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Abstract— Event-driven strategies for multi-agent systems In [24], the control actuation is triggered whenever a
are motivated by the future use of embedded microprocessors certain error becomes large enough with respect to the norm
with limited resources that will gather information and actuate  f ihe state. It is assumed that the nominal system is Input-
the individual agent controller updates. The control actuation .
updates considered in this paper are event-driven, depending to—S_tate stable ,[21_]'[22] with respect to mea_surememrerro
on the ratio of a certain measurement error with respect Motivated by this, in [6] we provided event-triggered camtr
to the norm of a function of the state, and are applied to strategies for a class of cooperative control algorithms,
a first order agreement problem. A centralized formulation  namely those that can be reduced to a first order agreement
of the problem is considered first and then the results are problem [17], which has been proven to be 1SS [14]. In [6],

extended to the decentralized counterpart, in which agents K led f the initial f the stat ired
require knowledge only of the states of their neighbors for nowledge of the Iniual average or (ne states was require

the controller implementation. by the agents in order to implement the control strategy. The
motivation of the current paper is to relax this assumption.
|. INTRODUCTION In particular, no knowledge of the initial average is regdir

Decentralized control of large scale multi-agent system\éve consider both the cases of centralized and decentralized

is currently facilitated by recent technological advanoes event-triggered mul_t|-agent qontrol. I_n_ the first case, we
gow that there exists a strictly positive lower bound on

computing and communication resources. Several resuﬁﬁIe time between two consecutive actuation uodates. In the
concerning multi-agent cooperative control have appegred ' OetW W utive actuation upaates.
decentralized case, each agent is equipped with its own

recent literature involving agreement or consensus dlyos . . .
[17], [111,[20], formatior? cgntrol 51, [41, [7], [2] andrg:;i- embedded microprocessor that can gather only neighboring

tributed estimation [18],[23]. information. We show that continuous evolution is enforced

One of the most important aspects in the implementatio%t each time instant for at least one agent and also provide a

L X X S minimum lower bound for it; thus ensuring that the overall
of distributed algorithms is the communication and cotrol . . :
actuation schemes. A probable future design may equip ea%W'tChed system does not reach an undesired accumulation

. oint, i.e., it does not exhibiZeno behavior [13]. The results

agent with a small embedded micro-processor, who will o depicted through simulated examples.

be responsible for collecting information from neighbgrin The remainder of the paper is oraanized as follows:
nodes and actuating the controller updates according te SO% pap 9 )
1

ruling. The scheduling of the actuation updates can be do eectlont!: presents séorne Eecessary t_|>_arl1ckgroundl'an<; d|scus§e
in a time-driven or an event-driven fashion. The first casg.e probiem treat_e n t © paper. 1he centralized case Is
involves the traditional approach of sampling at pre-djeti |scus§ed in Section Il while Section IV presents_ the d‘?‘
Lo - . centralized counterpart. Some examples are given in Sectio
time instances, usually separated by a specific periodan 'S/ while Section VI includes a summary of the results of this
applications, the embedded processors are resourcedimit S o

and thus an event-triggered approach seems more favoratigPe" and indicates further research directions.

In addition, a proper design can also preserve desired prop- ||. BACKGROUND AND PROBLEM STATEMENT

erties of the ideal continuous state-feedback system, asich In this section we first review some related results on
stability and convergence. A comparison of time-driven and ; :

event-driven control for stochastic systems favoring #itet algebraic graph 'Fheory [9] that are used in the paper and
can be found in [3]. Stochastic event-driven strategiesaha\P roceed to describe the problem in hand.

appeared in [19],[12]. In this paper, we use the determnista Algebraic Graph Theory

event-triggered strategy introduced by P. Tabuada in [24].
Similar results on deterministic event-triggered feedbac
control have appeared in [26],[25],[10],[16],[1].

For an undirected grapf with N vertices theadjacency
matrix A = A(G) = (ay;) is the N x N matrix given by
a;; = 1, if (4,5) € E, whereE is the set of edges, and
Dimos Dimarogonas is with the Laboratory for Information anctBien QAij = 0, othng|se. If there is an edg@uj) €L, thenivj
Systems, Massachusetts Institute of Technology, Cambridge,U.S.A.  are calledadjacent. A path of lengthr from a vertex: to a

{ddi mar @ri t . edu}. Karl H. Johansson is with the KTH ACCESS yiertex j is a sequence of+1 distinct vertices starting with
Linnaeus Center, School of Electrical Engineering, Royastitute of

Technology (KTH), Stockholm, Swedefkal | ej @e. kt h. se}. This @nd ending withy such that consecutive vertices are adjacent.
work was done within TAIS-AURES program (297316-LB704858nhded  Fori = j, this path is called aycle. If there is a path between

by the Swedish Governmental Agency for Innovation SyStemNmVA) any two vertices of the grarﬁ thenG is calledconnected.
and the Swedish Defence Materiel Administration (FMV). Itswalso !

supported by the Swedish Research Council, the Swedishd&tion for A connected graph 1S Cal!ed t"’ele if it contains no CyCIeS_'
Strategic Research, and the EU FeedNetBack STREP FP7 fprojec The degree d; of vertexi is defined as the number of its



neighboring vertices, i.ed; = {#j : (i,7) € E}. Let A f(e(t;),z(t;)) = 0, for i = 0,1,.... To the sequence of
be then x n diagonal matrix ofd;'s. Then A is called the eventstg,t;,... corresponds a sequence of control updates
degree matrix of G. The (combinatoriallaplacian of G is

the symmetric positive semidefinite matifix= A — A. For a ulto), u(t1), - -

connected graph, the Laplacian has a single zero eigenvaldgiyveen control updates the value of the inputs held

and the corresponding eigenvector is the vector of obes, -ynstant and equal to the last control update, i.e.,:
We denote by0 = A\ (G) < A (G) < ... < An(G) the
eigenvalues ofL. If G is connected, theny(G) > 0. u(t) = u(t;),Vt € [ti, tit1) (3)

B. System Model and thus the control law ipiecewise constant between the

The system considered consists/éfagents, withz; ¢ R~ €Vent timesfo, #y, ... _ o
paper are extendable to arbitrary dimensions. We assurhe tR@P€r can be stated as follows: “derive control laws of the

agents’ motion obeys a single integrator model: form (3) and event times, £, ... that drive system (1) to
. . an agreement point.”
i =uji € N ={1....,N} 1) 2) Decentralized Event-triggered Cooperative Control:
In the decentralized case, there is a separate sequence of

whereu; denotes the control input for each agent. . ok X :
Each agent is assigned a subdgtc {1,..., N} of the events zmtl,... deflnked for ekach agenk according to
rest of the team, called ageiis communication set, that Felen(t7), 2 e n, (i) — 2;(17))) :dq' for k € é\/dagd A
includes the agents with which it can communicate. Thé ~ 0,1,.... Heknce a separa]ze con |t|kon encoded by the
undirectedcommunication graph G = {V, E} of the multi- UNCtoN fi(ex(t7), 2 e, (wi(t7) — x;(t7))) triggers the
agent team consists of a set of verticés— {1,..., N} events for agent € V. The update condition is distributed
indexed by the team members, and a set of éd@a& in the sense that each agent requires knowledge of its own
{(i,§) € V x V]i € N;} contain,ing pairs of vertices fhat measurement error and the relative states of its neighdporin
) J

correspond to communicating agents. agents in order '.[0 verify this cond|t|9n. _
The decentralized control law fdr is updated both at its

C. Problem Satement own event timesf, t7,..., as well as at the last event times
The agreement control laws in [8], [17] were given by Of its neighborst, #1,...,j € Ny.. Thus it is of the form
U; = — Z ((Ll — QC]') (2) uk(t) = uk(tf7 U tf;/(t))a (4)
JEN; JEN
and the closed-loop e i i ey A : j
e cl p guations of the nom|'nal system (V"ithob{/herez’(t) 2 arg min | {t _ t{}.
quantization) werei; = — > (z; —xj,), t € {1,...,N}, lEN:t>t]
' JEN; . The decentralized cooperative control problem can be
so thati = —Laz, wherex = [z1,...,xn]" is the stack stated as follows: “derive control laws of the form (4), and
vector of agents’ states anfl is the Laplacian matrix of ayent timestk, ¥, ..., for each agent: € A that drive

the communication graph. For a connected graph, all agentgstem (1) to an agreement point.”

states converge to a common point, called the “agreement

point”, which coincides with the averagg > z;(0) of the [1l. CENTRALIZED APPROACH
i

initial states. Consider the event-triggered multi-agent control problem
Note that the model (1),(2) has been shown to capture tliescribed previously. We assume that the control law can

behavior of other multi-agent control problems apart froe t be actuated only at discrete instances of time instead of

agreement problem. For example, it was shown in [7] that laeing a continuous feedback. These instances are triggered

class of formation control problems can be reduced to a firsthen the measurement error of the state variable reaches

order agreement one with an appropriate transformation. a certain threshold. In the case treated in this section, the
In this paper, we redefine the above control formulation toentralized event-triggered control scheme is considéred

take into account event-triggered strategies. Considesyh- decentralized case is treated in the next section.

tem (1). Both centralized and decentralized event-trigger Following the notation given in the previous section, the

cooperative control are treated. The control formulatiod a state measurement error is defined by

problem statement for each case are described in the sequel.
1) Centralized Event-triggered Cooperative Control: For

eachi € NV, andt > 0, introduce a (state) measurement errofyy 4 ¢ [t:,ti.1). The choice oft; encoded by the function

— T
¢;(t). Denote the stack vectar(t) = [e1(t),...,en()]"- ¢ will be given in the sequel. The proposed control law in
The discrete time instants where the events are trigger@eh centralized case has the form (3) and is defined as the

are defined when a conditiorf(e(t), z(t)) = 0 holds.  gent triggered analog of the ideal control law (2):
The sequence of event-triggered executions is denoted

by: to,t1,.... As noted above, each; is defined by u(t) = —Lx(t;),t € [ti, tit1) (6)

e(t) = a(t:) — x(t),i = 0,1,... ®)



The closed loop system is then given by defined by the rule (9) are lower bounded by a strictly
positive timer which is given by

#(t) = —La(t:) = —L(2(t) + e(t)) () B o

=
Denote byz(t) = + > x;(t) the average of the agents’ I (1 +0)

ya(t) N Z () g J Proof: We will compute the time derivative \‘Lil"lllz
states. Using the fact that the graph is undirected, the time *

derivative ofx( ) is then given by d el efd (La)'La e
A dt || Lz | lell L2l |jLz|? [|Lz]|
i= sz —- ¥ XX @) - w0 < el izl

) LIem = el Tzaf * | La|?
- ﬁz D (elt) —ei(6) =0 _ (1 4 NEUely
i jEN; [Lz|| ) || L]
so thatz(t) = 7(0) = — S 24(0) = 7, i.e., the initial < (1+ IL]le ”) | Eall + || Le]
B NG T - [ Lz| [ La||
average remains constant. 1Ll le]
A candidate ISS Lyapunov function [22] for the closed- < (1 + 2 )
loop system 7 is: )
1 Using the notation
V= ixTLm el
([ Lac]|
We have
we have ,
V=2"Li=—2"LL(z +¢) = —||Lz|> — 2" LLe y< 1+ |[Llly)
<o that so thaty satisfies the bound
V < —||La|® + | Lall[| L] [l y(t) < ¢ (t ¢o)
Enforcinge to satisfy where(z)(t,qﬁo.) is the solut|02n of
el <o Tz (8)  Hence the inter-event times are bounded from below by the
time 7 that satisfies

with ¢ > 0, we get

o g | ¢ (1,0) = ”%”
V < (o—1)|Lz|? . . . Lo
The solution of the above differential equation is given by
which is negative forr < 1 and||Lz|| # 0. 6 (r,0) = T
Thus, the events are triggered when: 1 — 1|1
A || Lz so that -
fle,x) = el —o =0 9) =
IZ] "L+ o)

This choice off is of course motivated by the analysis aboveand the proof is complete) _ o
in order to guarantee convergence to an agreement point.Using the extension of La Salle’s Invariance Principle for
The event times are thus defined pge(t;), z(t;)) = 0, for hybrid systems [15], the following Corollary regarding the

i=0,1,.... At eacht;, the control law is updated according convergence of the closed-loop system is now evident:
to (6): Corollary 2: Consider systemi: = u wiFh t.he control
u(t;) = —La(t) law (6),(9) and assume that the communication grépls
connected. Suppose thiak o < 1. Then all agents converge
and remains constant, i.eu(t) = —Lx(¢;) for all ¢t € to their initial average, i.e.,
[t;, ti+1). Once the control task is executed the error is reset )
to zero, since at that point we hav§;) = x(t;) —x(t;) =0 tlggo wi(t) = Z“Ll

for the specific event time so that (8) is enforced.
The proposed control policy attains a strictly positivd©’ &l i € V.

) .
lower bound on the inter-event times. This is proven in thET00f: SinceV' < (o — 1) || Lz]?, by Theorem IV.1 in [15],
following theorem: we have thatim;_, ., Lz(t) = 0. SinceG is connected, the

Theorem 1: Consider systemi — u with the control latter corresponds to the fact that all elements: @fre equal

law (6),(9) and assume that the communication grépls at steady stat_e, -elim; o0 xi(tga;ef*; imfe the initial
connected. Suppose that< o < 1. Then for any initial average remains constant we —Tr= W;Ii(o) at

condition inRY the inter-event timest,,; —t;} implicity ~ steady state{>



IV. DECENTRALIZED APPROACH wherea > 0.

In the centralized case, all agents had to be aware of theSince the graph is symmetric, by interchanging the indices
global measurement errerin order to enforce the condition ©f the last term we get
(8). In this section, we consider the decentralized coparer B
In particular, each agent now updates its own control input Z Z 2 J Z Z *6 Z |Nile]
at event times it decides based on information from its
neighboring agents. The event times for each agent are SO that
denoted byt{, ¢, .. .. We will follow the structure described . 9 1 5

: ; ! < — - )27 ZIN; e

at the end of Section Il to define the functiofigsi € A Vs Z(l alNil)=7 + Z alNZ‘el
according to which the event times for agérdre defined.

The measurement error for agenis defined as

i jEN; i jEN;

%

Assume that satisfies

) o 1
ei(t) = zi(ty) — zi(t), t € [t} tjqn) (10) KA 12)
The decentralized control strategy for ager now given  for all i € A/. Then, enforcing the condition
oy: i } o _ oia(l—alN))
wt) = = 3 (wilth) - w5(th)) 11) e < T (13)
JEN;
where N | for all i € N/, we get
K'(t) = arg min {t—t < i — 1)(1 — a|N;
( ) glGN t>tJ { l} V Z a| |)

Thus for eacht € [t} ), ti/(t) is the last event time of which is negative def|n|te fob < o; < 1.
agentj. Hence, each agent takes into account the last updateThus for eachi, an event is triggered when
value of each of its neighbors in its control law. The control
L. . . P ;a(1l — alN;
law for i is updated both at its own event timéist{,....as [ S (@i - ) P ( INil) 2

well as at the event times of its neighbefst],...,j € N;. = | N E

Note that this definition of’” impliesx;(t;, ) = x;(t)+ (14)
ej(t). We thus have wherez; = Y (z; — z;). The update rule (14) holds at the
) . JEN;
i (t) = — Z (xi(t};) - xj(t;,(t))) = event timest}. corresponding to agerit
JEN;
== (@) =) = D (eilt) — (1)) file ), S @) —a; (5) ] =0
JEN; JEN; jJEN;

with £k =0,1,... andi € N. At an event timeti, we have
Hence in this case we also have= 0 for the agents’ initial

average. ei(ty) = zi(ty,) —zi(ty) =0
Denote nowLz £ z = [z1,..., zy]" and consider again and thus, condition (13) is enforced.
1 It should be emphasized that the condition (14) is verified
V= 57 Lz by agenti only based on information of each own and
Then neighboring agents’ information.
] A similar theorem regarding the inter-event times holds in
V=a"Li=—2"L(Lz+ Le) = =272 — 2T Le the decentralized case as well:
i : . Theorem 3: Consider systemz; = w;, i1 € N =
From the definition of the Laplacian matrix we get {1,.... N} with the control law (11) and update ruling (14),
V= Z Z=D0) zilei—e and assume that is connected. Suppose tHak a <
i JEN; and0 < ¢; < 1 for all i € . Then for any initial condition
_ 2 _ in RY, and any timet > 0 there exists at least one agent
B Zzl Z [Nifzqes +ZZ:J§ i k € N for which the next inter-event interval is strictly
positive.
Using now the inequalityzy| < §2° + 5.4, fora > 0, we  proof: Assume that (14) holds for alle A at timet. If it
can boundV as doesn’t hold, then continuous evolution is possible since a
V<- ZZ? I ZGWHZ? least one agent can still let its absolute measurement error

increase without resetting (10). Hence assume thatadt
errors are reset to zero. We will show that there exists at lea
Z INile? +> Z 52 e onek € N such that its next inter-event interval is bounded
i JEN; from below by a certain timep > 0.



Denoting case. It can be seen that the system converges in both

k = arg max | z;| frameworks.
’ Figure 2 shows the evolution of the error norm in the
and considering thae;| < e[| holds for alli, we have centralized case. The solid line represents the evolufitimeo
lex] llell error ||e(¢)||. This stays below the specified state-dependent
Nlzi| = Jlz]| threshold||e|| ez = a|”Lx| which is represented by the
so that dotted line in the Figure. The existence of a minimum inter-
@ M — el event time is clearly visible in this example.
lzel = Izl [ Lz
From the proof of Theorem 1 and the control update rul
(14), we deduce that the next inter-event interval of agent T lidec
is bounded from below by a time, that satisfies ot feent
N D _ Uka(l—a|Nk|)
1—7p L] | Ni|
so that
ora(l — a|Ng|)

7 NN+ [Zloxa(t = alNi])
and the proof is complete) ,
We should note that the result of this Theorem is mor 5 5 0 - 2 % % % 20
conservative than the centralized case, since it only gue. Time
antee.s th‘f"t there are no. accu.mulatlon pqlnts and contlnung 1. Four agents evolve under (6),(9) in the centralizasiec and the
evolution is viable at all times instants. Using now La Salle ontrol law (11),(14) in the decentralized case. Convergem the initial
Invariance Principle for Hybrid Systems [15], the followgin average is achieved in both cases.
convergence result is straightforward:
Corollary 4: Consider systenmt = « with the control law
(11),(14) and assume that the communication gréplis
connected. Then all agents converge to their initial averag

H llellmax
l.e., o8l lle(l

t—o0 4 N
for all i € NV.
Proof: By virtue of Theorem 3, the closed-loop switched

system does not exhibit Zeno behavior. The rest of the pro
is identical to that of Corollary 2

V. EXAMPLES

L L
0 5 10 15 20 25 30 35 40

The results of the previous Sections are depicted throug Time
computer simulations.

Consider a network of four agents whose Laplacian matri ig. 2. Evolution of the error norm in the centralized casbke Bolid
is given by ine represents the evolution of the error nof(¢)||, which stays below

L
the specified state-dependent thresh@lel|maz = a% which is
1 -1 0 0 represented by the dotted line in the Figure.

-1 3 -1 -1
o -1 2 -1
0o -1 -1 2 The next two figures depict how condition (13) is realized
. . ._in the decentralized case for agents 1,3. In particular, the
We consider both the centralized and the decentrallzesajlid line in Figure 3 shows the evolution &f, (¢)|. This

framework. Four agents start from random initial condision e .
. : stays below the specified state-dependent threshold given b
and evolve under the control law (6),(9) in the first case y P P oy

_ ogia(l—a|N:]) ; ;
and the control law (11),(14) in the second case. In the-3) |61|max.— Voo A which is represented by
centralized case, we have set 0.65, ando; = g5 = 0.55, the dotted line in the Figure. The same holds for agent 3
o3 = 04 = 0.75 anda = 0.2 for the decentralized control & Shown in Figure 4 where the solid line represeni&l)|
example. Figure 1 shows the evolution [6Ex ()| in both which also stays below the specified state-dependent thresh
oza(l

cases in time. The bottom solid line shows the evolution ield given by (13)|e3|max = @/Wzg, represented
the centralized and the top dotted line in the decentralizday the dotted line in the Figure.

L =
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Fig. 3.  Four agents are controlled by (11),(14) in the deedined
case. Condition (13) is depicted in the this case for agenfhe solid
line shows the evolution ofe; (¢)|. This stays below the specified state-
dependent threshold given by (1B) |max = \/%zl which

is represented by the dotted line.
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Fig. 4. Condition (13) is depicted in the this case for agenti® solid
line shows the evolution ofes(¢)|. This stays below the specified state- [19]
dependent threshold given by (1B)%|max = \/W@; which

is represented by the dotted line.
[20]

VI. CONCLUSIONS [21]

We considered event-driven strategies for multi-agent sy§2]
tems. The actuation updates were event-driven, depending B3
the ratio of a certain measurement error with respect to the
norm of a function of the state. A centralized formulation of
the problem was considered first and then the results wi
extended to the decentralized counterpart, in which agents
required knowledge only of the states of their neighborg5]
for the controller implementation. The results of the paper
were supported through simulated examples. Future works]
will focus on the application of the framework to other
cooperative multi-agent control tasks.
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