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Abstract— Event-driven strategies for multi-agent systems
are motivated by the future use of embedded microprocessors
with limited resources that will gather information and actuate
the individual agent controller updates. The control actuation
updates considered in this paper are event-driven, depending
on the ratio of a certain measurement error with respect
to the norm of a function of the state, and are applied to
a first order agreement problem. A centralized formulation
of the problem is considered first and then the results are
extended to the decentralized counterpart, in which agents
require knowledge only of the states of their neighbors for
the controller implementation.

I. I NTRODUCTION

Decentralized control of large scale multi-agent systems
is currently facilitated by recent technological advanceson
computing and communication resources. Several results
concerning multi-agent cooperative control have appearedin
recent literature involving agreement or consensus algorithms
[17], [11],[20], formation control [5], [4], [7], [2] and dis-
tributed estimation [18],[23].

One of the most important aspects in the implementation
of distributed algorithms is the communication and controller
actuation schemes. A probable future design may equip each
agent with a small embedded micro-processor, who will
be responsible for collecting information from neighboring
nodes and actuating the controller updates according to some
ruling. The scheduling of the actuation updates can be done
in a time-driven or an event-driven fashion. The first case
involves the traditional approach of sampling at pre-specified
time instances, usually separated by a specific period. In real
applications, the embedded processors are resource-limited,
and thus an event-triggered approach seems more favorable.
In addition, a proper design can also preserve desired prop-
erties of the ideal continuous state-feedback system, suchas
stability and convergence. A comparison of time-driven and
event-driven control for stochastic systems favoring the latter
can be found in [3]. Stochastic event-driven strategies have
appeared in [19],[12]. In this paper, we use the deterministic
event-triggered strategy introduced by P. Tabuada in [24].
Similar results on deterministic event-triggered feedback
control have appeared in [26],[25],[10],[16],[1].
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In [24], the control actuation is triggered whenever a
certain error becomes large enough with respect to the norm
of the state. It is assumed that the nominal system is Input-
to-State stable [21],[22] with respect to measurement errors.
Motivated by this, in [6] we provided event-triggered control
strategies for a class of cooperative control algorithms,
namely those that can be reduced to a first order agreement
problem [17], which has been proven to be ISS [14]. In [6],
knowledge of the initial average of the states was required
by the agents in order to implement the control strategy. The
motivation of the current paper is to relax this assumption.
In particular, no knowledge of the initial average is required.
We consider both the cases of centralized and decentralized
event-triggered multi-agent control. In the first case, we
show that there exists a strictly positive lower bound on
the time between two consecutive actuation updates. In the
decentralized case, each agent is equipped with its own
embedded microprocessor that can gather only neighboring
information. We show that continuous evolution is enforced
at each time instant for at least one agent and also provide a
minimum lower bound for it; thus ensuring that the overall
switched system does not reach an undesired accumulation
point, i.e., it does not exhibitZeno behavior [13]. The results
are depicted through simulated examples.

The remainder of the paper is organized as follows:
Section II presents some necessary background and discusses
the problem treated in the paper. The centralized case is
discussed in Section III while Section IV presents the de-
centralized counterpart. Some examples are given in Section
V while Section VI includes a summary of the results of this
paper and indicates further research directions.

II. BACKGROUND AND PROBLEM STATEMENT

In this section we first review some related results on
algebraic graph theory [9] that are used in the paper and
proceed to describe the problem in hand.

A. Algebraic Graph Theory

For an undirected graphG with N vertices theadjacency
matrix A = A(G) = (aij) is the N × N matrix given by
aij = 1, if (i, j) ∈ E, whereE is the set of edges, and
aij = 0, otherwise. If there is an edge(i, j) ∈ E, then i, j

are calledadjacent. A path of lengthr from a vertexi to a
vertexj is a sequence ofr+1 distinct vertices starting withi
and ending withj such that consecutive vertices are adjacent.
For i = j, this path is called acycle. If there is a path between
any two vertices of the graphG, thenG is calledconnected.
A connected graph is called atree if it contains no cycles.
The degree di of vertex i is defined as the number of its



neighboring vertices, i.e.di = {#j : (i, j) ∈ E}. Let ∆
be then × n diagonal matrix ofdi’s. Then∆ is called the
degree matrix of G. The (combinatorial)Laplacian of G is
the symmetric positive semidefinite matrixL = ∆−A. For a
connected graph, the Laplacian has a single zero eigenvalue
and the corresponding eigenvector is the vector of ones,1.
We denote by0 = λ1(G) ≤ λ2(G) ≤ . . . ≤ λN (G) the
eigenvalues ofL. If G is connected, thenλ2(G) > 0.

B. System Model

The system considered consists ofN agents, withxi ∈ R

denoting the state of agenti. Note that the results of the
paper are extendable to arbitrary dimensions. We assume that
agents’ motion obeys a single integrator model:

ẋi = ui, i ∈ N = {1, . . . , N} (1)

whereui denotes the control input for each agent.
Each agent is assigned a subsetNi ⊂ {1, . . . , N} of the

rest of the team, called agenti’s communication set, that
includes the agents with which it can communicate. The
undirectedcommunication graph G = {V,E} of the multi-
agent team consists of a set of verticesV = {1, ..., N}
indexed by the team members, and a set of edges,E =
{(i, j) ∈ V × V |i ∈ Nj} containing pairs of vertices that
correspond to communicating agents.

C. Problem Statement

The agreement control laws in [8], [17] were given by

ui = −
∑

j∈Ni

(xi − xj) (2)

and the closed-loop equations of the nominal system (without
quantization) werėxi = −

∑

j∈Ni

(xi − xj , ), i ∈ {1, . . . , N},

so that ẋ = −Lx, wherex = [x1, . . . , xN ]T is the stack
vector of agents’ states andL is the Laplacian matrix of
the communication graph. For a connected graph, all agents’
states converge to a common point, called the “agreement
point”, which coincides with the average1

N

∑

i

xi(0) of the

initial states.
Note that the model (1),(2) has been shown to capture the

behavior of other multi-agent control problems apart from the
agreement problem. For example, it was shown in [7] that a
class of formation control problems can be reduced to a first
order agreement one with an appropriate transformation.

In this paper, we redefine the above control formulation to
take into account event-triggered strategies. Consider the sys-
tem (1). Both centralized and decentralized event-triggered
cooperative control are treated. The control formulation and
problem statement for each case are described in the sequel.

1) Centralized Event-triggered Cooperative Control: For
eachi ∈ N , andt ≥ 0, introduce a (state) measurement error
ei(t). Denote the stack vectore(t) = [e1(t), . . . , eN (t)]T .
The discrete time instants where the events are triggered
are defined when a conditionf(e(t), x(t)) = 0 holds.
The sequence of event-triggered executions is denoted
by: t0, t1, . . .. As noted above, eachti is defined by

f(e(ti), x(ti)) = 0, for i = 0, 1, . . .. To the sequence of
eventst0, t1, . . . corresponds a sequence of control updates

u(t0), u(t1), . . .

Between control updates the value of the inputu is held
constant and equal to the last control update, i.e.,:

u(t) = u(ti),∀t ∈ [ti, ti+1) (3)

and thus the control law ispiecewise constant between the
event timest0, t1, . . ..

The centralized cooperative control problem treated in this
paper can be stated as follows: “derive control laws of the
form (3) and event timest0, t1, . . . that drive system (1) to
an agreement point.”

2) Decentralized Event-triggered Cooperative Control:
In the decentralized case, there is a separate sequence of
events tk0 , tk1 , . . . defined for each agentk according to
fk(ek(tki ),

∑

j∈Nk
(xi(t

k
i ) − xj(t

k
i ))) = 0, for k ∈ N and

i = 0, 1, . . .. Hence a separate condition encoded by the
function fk(ek(tki ),

∑

j∈Nk
(xi(t

k
i ) − xj(t

k
i ))) triggers the

events for agentk ∈ N . The update condition is distributed
in the sense that each agent requires knowledge of its own
measurement error and the relative states of its neighboring
agents in order to verify this condition.

The decentralized control law fork is updated both at its
own event timestk0 , tk1 , . . ., as well as at the last event times
of its neighborstj0, t

j
1, . . . , j ∈ Nk. Thus it is of the form

uk(t) = uk(tki ,
⋃

j∈Nk

t
j

i′(t)), (4)

wherei′(t)
∆
= arg min

l∈N:t≥t
j

l

{

t − t
j
l

}

.

The decentralized cooperative control problem can be
stated as follows: “derive control laws of the form (4), and
event timestk0 , tk1 , . . ., for each agentk ∈ N that drive
system (1) to an agreement point.”

III. C ENTRALIZED APPROACH

Consider the event-triggered multi-agent control problem
described previously. We assume that the control law can
be actuated only at discrete instances of time instead of
being a continuous feedback. These instances are triggered
when the measurement error of the state variable reaches
a certain threshold. In the case treated in this section, the
centralized event-triggered control scheme is considered. The
decentralized case is treated in the next section.

Following the notation given in the previous section, the
state measurement error is defined by

e(t) = x(ti) − x(t), i = 0, 1, . . . (5)

for t ∈ [ti, ti+1). The choice ofti encoded by the function
f will be given in the sequel. The proposed control law in
the centralized case has the form (3) and is defined as the
event-triggered analog of the ideal control law (2):

u(t) = −Lx(ti), t ∈ [ti, ti+1) (6)



The closed loop system is then given by

ẋ(t) = −Lx(ti) = −L(x(t) + e(t)) (7)

Denote by x̄(t) = 1
N

∑

i

xi(t) the average of the agents’

states. Using the fact that the graph is undirected, the time
derivative ofx̄(t) is then given by

˙̄x =
1

N

∑

i

ẋi = −
1

N

∑

i

∑

j∈Ni

(xi(t) − xj(t))

−
1

N

∑

i

∑

j∈Ni

(ei(t) − ej(t)) = 0

so that x̄(t) = x̄(0) =
1

N

∑

i

xi(0) ≡ x̄, i.e., the initial

average remains constant.
A candidate ISS Lyapunov function [22] for the closed-

loop system 7 is:

V =
1

2
xT Lx

We have

V̇ = xT Lẋ = −xT LL(x + e) = −‖Lx‖2 − xT LLe

so that
V̇ ≤ −‖Lx‖2 + ‖Lx‖‖L‖‖e‖

Enforcinge to satisfy

‖e‖ ≤ σ
‖Lx‖

‖L‖
(8)

with σ > 0, we get

V̇ ≤ (σ − 1) ‖Lx‖2

which is negative forσ < 1 and‖Lx‖ 6= 0.
Thus, the events are triggered when:

f (e, x)
∆
= ‖e‖ − σ

‖Lx‖

‖L‖
= 0 (9)

This choice off is of course motivated by the analysis above
in order to guarantee convergence to an agreement point.
The event times are thus defined byf(e(ti), x(ti)) = 0, for
i = 0, 1, . . .. At eachti, the control law is updated according
to (6):

u(ti) = −Lx(ti)

and remains constant, i.e.,u(t) = −Lx(ti) for all t ∈
[ti, ti+1). Once the control task is executed the error is reset
to zero, since at that point we havee(ti) = x(ti)−x(ti) = 0
for the specific event time so that (8) is enforced.

The proposed control policy attains a strictly positive
lower bound on the inter-event times. This is proven in the
following theorem:

Theorem 1: Consider systemẋ = u with the control
law (6),(9) and assume that the communication graphG is
connected. Suppose that0 < σ < 1. Then for any initial
condition inR

N the inter-event times{ti+1 − ti} implicitly

defined by the rule (9) are lower bounded by a strictly
positive timeτ which is given by

τ =
σ

‖L‖ (1 + σ)
Proof : We will compute the time derivative of||e||||Lx|| :

d

dt

‖e‖

‖Lx‖
= −

eT ẋ

‖e‖ ‖Lx‖
−

(Lx)T Lẋ

‖Lx‖2

‖e‖

‖Lx‖

≤
‖e‖ ‖ẋ‖

‖e‖ ‖Lx‖
+

‖ẋ‖‖L‖‖e‖

‖Lx‖2

=

(

1 +
‖L‖‖e‖

‖Lx‖

)

‖ẋ‖

‖Lx‖

≤

(

1 +
‖L‖‖e‖

‖Lx‖

)

‖Lx‖ + ‖Le‖

‖Lx‖

≤

(

1 +
‖L‖‖e‖

‖Lx‖

)2

Using the notation

y =
‖e‖

‖Lx‖

we have
ẏ ≤ (1 + ‖L‖y)

2

so thaty satisfies the bound

y(t) ≤ φ (t, φ0)

whereφ (t, φ0) is the solution of

φ̇ = (1 + ‖L‖φ)
2
, φ (0, φ0) = φ0

Hence the inter-event times are bounded from below by the
time τ that satisfies

φ (τ, 0) =
σ

‖L‖

The solution of the above differential equation is given by

φ (τ, 0) =
τ

1 − τ ‖L‖

so that
τ =

σ

‖L‖ (1 + σ)

and the proof is complete.♦
Using the extension of La Salle’s Invariance Principle for

hybrid systems [15], the following Corollary regarding the
convergence of the closed-loop system is now evident:

Corollary 2: Consider systemẋ = u with the control
law (6),(9) and assume that the communication graphG is
connected. Suppose that0 < σ < 1. Then all agents converge
to their initial average, i.e.,

lim
t→∞

xi(t) = x̄ =
1

N

∑

i

xi(0)

for all i ∈ N .
Proof : SinceV̇ ≤ (σ − 1) ‖Lx‖2, by Theorem IV.1 in [15],
we have thatlimt→∞ Lx(t) = 0. SinceG is connected, the
latter corresponds to the fact that all elements ofx are equal
at steady state, i.e.,limt→∞ xi(t) = x∗. Since the initial
average remains constant we havex∗ = x̄ = 1

N

∑

i

xi(0) at

steady state.♦



IV. D ECENTRALIZED APPROACH

In the centralized case, all agents had to be aware of the
global measurement errore in order to enforce the condition
(8). In this section, we consider the decentralized counterpart.
In particular, each agent now updates its own control input
at event times it decides based on information from its
neighboring agents. The event times for each agenti ∈ N are
denoted byti0, t

i
1, . . .. We will follow the structure described

at the end of Section II to define the functionsfi, i ∈ N
according to which the event times for agenti are defined.

The measurement error for agenti is defined as

ei(t) = xi(t
i
k) − xi(t), t ∈ [tik, tik+1) (10)

The decentralized control strategy for agenti is now given
by:

ui(t) = −
∑

j∈Ni

(

xi(t
i
k) − xj(t

j

k′(t))
)

(11)

where
k′(t)

∆
= arg min

l∈N:t≥t
j

l

{

t − t
j
l

}

Thus for eacht ∈ [tik, tik+1), t
j

k′(t) is the last event time of
agentj. Hence, each agent takes into account the last update
value of each of its neighbors in its control law. The control
law for i is updated both at its own event timesti0, t

i
1, . . ., as

well as at the event times of its neighborst
j
0, t

j
1, . . . , j ∈ Ni.

Note that this definition ofk′ impliesxj(t
j

k′(t)) = xj(t)+

ej(t). We thus have

ẋi(t) = −
∑

j∈Ni

(

xi(t
i
k) − xj(t

j

k′(t))
)

=

= −
∑

j∈Ni

(xi(t) − xj(t)) −
∑

j∈Ni

(ei(t) − ej(t))

Hence in this case we also have˙̄x = 0 for the agents’ initial
average.

Denote nowLx , z = [z1, . . . , zN ]T and consider again

V =
1

2
xT Lx

Then

V̇ = xT Lẋ = −xT L(Lx + Le) = −zT z − zT Le

From the definition of the Laplacian matrix we get

V̇ = −
∑

i

z2
i −

∑

i

∑

j∈Ni

zi (ei − ej)

= −
∑

i

z2
i −

∑

i

|Ni|ziei +
∑

i

∑

j∈Ni

ziej

Using now the inequality|xy| ≤ a
2x2 + 1

2a
y2, for a > 0, we

can boundV̇ as

V̇ ≤−
∑

i

z2
i +

∑

i

a|Ni|z
2
i

+
∑

i

1

2a
|Ni|e

2
i +

∑

i

∑

j∈Ni

1

2a
e2
j

wherea > 0.
Since the graph is symmetric, by interchanging the indices

of the last term we get
∑

i

∑

j∈Ni

1

2a
e2
j =

∑

i

∑

j∈Ni

1

2a
e2
i =

∑

i

1

2a
|Ni|e

2
i

so that

V̇ ≤ −
∑

i

(1 − a|Ni|)z
2
i +

∑

i

1

a
|Ni|e

2
i

Assume thata satisfies

0 < a <
1

|Ni|
(12)

for all i ∈ N . Then, enforcing the condition

e2
i ≤

σia(1 − a|Ni|)

|Ni|
z2
i (13)

for all i ∈ N , we get

V̇ ≤
∑

i

(σi − 1)(1 − a|Ni|)z
2
i

which is negative definite for0 < σi < 1.
Thus for eachi, an event is triggered when

fi



ei,
∑

j∈Ni

(xi − xj)





∆
= e2

i −
σia(1 − a|Ni|)

|Ni|
z2
i = 0

(14)
wherezi =

∑

j∈Ni

(xi − xj). The update rule (14) holds at the

event timestik corresponding to agenti:

fi



ei

(

tik
)

,
∑

j∈Ni

(xi(t
i
k) − xj

(

tik
)

)



 = 0

with k = 0, 1, . . . and i ∈ N . At an event timetik, we have

ei(t
i
k) = xi(t

i
k) − xi(t

i
k) = 0

and thus, condition (13) is enforced.
It should be emphasized that the condition (14) is verified

by agent i only based on information of each own and
neighboring agents’ information.

A similar theorem regarding the inter-event times holds in
the decentralized case as well:

Theorem 3: Consider systemẋi = ui, i ∈ N =
{1, . . . , N} with the control law (11) and update ruling (14),
and assume thatG is connected. Suppose that0 < a < 1

|Ni|
and0 < σi < 1 for all i ∈ N . Then for any initial condition
in R

N , and any timet ≥ 0 there exists at least one agent
k ∈ N for which the next inter-event interval is strictly
positive.
Proof : Assume that (14) holds for alli ∈ N at time t. If it
doesn’t hold, then continuous evolution is possible since at
least one agent can still let its absolute measurement error
increase without resetting (10). Hence assume that att all
errors are reset to zero. We will show that there exists at least
onek ∈ N such that its next inter-event interval is bounded
from below by a certain timeτD > 0.



Denoting
k = arg max

i
|zi|

and considering that|ei| ≤ ‖e‖ holds for all i, we have

|ek|

N |zk|
≤

‖e‖

‖z‖

so that
|ek|

|zk|
≤ N

‖e‖

‖z‖
= N

‖e‖

‖Lx‖

From the proof of Theorem 1 and the control update rule
(14), we deduce that the next inter-event interval of agentk

is bounded from below by a timeτD that satisfies

N
τD

1 − τD ‖L‖
=

σka(1 − a|Nk|)

|Nk|

so that

τD =
σka(1 − a|Nk|)

N |Nk| + ‖L‖σka(1 − a|Nk|)

and the proof is complete.♦
We should note that the result of this Theorem is more

conservative than the centralized case, since it only guar-
antees that there are no accumulation points and continuous
evolution is viable at all times instants. Using now La Salle’s
Invariance Principle for Hybrid Systems [15], the following
convergence result is straightforward:

Corollary 4: Consider systeṁx = u with the control law
(11),(14) and assume that the communication graphG is
connected. Then all agents converge to their initial average,
i.e.,

lim
t→∞

xi(t) = x̄ =
1

N

∑

i

xi(0)

for all i ∈ N .
Proof : By virtue of Theorem 3, the closed-loop switched
system does not exhibit Zeno behavior. The rest of the proof
is identical to that of Corollary 2.♦

V. EXAMPLES

The results of the previous Sections are depicted through
computer simulations.

Consider a network of four agents whose Laplacian matrix
is given by

L =









1 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2









We consider both the centralized and the decentralized
framework. Four agents start from random initial conditions
and evolve under the control law (6),(9) in the first case,
and the control law (11),(14) in the second case. In the
centralized case, we have setσ = 0.65, andσ1 = σ2 = 0.55,
σ3 = σ4 = 0.75 and a = 0.2 for the decentralized control
example. Figure 1 shows the evolution of||Lx(t)|| in both
cases in time. The bottom solid line shows the evolution in
the centralized and the top dotted line in the decentralized

case. It can be seen that the system converges in both
frameworks.

Figure 2 shows the evolution of the error norm in the
centralized case. The solid line represents the evolution of the
error ||e(t)||. This stays below the specified state-dependent

threshold||e||max = σ
‖Lx‖

‖L‖
which is represented by the

dotted line in the Figure. The existence of a minimum inter-
event time is clearly visible in this example.
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Fig. 1. Four agents evolve under (6),(9) in the centralized case, and the
control law (11),(14) in the decentralized case. Convergence to the initial
average is achieved in both cases.
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Fig. 2. Evolution of the error norm in the centralized case. The solid
line represents the evolution of the error norm||e(t)||, which stays below

the specified state-dependent threshold||e||max = σ
‖Lx‖

‖L‖
which is

represented by the dotted line in the Figure.

The next two figures depict how condition (13) is realized
in the decentralized case for agents 1,3. In particular, the
solid line in Figure 3 shows the evolution of|e1(t)|. This
stays below the specified state-dependent threshold given by

(13) |e1|max =
√

σ1a(1−a|N1|)
|N1|

z1 which is represented by
the dotted line in the Figure. The same holds for agent 3
as shown in Figure 4 where the solid line represents|e3(t)|
which also stays below the specified state-dependent thresh-

old given by (13)|e3|max =
√

σ3a(1−a|N3|)
|N3|

z3, represented
by the dotted line in the Figure.
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Fig. 3. Four agents are controlled by (11),(14) in the decentralized
case. Condition (13) is depicted in the this case for agent 1.The solid
line shows the evolution of|e1(t)|. This stays below the specified state-

dependent threshold given by (13)|e1|max =
√

σ1a(1−a|N1|)
|N1|

z1 which
is represented by the dotted line.
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Fig. 4. Condition (13) is depicted in the this case for agent 3. The solid
line shows the evolution of|e3(t)|. This stays below the specified state-

dependent threshold given by (13)|e3|max =
√

σ3a(1−a|N3|)
|N3|

z3 which
is represented by the dotted line.

VI. CONCLUSIONS

We considered event-driven strategies for multi-agent sys-
tems. The actuation updates were event-driven, depending on
the ratio of a certain measurement error with respect to the
norm of a function of the state. A centralized formulation of
the problem was considered first and then the results were
extended to the decentralized counterpart, in which agents
required knowledge only of the states of their neighbors
for the controller implementation. The results of the paper
were supported through simulated examples. Future work
will focus on the application of the framework to other
cooperative multi-agent control tasks.

REFERENCES

[1] A.Anta and P.Tabuada. To sample or not to sample: self-triggered
control for nonlinear systems. IEEE Transactions on Automatic
Control, 2009. to appear.

[2] M. Arcak. Passivity as a design tool for group coordination. IEEE
Transactions on Automatic Control, 52(8):1380–1390, 2007.

[3] K.J. Astrom and B. Bernhardsson. Comparison of Riemann and
Lebesgue sampling for first order stochastic systems.41st IEEE
Conference on Decision and Control, pages 2011–2016, 2002.

[4] M. Cao, B.D.O. Anderson, A.S. Morse, and C. Yu. Control ofacyclic
formations of mobile autonomous agents.47th IEEE Conference on
Decision and Control, pages 1187–1192, 2008.

[5] L. Consolini, F. Morbidi, D. Prattichizzo, and M. Tosques. Leader-
follower formation control of nonholonomic mobile robots withinput
constraints.Automatica, 44(5):1343–1349, 2008.

[6] D.V. Dimarogonas and K.H. Johansson. Event-triggered cooperative
control. European Control Conference, pages 3015–3020, 2009.

[7] D.V. Dimarogonas and K.J. Kyriakopoulos. A connection between
formation infeasibility and velocity alignment in kinematic multi-agent
systems.Automatica, 44(10):2648–2654, 2008.

[8] J.A. Fax and R.M. Murray. Graph Laplacians and stabilization of
vehicle formations.15th IFAC World Congress, 2002.

[9] C. Godsil and G. Royle.Algebraic Graph Theory. Springer Graduate
Texts in Mathematics # 207, 2001.

[10] W.P.M.H. Heemels, J.H. Sandee, and P.P.J. Van Den Bosch.Analysis
of event-driven controllers for linear systems.International Journal
of Control, 81(4):571–590, 2007.

[11] M. Ji and M. Egerstedt. Distributed coordination control of multi-
agent systems while preserving connectedness.IEEE Transactions on
Robotics, 23(4):693–703, 2007.

[12] E. Johannesson, T. Henningsson, and A. Cervin. Sporadic control of
first-order linear stochastic systems.Hybrid Systems: Computation
and Control, pages 301–314, 2007.

[13] K.H. Johansson, M. Egerstedt, J. Lygeros, and S.S. Sastry. On the
regularization of zeno hybrid automata.Systems and Control Letters,
38:141–150, 1999.

[14] D.B. Kingston, W. Ren, and R. Beard. Consensus algorithms are input-
to-state stable.American Control Conference, pages 1686–1690, 2005.

[15] J. Lygeros, K.H. Johansson, S. Simic, J. Zhang, and S. Sastry.
Dynamical properties of hybrid automata.IEEE Transactions on
Automatic Control, 48(1):2–17, 2003.

[16] M. Mazo, A. Anta, and P. Tabuada. On self-triggered control for linear
systems: Guarantees and complexity.European Control Conference,
2009.

[17] R. Olfati-Saber and R.M. Murray. Consensus problems in networks of
agents with switching topology and time-delays.IEEE Transactions
on Automatic Control, 49(9):1520–1533, 2004.

[18] R. Olfati-Saber and J.S. Shamma. Consensus filters for sensor
networks and distributed sensor fusion.44th IEEE Conference on
Decision and Control, pages 6698–6703, 2005.

[19] M. Rabi, K.H. Johansson, and M. Johansson. Optimal stopping for
event-triggered sensing and actuation.47th IEEE Conference on
Decision and Control, pages 3607–3612, 2008.

[20] W. Ren and E.M. Atkins. Distributed multi-vehicle coordinated control
via local information exchange.International Journal of Robust and
Nonlinear Control, 17(10-11):1002–1033, 2007.

[21] E.D. Sontag. On the input-to-state stability property. European Journal
of Control, 1:24–36, 1995.

[22] E.D. Sontag and Y. Wang. On characteizations of the input-to-state
stability property.Systems and Control Letters, 24:351–359, 1995.

[23] A. Speranzon, C. Fischione, and K.H. Johansson. Distributed and
collaborative estimation over wireless sensor networks.45th IEEE
Conference on Decision and Control, pages 1025–1030, 2006.

[24] P. Tabuada. Event-triggered real-time scheduling of stabilizing control
tasks. IEEE Transactions on Automatic Control, 52(9):1680–1685,
2007.

[25] X. Wang and M.D. Lemmon. Event-triggered broadcasting across
distributed networked control systems.American Control Conference,
2008.

[26] X. Wang and M.D. Lemmon. Self-triggered feedback controlsystems
with finite-gain L2 stability.IEEE Transactions on Automatic Control,
54(3):452–467, 2009.


