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Abstract— This paper investigates a multi-agent formation
control problem with event-triggered control updates and addi-
tive disturbances. The agents communicate only by exchanging
information in a cloud repository. The communication with
the cloud is considered a shared and limited resource, and
therefore it is used intermittently and asynchronously by the
agents. The proposed approach takes advantage of having
a shared asynchronous cloud support while guaranteeing a
reduced number of communication. More in detail, each agent
schedules its own sequence of cloud accesses in order to achieve
a coordinated network goal. A control law is given with a
criterion for scheduling the control updates recursively. The
closed loop scheme is proven to be effective in achieving the
control objective and a numerical simulation corroborates the
theoretical results.

I. INTRODUCTION

The study of networked control systems (NCS) is moti-
vated by the fact that, nowadays, heterogeneous and geo-
graphically distributed devices can be connected with cheap
and reliable wireless technologies. Specifically, consensus
algorithms have been investigated [1], [2] and tailored for
platooning and formation control [3], [4]. On the other hand,
several recent papers consider the possibility of distributed
wireless sensors and actuators in NCS, devoting the research
effort in coordinating the data packets and guaranteeing
desired performances [5], [6]. Motivated by the need of
saving hardware and software resources and reducing the
transmitted data, event-triggered and self-triggered control
strategies have been introduced [7]–[9], and later extended
to multi-agent coordination [10]–[12]. These strategies do not
require a fixed sampling period for the feedback loop, but
the control input is updated only when a specific condition
related to the stability or to some control performance is
violated.

In the current paper a novel event-scheduled cloud access
approach is introduced to solve the problem of formation
control for a fleet of systems modeled with simple integrator
dynamics. We consider a setup where each agent processes
information locally. However, all the agents use the same
communication channel and database hosted in the cloud,
which are both shared resources. The cloud keeps a reduced
centralized amount of information and can be accessed by
the agents in an asynchronous way under a publish–subscribe
paradigm [13], [14]. Basically, the agents can intermittently
read/write information on the cloud in an asynchronous way,
while being in an idle mode (no communication and no
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computing) between any two consecutive accesses. Such
control infrastructure appears particularly convenient when
communication constraints severely limit the possibility of
a direct exchange of information among agents. The use of
shared resources hosted in the cloud is widely studied in
computer science, where problems such as cloud access man-
agement, resource allocations control and content deliver are
studied [15], [16], while recently the scheduling of a common
computational resource for control system architectures has
also been considered [17], [18].

As motivating example, we consider the problem of
waypoint generation for control formation of a fleet of
autonomous underwater vehicles (AUVs) [19]–[21]. For this
kind of agents the communication problems are indeed
particularly severe. Specifically, underwater communication
is achieved by means of expensive and power hungry
acoustic modems and it is considerably limited both in
range and bandwidth [19]. Furthermore, the GPS signal is
interdicted when the vehicle is underwater and accurate
inertial platforms are expensive. Acoustic positioning by
means of baselines is also difficult to be adopted in wide
open sea scenarios. For this reason, in low cost applications
the AUVs are supposed to now and then surface to get
their exact feedback position by GPS in order to compensate
the effect of ocean currents and external disturbances. This
kind of scenario is considered in [22], [23] where, taking
advantage of periodic surfacing, wireless communication
is used. However, the drawback is that all AUVs have to
surface at the same instant in order to communicate with
a leader and receive the next waypoint (in terms of time
and position). Furthermore, the marine current disturbance
is supposed to be the same for all the agents, thus resulting
in conservative results when agents are far from each other,
possibly experiencing different sea conditions.

The main contribution if this paper is to introduce an
asynchronous cloud access for the control system and we
exploit a shared database to coordinate a formation of AUVs
on the horizontal plane. Specifically, each vehicle surfaces
asynchronously with respect to the others, gets its current
GPS position and a forecast on the maritime conditions re-
lated to its region. Using this information, the AUV computes
its new control input and its next surfacing instant. Then,
it uploads this new information on the cloud and starts a
new underwater navigation segment without being able to
communicate or to get GPS until its next surfacing. Note that,
between any two consecutive surfacing intstants, the others
could possibly surface an arbitrary number of times, thus
changing their control inputs without the AUVs underwater
being able to detect such change. However, despite the pres-



ence of asynchronous and outdated information, we prove
that adopting a suitable scheduling rule the fleet converges
to the desired formation keeping a residual error within a
given bound.

The rest of this paper is organized as follows. In Section II
some notations and background concepts are introduced.
In Section III the mathematical model of the multi-agent
system is presented, the control objective is defined and
the proposed control algorithm is outlined. In Section IV
sufficient conditions for achieving the control objective are
identified and in Section V it is shown how these con-
ditions are attained by scheduling the control updates in
an opportunistc way. Section VI shows the application of
the proposed algorithm to a simulated vehicle formation
problem. Section VII concludes the paper with some possible
future developments.

II. PRELIMINARIES

A. Notation
For any n ∈N, 1n denotes the vector in Rn whose entries

are all equal to one, while In denotes the identity matrix of
order n. Operator ||·|| used on a vector denotes the Euclidean
norm, while if used on a matrix denotes the corresponding
induced norm. Operator ⊗ denotes the Kronecker product.
For the definition and properties of this operator see for
example [24].

B. Graph Theory
For the purposes of this paper a graph is a tuple G =

(V ,E ) made up of a set V = {1, . . . ,N} of nodes and a set
E of edges connecting distinct nodes. The edge connecting
nodes i and j is denoted as (i, j) or ( j, i) indifferently. For
each node i ∈ V , the set Vi = { j ∈ V : (i, j) ∈ E } of the
nodes that are connected to node i by an edge is called
the neighborhood of node i and the nodes j ∈ Vi are called
neighbors of node i. The number of neighbors di of a node i
is called the degree of that node. A path between nodes i and
j is defined as a sequence i,k1, . . . ,km, j of nodes such that
any two consecutive nodes in the sequence are connected by
an edge. A graph is said to be connected if all possible pairs
of nodes are connected by a path. The matrix A=

{
ai j
}

such
that

ai j =

{
1 if (i, j) ∈ E

0 otherwise

is called adjacency matrix of the graph, the matrix D =
diag{d1, . . . ,dN} is called degree matrix of the graph and
finally the matrix L = D−A is called Laplacian matrix of
the graph. The Laplacian matrix is symmetric and positive
semidefinite and 1N is an eigenvector with zero eigenvalue.
Morevoer, the zero eigenvalue has multiplicity one if and
only if the graph is connected [1]. Therefore in a connected
graph the eigenvalues of the Laplacian can be denoted as
0 = λ1 < λ2 ≤ . . .≤ λN . A graph is typically used to describe
networked multi-agent systems: each node in the graph
represents one agent in the network and an edge between
nodes i and j represents a possible interaction between the
corresponding agents.

III. SETUP DESCRIPTION

Consider a set of N dynamical agents described by

ẋi(t) = ui(t)+ωi(t), i = 1, . . . ,N, (1)

with t ≥ 0 and xi(t),ui(t),ωi(t) ∈ Rn. Here xi(t) is the state
of agent i, ui(t) is the control input applied to it and ωi(t)
is a disturbance acting on it. Denoting

x(t) :=[x1(t)>, . . . ,xN(t)>]>,

u(t) :=[u1(t)>, . . . ,uN(t)>]>,

ω(t) :=[ω1(t)>, . . . ,ωN(t)>]>,

we can rewrite (1) as

ẋ(t) = u(t)+ω(t). (2)

We consider the rendezvous problem, i.e., the problem of
driving the states of the agents close to each other in the
state space. More precisely, let x̄(t) be the average of the
agents’ states,

x̄(t) :=
1
N

N

∑
i=1

xi(t),

let ei(t) be the mismatch between the state of agent i and
the average state,

ei(t) := x̄(t)− xi(t), i = 1, . . . ,N,

and collect the signals ei(t) into the stack vector

e(t) := [e1(t)>, . . . ,eN(t)>]>.

Definition 1: We say that the multi-agent system (1)
achieves practical consensus if

limsup
t→+∞

||e(t)|| ≤ ε, (3)

where ε > 0 is a given positive constant.
We assume that the agents cannot directly communicate

with each other, but have access to a shared database and a
measurement system hosted on a cloud. The communication
channel between the agents and the cloud is considered
a shared resource with limited throughput capacity, and
therefore it must be used at discrete time instants and
asynchronously by different agents. We consider piecewise
constant control signals with event-triggered updates. The
time instants when agent i updates its control input are
denoted as ti,k, with k ∈ N and we set ti,0 = 0. Namely, we
have

ui(t) = ui(ti,k) for t ∈ [ti,k, ti,k+1).

For convenience, we introduce the functions l j(t) corre-
sponding to the latest update of u j(·) before time t [11],

l j(t) = max
k∈N

{
t j,k : t j,k ≤ t

}
Note in particular that li(ti,k) = k. It is assumed that when
agent i connects to the cloud, say at time t = ti,k = ti,li(t),
it receives a measurement of its current state x(ti,k), some
information about the other agents stored in the database,
and some estimate of the disturbances to which it is subject.



i 1 2 . . . N

ti,li(t) t1,l1(t) t2,l2(t) . . . tN,lN(t)
xi(ti,li(t)) x1(t1,l1(t)) x2(t2,l2(t)) . . . xN(tN,lN(t))
ui(ti,li(t)) u1(t1,l1(t)) u2(t2,l2(t)) . . . uN(tN,lN(t))

γi,li(t) γ1,l1(t) γ2,l2(t) . . . γN,lN(t)
ρi,li(t) ρ1,l1(t) ρ2,l2(t) . . . ρN,lN(t)

ti,li(t)+1 t1,l1(t)+1 t2,l2(t)+1 . . . tN,lN(t)+1

TABLE I
DATA STORED IN THE SHARED DATABASE AT A GENERIC TIME t .

The estimate of the disturbances is given in the form of two
coefficients γi,k and ρi,k such that

||ωi(t)|| ≤ ω̂i,k(t) :=

{
γi,k t ∈ [ti,k, ti,k+1),

γi,k +ρi,k(t− ti,k+1) t ≥ ti,k+1.
(4)

Remark 1: Disturbance estimates (4) are different for dif-
ferent agents and for different update times of the same
agent, taking into account that disturbances can vary both
in time and space within the operating region. The case of a
known global upper bound on the disturbances can still be
derived as a particular case, by setting γi,k = γ and ρi,k = 0
for all i = 1, . . . ,N and all k ∈ N.

This particular model of disturbance estimation is inspired
by our motivating example, described at the end of this
section. Agent i uses all such information to compute its
new control input ui(ti,k), and the time ti,k+1 of the next
update. Before closing the connection to the cloud, agent i
uploads the values of ti,k, x(ti,k), u(ti,k), γi,k, ρi,k, and ti,k+1 on
the shared database, so that they can be used later by other
agents. Such values may replace the corresponding old ones
uploaded by agent i at the time of the previous connection,
so that the dimension of the database does not increase over
time. Table I shows the data stored in the shared database at
a generic time t. The control signals are obtained as linear
diffusive feedback from other agents in the network. The
topology of the interactions is described by a graph G where
each node represents an agent and the edge (i, j) represents
a feedback interaction between agents i and j. Namely, we
set

ui(t) = c
N

∑
j=1

ai j
(
x̂ j(ti,k)− xi(ti,k)

)
, t ∈ [ti,k, ti,k+1), (5)

where A =
{

ai j
}

is the adjacency matrix of G , c is a positive
scalar gain and x̂ j(ti,k) is an estimate of the state of agent
j available at time ti,k. The estimate x̂ j(ti,k) are obtained by
using the data available in the cloud at time ti,k. Namely,
(1) is considered for agent j under null disturbances, and it
is integrated in the interval [t j,l j(ti,k), t), with t ≤ t j,l j(ti,k)+1,
yielding

x̂ j(t) = x j(t j,l j(t))+u j(t j,l j(t))(t− t j,l j(t)). (6)

Remark 2: The control input ui(ti,k) can be computed by
agent i at time i by using only information downloaded from
the cloud at time ti,k.

For the purposes of the forthcoming analysis, consider also
the following signals,

zi(t) :=
N

∑
j=1

ai j(x j(t)− xi(t)), (7)

and the mismatches ũi(t) between a control signal ui(t) and
the corresponding zi(t),

ũi(t) := ui(t)− czi(t). (8)

The setup proposed above is suitable to describe a forma-
tion control problem for a network of autonomous vehicles
under strict communication constraints. The motivating ex-
ample of the paper is the problem of a waypoint generation
algorithm for a two-dimensional formation of AUVs. Each
agent represents a vehicle, and the state of agent i is
xi(t) = pi(t)−bi ∈R2, where pi(t) is the horizontal waypoint
trajectory of vehicle i, i.e. we do not care about the vertical
coordinate, and bi is a constant offset term with respect to the
average point of the fleet, so it describes the position assigned
to vehicle i within the formation. Since radio communication
is interdicted underwater (no GPS and no relative information
exchange can occur), and since we have assumed that the
AUVs are not equipped with expensive sonar modems, the
vehicles are completely isolated during the navigation, but
that they can surface at discrete time instants to exchange
information with a remote repository hosted on a cloud. The
disturbances included in the model account for the marine
currents influencing the motion of the vehicles. The position
measurements may be obtained by GPS and the forecasts (4)
on the marine currents may be computed from a MAFOR
bulletin obtained from a wireless weather station. In fact,
forecasts become more conservative for more distant times
in the future, a characteristic which is embedded into model
(4).

The proposed control algorithm is summarized below. The
algorithm is initialized by setting, for all i ∈ V , ti,0 = 0,
x̂i(0) = xi(0) and

ui(0) = c
N

∑
j=1

ai j (x j(0)− xi(0)) .

Each agent i ∈ V at each update time ti,k performs the
following operations.

1. Agent i connects to the cloud at time t = ti,k, as
scheduled at time ti,k−1.

2. Agent i receives the measurement of its current state
xi(ti,k) and uploads it on the shared database.

3. From the database, agent i downloads t j,l j(ti,k),
x j(t j,l j(ti,k)), u j(t j,l j(ti,k)), t j,l j(ti,k)+1, γ j,l j(ti,k) and ρ j,l j(ti,k)
for each j ∈ Vi.

4. Using xi(t), t j,l j(ti,k), x j(t j,l j(ti,k)) and u j(t j,l j(ti,k)) for
j ∈ Vi, agent i computes its new control input ui(ti,k)
according to (5).



5. Agent i uploads its new control input ui(ti,k) on the
cloud.

6. Agent i computes the parameters γi,k,ρi,k by elabo-
rating available information on the disturbances, and
uploads them on the cloud.

7. Using γi,k, t j,l j(ti,k), x j(t j,l j(ti,k)), u j(t j,l j(ti,k)), t j,l j(ti,k)+1,
γ j,l j(ti,k) and ρ j,l j(ti,k) for j ∈ V , agent i schedules the
time ti,k+1 of its next update and uploads it on the
cloud. An appropriate scheduling rule will be given
later in the paper.

8. Agent i disconnects from the cloud and will be unable
to communicate until its next update at time ti,k+1.

When the particular problem of AUVs coordination is con-
sidered, ti,k is the k-th surfacing instant for the i-th vehicle,
and step 8 corresponds to the underwater navigation segment
between the surfacing times ti,k and ti,k+1.

IV. PRACTICAL CONSENSUS

In this section our bounded convergence result is derived.
Later on, this result will be related to the scheduling of the
control updates. The following assumptions are needed.

Assumption 1: The graph G that describes the feedback
interactions is connected, and its Laplacian has eigenvalues
0 = λ1 < λ2 ≤ . . .≤ λN .

Assumption 2: The disturbances ωi(t) acting on each
agent i = 1, . . . ,N are uniformly bounded by ||ωi(t)|| ≤Ω.

Remark 3: Assumption 2 is not related to the estimation
model (4). The upper bound Ω is not used in the dis-
turbance estimation nor in scheduling and computing the
control updates, and it is only introduced to characterize the
convergence radius ε in (3).

Assumption 3: There exists a threshold function

σ(t) = σ0 +σ1e−λσ t ,

with positive constants σ0, σ1 and λσ such that at any time
instant t ≥ 0 it holds that

||ũi(t)|| ≤ cσ(t). (9)

Remark 4: Assumption 3 can be fulfilled by scheduling
the control updates opportunely. This is shown in Section V.

Theorem 1: Consider the multi-agent system (1) under
controls (5). Suppose Assumptions 1 to 3 hold. Then prac-
tical consensus is achieved with

ε =
λN

λ 2
2

(√
Nσ0 +

Ω

c

)
(10)

Proof: Consider the following Lyapunov candidate
function for the error stack vector e(t)1,

V (t) =
√

e(t)>(L2⊗ In)e(t), (11)

where L is the Laplacian of the graph G that describes the
agents’ interactions. Denoting

z(t) = [z1(t)>, . . . ,zN(t)>]>

1When a planar formation problem is considered, n = 2

we have

z(t) =−(L⊗ In)x(t) = (L⊗ In)e(t). (12)

Since L is symmetric we can write

e(t)>(L2⊗ In)e(t) =e(t)>(L⊗ In)
2e(t)

=((L⊗ In)e(t))>((L⊗ In)e(t))

=z(t)>z(t) = ||z(t)||2 .

Hence, (11) can be rewritten as

V (t) = ||z(t)|| .

Consider now the dynamics of this candidate function along
the system trajectories. Using (2) and (12) we can write

ż(t) =−(L⊗ In)ẋ(t) =−(L⊗ In)(u(t)+ω(t)). (13)

Now denote

ũ(t) = [ũ1(t)>, . . . , ũN(t)>]>,

so that we have

u(t) = ũ(t)+ cz(t),

which substituted into (13) yields

ż(t) =−(L⊗ In)(ũ(t)+ cz(t)+ω(t)).

Consequently, we have

V̇ (t) =
d
dt
||z(t)||= z(t)>ż(t)

||z(t)||

=− z(t)>(L⊗ In)(ũ(t)+ cz(t)+ω(t))
||z(t)||

(14)

By the properties of the Kronecker product and the Euclidean
norm we have

−z(t)>(L⊗ In)z(t)≤−λ2 ||z(t)||2

−z(t)>(L⊗ In)ũ(t)≤ ||z(t)||λN ||ũ(t)||
−z(t)>(L⊗ In)ω(t)≤ ||z(t)||λN ||ω(t)||

Substituting these inequalities into (14) yields

V̇ (t)≤−cλ2V (t)+λN ||ũ(t)||+λN ||ω(t)|| . (15)

By Assumption 3 we have

||ũ(t)|| ≤ c
√

Nσ(t),

which substituted into (15) yields

V̇ (t)≤−cλ2V (t)+ cλN
√

Nσ(t)+λN ||ω(t)|| . (16)

Accounting for Assumptions 1 and 2, (16) implies that

limsup
t→∞

V (t)≤ λN

λ2

(√
Nσ0 +

Ω

c

)
(17)

Now observe that, from the Rayleigh-Ritz theorem [24], we
have

V (t) = ||(L⊗ In)e(t)|| ≥ λ2 ||e(t)|| ,



or equivalently

||e(t)|| ≤ V (t)
λ2

. (18)

Therefore, using (17) into (18), and taking the limit for t→
+∞, we have

limsup
t→+∞

||e(t)|| ≤λN

λ 2
2

limsup
t→+∞

(√
Nσ(t)+

||ω(t)||
c

)
≤λN

λ 2
2

(√
Nσ0 +

Ω

c

)
.

Remark 5: The convergence radius (10) can be arbitrarily
reduced by increasing the control gain c, reducing the thresh-
old σ0 or considering a better connected network, which
corresponds to a smaller ratio λN/λ 2

2 .

V. SCHEDULING CONTROL UPDATES

In this section we present our main result. Specifically,
we give a criterion for recursive scheduling of the control
updates ti,k such that Assumption 3 for Theorem 1 holds,
and so practical consensus is achieved. Denote

ẑi(t) :=
N

∑
j=1

ai j(x̂ j(t)− x̂i(t)), (19)

ẑ(t) :=[ẑ1(t)>, . . . , ẑN(t)>]>,

α :=qσ0, (20)

β (t) :=(1−q)σ0 +σ1e−λσ t , (21)

where 0 < q < 1. Let us introduce the following functions:

Ω̂i,k(t) :=
∫ t

ti,k
ω̂i,k(τ)dτ

=

γi,k(t− ti,k) t ∈ [ti,k, ti,k+1),

γi,k(t− ti,k)+
1
2

ρi,k(t− ti,k+1)
2 t ≥ ti,k+1,

Bi,k(t) :=

√√√√ N

∑
j=1

ω̂ j,l j(ti,k)(t)
2,

Ri, j,k(t) :=max

{∣∣∣∣u(ti,k)∣∣∣∣
c

+
√

Nσ(ti,k),

λN

λ2

(√
Nσ(t j,l j(ti,k)+1)+

Bi,k(t)
c

)}
,

Si,k(t) :=
∣∣∣∣diui(ti,k)(t− ti,k)

−
N

∑
j:t<t j,l j(ti,k)+1

u j(t j,l j(ti,k))(t− ti,k)

−
N

∑
j: t≥t j,l j(ti,k)+1

u j(t j,l j(ti,k))
(

t j,l j(ti,k)+1− ti,k
)∣∣∣∣∣∣
∣∣∣∣∣∣

+ c
N

∑
j: t≥t j,l j(ti,k)+1

∫ t

t j,l j(ti,k)+1

Ri, j,k(τ)+σ(τ)dτ,

where di is the degree of node i in the graph G . Now recalling
(20) and (21), consider the following scalars:

Ti, j,k = inf
{

τ>ti,k : Ω̂ j,l j(ti,k)(τ)≥
α

2dmax

}
,

T ′i,k = inf
{

τ>ti,k : Si,k(τ)≥ β (τ)
}
,

where we denoted d := max{d1, . . . ,dN}. With this notation,
the control updates are recursively scheduled as

ti,k+1 = min
j∈Vi∪{i}

{
Ti, j,k,T ′i,k

}
. (22)

The scheduling rule (22) introduces a degree of freedom in
the choice of the next connection ti,k+1 to the cloud.

Remark 6: The time instant ti,k+1 can be computed by
agent i at time ti,k by only using information available on
the cloud at time ti,k. In particular, the values ui(ti,k) and
u j(t j,l j(ti,k)) are directly available, cfr. Table I. Together with
Remark 2, this implies that no centralized computation is
required to implement the proposed control algorithm. The
cloud is only used as a data repository and it does not need
to process information. All the necessary computing can be
done by the agents in a decentralized way accessing the cloud
asynchronously.

Remark 7: Note that Ω̂i,k(ti,k) = 0 and Si,k(ti,k) = 0 for
any k ∈N and for any i ∈ V . Morevoer, Ω̂(t) and Si,k(t) are
continuous in t with upper-bounded slope. Since α/dmax is
a positive constant and β (τ) is lower-bounded by a positive
constant, this implies that times Ti, j,k and T ′i,k cannot be
infinitely close to ti,k. Consequently the inter-update times
ti,k+1− ti,k are lower-bounded by some positive constant and
the updates do not present accumulation points.

Theorem 2: Consider the multi-agent system (1) under
controls (5). Suppose Assumptions 1 and 2 hold and let the
control updates ti,k be scheduled according to (22). Then
practical consensus is achieved with ε as in (10).

Proof: We are going to prove that if the control updates
are scheduled according to (22), then (9) holds for all the
agents i ∈ V and at all the time instants t ≥ 0. Then we will
obtain the thesis from Theorem 1.

Since ti,0 = 0 for all i ∈ V , we have ũi(0) = 0 < σ(0),
and therefore at time zero (9) holds for all the agents. Now
suppose by contradiction that at a finite time t some agent i
attains ||ũi(t)|| > cσ(t) for the first time, while

∣∣∣∣ũ j(τ)
∣∣∣∣ ≤

cσ(τ) for all τ ∈ [0, t) and all j ∈ V . Denote also k = li(t),
i.e., let ti,k be the latest update for agent i before t. Adding
and subtracting cẑi(t) on the right-hand side of (8) we obtain

ũi(t) = c
(
ẑi(ti,k)− ẑi(t)+ ẑi(t)− zi(t)

)
.

Taking the norm of both sides and applying the triangular
inequality yields

||ũi(t)|| ≤ c
∣∣∣∣ẑi(ti,k)− ẑi(t)

∣∣∣∣+ c ||ẑi(t)− zi(t)|| . (23)

By the contradiciton hypothesis we have ||ũi(t)|| > cσ(t),
therefore (23) implies

σ(t)<
∣∣∣∣ẑi(ti,k)− ẑi(t)

∣∣∣∣+ ||ẑi(t)− zi(t)|| . (24)



First consider the term ||ẑi(t)− zi(t)||. We have

ẑi(t)− zi(t) =
N

∑
j=1

ai j (x̂ j(t)− x̂i(t)−x j(t)+xi(t)) ,

and consequently

||ẑi(t)− zi(t)|| ≤ di ||x̂i(t)− xi(t)||+ ∑
j∈Vi

∣∣∣∣x̂ j(t)− x j(t)
∣∣∣∣ .
(25)

Consider now the terms
∣∣∣∣x̂ j(t)− x j(t)

∣∣∣∣. Integrating (1) in
[t j,l j(ti,k), t), with t < t j,l j(ti,k)+1, we have

x j(t) =x j(t j,l j(ti,k))

+u j(t j,l j(ti,k))(t− t j,l j(ti,k))+
∫ t

t j,l j(ti,k)

ω j(τ)dτ. (26)

On the other hand, x̂ j(t) can be computed as in (6). There-
fore, using (6) and (26), we have∣∣∣∣x̂ j(t)− x j(t)

∣∣∣∣≤ ∣∣∣∣∣
∣∣∣∣∣
∫ t

t j,l j(ti,k)

ω j(τ)dτ

∣∣∣∣∣
∣∣∣∣∣≤

∫ t

t j,l j(ti,k)

∣∣∣∣ω j(τ)
∣∣∣∣dτ,

which by (4) also implies∣∣∣∣x̂ j(t)− x j(t)
∣∣∣∣≤ Ω̂ j,l j(ti,k)(t).

The same reasoning can be carried out for the term
||x̂i(t)− xi(t)||, yielding

||x̂i(t)− xi(t)|| ≤ Ω̂i,k(t).

Substituting the two previous inequalities into (25) yields

||ẑi(t)− zi(t)|| ≤ diΩ̂i,k(t)+ ∑
j∈Vi

Ω̂ j,l j(ti,k)(t).

Since (22) is applied, we have Ω̂i,k(t) ≤ α

2dmax
, and conse-

quently

||ẑi(t)− zi(t)|| ≤ di
α

2dmax
+di

α

2dmax
≤ α. (27)

Consider now the term
∣∣∣∣ẑ(ti,k)− ẑi(t)

∣∣∣∣ in (23). Recalling
(7) and noting that x̂i(ti,k) = xi(ti,k), because at time ti,k
vehicle i receives the exact measurement of its state, we have

ẑi(ti,k)− ẑi(t) =
N

∑
j=1

ai j
(
x̂ j(ti,k)− xi(ti,k)− x̂ j(t)+ x̂i(t)

)
.

(28)
Focusing on the term x̂i(t)−xi(ti,k), by (6) applied for j = i,
we have

x̂i(t)− xi(ti,k) = ui(ti,k)(t− ti,k). (29)

Similar reasoning can be applied to the terms x̂ j(ti,k)− x̂ j(t).
However, since the control updates are asynchronous, u j(τ)
may be updated one or multiple times during the time interval
[ti,k, ti,k+1). Namely, in the time interval [ti,k, t j,l j(ti,k)+1), u j
has value u j(t j,l j(ti,k)), which is available in the cloud at time
ti,k, but the possible future values assumed by u j(τ) for τ ≥
t j,l j(ti,k)+1 are unknown at time ti,k. Hence we can write

x̂ j(t)− x̂ j(ti,k) =
∫ t

ti,k
u j(τ)dτ

=



u j(t j,l j(ti,k))(t− ti,k) t ≤ t j,l j(ti,k)+1,

u j(t j,l j(ti,k))

· (t j,l j(ti,k)+1− ti,k)

+
∫ t

t j,l j(ti,k)+1

u j(τ)dτ

t > t j,l j(ti,k)+1.

(30)

Substituting (29) and (30) into (28), taking norms of both
sides, and applying the triangular inequality yields∣∣∣∣ẑi(ti,k) −ẑi(t)|| ≤

∣∣∣∣diui(ti,k)(t− ti,k)

−
N

∑
j:t<t j,l j(ti,k)+1

u(t j,l j(ti,k))(t− ti,k)

−
N

∑
j:t≥t j,l j(ti,k)+1

u(t j,l j(ti,k))
(

t j,l j(ti,k)+1− ti,k
)∣∣∣∣∣∣
∣∣∣∣∣∣

+
N

∑
j:t≥t j,l j(ti,k)+1

∫ t

t j,l j(ti,k)+1

∣∣∣∣u j(τ)
∣∣∣∣dτ. (31)

Consider now an agent j that updates its control at least
once before time t, and focus on the term

∣∣∣∣u j(τ)
∣∣∣∣ with

τ ∈ [t j,l j(ti,k)+1, t). Since (9) holds for all the agents until time
t, we can write∣∣∣∣u j(τ)

∣∣∣∣≤ c
∣∣∣∣z j(τ)

∣∣∣∣+ ∣∣∣∣ũ j(τ)
∣∣∣∣≤ c(||z(τ)||+σ(τ)) .

(32)

Morevoer, in τ ∈ [t j,l j(ti,k)+1, t), since (9) holds, the state
of the system converges to the region described by (17).
Therefore, taking into account that ||ω(τ)|| ≤ Bi,k(τ) and
σ(τ)≤ σ(ti,k), we can write

||z(τ)|| ≤max
{∣∣∣∣z(ti,k)∣∣∣∣ ,

λN

λ2

(√
Nσ(ti,k)+

Bi,k(τ)

c

)}
. (33)

Also, since ti,k ≤ τ , (9) holds for all the agents at time ti,k,
and we can write∣∣∣∣z(ti,k)∣∣∣∣≤ ∣∣∣∣u(ti,k)∣∣∣∣c

+
√

Nσ(ti,k). (34)

Using (33) and (34) into (32) we can write∣∣∣∣u j(τ)
∣∣∣∣≤ c

(
Ri, j,k(τ)+σ(τ)

)
,

which substituted into (31) yields∣∣∣∣ẑi(ti,k)− ẑi(t)
∣∣∣∣≤ Si,k(t).

Now since (22) is applied, we have Si,k(t) ≤ β (t), and
consequently ∣∣∣∣ẑi(ti,k)− ẑi(t)

∣∣∣∣≤ β (t). (35)

Now substituting (27) and (35) into (24), we have

σ(t)< α +β (t)

This is a contradiction, since α and β (t) are defined so that
σ(t) = α +β (t). We can conclude that (9) holds for all the
agents i at all times t ≥ 0.



Now since (9) holds for all the agents uniformly, Assump-
tions 1 to 3 hold, and Theorem 1 can be applied. Hence
practical consensus is attained with radius (10).

Remark 8: Since Theorem 2 only requires that ti,k+1 ≤
Ti, j,k for all j ∈ V and ti,k+1 ≤ T ′i,k, the scheduling rule (22)
may be relaxed to

ti,k < ti,k+1 ≤ min
j∈Vi∪{i}

{
Ti, j,k,T ′i,k

}
. (36)

This gives each agent a degree of freedom in the scheduling
of the next connection to the cloud. Such degree of freedom
may be exploited to avoid cloud congestion due to multiple
contemporary accesses. In fact, if (36) is enforced, agent i
is free to choose ti,k+1 in a given interval, and since it is
aware of the subsequent update times t j,l j(ti,k)+1 of all the
other agents j 6= i, it can schedule ti,k+1 so that it does not
coincide with any of these instants.

Remark 9: An alternative upper bound to (34) is∣∣∣∣z(ti,k)∣∣∣∣≤ ∣∣∣∣ẑ(ti,k)∣∣∣∣+√Nα.

Therefore, function Ri, j,k(t) can also be designed as

Ri, j,k(t) := max
{

min
{∣∣∣∣u(ti,k)∣∣∣∣

c
+
√

Nσ(ti,k),∣∣∣∣ẑ(ti,k)∣∣∣∣+√Nα

}
,

λN

λ2

(√
Nσ(t j,l j(ti,k)+1)+

Bi,k(t)
c

)}
,

In this case, when scheduling the update time ti,k+1, agent
i needs to compute

∣∣∣∣ẑ(ti,k)∣∣∣∣. If the topology of the con-
nections among the vehicles is known,

∣∣∣∣ẑ(ti,k)∣∣∣∣ can be
computed by using (19) with t = ti,k.

VI. NUMERICAL SIMULATIONS

In order to corroborate the theoretical results, we applied
the proposed control algorithm to a formation problem on
a simulated network made up of N = 5 planar vehicles.
The topology of the connections is described by a complete
graph, so that every agent receives feedback from every other
agent. The desired formation is described by the offsets
[(−25,−25), (−25,25), (0,0), (25,−25), (25,25)]. The
simulation takes place the time span [0,50]. The agents
are spawned in initial positions randomly extracted in a
square of 200 by 200. We pick a control gain c = 0.01
and a threshold function σ(t) = 1.4 · 103 + 0.8 · 103e−0.05t .
A different value of the additive disturbance is chosen for
each agent, randomly extracted in the range (−1.0,1.0) on
both coordinates. At each hundredth of second this value is
changed with probability 5 ·10−3, by randomly extracting a
new value from the same range. To model the forecast that
the agents receive about such disturbances, at each update
of a vehicle i we assign to γi,k a value of

√
2 · (1.0+ rγ),

where rγ is randomly extracted in (0.0,1.0), while we assign
value zero to ρi,k. With these choices we have that the norm
of the disturbances is always below the estimate that the
agents receive. Figure 1 illustrates the convergence of the
first position variable for each vehicle during the simulation.

Fig. 1. Trend of the first consensus variable x(1)i = p(1)i − b(1)i , for each
agent i = 1, . . . ,5 during the simulation.

Fig. 2. Paths pi(t) executed by each vehicle i = 1, . . . ,5 during the
simulation (upper) and detail (lower).

Figure 2 shows the two-dimensional paths. Finally, Table II
shows the update times ti,k in the time span [0,50] for each
agent i = 1, . . . ,5.

VII. CONCLUSIONS

A cloud-based control algorithm has been proposed for
practical consensus of a network of agents with integrator



k t1,k t2,k t3,k t4,k t5,k

0 0.00 0.00 0.00 0.00 0.00
1 5.01 6.21 7.41 8.51 10.11
2 12.72 14.72 16.72 18.81 21.31
3 23.32 25.82 28.02 30.41 32.61
4 34.92 37.23 39.63 41.92 44.22
5 46.53 48.84

TABLE II
UPDATE TIMES IN THE TIME SPAN [0,50].

dynamics under event-triggered updates and additive dis-
turbances. Sufficient conditions for convergence have been
identified in terms of the network topology and of the
scheduling of the control updates. The proposed approach
combines the benefits of event/self-triggered control schemes
with the advantage of having a shared asynchronous cloud
support. Specifically, each agent schedules its own sequence
of cloud accesses in order to achieve a coordinated network
formation. The setup is particularly convenient for those
applications where direct communication among agents is
not always feasible, such as formation control for AUVs. For
this problem, the control algorithm overcomes the limitation
of having a pre-assigned trajectory for the whole fleet as
well as the synchronization of the surfacing of all the agents
[20], [23]. Future work will further develop the approach
of the paper considering different scheduling laws for the
cloud accesses as well as other control objectives, e.g.
leader–follower control. Furthermore, more complex agent
dynamics and more complex models for the forecast on the
disturbances will be studied.
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