Assumption 6 is not a strong assumption since when ‖ĀK‖ goes
to zero, ‖ÃK‖ ≈ ‖AK‖, and the right hand side of (34) can be approximated
to one, since also ‖F‖ ≤ ‖AK‖ + ‖∆‖. And for initial conditions satisfying
k0‖x(0)‖ >

√
N(c0 + c1), it holds that

c0 + c1 <
κ0β0 + κ1β1√

N
, (43)

which constraints the feseable values of c0 and c1. These constraints depends
on the systems dynamics and the control design.
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Figure 3: Scheme of the network of the inverted pendulums

5 Simulation results

This section presents some simulation results in order to demonstrate the
effectiveness of the event-based control strategy. The system considered is a
collection of N inverted pendulums of mass m and length l coupled by springs
with rate k as in Figure 3. The problem of coupled oscillators has numerous
applications in fields as medicine, physics or communications [21, 22], and
the inverted pendulum is a well-known control engineering problem. The
inverted pendulums are physically connected by springs and we desire to
design control laws to reach the equilibrium as well as to decouple the system.
The state of a pendulum i is broadcasted to its neighbors in the chain at
discrete times given by the communication strategy.

Each subsystem can be described as follows:

ẋi(t) =

(
0 1

g
l
− aik

ml2
0

)
xi(t) +

(
0
1
ml2

)
ui +

∑
j∈Ni

(
0 0
hijk

ml2
0

)
xj(t)

where xi(t) =
(
xi1(t) xi2(t)

)T
is the state, ai is the number of springs con-

nected to the ith pendulum and hij = 1,∀j ∈ Ni and 0 otherwise.
State-feedback gains and decoupling gains are designed so that the system

is perfectly decoupled, and each decoupled subsystem poles are at -1 and -2.
This yields the following control law:

ui(t) =
(
−3ml2 aik − ml2

4
(8 + 4g

l
)
)
x̃i(t) +

∑
j∈Ni

(
−k 0

)
x̃j(t)

where x̃i(t) =
(
x̃i1(t) x̃i2(t)

)T
. In the following, the system parameters are

set to g = 10,m = 1, l = 2 and k = 5.
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Table 1: Comparison of time-triggered and event-triggered strategies
No. updates {τ ik}min (s) {τ ik}max (s)

Time-triggered (28,56) 0.177 0.3544

Event-triggered 19 0.081 2.478

We next present several simulation results in order to enhance the theoret-
ical results presented previously in the paper. Furthermore, we also compare
some of these results with the ones obtained in [14].

5.1 Perfect decoupling

The output of the system and the sequence of events for N = 4 and ini-

tial conditions x(0) =
(
−0.942 0 1.047 0 0.628 0 −1.413 0

)T
when

the trigger function is defined as in (14) with parameters c0 = 0.02, c1 =
0.5 and α = 0.8 is shown in Figure 4. We consider perfect decoupling, i.e.,
∆ij = 0, ∀i, j and control law of the form (3). The convergence of the sys-
tem to a small region (c0 = 0.02) around equilibrium point is guaranteed
due to the time-dependency in the trigger functions. The event generation
is shown in Figure 4.b. The system converges to zero with few events. Note
that the agent that generates the highest number of events is agent 2 (in
red) and this value is 19 over a period of 10 seconds. Table 1 compares the
proposed event-triggered approach to periodic control. The bandwidth of
the closed loop subsystem is 0.8864 rad/s and the sampling period should be
between (0.1772, 0.3544) s, according to [23], i.e., (28, 56) tranmissions in
a 10 s time, whereas the value for the minimum and maximum inter-event
time are 0.081 and 2.478. Furthermore, this comparison is even unfair with
the event-based approach, since once the system is around the equilibrium
point, the broadcasting periods take values around 1-2 s.

Observe also that the control signals are piecewise constant (Figure 4c).
They are updated if an event is triggered by the agent or its neighbors.

5.2 Effect of the coupling terms

Assume now a chain of inverted pendulums of length N = 200 and that
the matching condition does not hold, that is the terms ∆ij 6= 0 for j ∈
Ni. Specifically, ∆ij ∈ [−0.4, 0.4] are generated, and these terms act as a
disturbance to the system.

Figure 5 shows the output, the events generated and the control signal
for the nodes 2, 3, 4, 75 and 180, respectively. A disturbance is induced at
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Figure 4: Simulation result with trigger functions (14), c0 = 0.02, c1 =
0.5 and α = 0.7

time t = 7s at the pendulum 3 (blue line). Observe how the disturbance also
affects the neighbors of the third node, 2 and 4 (red lines). However, there
is no effect over nodes which are far away from the third one (green lines).

We can conclude that the event-based communication respects somehow
the idea of neighborhood in a large scale system. Specifically, in a inter-
connected linear system, even if the system is not perfectly decoupled, the
generation of events at a node takes place when something occurs (for in-
stance, a disturbance), and an area around this node starts communicating
in order to reject the disturbance, but the rest of the system is not affected.

5.3 Model based control

In Section 4 a model based approach was presented as a means of improving
the event-based control of Section 3. Figure 6 compares the output of agent 1
when a simulation under the conditions described in Section 5.1 is performed.
Observe that, for this case, the model-based approach reduces the number
of events in more than a third (from 23 (in red) to 9 (in blue)). Note that
the control law is not anymore a constant piecewise function.

Table 2 extends this study for a larger number of agents. Several sim-
ulations were performed for different initial conditions for each value of N .
Mininum and mean values of the inter-event times {τ ik} were calculated for
the set of the simulations with the same number of agents. We see that the
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Table 2: Inter-event times for different N
Number of agents 10 50 100 150 200

Trigger condition {τ ik}min (s) 0.053 0.031 0.015 0.019 0.009
(14), Section 3 {τ ik}mean (s) 0.565 0.565 0.567 0.572 0.568

Trigger condition {τ ik}min (s) 0.6816 0.3025 0.219 0.0963 0.132
(14), Section 4 {τ ik}mean (s) 1.430 1.500 1.477 1.668 1.581

Trigger condition {τ ik}mean (s) 0.1149 0.1175 0.1152 0.1180 0.1177
of [14]

model-based approach gives around three times larger broadcasting periods,
remaining almost constant when the number of agents increases. Thus, the
amount of communication for the overall network grows linearly with N .

Moreover, if we compare these results to [14], we see that the proposed
scheme can provide around five times larger broadcast periods. For example,
for a number of pendulums of N = 100, trigger functions of the form (14) give
mean broadcasting periods of 0.567 and 1.477 for the approaches described in
sections 3 and 4, respectively, while the trigger functions in [14] give a mean
value of 0.1152. Though the scheme in [14] ensures asymptotic stability, we
guarantee the convergence to an arbitrary small region around the origin
with c0 6= 0. Alternatively, one can choose c0 = 0 to get rid of this drawback.

6 Conclusions

We presented a novel distributed event-based control strategy for linear in-
terconnected subsystems. The events are generated by the agents based
on local information only, broadcasting their state over the network. The
proposed time-dependent trigger functions preserve the desired convergence
properties and guarantee the existence of a strictly positive lower bound for
the broadcast period, excluding the Zeno behavior.

A model-based approach is presented as a means of reducing the number
of events. We prove that under certain conditions on the model uncertainty,
the model-based approach gives larger inter-event times. The theoretical
results and the contribution of the current paper with respect to previous
work are illustrated through computer simulations.

The use of distributed algorithms [24, 25] in an event-based fashion to
estimate global information of the system, in particular, λmax(AK) and ‖∆‖,
in order to establish bounds on the trigger function parameters, for instance
α, are possible directions of future research.
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Appendix

Relaxing Assumption 1

If Assumption 1 holds, then

‖eAKt‖ = ‖V eDtV −1‖ ≤ ‖V ‖e−|λmax(AK)|t‖V −1‖ (44)

where λmax(AK) is the larger real part of the eigenvalues of AK . Based on
(44), the results of Theorem 3 are derived. We next bound ‖eAKt‖ when AK
is no longer diagonalizable and is decomposed into a general Jordan form.

Denote by J the Jordan matrix so that AK = V JV −1. The matrix J
has n Jordan blocks Ji, one for each eigenvalue λi. The dimension of each Ji
depends on the algebraic multiplicity of the associated eigenvalue λi, that is
denoted by qi. Thus, J = ⊕ni=1Ji(λi) and hence, eJ = ⊕ni=1e

Ji(λi).
From the properties of the block matrices it is strightforward that

‖eJt‖ ≤ maxni=1(‖eJi(λi)t‖). (45)

We next bound ‖eJi(λi)t‖. Note that if Jordan blocks are diagonal then
‖eJi(λi)t‖ ≤ eλit.

A Jordan block Ji(λi) can be decomposed as

Ji(λi) = λiIqi×qi +Ni, (46)

where Ni is a nilpotent matrix of the form

Ni =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
0 0 . . . 0 1
0 . . . . . . . . . 0

 .

This special nilpotent matrix has the property that Nk
i = 0,∀k >= qi, being

qi the algebraic multiplicity of λi and so, the dimension of Ni. Thus, eNi =∑qi−1
k=0

Nk
i

k!
.

Note that in case of complex eigenvalues the term λiIqi×qi in (46) is re-
placed by CiIqi×qi , where Ci are block matrix of the form

Ci =

(
ai bi
−bi ai

)
,

where λi = ai + jbi. Since AK is Hurwitz, ai < 0.
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Thus, if follows that

‖eJi(λi)t‖ = ‖eCiIqi×qi t
qi−1∑
k=0

Nk
i t
k

k!
‖ ≤ ‖eCiIqi×qi t‖‖

qi−1∑
k=0

Nk
i t
k

k!
‖,

and since ‖Ni‖ = 1, it yields

‖eJi(λi)t‖ ≤ e−|ai|t
qi−1∑
k=0

tk

k!
.

Thus, if we denote by λmax the real part of the eigenvalue i for which its
Jordan form meets (45), thus

‖eAKt‖ ≤ ‖V ‖‖V −1‖e−|λmax|t
qmax−1∑
k=0

tk

k!
, (47)

where qmax is the algebraic multiplicity of the cited eigenvalue.
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