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Abstract— Event-triggered and self-triggered control, in
which the time of update to the controls is based on either
current or outdated sampled data, have recently been employed
to reduce the computational load or resource consumption for
distributed real-time control systems. In this work, we propose
a self-triggered scheme for nonlinear controlled stochastic dif-
ferential equations with additive noise terms. A self-triggering
update condition is derived that guarantees stability in the p-th
moment of the state distribution. We show that the length of
the times between controller updates as computed from the
proposed scheme is strictly positive and provide examples.

I. INTRODUCTION

In sampled-data control systems, samples of continuous
signals are used to compute and update controllers. How
frequently the system should sample data and update its con-
trol is an important issue that has a large impact on system
performance and stability. In traditional setups, these actions
are scheduled periodically, but this may be conservative and
lead to unnecessary computational load or bandwidth usage,
for example. Alternative approaches, namely event- and self-
triggering, have recently gained considerable attention [1–
13]. The core of this idea is as follows: assuming that a
continuous-time feedback control system is input-to-state
stable [14] with respect to measurement errors, a condition
relating the system state to the time at which the control
should be updated is derived such that a Lyapunov function
is guaranteed to be decreasing. Since the times are based on
the state, the task periods may be longer than those under a
periodic control implementation [2].

Using an event-triggered control implementation, the sys-
tem state is sampled when an error signal first exceeds a
threshold that is based on the current state [1–3]. A number
of works (see [4, 5] and the references therein, for example)
extend these concepts for various notions of stability and to
lengthen the amount of time between task updates. Since an
event-triggered implementation requires continuous monitor-
ing of the system state, which may be impractical for some
systems, another alternative, self-triggering, decides the next
sampling time instant from sampled data [6–11].

Common to most of these works is a deterministic sys-
tem model, but a few attempts at the stochastic case have
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appeared in literature. In [11], a self-triggered H∞ control
was developed for linear systems with a state-dependent
disturbance, and this was extended in [12] for an exogenous
disturbance in L2 space. The robustness of a self-triggered
control strategy to disturbances was analyzed in [9] for linear
systems.

In this work, we develop a self-triggered scheme for
stochastic control systems described by stochastic differential
equations (SDEs) [15] with additive noise terms. For systems
of this type, it may be difficult to predict the system state
at a future time. As such, we rely on the dynamics of
the moments of the state distribution to develop inequality
constraints on the controller update times based on the
previously-measured state. We find inequality conditions for
the length of time between controller updates that guarantee
p-moment stability [16, 17] (p > 0) of the SDE solution.
To the best of our knowledge, this work is the first imple-
mentation of self-triggered control for stochastic differential
equations.

This paper is organized as follows: In Section II, we
introduce relevant notation and definitions and formulate
the problem. Section III proposes a self-triggering scheme
with strictly positive times between control updates, and
Section IV provides numerical examples. Finally, Section V
summarizes the results of this paper.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notation and Definitions

A function γ : R+ → R+ is of class K if it is continuous,
strictly increasing, and γ(0) = 0. It is of class K∞ if, in
addition, it is unbounded. A function β : R+×[0,∞)→ R+

is of class KL if, for each fixed t, β(x, t) is of class K, and,
for each fixed x, β(x, t) is decreasing with β(x, t) → 0 as
t→∞. Let | · | denote the Euclidian norm |x| =

√
xᵀx.

We will consider control systems defined by stochastic
differential equations of the form

dx(t) = f(x, u)dt+ g(x, u)dw, x ∈ Rn, (1)

where f(·, ·) admits a fixed point f(0, 0) = 0, dw is a
(multi-dimensional) increment of a standard Wiener process,
u(t) : [0,∞)→ Rm is a control input, and f(·) and g(·) are
the drift and diffusion scaling factors of the dynamics. The
differential operator L associated with a system in this form,
when applied to a function V (x, t) that is twice-differentiable
in its first argument, is

LV (x, t) =
∂V

∂t
+ fᵀ

∂V

∂x
+

1

2
Trace

(
gᵀ
∂2V

∂x2
g

)
. (2)



Definition II.1 (cf. [18]). A system is said to be p-moment1

input-to-state stable (ISS) with respect to an error e(t) if
there exist a class KL function β and class K functions γ
and λ such that for all t ≥ 0,

E (|x(t)|p) ≤ β (E (|x(0)|p) , t) + γ

(
E
(
λ(sup

t≥0
|e(t)|)

))
.

If λ(|e(t)|) is constant in time, we may also consider the
following definition.

Definition II.2 (cf. [18]). A system is said to be practically
p-moment stable if there exist a class KL function β, a class
K function γ, and a constant d ≥ 0 such that for all t ≥ 0,

E (|x(t)|p) ≤ β (E (|x(0)|p) , t) + γ(d).

If d = 0, the system is said to be p-moment stable.

Remark II.1. The notion of practical stability will be useful
in the case where the diffusion component of the stochastic
control system does not vanish at the origin.

Definition II.3 ([18]). A function V is said to be a stochastic
input-to-state stable Lyapunov function with respect to an
error e(t) if there exist class K∞ functions α and α and
class K functions α and λ such that

α(|x|) ≤ V (x) ≤ α(|x|) (3)
LV (x, t) ≤ λ(|e|)− α(|x|). (4)

B. Problem Statement

We consider the state-feedback controlled system (1) with
sample-and-hold state measurements, i.e.,

dx(t) = f(x, u)dt+ g(x, u)dw (5)
u(t) = k(xi), t ∈ [ti, ti+1) (6)

where ti, i = 1, 2, . . . is a sequence of sampling, or trigger-
ing, times, and xi = x(ti), i = 1, 2, . . ., is the corresponding
sequence of measurements of the system state. Let us define
the error signal e(t) as

e(t) = xi − x(t), t ∈ [ti, ti+1) . (7)

Then (5) is

dx(t) = f(x, k(x+ e))dt+ g(x, k(x+ e))dw (8)

The goal of our work is to develop an update rule for
the stochastic system (7)-(8) that will render the system
practically stable while guaranteeing strictly positive inter-
execution times τi = ti+1 − ti, i = 1, 2, . . ., that is,
there is some minimum time between sampling time points.
For the purpose of motivating the sequel, we will first
begin to formulate the problem using an approach found in
literature for deterministic event-triggered and self-triggered
control systems and describe how this fails when applied to
stochastic control systems.

1To be concise, note that p−th moment actually refers to the expected
value of the Euclidean norm raised to the p-th power [16].

Along these lines, let us assume the existence of a stochas-
tic input-to-state Lyapunov function satisfying (3)-(4). If we
were further to assume that the error were to satisfy [3]

λ(|e|) ≤ K1α(|x|), 0 < K1 < 1, (9)

then by (4), the Lyapunov function V will decrease since

LV (x, t) ≤ −(1−K1)α(|x|). (10)

A condition of the form (9) can be used to implicitly
define the sequence of times {ti}. For example, a triggering
condition of the form

λ(|e(t)|) = K1α(|x(t)|) ⇒ ti+1 := t (11)

would give rise to an event-triggered framework, since the
update rule is based on the current state of the system x(t)
and the previous measurement xi. In order to show that task
periods τi are bounded strictly away from zero, the standard
technique in literature is to examine the duration for which
the error e(t) satisfies a condition like (9) [3, 11]. However,
in the stochastic case considered in this work, the error may
exceed this bound instantaneously, that is, for any M < ∞
and time t > 0, the Euclidean norm of a solution e(t) to a
stochastic differential equation will exceed the level M with
non-zero probability, or Pr (|e(t)| ≥M) > 0 [15, Exercise
8.13]. Because of this, instead of the sample paths e(t) and
x(t), we consider here the p-th moments of these processes,
E(|e|p) and E(|x|p), and develop a triggering condition based
on these statistics to guarantee stability of x(t) in the p-th
moment [16].

As a consequence of this basis for the update rule, we must
rule out an event-triggered implementation. This is because
the controller can only measure an individual sample path
of the process x(t), and not the moments of E(|e|p) and
E(|x|p). However, these moments can be predicted on the
interval [ti, ti+1) based on the last-sampled state xi, which
is suitable for the self-triggered approach and the definition
of a rule for the next sample time ti+1.

The rest of this paper is devoted to developing a relation
involving the sequence of times {ti} and the measurements
xi that may be used in a self-triggered control implementa-
tion for state-feedback control of the stochastic system (7)-
(8).

Since this work deals with stability in the p-th moment, we
must first revise the preliminary notion of stability used to
motivate this work (3)-(4) and provide a Lyapunov function-
based stability criterion for p-moment stability. We begin
with a theorem for p-moment ISS.

Theorem II.1. Suppose there exist a convex class K∞ func-
tion α, class K∞ functions α and α, and twice-differentiable
function V (x, t) such that

α(|x|p) ≤ V (x, t) ≤ α(|x|p), (12)
ELV (x, t) ≤ E (λ(|e|))− E (α(|x|)) (13)

for all t ≥ 0, where lim|x|→∞ α(|x|)/α(|x|p) > 0. Then the
system (7)-(8) is p-moment ISS.



Proof. We refer to the proof of [17, Theorem 3.1], which
applies to more general to stochastic retarded systems with
Markovian switching, but serves as a proof of Theorem II.1
in the specific case of one discrete state and zero delay.
A detailed proof is omitted here and will be presented in
another venue.

III. TRIGGERING CONDITION

Suppose that the error were to satisfy (cf. (9)):

E (λ(|e|)) ≤ K1E (α(|x|)) + d, (14)

for a constant 0 < K1 < 1, so that

ELV (x, t) ≤ −(1−K1)E (α(|x|)) + d, (15)

which would mean that the system is practically p-moment
stable with a stability margin of γ(d) (and p-moment stable
if d = 0). The following theorem and corollary provide
relations that can be used to calculate a strictly positive inter-
execution time τi = ti+1−ti as a function of the norm of last-
observed state |xi|, i.e., in a self-triggered implementation.

Theorem III.1. Assume that in addition to the conditions of
Theorem II.1, we assume Lipschitz continuity of the drift and
diffusion scaling factor of (1), where, for the drift component,
we have the relation

|f(x, k(x+ e))− f(x′, k(x′ + e′))|2
≤ K2(|x− x′|2 + |e− e′|2), ∀x′ 6= x, e′ 6= e,

(16)

and we assume linear growth for the diffusion scaling factor:

|g(x, k(x+ e))|2 ≤ K3(1 + |x|2 + |e|2), ∀x, e (17)

for positive constants K2 and K3. Let us define the increas-
ing functions

A(τi) = 9τi(K2τi +K3) exp (12τi(K2τi +K3)) , (18)
B(τi) = 3K3τi exp (12τi(K2τi +K3)) , (19)

and assume that the inter-execution times satisfy for t ∈
[ti, ti + τi),

λv
(
A(τi)|xi|2 +B(τi)

)
≤ K1αc

((
1

3
−A(τi)

)
|xi|2 −B(τi) + dα

)
, (20)

for a constant dα ≥ 0, a convex class K function αc(·) and
a concave class K function which satisfy

αc(2|x|2) ≤ 2α(|x|) (21)

λv(|e|) ≥ λ(
√
|e|). (22)

Then (14) will hold with d = K1αc(2dα)/2. Moreover, the
execution times do not reach an accumulation point, i.e.,
τi > 0.

Remark III.1. The inter-execution times τi, i = 0, 1, . . .,
may be solved numerically from (20) based on the norm of
the last-observed state |xi|.

Proof. Before addressing the inter-execution times, we in-
stead start with a more conservative condition than (20),
namely,

λv
(
E(|e|2)

)
≤ K1αc

(
E
(
|x|2
)
+ dα

)
. (23)

We show that this implies (14), and then prove that (23) is
satisfied when the assumption (20) holds.

Beginning with the right hand side of (23), since αc(·) is
convex, we have from (21) and Jensen’s inequality that

K1αc
(
E(|x|2) + dα

)
= K1αc

(
2

(
1

2
E(|x|2) + 1

2
dα

))
≤ K1E

(
αc(2|x|2)/2

)
+K1αc(2dα)/2

≤ K1E (α(|x|)) + d, (24)

where d = K1αc(2dα)/2. Through the concavity of λv(·),
the left hand side of (23) can also be made to match that of
(14) using Jensen’s inequality and (22).

Next, we find an upper bound on E(|e|2) during the
interval [ti, ti + τi) in terms of the inter-execution time τi
and the last-observed state |xi|2. Recall that from (5) and
(7), the error kinematics satisfy for t ∈ [ti, ti+1):

e(t) = −
∫ t

ti

f(x, u)ds−
∫ t

ti

g(x, u)dws. (25)

Then for any t ∈ [ti, ti+1),

E(|e|2) = E

(∣∣∣∣∫ t

ti

f(x, u)ds

∣∣∣∣2
)

+ E

(∣∣∣∣∫ t

ti

g(x, u)dws

∣∣∣∣2
)

+ 2E

((∫ t

ti

f(x, u)ds

)ᵀ(∫ t

ti

g(x, u)dws

))

≤ 3E

(∣∣∣∣∫ t

ti

f(x, u)ds

∣∣∣∣2
)

+ 3E

(∣∣∣∣∫ t

ti

g(x, u)dws

∣∣∣∣2
)
.

Using the Itō Isometry [15] and (16)-(17), we can obtain

E(|e|2) ≤ 3(ti+1 − ti)E
(∫ t

ti

|f(x, u)|2 ds
)

+ 3E
(∫ t

ti

|g(x, u)|2 ds
)

≤ 3(ti+1 − ti)E
(∫ t

ti

K2(|x|2 + |e|2)ds
)

+ 3E
(∫ t

ti

K3(1 + |x|2 + |e|2)ds
)

= 3K3(ti+1 − ti) + 3((ti+1 − ti)K2 +K3)

∫ t

ti

E(|x|2)ds

+ 3((ti+1 − ti)K2 +K3)

∫ t

ti

E(|e|2)ds,



or, since |x|2 ≤ 3|xi|2 + 3|e|2,

E(|e|2) ≤ 3K3(ti+1 − ti)

+ 9((ti+1 − ti)K2 +K3)

∫ t

ti

E(|xi|2)ds

+ 12((ti+1 − ti)K2 +K3)

∫ t

ti

E(|e|2)ds

≤ C(|xi|2, τi), (26)

where we have used Gronwall’s inequality, and
C(|xi|2, τi) = A(τi)|xi|2 + B(τi) with A(τi) and B(τi)
defined in (18)-(19). Substituting (26) in the condition (23),

λv
(
C(|xi|2, τi)

)
≤ K1αc

(
E(|x|2) + dα

)
, (27)

or, since |xi|2 = E(|x + e|2) ≤ 3E(|x|2) + 3E(|e|2) ≤
3E(|x|2) + 3C(|xi|2, τi), the right hand side can be made
more conservative,

λv
(
C(|xi|2, τi)

)
≤ K1αc

( |xi|2
3
− C(|xi|2, τi) + dα

)
,

(28)

which is exactly assumption (20).
Next, to show the existence of a lower bound for the

inter-execution times implicitly defined by (20) or (28), we
point out that C(·, ·) is increasing in both arguments, and,
consequently, for (28) to admit a τi > 0 for any |xi|2, then
(28) should hold when the last-observed state approaches
|xi|2 = 0. Letting |xi|2 = 0 in (28), we have

0 < α−1c

(
λv(B(τi))

K1

)
+B(τi) < dα,

and so, since B(τi) is an increasing function, τi > 0.

If dα = 0 (d = 0) in (28), we would need C(|xi|2, τi) <
|xi|2/3 in order to keep a positive right hand side in (28). As
the last-observed state approaches the origin, however, some
systems may still allow for positive inter-execution times for
any |xi| and dα = 0, based on the following corollary.

Corollary III.1. Suppose that g(·, ·) also admits an equi-
librium point g(0, 0) = 0, which, by a Lipschitz argument
similar to (16), allows us to write

|g(x, k(x+ e))|2 ≤ K3(|x|2 + |e|2). (29)

If the inter-execution time τi is such that

A(τi) ≤ κ/3 (30)

for a constant 0 < κ < 1 satisfying

λv

(κ
3
|xi|2

)
≤ K1αc

(
1

3
(1− κ)|xi|2

)
, (31)

then condition (23) with dα = 0 implies (14) with d = 0,
i.e., p-moment stability is guaranteed, with τi > 0.

Proof. Using (29) instead of (17) in the proof of Theo-
rem III.1, we can derive (28) with C(|xi|2, τi) = A(τi)|xi|2.
Substituting (30) into (31), we obtain (28) with dα = 0,
which implies (14) with d = 0.
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Fig. 1. Evolution of the second moment E(|x|2) over a 10 second
simulation, averaged over 1000 sample trajectories, with standard deviation
bands shown. The initial condition is a vector of magnitude x1(0)2 +
x2(0)2 = 5 and random direction. Since the noise does not vanish, we
expect to achieve practical p-moment stability. Inset: Distribution of inter-
execution times p(τi), E(τi) = 0.0245, min(τi) = 0.0049.

Note that this additional assumption to allow for d = 0
results in a periodic triggering condition (30), which may
be solved numerically, as before. In other words, when
the diffusion vanishes at the origin and we are tasked
with p-moment stability, the self-triggering rule (20) should
be replaced by the periodic triggering rule (30) when xi
approaches the origin.

IV. EXAMPLES

In this section we provide a pair of examples in which the
noise is either constant or vanishing at the origin.

A. Nonlinear example with constant noise intensity

The first example is a nonlinear system whereby the state
x = [x1, x2]

ᵀ obeys

dx1 = (−x1 + x2) dt+ σ1dw1 (32)
dx2 = (u(x) sin(x1)− 4x2) dt+ σ2dw2 (33)

with u(x) = x1 + x2, and where the noise intensity σ1 =
σ2 = 1. Let V (x) = (x21 + x22)/2. Then

LV = x1(−x1 + x2)

+ x2((x1 + x2 + ex1
+ ex2

) sin(x1)− 4x2) +
1

2
(σ2

1 + σ2
2)

≤ −x21 + 2|x1||x2| − 3x22 + |ex1
+ ex2

||x2|

≤ −
[
|x1| |x2|

]
Q

[
|x1|
|x2|

]
+ 3|e|2 + σ2

≤ −δ|x|2 + 3|e|2 + d, (34)

where δ ≈ 0.38 is the smallest eigenvalue of Q =[
1 −1
−1 2

]
, and where d = 1 = K3. Taking the expected

value of both sides of (34),

ELV ≤ −δE
(
|x|2
)
+ 3E

(
|e|2
)
+ d, (35)

and so we choose K1 = 0.125 < δ/3, where λv(|e|) = |e|
and αc(|x|) = |x|, so that dα = d/K1. Then with K2 = 3,
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Fig. 2. Evolution of the second moment E(|x|2) over an 8 second simula-
tion, averaged over 500 sample trajectories, with standard deviation bands
shown. The initial condition is a vector of magnitude x1(0)2+x2(0)2 = 5
and random direction. (Inset) Distribution of inter-execution times p(τi)
before t = 7.5 s, E(τi) = 0.0691, min(τi) = 0.0024 (or E(τi) = 0.0039
and min = 9.86× 10−4 when times t > 7.5 s are included).

we require from (28)

C(|xi|2, τi) ≤ K1

(
1

3
|xi|2 − C(|xi|2, τi) + dα

)
(36)

in order to guarantee practical stability in the p = 2 moment.
Figure 1 shows E(|x|2) based on 1000 simulations along with
the distribution of inter-execution times τi.

B. Nonlinear example with vanishing noise

Next consider the same model as (32)-(33), but with state-
dependent noise intensities σ1 = x1 and σ2 = x2. We can
now obtain (34) with d = 0 and δ ≈ 0.086, and K1 =
0.028 < δ/3, K2 = 2, and K3 = 1. With λv(|e|) = |e| and
αc(|x|) = |x|, we can solve for κ in (31) as κ < K1/(1 +
K1) = 0.0278, and we choose κ = 0.027. A periodic control
update using the triggering times determined by (30) leads
to τi = 9.86×10−4. Therefore, to speed up convergence, we
first aim for practical stability with dα = 1, which allows τi’s
on the order of 0.02 based on the self-triggering condition
(28), for the first 7.5 seconds of the 10 s simulation, before
switching to a periodic update from (30). In Fig. 2, it is
seen that E(|x|2) is stabilized to the origin, but this happens
before 7.5 s, which indicates that (30) may have room for
improvement.

V. CONCLUSIONS

This paper presents a self-triggered control scheme for
state-feedback controlled stochastic differential equations.
Since the inequality-based sampling conditions found in
previous event- and self-triggered control works may be
instantaneously violated in the presence of the stochastic
noise considered in this paper, we instead focus on the
moments of the state distribution. These moments can be
predicted based on the last-observed state and are used here
to develop a self-triggered control scheme. The scheme is
shown to produce strictly positive inter-execution times that
guarantee p-moment stability of the process.

In future work, a less conservative sampling rule may
be obtainable by drawing from the various approaches in
literature for the deterministic case that lengthen the inter-
execution times. Moreover, the robustness of our scheme to

a delay between state sampling and implementation of the
updated control, i.e., a task delay, will be examined. The
application of this scheme for stochastic problems where
control updates or state sampling are expensive or limited,
e.g., multi-agent robotic systems and distributed estimation,
will also be the focus of future work.
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