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Abstract

We consider the opinion consensus problem using a multi-agent setting based on the Hegselmann-Krause (H-K) Model. Firstly, we give
a sufficient condition on the initial opinion distribution so that the system will converge to only one cluster. Then, modified models are
proposed to guarantee convergence for more general initial conditions. The overall connectivity is maintained with these models, while
the loss of certain edges can occur. Furthermore, a smooth control protocol is provided to avoid the difficulties that may arise due to the

discontinuous right-hand side in the H-K model.
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1 Introduction

The opinion consensus problem is about opinion compro-
mise of a certain event by different agents. Assume that
opinion is continuous, and that all agents have bounded
confidence in the way that they only consider the opinion
that is close to their own opinion. Agent-based models of
opinion dynamics under these assumptions have been estab-
lished in the beginning of this century by Hegselmann and
Krause [Hegselmann and Krause, 2002] and Weisbuch et al
[Weisbuch et al., 2002]. Both models lead to clustering of
opinions in a similar way. In this paper we will consider the
model of Hegselmann and Krause (H-K).

The H-K model has attracted significant attention in the past
few years, e.g., [Forunato, 2004], [Blondel et al., 2009],
[Mirtabatabaei and Bullo, 2012], [Canuto et al., 2012], be-
cause of its simple model structure and complex evolving
behavior. The previous study about the H-K model shows
that not all initial opinion distributions corresponding to
a connected graph will lead to consensus [Lorenz, 2006],
[Lorenz, 2005], [Blondel et al., 2009]. This is due to the
fact that during the process the graph can keep disconnected
since the neighborhood is based on opinion differences be-

' A preliminary version of this paper will be presented
in 51st IEEE Conference on Decision and Control 2012
[Yang et al., 2012]. The authors are supported by SSF, the Swedish
Research Council and the EU HYCON 2 NoE.

* Corresponding author.

E-mail addresses: yuecheng@kth.se (Y. Yang), dimos@ee.kth.se
(D. V. Dimarogonas), hu@kth.se (X. Hu)

Preprint submitted to Automatica

tween pairs of agents. An important result of multi-agent
rendezvous problem is that the consensus is reached if
and only if the switching networks are “ultimately con-
nected” proved by Moreau [Moreau, 2005]. The possible
permanent loss of connectivity can yield several clusters
of agent opinions in different positions. This phenomenon
is also observed in the paper by Hegselmann and Krause
[Hegselmann and Krause, 2002]. However, even for the
one-dimensional case, few theoretical results have been
obtained so far regarding the relationship between this loss
of connectivity and the initial opinion distribution. We pro-
vide a sufficient condition on the initial state to guarantee
consensus in this paper.

On the other hand, instead of imposing constraints on the
initial distribution, one can modify the model to guaran-
tee that consensus is achieved for any initial opinions.
This is related to the connectivity maintenance problem
in the multi-agent systems theory. A way to achieve this
is by using potential functions. The main idea is that
the force between two agent opinions becomes infinitely
large when the difference between the opinions becomes
big enough, i.e., near the boundary of confidence. This
approach has been used by several researchers in the
past few years, e.g., [De Gennaro and Jadbabaie, 2006],
[Ji and Egerstedt, 2005]. Bounded controllers for con-
nectivity control are considered in [Kan et al., 2010],
[Dimarogonas and Johansson, 2008], [Wang et al., 2013].
The common idea in these papers is that no edge is allowed
to break during the process, thus imposing constraints in
the relative states of pairs of agents that constitute an edge.
However, this is only a sufficient condition for connectiv-
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ity maintenance because the loss of some “non-crucial”
edges may not influence the connectivity. In this paper
we use topological arguments to guarantee connectivity
instead of applying infinite potentials when an edge is
bound to break. In particular, inspired by the idea used
in [Gustavi et al., 2010], we show that common neighbors
play an important role in the problem. If two nodes share
some common neighbors, the edge between them can be
allowed to break because they are still connected through
the common neighbors. On the contrary, if they do not have
any common neighbors, then the edge becomes crucial and
should not be broken.

The modified model that we provide in this paper guarantees
opinion consensus for almost all connected initial opinion
distribution, even if the ratio between the opinion diversity
and the confidence bound is significant. Usually one obtains
clustering behavior, i.e., disconnectedness, of the original
H-K model when this ratio is big. This issue is overcome
by using the modified model in Section III. A requirement
of our model is that two or more agents cannot have the
same initial opinions. Since this is a possible scenario in
practice, we provide another model to deal with this case.
Furthermore, for the original H-K model, the right-hand side
is not a continuous function of the state x. This results in a
measure zero set of initial conditions from which the solution
may not be unique. We introduce in the paper a smooth
modification of the model in order to avoid this.

The remainder of the paper is summarized as follows: in
Section II we formulate the problem under consideration.
The modified version of the H-K model is presented and
analyzed in Section III as well as a sufficient condition for
guarantee consensus. A smoothed version of this is provided
in Section I'V. Some discussion about high dimensional sce-
nario is included in Section V. In Section VI we provide sim-
ulations that support the derived theoretical results. Finally,
a summary of the results of this paper as well as possible
directions of future work are included in Section VII.

2 Mathematical preliminaries
2.1 Basic concepts from graph theory

In this section, we review some concepts from graph theory
that will be used in this paper. These definitions can be
otherwise found in a standard textbook on graph theory.

Consider a set of n nodes denoted by V = {1,2,...,n} and a
subset E CV x V. We call G = (V,E) a graph with the set of
vertices (or nodes) V and the set of edges E. In G = (V,E),
the neighbor set of the vertex i is defined by A/ = {j €
V|(j,i) € E}. A graph G = (V,E) is called undirected if
(i,j) € E implies (j,i) € E. An undirected graph is called
simple if it has no loops (edges connected at both ends to the
same vertex) and no more than one edge between any two
different vertices. All the graphs mentioned in this paper will
be simple graphs. In a graph, if there is an edge connecting

two vertices, i.e., (i, ) € E, then these two vertices i, j are
called adjacent. A graph is called complete if any two nodes
are adjacent. A path from a vertex i to another vertex j is a
sequence of distinct vertices starting with 7 and ending with
J» in which each vertex is adjacent to its next vertex. Two
vertices i and j are called connected if there exists a path
from i to j. An undirected graph is call a connected graph
if any pair of vertices in it is connected.

2.2 Introduction of Hegselmann-Krause model

Consider a system of n autonomous agents labeled
as 1,2,...,n, whose opinions are located in the one-
dimensional Euclidean space R. We denote the set of all
agents as V = {1,2,...,n}. For an agent i € V, the position
of its opinion is denoted by x;(¢) € R, and has the following
dynamics:

%i(t) = ui(t),

where u;(t) is considered as the controller of agent i. The
consensus problem is to find the controllers u;(¢) so that the
stack state x(1) = (x (t) x2(t) -+ x,(¢))T will converge to the
subspace generated by the vector T = (11 --- 1)7 as 7 — oo,
If the edge set E C V xV is given, one can then define a
graph G = (V,E) and generate a basic control protocol for
the consensus problem:

%) =w(t) =Y, (x;(t) —xi(t)) ¢))

JeN

It is well-known that the system (1) will converge to the
equilibrium x;(t) = o, i = 1,2,...,n if the graph G is con-
nected, where o = 1 ¥ | x;(0).

Now assume that the graph G = (V,E) is defined by V =
{1,2,...,n} and E = {(i,j)|i # j,|xi —x;| < d} for some
d > 0. Applying the same control in (1) with this definition of
the graph, we obtain the Hegselmann-Krause (H-K) model:

(1) = (0 (1) = xi(1)). )

j:|xj—x,-|§d

Note that the right-hand side of the equation is a discontinu-
ous function with respect to x. In [Blondel et al., 2010], the
almost sure existence of solution to this differential equa-
tion have been proved as well as the convergence. Here the
convergence means that the state will converge to an equi-
librium of the system. However, the equilibrium is not nec-
essarily in the form o - T, as discussed in the introduction.
Instead it can consist of several clusters.

From now on, we will call G(r) = (V,E(r)) the cor-
responding graph of x(t), where V = {1,2,...,n} and
E(t) ={@ j)li # J, |xi(t) —x;(t)| < d}.



3 Non-smooth model
3.1 Sufficient condition for consensus

In this section, we give a sufficient condition on the initial
states (opinions) such that the system will converge to ex-
actly one cluster. The concept of common neighbor will be
used in the theorem.

Definition 3.1 For a simple graph G = (V,E), the set of
common neighbors between two nodes i and j is defined as:

Nj={keV|(i,k)€E,(j,k) EE}= 4NN} (3)

Note that the set of common neighbors can be defined lo-
cally since N;; C N;, agent i only needs to check the relative
distance between any neighbor k € N; and the agent j.

Theorem 3.2 For an initial condition x(0) € R" and the
corresponding graph G(0) = (V,E(0)), if G(0) is connected
and for any pair (i, j) € E(0), it holds that | 4| > 5§ —2, then
the solution to (2) will converge to o1, where o = %TTX(O).

Proof: Because the initial graph G is connected by assump-
tion, if no edge in E is lost during the process, the graph
G(1) will be always connected. Then it is well-known that
the states will converge to the average value of the initial
states. What we need to show now is that for any pair of ver-
tices (i, j) € E, the distance |x;(¢) —x;(t)| will not exceed the
threshold d while the number of common neighbors |47} is
not smaller than 5 — 2 at time ¢. Due to the continuity of x(z),
we consider only the situation that |x;(z) —x;(¢)| = d, and
assume that x;(r) > x;(¢) without loss of generality. Denote
A = M (HiUL7) and 4] = 4G\ (AU {3}). Then

we can compute

< 0u0) ~ (1) = 35(0) — 50
= ¥ ) -x)~ ¥ (al)~x()
keA; ke
= ¥ ) -x0)~ L () —x(0)
ken! ke ;!
— (A1 +2)(x5(6) — (1)
<N+ 1A = (|4 +2)d.
<(n= (A5 +2))d — (1A +2)d
<(n-2( K| +2))d <0,

As we can see, the distance x;(r) —x;(t) will not increase in
this case, which proves that the edge (i, j) will not break if

|Aij| > 5 —2 at time ¢.

Now suppose the first edge break happens right after time ¢
for the edge (i, j) € E(0). This means |.4;;| < 5 —2 at time
t. With the initial condition that |.4;;| > 5 —2, the number
of common neighbors of |4;;| must have decreased at some

time before ¢. But this can never happen without an edge
break, which contradicts the assumption that (i, j) is the first
edge to break. Therefore, no original edge will break under
the stated assumption. With a positive lower bound of the
dwell time between switches among connected graphs, we
guarantee the consensus. |

Remark: The condition in Theorem 3.2 is not a necessary
condition for reaching consensus. This can be shown by
counterexamples. With the constraint that edges are defined
by distance, most vectors x(0) € R" do not satisfy this con-
dition. If we consider infinitely many agents uniformly dis-
tributed on an interval of length L, then L < 2d is required
in Theorem 3.2, which coincides with the 2R conjecture in
[Blondel et al., 2007].

3.2 Weighted model

As mentioned above, Theorem 3.2 holds for a limited num-
ber of initial conditions. Instead of finding a condition on the
initial states, we propose a slight modification on the model
to guarantee opinion consensus for any x(0) with a corre-
sponding connected graph. Consider the following model:

1

40= ¥ g0 -x). @

]EA/‘

Remark: Note that both .4; and .#;; are state dependent
and the right-hand side is not continuous with respect to
the state, thus the existence and uniqueness of the solution
can become an issue. We notice that the key to the proof
of the existence and uniqueness of the solution of (2) in
[Blondel et al., 2010] is to show the existence of the upper
bound on the number of transitions taking place during any
given time interval. For (4), we can use a similar argument
after noticing the following fact:

If an edge (i, j) from a graph Gy is broken at time 7 and a
new graph G is formed consequently, the distance between
x; and x; will keep increasing after T'. Without loss of gen-

erality, we assume x;(T) —x;(T) = d. Then
2(T7) = %(T)
_ X(T") —x;(T) X(TT) —xi(TT)
_keyig-(T+) W _ke/V T+) W
_ oy mT)on) o T ox(r)
ke AT(T+) [ Ap(TH+T ey (T +1

a(T) —x;(TT)  xi(TH) —x(T7)
ok ( AT+ AT +1 )
2(5/(T) (7))

>%i(T) —x(T) + | AG(T) + 1

> 0. (5)

Similarly, one can prove that if an edge between two agents
is created at time 7', it will be maintained after 7. Therefore,



by using a similar argument as in [Blondel et al., 2010], we
can obtain a positive lower bound on the time for a bro-
ken edge to be reconstructed or for a new edge to be bro-
ken. Since there is a limited number of edges that can be
added or broken, a positive lower bound of the dwell time
in each graph topology can also be derived. The existence
and uniqueness of the solution of the switching system in
hand can then be guaranteed.

In order to prove our main theorem, we also need the fol-
lowing proposition and definition.

Proposition 3.3 Given an initial condition x(0) € R" satis-
fying x;(0) # x;(0) for any i # j, then x;(T) # x;(T) for any
i# jand any T € [0,), where x(t) is the solution to the
differential equation (4).

The proof of Proposition 3.3 can be found in [ Yang et al., 2012]

and is omitted due to the space limitation.

Definition 3.4 For an undirected graph G = (V,E), an edge
(i,]) € E is called crucial if A;; = @, i.e. there does not exist
k €V such that (i,k) € E and (k, j) € E simultaneously.

Theorem 3.5 (Main Theorem) For any initial condition
x(0) € R” such that:

1. the corresponding graph is connected;

2. xi(0) # x;(0) for any i # j,
the system (4) will converge to the equilibrium o -1, where
o= %TTx(O), i.e., consensus is reached.

Proof: If no crucial edge breaks during the process, the
graph remains connected. Therefore, we just need to check
when a crucial edge is going to break, i.e., |x;(t) —x;(t)| =d,
and .4;; = ¢, which implies 1/(].4;;| + 1) = 1. Assuming

that x;(r) > x;(t) without loss of generality, we get

()= 3(0) = 35(0) — 500
xe(t) —x;(1) Z x(t) —xi(t)

_ke/}/j “/%J'H_l ke | il + 1

1
= —— (X () —x; (1
B T O )
1
- (dak (1) = xi(1)) = 2(xj (1) = xi(1))
o Ml + 1
ke gy [
< X S Y T
ke \{i} |’/%€J| +1 ke A} |'/%<z‘ +1

In order to prove %(x () —xi(r)) <0, we only need to show
that

1 1

S
A+ SR

T <2 (6)
ke;\{i} |‘/%€l| +1

We will now show that for all £ € «/ﬂ\{z}, we have that
M| = | A5 =2, if [ A7) > 2.

Since we assumed that there is no pair of agents with the
same initial opinion, there will not be any pair of agents
reaching the same state in finite time according to Proposi-
tion 3.3. Thus, we have x;(¢) # x;(r) for any i # j and 1 < oo
If (i, /) is a crucial edge with x;(t) —x;(t) = d, agent j has
only one neighbor to its left which is agent i. Then all the
other neighbors of j must be located to its right. If |4} > 2,
every j’s right neighbor ;' is a common neighbor of j and
another right neighbor j”. This is because |xj (t) —x;(t)| < d
and |xj (1) —x (1) <max{x; () —x;(t),xn(t) —x;(t)} < d.
We have i ¢ .4;; according to the definition of a crucial
edge. Therefore, we have 4;; = 4;\{i,k}, which implies
| j| = |A4j] =2 for k € A;\{i}. Equivalently one can get
| il = |Ai| =2 for k € A\{j} if |4i] = 2. By plugging
these results into the left-hand side of inequality (6), we get

1 1
7+ -
ke M\ {i} | il +1 ke ML)} | il +1
1 1
- 1 -1
ke =1 e Sy [ =
O A el N _5
| A =1 A =1

Note that if |.#j| = 1, which means .4} = {i} and A4}\{i} =
¢, then (6) is also true since the first term on the left-hand
side is equal to O. ]

Remark: In the model (4), the assignment of weights may
not be realistic in many cases. However, in some situations,
putting more weight to the common friends, i.e., follow-
ing the majority, may not be a good strategy, as mentioned
in the book The Wisdom of Crowds by James Surowiecki
[Surowiecki, 2005]. Here instead of modeling the reality,
our aim is to find a protocol that will guarantee opinion con-
sensus if the graph is initially connected.

In Theorem 3.5, it is required that no two agents have the
exact same initial opinion. Although this is a set of measure
zero in the state space, it is a more common scenario in real-
ity since the opinions are usually not in a continuum space.
To accommodate this scenario and at the same time avoid
some numerical difficulties encountered when the agents are
very close to each other, one can treat all the agents with
the same state as one agent. This is equivalent to saying that
we still consider agents with the same state separately but
with a weight inversely proportional to the number of agents
sharing the same opinion. If M; is defined as the number of
agents which have the same opinion as agent j, then we re-
gard j as only 1/M; agent. By applying this, we obtain the
second weighted model:

1

xi(r):jgyim(xj(t)_xi(t))’ (7



where |4} ;| is the number of common opinion clusters be-
tween i and j. Here two agents belong to the same cluster if
and only if they have the same opinion. |.4;;| can be com-
puted by || = Ykes0{0.j) 1/Mj — 2. We can then prove
the following corollary:

Corollary 3.6 For any initial condition x(0) € R" whose
corresponding graph is connected, the control protocol (7)
will guarantee consensus.

However, on the right-hand side of (7) the weight is not
symmetric. So in Corollary 3.6 the equilibrium is actually
not the initial average. This is due to the fact that we ignore
the weight of those agents who have the same opinion.

4 Smoothed model

Another issue for the original H-K model (2) is the discon-
tinuous right-hand side. In the theory of differential equa-
tions, the condition of Lipschitz continuity is essential for
the existence and uniqueness of the solution. As stated in
[Blondel et al., 2010], the convergence of the solution to (2)
is guaranteed for almost all initial conditions, which implies
there can exist a set (with measure zero) of singular points.
Moreover, some numerical problems may arise from this
discontinuity when one wants to implement the model. For
example, a small error may change the connectivity of the
whole graph when the distance between a pair of nodes is
around the threshold d in the H-K model. A common remedy
for these problems is to approximate the original function
by a continuous (even differentiable in some cases) func-
tion. The approximation has the same value as the original
function except around the points where the discontinuity
occurs. In these areas, a smoothing function is used to re-
place the original function, e.g., [Saber and Murray, 2003].
We rewrite the original model as:

(1) = Y pij (%) (xj (1) —xi(1)), (®)
i7i

where p;; is a 0-1 function depending on the distance be-
tween i and j:

oy L ) =X <d,
Pij(x) {O, () —x(0)] > d.

We can modify p;;(x) in the following way: we denote by

Bij = (x; —x;)? the square distance between agent i and agent
J and introduce a potential function between i and j as:

ﬁijv OS ﬁl] Sdza
o (Bij), < Bj<(d+e)?, O
c, (d+€)?< Bij <oo.

V(ﬁij) =

where c¢ is a positive constant and ¢@(f3) is a chosen mono-
tonically increasing function on the interval [(d?, (d + €)?]
to make r(f3;;) differentiable for any f3;; € (0,00) (e.g., high
order polynomials). Define

Ir(By;
pij(x) = ;(lf])
ij
la OSBldezy
=9 ¢'(Bij), d>< Bij<(d+¢)?,  (10)
0, (d+e)*< Bij <o

If we consider the model (8) with the choice of p;j(x)
in (10), then the right-hand side is a Lipschitz contin-
uous function, which will ensure the existence and the
uniqueness of the solution to the differential equation. In
[Ceragioli and Frasca, 2012], this smoothed H-K model is
also called continuous H-K model. The convergence of the
solution is also analyzed in [Ceragioli and Frasca, 2012] by
using the LaSalle’s invariance principle. This result dose
not necessarily imply consensus, since the largest invariant
set that can be described as {x|p;;j(x)(xi —x;) = 0,Vi, j}
contains more than one point.

Similarly to section 3.1, there is a sufficient condition for
the initial states to guarantee consensus by using the control
protocol (8). However, it is not always true that the pairwise
force p;j(x)(x; —x;) reaches its maximum absolute value
when |x; —x;| = d. So here we need to add some constraints
for the function ¢ to get the next theorem. We want f3;; = d?
to be the maximum point of the interval [d?,(d + €)?] for
|pij(x)(x; — x;)|, which implies

0<¢'(B) < i, forall > <B < (d+¢&)*.  (11)

VB

Although in general people can define an edge between two
nodes when the weight between them is nonzero, we here
keep the previous definition of the edge set, which is E =
{(i,J)||xi —xj| < d}. The smoothed version of Theorem 3.2
is given as follows.

Theorem 4.1 For an initial condition x(0) € R", if the cor-
responding graph G(0) = (V,E(0)) is connected and for any
pair (i, j) € E(0), |A4;| > 5 —2, then with the chosen ()

—

satisfying (11), the solution to (8) will converge to o -1,
where o = 117x(0).

Proof: Similar to the proof of Theorem 3.2, we prove the
theorem by showing that no edge will be broken during
the time evolution. Due to the page limitation, the proof is
omitted. ]

5 High dimensional cases

In the general m-dimensional Euclidean space R™, one can
define the distance by the 2-norm and then extend the H-K



model to the following form

%(t) = (% (1) = xi(2)), (12)

Jllxj—xill<d

where x;(t) € R™, fori=1,--- ,n. We define again the edges
of the graph by the distance, i.e., (i, ) € E if ||x; —x;|| < d.

5.1 Non-smoothed model

Since there are not many papers in the literature discussing
high dimensional H-K models, the properties of the solu-
tion to the differential equation (12) is not well-studied.
In [Como and Fagnani, 2011,Canuto et al., 2012], the au-
thors study the continuum model with both discrete-time and
continuous-time setting. The convergence of the discrete-
time model is also studied in [Nedic and Touri, 2012]. For
the continuous-time case, the existence and uniqueness of
the solution cannot be guaranteed due to the discontinuity on
the right-hand side. Nevertheless, a sufficient condition for
consensus can be obtained for any finite dimensional spaces,
if the solution to the differential equation exists. The follow-
ing is an extension of Theorem 3.2 to higher dimensions.

Corollary 5.1 For an initial condition x;(0) € R™ and the
corresponding graph G(0) = (V,E(0)), if G(0) is connected
and for any pair (i, j) € E, it holds that |.Aj;| > 5 —2, then
the solution to (12), x(t), will converge to a®1, where
o =3 XL %(0)

5.2  Smoothed models

The model (8) with the choice of p;; in (10) is still valid if
we redefine the parameter 3;; by B;; = ||x; —x;||*.

Corollary 5.2 For any initial condition x;(0) € R™, there
exists a vector x* € R™ such that the solution x(t) to the
differential equation (8) with the choice of p;j in (10) will
converge to x* as t — oo, while fB;; = ||x; — x;|°.

Corollary 5.2 is a direct extension to higher dimensions
of the convergence result of continuous H-K model. The
proof is similar to that in [Ceragioli and Frasca, 2012]. By
choosing the Lyapunov function V = ¥, [|x;||* and using
LaSalle’s invariance principle, we can show the convergence.

6 Simulations

We will present some simulation results of the weighted one
dimensional non-smooth models and show one example in
the two dimensional space in this section.

In the first example, 51 agent opinions are initially uniformly
spaced on an interval of length 5. The interaction radius d is
chosen to be 0.98 to avoid singularities from the discontinu-
ous right-hand side in the non-smooth models. We use both

(a) (b)

Fig. 1. Time evolution of 51 agent opinions according to (case
(a)) model (2) and (case (b)) model (4). The initial opinions are
uniformly spaced on an interval of length 5. The interaction radius
d is chosen to be 0.98.
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Fig. 2. Time evolution of 46 agent opinions according to (case
(a)) model (4) and (case (b)) model (7). The initial opinions of 26
agents are uniformly spaced on an interval of length 5, while the
remaining 20 agents are all initially positioned at 1. The interaction
radius d is chosen to be 0.98.

the original H-K model (2) and the weighted model (4). Fig.
1 shows the simulation result. The original H-K model di-
verges to three clusters (in (a)) and the modified model (4)
reaches consensus (in (b)).

In the second example, we want to show how the coincidence
of initial opinions affects the simulation result by using the
two modified models: (4) and (7). 26 agent opinions are uni-
formly spread on the interval of length 5, while the other 20
opinions are all located at position 1 initially. d is chosen
to be 0.98 again. The initial opinion average o is approxi-
mately 1.85. Although the initial distribution does not fulfill
the condition in Theorem 3.5, the system does converge to
the initial opinion average by using the control protocol (4)
(in Fig. 2(a)). If only the opinion cluster is considered, these
20 agent opinions are ignored since there is also one agent
opinion positioned at 1 among the first 26 agent opinions.
So using model (7), we get a symmetric result in Fig. 2(b),
and the compromised opinion is 2 in the end.

7 Conclusions and future work

In this paper, we first gave a sufficient condition for opinions
consensus for the original Hegselmann-Krause model, which
also holds in any finite dimensional cases. The condition is
also valid for smoothed Hegselmann-Krause models if the
smooth function satisfies a certain constraint. Furthermore,
we provided two modified versions of the Hegselmann-



Krause model such that consensus is guaranteed for any ini-
tial configuration corresponding to a connected graph. The
essence of the protocol is that one weighs most on the opin-
ion of his “friend” that is not shared by any other friend,
while the standard H-K model treats all friends equally. The
fact that our protocol guarantees consensus to the average
of the initial values, provided the initial graph is connected,
gives foundation to many potential distributed applications
in which the goal is to reach just such a consensus, for ex-
ample, distributed estimation using sensor networks.

Future work will focus on the case of higher dimensional
spaces, and in particular the two dimensional space. Some
of the results in one dimension can be easily extended to
any finite dimensional space as we showed in the paper,
e.g., Theorem 3.2. But due to the lack of knowledge about
properties of solutions to non-smoothed Hegselmann-Krause
model in higher dimension, we can hardly draw any further
conclusions. In particular, Theorem 3.5 is not extendable
to the higher dimensional case in a straightforward manner
because of the line structure is used in the proof. So the
extension to higher dimensions requires more effort in this
case. Moreover, even in one dimensional case, how to extend
Theorem 3.5 to a continuous setting is also an open problem.
One approach can be providing a continuous definition of
the number of neighbors and common neighbors while the
consensus can be guaranteed at the same time.
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