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On the Rendezvous Problem for Multiple
Nonholonomic Agents

Dimos V. Dimarogonas and Kostas J. Kyriakopoulos

Abstract—In this note, a decentralized feedback control strategy that
drives a system of multiple nonholonomic unicycles to a rendezvous point
in terms of both position and orientation is introduced. The proposed non-
holonomic control law is discontinuous and time-invariant and using tools
from nonsmooth Lyapunov theory and graph theory the stability of the
overall system is examined. Similarly to the linear case, the convergence
of the multi-agent system relies on the connectivity of the communication
graph that represents the inter-agent communication topology. The control
law is first defined in order to guarantee connectivity maintenance for an
initially connected communication graph. Moreover, the cases of static and
dynamic communication topologies are treated as corollaries of the pro-
posed framework.

Index Terms—Cooperative control, decentralized control, nonholonomic
agents.

I. INTRODUCTION

In this note, the problem of rendezvous convergence for a system
of multiple nonholonomic unicycles in terms of both position and ori-
entation is considered. The rendezvous problem has been extensively
approached recently, addressing the control design issue from several
perspectives. Recent results include [6], [11], [12], [14], [17], and [19].
In most cases, linear models of motion are taken into account, while the
information exchange topology is considered both static and dynamic,
as well as bidirectional or unidirectional. A recent review of the various
approaches of the rendezvous problem for linear models of motion is
[21].

In this note, a decentralized control strategy that drives a system of
multiple kinematic unicycles to rendezvous is presented. The proposed
nonholonomic feedback law is discontinuous and time invariant, some-
thing expected, as nonholonomic systems do not satisfy Brocketts nec-
essary smooth feedback stabilization condition [3]. These controllers
have in general better convergence properties than time-varying ones.
An experimental comparison between these two types of controllers
that supports our preference to time-invariant strategies has appeared
in [13], where the authors concluded that time-varying controllers were
too slow and oscillatory for most practical cases. In contrast, time-in-
variant controllers achieved a significantly better performance.

A first contribution of this note is that the control law is first defined
in order to guarantee connectivity maintenance. Hence, if the commu-
nication graph is initially connected, it remains connected throughout
the closed loop system evolution and rendezvous is reached, under the
proposed control law. Connectivity preserving for linear agents was
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considered in [1] and [12]. The weaker cases of static and dynamic in-
terconnection topology are treated as corollaries of the proposed frame-
work. Our treatment is similar to that of [15], where merely static in-
terconnection topology is considered. Furthermore, the authors of [15]
use a similar control strategy to that of [24], which is time varying pe-
riodic and smooth. Hence, it provides in general worse convergence
results with respect to the time invariant case encountered in this note.
A key drawback of the current approach is the need of knowledge of a
global coordinate frame with respect to the orientation of each agent,
as opposed to the angular velocity open-loop control law of [15]. In
contrast, only relative knowledge of the neighboring agents positions
is needed.

The rest of the note is organized as follows. Section II describes the
system and the problem treated in this note. Assumptions regarding the
communication topology between the agents are presented and mod-
elled in terms of an undirected graph. Section III begins with some
background on graph and matrix theory and nonsmooth analysis that is
used in the sequel and proceeds with the introduction of the decentral-
ized nonsmooth time invariant feedback strategy that drives the multi-
agent team to a common point in the state space as well as the corre-
sponding stability analysis. We first treat the case of connectivity main-
tenance while the cases of static and dynamic communication topology
are treated next. Computer simulations are included in Section IV while
Section V summarizes the results of this note.

II. SYSTEM AND PROBLEM DEFINITION

Consider a system of N nonholonomic point agents operating in the
same workspaceW � 2. Let qi = [xi; yi]

T 2 2 denote the position
of agent i. The configuration space is formed by vectors of the form q =
[q1; . . . ; qN ]T . Each of the N mobile agents has a specific orientation
�i with respect to the global coordinate frame. The orientation vector
of the agents is represented by � = [�1; . . . ; �N ]T . The configuration
of each agent is represented by pi = [qi ; �i]

T 2 2� (��; �]. Agent
motion is described by the following nonholonomic kinematics

_xi =ui cos �i

_yi =ui sin �i; i 2 N = [1; . . . ; N ]

_�i =!i (1)

where ui, !i denote the translational and rotational velocity of agent i,
respectively.

The design objective is to construct feedback controllers that lead
the multiagent system to rendezvous, i.e. all agents should converge to
a common point p� = [q�; ��]T in the state space. Each agent is as-
signed to a specific subset Ni of the rest of the team, called agent i’s
communication set, that includes the agents with which it can commu-
nicate in order to achieve the desired goal. Interagent communication
is encoded in terms of a communication graph [18]:

Definition 1: The communication graph G = fV;Eg is an undi-
rected graph that consists of a set of vertices V = f1; . . . ; Ng indexed
by the team members and a set of edges, E = f(i; j) 2 V � V ji 2
Njg containing pairs of nodes that represent interagent communication
specifications.

Each agent has only knowledge of the state of agents that belong
to its communication set at each time instant. This fact highlights the
decentralized nature of the approach. We also assume that the commu-
nication graph is undirected, in the sense that i 2 Nj , j 2 Ni, 8i,
j 2 N , i 6= j. It is obvious that (i; j) 2 E i� i 2 Nj , j 2 Ni. The
control design will have the form

ui = ui(pi; pj)

!i = !i(pi; pj)
; j 2 Ni; i 2 N (2)

according to the limited communication capabilities of each agent.
Hence the control law of each agent depends on its own configuration
pi as well as the configurations pj of agents belonging to its commu-
nication set.

The problems treated in this note are summarized as follows: we
derive a set of control laws of the form (2) that drives the agents to a
rendezvous point and, at the same time, guarantees that if the initially
formed communication graph is connected, then it remains connected
throughout the system evolution. Furthermore, the cases of static and
dynamic communication topology without connectivity maintenance
are treated as corollaries of the proposed framework.

III. CONTROL STRATEGY AND STABILITY ANALYSIS

In this section, the proposed feedback law and the corresponding
stability analysis of the system are presented. The mathematical tools
required are discussed in the next two subsections.

A. Tools From Algebraic Graph Theory and Matrix Analysis

In this subsection, we review some tools from graph theory and
matrix analysis that we shall use in the stability analysis of the pro-
posed control framework. The following analysis on graph theory can
be found in [2], while the elements from matrix analysis in [10], [16].

For an undirected graph G with n vertices the adjacency matrix
A = A(G) = (aij) is the n�n matrix given by aij = 1, if (i; j) 2 E

and aij = 0, otherwise. If there is an edge connecting two vertices
i, j, i.e., (i; j) 2 E, then i, j are called adjacent. A path of length r

from a vertex i to a vertex j is a sequence of r + 1 distinct vertices
starting with i and ending with j such that consecutive vertices are ad-
jacent. If there is a path between any two vertices of the graph G, then
G is called connected (otherwise it is called disconnected). The degree
di of vertex i is defined as the number of its neighboring vertices, i.e.
di = f#j : (i; j) 2 Eg. Let � be the n � n diagonal matrix of di’s.
The (combinatorial) Laplacian of G is the symmetric positive semidef-
inite matrix L = � � A. The Laplacian captures many interesting
topological properties of the graph. Of particular interest in our case
is the fact that for a connected graph, the Laplacian has a single zero

eigenvalue and the corresponding eigenvector is the vector of ones,
�!
1 .

The undirected graphG = (V;E) corresponding to a real symmetric
n � n matrix M is a graph with n vertices indexed by 1; . . . ; n such
that there is an edge between vertices i; j 2 V if and only if Mij 6=
0, i.e., (i; j) 2 E , Mij 6= 0. A n � n real symmetric matrix
with nonpositive off-diagonal elements and zero row sums is called a
symmetric Metzler matrix. It is shown in [16] that all the eigenvalues
of a symmetric Metzler matrix are non-negative and zero is a trivial
eigenvalue. The multiplicity of zero as an eigenvalue of a symmetric
Metzler matrix is one (i.e., it is a simple eigenvalue) if and only if the
corresponding undirected graph is connected. The trivial corresponding

eigenvector is the vector of ones,
�!
1 . This result has been used in the

proof of the consensus algorithm for single integrator kinematic agents
presented in [17]. Its usefulness in the present framework is verified in
the sequel.

B. Tools From Nonsmooth Analysis

We now review some elements from nonsmooth analysis that we use
in the next sections. For a differential equation with a discontinuous
right-hand side, we have the following definition.

Definition 2: [9] In the case of a finite dimensional state-space, the
vector function x(:) is called a Filippov solution of _x = f(x), where
f is measurable and essentially locally bounded, if it is absolutely
continuous and _x 2 K[f ](x) almost everywhere where K[f ](x) �
coflimx !x f(xi)jxi 62 N0g and N0 is a set of measure zero that
contains the set of points where f is not differentiable.
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Lyapunov theorems have been extended to nonsmooth systems in
[4] and [22]. The following chain rule provides a calculus for the time
derivative of the energy function in the nonsmooth case.

Theorem 1: [22] Let x be a Filippov solution to _x = f(x) on an
interval containing t and V : n ! be a Lipschitz and regular
function. Then, V (x(t)) is absolutely continuous, (d=dt)V (x(t)) ex-
ists almost everywhere and

d

dt
V (x(t)) 2a:e:

_
V (x) :=

�2@V (x(t))

�TK[f ] (x(t))

where “a.e.” stands for “almost everywhere”.
In this theorem, @V is Clarke’s generalized gradient. The defini-

tion of the generalized gradient and of the regularity of a function can
be found in [5]. In this note, the candidate Lyapunov function V we
use is smooth and hence regular, while its generalized gradient is a sin-
gleton which is equal to its usual gradient everywhere in the state space:
@V (x) = frV (x)g 8x.

We use the following nonsmooth version of LaSalle’s invariance
principle in the sequel:

Theorem 2: [22] Let 
 be a compact set such that every Filippov
solution to the autonomous system _x = f(x), x(0) = x(t0) starting
in 
 is unique and remains in 
 for all t � t0. Let V : 
 ! be a

time independent regular function such that v � 0, 8v 2 _
V (if _

V is the

empty set then this is trivially satisfied). Define S = fx 2 
j0 2
_
V g.

Then every trajectory in 
 converges to the largest invariant set,M , in
the closure of S.

Uniqueness of solutions is guaranteed by the above definition of Fil-
ippov solutions, along with the measurability assumption of f ([9]).

C. Proposed Control Design for Connectivity Maintenance

In the sequel, we denote with x = [x1; . . . ; xN ]T , y =
[y1; . . . ; yN ]T the stack vectors of the x, y coordinates of the
agents respectively. We use the function sgn(x) = 1, if x � 0 and
sgn(x) = �1, otherwise. The function arctan2(x; y) that is also
used is the same as arc tangent of the two variables x and y with the
distinction that the signs of both arguments are used to determine the
quadrant of the result. We also use arctan2(0;0) = 0. Furthermore,
the notation (a)i for a vector a denotes its i-th element.

In this section, we assume that each agent has limited sensing ca-
pabilities which are bounded within a cyclic area of specific radius d
around the agent. This cyclic area is called the sensing zone, while the
parameter d the sensing radius of each agent. The control design is de-
fined in order to guarantee that if the communication graph is initially
connected, then it remains connected until rendezvous is reached. In
particular, we show that the control law forces the agents that are ini-
tially located within the sensing zone of an agent to remain within this
area for all time. In this way, no edges are lost and the initially con-
nected communication graph remains connected for all time. Hence, in
this section, the set Ni is defined as the set that agent i can sense when
it is located at its initial position, qi(0)

Ni = fj 2 N ; j 6= i : kqi(0)� qj(0)k < dg : (3)

We consider the function � : [0; d2) ! [0;1) with

�(x) =
a

d �x
; � < x < d2

a2x; 0 � x � �:

The parameters of � are chosen so that it is continuously differentiable
for all x 2 [0; d2). It is easily derived that this is fulfilled provided that
d2 = 2�, a1 = a2�

2.

An attractive potential �ij : 2N ! that reflects the existence of
an edge between agents i and j is defined as:

�ij(q)
�
= � kqi � qjk

2

� (q)

= � (�ij(q)) :

In the sequel, the notation �ij(q) = �ij is used for brevity for the
squared norm of the Euclidean distance of agents i, j. The total
attractive potential of agent i is given by �i(q) = j2N �ij(q) =

j2N �(�ij). The gradient with respect to q and the partial deriva-
tive of �ij with respect to qi are computed by r�ij(q) = 2pijDijq

and (@�ij=@qi)(q) = 2pij(Dij)iq where pij
�
= �0(�ij) =

(d�(�ij)=d�ij) and the matrices Dij , (Dij)i, for i < j, can be shown
to be given by Dij = ~Dij 
 I2, where ( ~Dij)ii = ( ~Dij)jj = 1,
( ~Dij)ij = ( ~Dij)ji = �1 and ( ~Dij)kl = 0 for k, l 6= i; j, and
(Dij)i = [O1�(i�1) 1 O1�(j�i�1) � 1 O1�(N�j)] 
 I2. The
definition of Dij , (Dij)i for i > j is straightforward. The following
symmetry property holds: pij = pji, 8j 2 Ni.

Define now �(q) = i �i(q) = i j2N �ij(q)=

i j2N �(�ij). Taking the gradient of � with respect to q we get

r�(q) =
i j2N

r�ij(q) = 2
i j2N

pijDij q

=4(P 
 I2)q

where the N � N matrix P is easily shown to be given by Pii =

j2N pij , Pij = �pij for j 2 Ni, i 6= j, and Pij = 0 for j 62 Ni.
In the sequel, we omit the dependence of the functions �, �i and �ij on
q for notational thrift. We also have (@�i=@qi) = j2N (@�ij=@qi),
so that

@�1
@q1

T

; . . . ;
@�N
@qN

T T

=
j2N

@�1j
@q1

T

; . . . ;
j2N

@�Nj

@qN

T T

= 2(P 
 I2)q:

We propose the following discontinuous time-invariant feedback con-
trol law for each agent i:

ui = � sgnf�xi cos �i + �yi sin �ig � �2xi + �2yi
1=2

(4)

!i = � (�i � �nh ) (5)

where �xi = (@�i=@xi) = (2Px)i = 2 j2N pij(xi � xj); �yi =
(@�i=@yi) = (2Py)i = 2 j2N pij(yi � yj) and �nh =
arctan2(�yi; �xi).

Before proceeding with the convergence properties of the proposed
scheme, a short discussion on the choice of this control law is in order.
The quadratic term in (4) is minimized whenever the agents reach a
rendezvous point. In particular, we show in the sequel that the agents
converge to the set So = f�xi = �yi = 0;8i 2 Ng, which is shown
to correspond to a rendezvous point, provided that the initially formed
communication graph is connected. For agents that have not reached
the desired equilibrium �xi = �yi = 0, the angular velocity control
law (5) forces them to leave the undesired set inside the sign function,
as will be shown in the sequel. A similar control strategy was used in
[23] for stabilization of a single unicycle agent. Furthermore, the pro-
posed control law forces pairs of agents that are initially located within
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distance less than d from each other, i.e. form an edge in the communi-
cation graph, to remain within distance d from each other throughout
the closed loop system evolution. In other words, the control law (4),
(5) is edge preserving. This fact is explicitly stated in Lemma 3.

We use the continuously differentiable positive definite func-
tion W = � as a candidate Lyapunov function. Since the pro-
posed controller is discontinuous we use the concept of Theorem
1 for the time derivative of W . Since W is smooth we have
@W = frWg = fr�g = f ir�ig, so that

_
W =

i

(r�i)
T �K

u1 cos �1
u1 sin �1

...
uN cos �N
uN sin �N

� 4qT (P 
 I2)

K[u1] cos �1
K[u1] sin �1

...
K[uN ] cos �N
K[uN ] sin �N

� 4(Px)T
K[u1] cos �1

...
K[uN ] cos �N

+4(Py)T
K[u1] sin �1

...
K[uN ] sin �N

�
i

f4K[ui] ((Px)i cos �i + (Py)i sin �i)g

where we used [20, Th. 1.3] to calculate the inclusions of the Filippov
set in the previous analysis. Since K[sgn(x)]x = fjxjg [20, Th. 1.7],
the choice (4), (5) results in

_
W = �

i

8j�xi cos �i + �yi sin �ij �2xi + �2yi
1=2

� 0 (6)

so that the generalized derivative of W reduces to a singleton. The last
equation implies that W is nonincreasing across the trajectories of the
closed-loop system, i.e., W (q(t)) � W (q(0)) for all t � 0.

Let G = (V;E) denote the initially formed communication graph
under the ruling (3), according to Definition 1. Hence, an edge between
agents i, j exists whenever they are initially located within distance d
from each other, i.e., (i; j) 2 E , j 2 Ni i� kqi(0)� qj(0)k < d.
By showing that for all pairs of agents (i; j) s.t. kqi(0)� qj(0)k < d
the proposed controller guarantees that kqi(t) � qj(t)k < d for all
t > 0, the edges are guaranteed to remain invariant (i.e., agents i, j
remain within distance d from one another) and hence the communica-
tion graph itself, remains invariant throughout the closed loop system
evolution. This is explicitly shown in the next result.

Lemma 3: Let the system of multiple unicycles driven by the control
law (4), (5).

The set J (q) = fqjkqi� qjk < d;8(i; j) 2 Eg is invariant for the
trajectories of the closed-loop system.

Proof: For every initial condition q(0) 2 J (q), we have
W (q(t)) � W (q(0)) < 1 for all t � 0. Since W ! 1 when
kqi � qjk ! d for at least one pair (i; j) 2 E, we conclude that
q(t) 2 J (q), for all t � 0. }

This control law guarantees that the initial set of edges, created under
(3), remains invariant during the evolution of the closed loop system.
Hence, no edges are lost and no new ones are created, even when an
agent, not initially located in the sensing zone of another, enters in this

area at some time t > 0. The sets Ni initially formed remain constant
as the system evolves. We now state the main result of this note:

Theorem 4: Assume that the communication graph formed under
the initial condition ruling (3) is connected. Then the discontinuous
time-invariant feedback control strategy (4), (5) drives the agents to a
common configuration in the state–space.

Proof: The level sets of W are compact and invariant with re-
spect to the relative positions of adjacent agents. Specifically, the set

c = fq : W (q) � cg for c > 0 is closed by the continuity of W . For

all (i; j) 2 E we have W � c) �ij � c) kqi � qjk � ��1ij (c).
Connectivity of the initially formed communication graph guarantees
that every pair i, j of agents satisfies kqi�qjk � (N�1)��1max, where

��1max
�
= max(i;j)2E ��1ij (c). Therefore, the set 
c is also bounded

with respect to the relative positions of agents in the group. Hence for
all initial conditions satisfying kqi(0)� qj(0)k < d, 8(i; j) 2 E we
can apply (the nonsmooth version of) LaSalle’s invariance principle
(Theorem 2). By Theorem 2, the trajectories of the system converge
to the largest invariant set contained in the set S = f(�xi = �yi =
0)_ (�xi cos �i+�yi sin �i = 0);8i 2 Ng. However, for each i 2 N ,
we have j!ij = �=2 whenever �xi cos �i + �yi sin �i = 0, due to
the proposed angular velocity control law. In particular, this choice of
angular velocity renders the surface �xi cos �i + �yi sin �i = 0 nonin-
variant for agent i, whenever i is not located at the desired equilibrium,
namely when �xi = �yi = 0. Hence, the largest invariant set So con-
tained in S is S � So = f�xi = �yi = 0;8i 2 Ng. In addition
(�xi = �yi = 0)8i guarantees that the agents converge to a common
configuration. This is easily derived by the fact that (�xi = �yi =
0)8i ) (P 
 I2)q = 0 ) Px = Py = 0, where x, y the stack
vectors of q in the x, y directions. Within So, the closed-loop equa-
tions for the orientations have the form _�i = ��i for all i, and hence
the orientations of all agents tend to zero. The symmetric matrix P
has zero row sums and non-positive off-diagonal elements. Using the
same arguments and terminology as in [17], the matrix P is a Metzler
matrix. As mentioned in Section III-A, the eigenvalues of P are non-
negative and zero is the smallest eigenvalue. Following [17], we deduce
that since the initially formed communication graph is connected, zero
is a simple eigenvalue of P with trivial corresponding eigenvector the

vector of ones,
�!
1 . Hence, equations Px = Py = 0 guarantee that

both x, y are eigenvectors of P belonging to spanf
�!
1 g. Hence, all qi

tend to the same value, implying that all agents converge to a common
configuration at steady state. }

D. Static and Switching Topology

In this section, we show that the weaker cases of static and switching
interconnection topologies can be treated as corollaries of the frame-
work presented previously. The difference lies in the definition of the
sets Ni as well as the choice of the inter-agent potentials �ij .

1) Static Topology: In the static topology case, we assume that
each agent i communicates with a subset Ni of the rest of the team
throughout the closed loop system evolution. Hence, the setNi is static
and independent of the agents’ relative positions. The interagent poten-
tials are now simply given by �ij(q) = �ij for (i; j) 2 E and �ij(q) =
0, otherwise. We have �i(q) = j2N �ij(q) = j2N �ij and the
function � is given by �(q) = i �i(q) = i j2N �ij(q) =

i j2N �ij . The gradient of � in this case is given by

r�(q) =
i j2N

r�ij(q) =
i j2N

r�ij = 4(L
 I2)q
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Fig. 1. Simulations of three scenarios based on Corollaries 5 and 6 and Theorem 4 respectively.

where L is the Laplacian matrix of the communication graph. We also
have (@�i=@qi) = j2N

(@�ij=@qi), so that we can again calculate

@�1
@q1

T

; . . . ;
@�N
@qN

T
T

=
j2N

@�1j
@q1

T

; . . . ;
j2N

@�Nj

@qN

T T

= 2(L
 I2)q:

An immediate corollary of Theorem 4 for the static case is now stated
as follows.

Corollary 5: Assume that the communication graph is connected
and let L denote its Laplacian matrix. Then the discontinuous time-in-
variant feedback control strategy (4), (5), where the terms �xi, �yi are
now given by �xi = (@�i=@xi) = (Lx)i = j2N

(xi � xj), �yi =
(@�i=@yi) = (Ly)i =

j2N
(yi � yj), and the “nonholonomic

angle” �nh = arctan 2(�yi; �xi), drives the agents to a common con-
figuration in the state–space.

Proof: Using W = � as a candidate Lyapunov function, the
exact same procedure as in the proof of Theorem 4 shows that the gen-
eralized time derivative of W satisfies (6). Since W is quadratic in
the agents’ relative positions, its level sets are compact and invariant
for the trajectories of the closed-loop system. Specifically, we have
W � c ) kqi � qjk �

p
2c;8(i; j) 2 E. Connectivity of the

communication graph ensures that the maximum length of a path con-
necting two vertices of the graph is at most N � 1. Hence kqi� qjk �p
2c(N�1);8i; j 2 N . Using now Theorem 2, the same arguments as

in the proof of Theorem 4 guarantee that the agents converge to the set
So = f�xi = �yi = 0;8i 2 Ng with zero orientation. Furthermore,
(�xi = �yi = 0), 8i) (L 
 I2)q = 0) Lx = Ly = 0 where x, y
the stack vectors of q in the x, y directions. The fact that the communi-
cation graph is connected implies that L has a simple zero eigenvalue

with corresponding eigenvector the vector of ones,
�!
1 . This guarantees

that both x,y are eigenvectors of L belonging to spanf�!1 g. Hence for
all i 2 N , all qi have a common value, implying that all agents con-
verge to a common configuration at steady state. }

2) The Case of Switching Topology: In this section, the set Ni is
time varying and dependent on the relative positions of the agents.
Specifically, we assume that inter-agent communication is created/lost
each time an agent enters/leaves the sensing zone radius d around an-
other agent. Hence for agent i, the set Ni is defined as

Ni = fj : kqi � qjk � dg : (7)

Hence, an edge is created in the communication graph each time an
agent enters the sensing zone of another agent. We use the function
� : [0;1) ! which is defined as

�(x) =

1

2
x; 0 � x � c2

a5x
2 + a4x+ a3; c2 � x � d2

h; d2 � x

:

We require that this function is continuously differentiable in its whole
domain. This is fulfilled by choosing: a5 = (1=4(c2 � d2)), a4 =
(d2=2(d2 � c2)), a3 = (c4=4(c2 � d2)), (h = (d2 + c2)=4).

In order to cope with the limited sensing capabilities of each agent,
the function �ij : 2N ! is redefined as �ij(q)

�
= �(�ij). The

gradient and the partial derivative of �ij are computed by r�ij =

2�ijDijq and (@�ij=@qi) = 2�ij(Dij)iq where �ij
�
= �0(�ij) =

(d�(�ij)=d�ij) and the matricesDij , (Dij)i were defined previously.
This choice of � guarantees that �ij > 0 for 0 < �ij < d2 and
�ij = 0 for �ij � d2. In this section, the function �i is defined in
a different manner than the previous two cases. In particular, we have
�i(q) =

j 6=i
�ij(q) =

j 6=i
�(�ij). However, using the fact that

�ij = 0 for �ij > d2, the following equation is straightforward:

@�i
@qi

=
j 6=i

@�ij
@qi

=
j2N

@�ij
@qi
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so that each agent has to take into account only agents belonging to Ni

at each time instant in order to implement the control law (4), (5) with
�xi = (@�i=@xi), �yi = (@�i=@yi). Using now �(q) =

i
�i(q) and

taking its gradient, we can compute

r�(q) =
i j2N

r�ij(q) = 2
i j2N

�ijDij q

=2
i j 6=i

�ijDij q = 4(R
 I2)q

where we have used again the fact that �ij = 0 for �ij > d2 and the
relation �ij = �ji. The elements of the N �N matrix R are given by
Rii = j 6=i

�ij and Rij = ��ij , for i 6= j. Also

@�1
@q1

T

; . . . ;
@�N
@qN

T T

=
j 6=1

@�1j
@q1

T

; . . . ;
j 6=N

@�Nj

@qN

T
T

=
j2N

@�1j
@q1

T

; . . . ;
j2N

@�Nj

@qN

T T

= 2(R
 I2)q:

The following corollary holds for the switching topology case.
Corollary 6: Assume that the communication graph remains con-

nected for every topology induced by the switching communication
law (7). Then the control law (4), (5), where the terms �xi, �yi are
now given by �xi = (@�i=@xi) = (2Rx)i = 2

j2N
�ij(xi � xj),

�yi = (@�i=@yi) = (2Ry)i = 2
j2N

�ij(yi � yj) and �nh =
arctan 2(�yi; �xi), drives the agents to a common configuration in the
state–space.

Proof: For W = �, the same arguments as in the proof of The-
orem 4 show that the generalized time derivative of W satisfies again
(6). The assumption that the communication graph remains connected
guarantees that the set 
 = fq : kqi � qjk � (N � 1)d;8i; j 2 Ng
is compact and invariant for the closed loop system with respect to the
relative positions of all agents belonging toN . The same procedure as
in the proof of Theorem 4 guarantees that the agents converge to the
set So = f�xi = �yi = 0;8i 2 Ng with zero orientation. In addition,
(�xi = �yi = 0);8i ) (R 
 I2)q = 0 ) Rx = Ry = 0 where x,
y the stack vectors of q in the x, y directions. The symmetric matrix R
has zero row sums and non-positive off-diagonal elements and hence is
a Metzler matrix. Using the same arguments as in the end of Theorem
4, we deduce that since the communication graph remains connected,
zero is a simple eigenvalue of R with trivial corresponding eigenvector

the vector of ones,
�!
1 . Hence equations Rx = Ry = 0 guarantee that

both x, y are eigenvectors of R belonging to spanf
�!
1 g. Hence all qi

tend to the same value, implying that all agents converge to a common
configuration at steady state. }

E. Discussion

It should be noted that the cases of static and switching intercon-
nection links of the previous section are weaker cases than the case of
connectivity maintenance that was dealt with in Section III-C. Specif-
ically, connectivity of the communication graph is an assumption in
Corollaries 5 and 6, while it is a guaranteed invariant property of the
closed loop system in Theorem 4, by virtue of Lemma 3. In essence,
Theorem 4 is a stronger and more applicable result. Moreover, as wit-
nessed previously, all three cases can be viewed as special cases of the
control framework (4), (5) with a particular definition of the function

�ij and the communication set Ni. We should also note that the pro-
posed control law (4), (5) is purely decentralized, since each agent i
requires information only of the states of agents within Ni at each time
instant.

IV. SIMULATIONS

The results of the previous sections are demonstrated through the
three simulation scenarios presented in Fig. 1. In each screenshot, the
initial position of each agent is denoted by the letter “I.” The first
screenshot I presents a scenario of six unicycles navigating under the
static communication control scheme. The communication sets in this
simulation have been chosen so that the resulting communication graph
is connected. Agents are eventually driven to a rendezvous point, in
agreement with Corollary 5. In the second scenario (screenshot II), the
agents navigate under the switching communication strategy. The com-
munication graph remains connected throughout the evolution of the
closed loop system, and hence rendezvous is reached, as implied by
Corollary 6. This theorem cannot guarantee that the graph remains con-
nected-this is only an assumption in Corollary 6. The result of Theorem
4 guarantees that if the communication graph is initially connected,
then the control laws (4), (5) preserve connectivity. This is demon-
strated in the third scenario of screenshot III. Connectivity of the ini-
tially formed communication graph guarantees connectivity preserving
and rendezvous convergence.

V. CONCLUSION

In this note, a decentralized feedback control strategy that drives
a system of multiple nonholonomic unicycles to a rendezvous point
in terms of both position and orientation was introduced. The pro-
posed nonholonomic control law is discontinuous and time-invariant
and using tools from nonsmooth Lyapunov theory and graph theory the
stability of the overall system is examined. Similarly to the linear case,
the convergence of the multiagent system relies on the connectivity of
the communication graph that represents the interagent communication
topology. The control law was first defined in order to guarantee con-
nectivity maintenance for an initially connected communication graph.
Moreover, the cases of static and dynamic communication topologies
were treated as corollaries of the proposed framework.
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Block Decoupling by Precompensation Revisited

Michel Malabre and Jorge A. Torres-Muñoz

Abstract—The block decoupling problem by admissible dynamic pre-
compensation for LTI systems is considered. Admissibility refers to the
preservation of the class of controlled output trajectories, i.e. functional
output controllability is concerned, which is more demanding than just
pointwise output controllability. This problem has been solved by Hautus
and Heyman, within a transfer function matrix approach. Different new
equivalent solvability conditions in terms of controllability subspaces,
transfer function matrices or matrix pencils are given. One of these
conditions (expressed in the input space) is at the origin of new necessary
and sufficient conditions for block decoupling by general precompensation
(possibly non admissible and nonsquare), in the wider sense of Basile and
Marro.

Index Terms—Block decoupling, controllability subspaces, linear time-
invariant (LTI) systems, precompensation, transfer function matrices.

I. INTRODUCTION

Input–output decoupling problem has attracted the interest of the
control community from the very beginning of the development of the
linear systems theory. Actually, there is a huge body of theoretical re-
sults within the so-called geometric approach as well as in the transfer
function matrix approach. In this sense, recommended accounts can be
found in [4], [13].

Block decoupling amounts to finding a control law in such a way that
on the compensated system subsets of inputs drive specified blocks of
outputs without interacting with other output blocks. In order to avoid
trivial controllers such as the zero one, driving requirements for the out-
puts must be imposed, such as pointwise or functional output control-
lability preservation between the system and the compensated system.

A dynamic precompensation scheme is considered here, which
includes dynamic (static) state (measurement) feedback as particular
cases.

An elegant solution to block decoupling has been proposed by Basile
and Marro in [7] within the geometric approach that relies on the prop-
erties of some specific controllability subspaces of the system. Their
solution is general in the sense that the requirement on the controller is
the preservation of the output pointwise controllability. Later, Hautus
and Heymann [1] gave a solution to the block decoupling problem by
admissible precompensation that requires the preservation of the output
functional controllability properties. Their solution is based on the no-
tion of independent rational spaces generated by the row-blocks of the
transfer function matrix.

The main aim of the present contribution is to bridge some gap be-
tween these two different approaches. We first derive some equivalent
characterizations in the transfer function, in the geometric as well as in
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