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Abstract— Future multi-agent systems will include embedded Similar results on deterministic event-triggered feedbac
microprocessors with limited resources to gather information control have appeared in [20],[19].
and actuate th(_a |nd|V|duaI__agent controller up_dates. In thl_s The approach of [17] involves triggering of the control
paper we examine the stability of such scheme in a cooperative tuati h tai b | h
control problem where the actuation updates are event-driven a(? uation whenever a certain error epomes arge enoug
depending on the ratio of a certain measurement error with W|th reSpeCt to the norm Of the state. It is assumed that some
respect to the norm of the state. In the centralized case, we kind of asymptotic stability holds for the nominal system
obtain a strictly positive lower bound in the inter-event times,  and tools from perturbation analysis of nonlinear systeras a
while relevan_t, yet more conservative, results are obtained in used to analyze the convergence of the event-driven system.
the decentralized case. - .. . .
In particular, it is assumed that the nominal system is hput
I. INTRODUCTION to-State stable [15] with respect to measurement errors. We

Recent technoloaical advances on computing and cor¥1v-i" show in the sequel that this framework is suitable for a
e 9 . puting class of cooperative control algorithms, namely thosedhat
munication resources have facilitated the control of larg

. Be reduced to a first order agreement problem [11], which has
scale systems. Distributed approaghes to the control dn‘_su een proven to be ISS [9]. Both the cases of centralized and
systems are preferable to centralized ones due to their

rQ- . . ;
S o . ntraliz vent-trigger ntrol ar nsideredh
bustness to individual agent errors, scalability with eztfo decentralized eventt ggered control are consideredhén

: : first case, it is assumed that there exists a global embedded
increased number of agents and reduced computational Io%is

. . . icroprocessor that collects information about the whole
Several results concerning multi-agent cooperative obntr s
have appeared in recent literature involving agreement gﬁ
consensus algorithms [11], [14], formation control [18]] [ th
and distributed estimation [12],[16].

An important issue that arises in the implementation
distributed algorithms is the realization of the commutiara
and control actuation schemes. In that respect, a futtris
multi-agent system design may equip each agent with
small embedded micro-processor, who will be responsilyle f

stem and triggers the feedback events for each agent. We
ow that similarly to [17], there exists a lower bound on

e inter-event times, i.e., the time between two conseeuti
0ﬁ;\ctuation updates. In The decentralized case, each agent
IS equipped with its own embedded microprocessor that
tcan gather only neighboring information. Similar yet more
Conservative results are obtained. In particular, we shnat t
&ntinuous evolution is enforced at each time instant for at

collecting information from neiahboring nodes and actat Teast one agent and also provide a minimum lower bound
ng! : '9 Ny gt for it; thus ensuring that the overall switched system does

the control updates of the individual agent, according tﬂot reach an undesired accumulation point, i.e., it does not
some ruling. Scheduling of these actuation or executiogxhibitZenO behavior [8] T

times can be done in a time-driven or an event-driven . . ) .
fashion. The first case involves the traditional approach of The rest of the paper is organized as fOH.OWS' Section |l
sampliﬁg at pre-specified time instances, usually sephrat resents Some necessary backgroun_d and dlsgusges the prpb—
by a specific period. Since the microprocéssors are assu e§‘| t.reated |n_the paper. The centralized case is discussed i

: ction 11l while Section IV presents relevant results foe t

to be resource I|m|ted_,_ an event ”'gge'fed approach SeeM3centralized case. Some examples are given in Section V
more favorable. In addition, a proper design can also pveser._ . . . .

: : : . hile Section VI includes a summary of the results of this
desired properties of the ideal continuous state-feedba

- ; 5 per and indicates further research directions.
system, such as stability and convergence. A comparison 0
time-driven and event-driven control for stochastic syste Il. BACKGROUND AND PROBLEM STATEMENT
favoring the latter is found in [2]. Stochastic event-drive

strategies have appeared in [13].[7]. In this paper, we usefm this section we first review some related results on
the deterministic event-triggered strategy introducefllif]. aigebraic graph theory that are used in the paper and proceed

to describe the problem treated in this paper.
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of r + 1 distinct vertices starting withi and ending with triggering the control actuation for each individual agaht

j such that consecutive vertices are adjacent. #ef j, discrete time instants.

this path is called aycle. If there is a path between any As a motivating example, consider a team [&f vehi-

two vertices of the grapl?, then G is called connected.  cles/robots in a formation control scenario (which can be re
A connected graph is calledteee if it contains no cycles. formulated as an agreement problem) that can communicate
The degree d; of vertex: is defined as the number of its and actuate their control laws at discrete instants. Batwee
neighboring vertices, i.ed; = {#j : (i,j) € E}. Let A these instants their control law remains constant, i.és,ih

be then x n diagonal matrix ofd;'s. Then A is called the a case of a switched system with piecewise constant control
degree matrix of G. The (combinatoriall.aplacian of G'is laws. This is different than the switching agreement pnoble
the symmetric positive semidefinite matiix= A— A. For a treated in [14], where only the topology changes at discrete
connected graph, the Laplacian has a single zero eigenvalostants, but the control law has the form (2). In an event-
and the corresponding eigenvector is the vector of ohes, triggered setup, our aim is to render these discrete irstant
We denote by0 = A\ (G) < X\(G) < ... < An(G) the of time as rare as possible, without jeopardizing the désire
eigenvalues of_. If G is connected, then,(G) > 0. system performance. This is for example the case in fleets of
B. System Model cooperating underwater vehicles, where the team can update

i o its control action at discrete sampling instants.

Consider N agents operating ifR. Note though that the
results of the paper are extendable to arbitrary dimensiorfd- Problem Satement
Let z; € R denote the state of agentWe assume first that  Consider the system (1). Both centralized and decentral-
agents’ motion obeys the single integrator model: ized event-triggered cooperative control are treated & th

. . paper. The control formulation and problem statement for
ti =uii €N ={L,....N} (D) each case are described in the sequel.

wherew; denotes the control input for each agent. 1) Centralized Event-triggered Cooperative Control: For

We assume that each agent has limited information on tie@&chi € A/, and¢ > 0, introduce a (state) measurement error
other group members. In particular, each agent is assigned.#t). Denote the stack vectar(t) = [e1(t),...,en(t)]”.
subsetN; C {1,..., N} of the rest of the team, called agentThe discrete time instants where the events are triggeeed ar
i’s communication set, that includes the agents with which defined when a conditiofi(e(¢)) = 0 holds. The sequence of
it can communicate. The limited communication capabditie event-triggered executions is denoted hyt1, . ... As noted
can be encoded in terms of an undirectminmunication  above, each; is defined byf(e(t;)) = 0, for i = 0,1,.. ..
graph G = {V, E}, which consists of a set of verticds=  To the sequence of evenlg, ¢;, ... corresponds a sequence
{1, ..., N} indexed by the team members, and a set of edgesf, control updates:(o), u(t1), .. .. Between control updates
E = {(i,j) € V x V|i € N;} containing pairs of vertices the value of the input: is held constant and equal to the last
that represent inter-agent communication specifications. control update, i.e.,:
C. Event-triggered Cooperative Control u(t) = u(t:), vt € [ti, tiy1) 3)

A large number of multi-agent cooperative control proband thus the control law ipiecewise constant between the
lems can be reformulated as an agreement problem, i.e.egent timesty, ¢q, . . ..
problem where all agents aim to achieve a common value of aThe centralized cooperative control problem treated is thi
certain quantity with limited information. This is for exgte  paper can be stated as follows: “derive control laws of the
the case of decentralized formation control [4], where it caform (3) and event times, 1, ... that drive system (1) to
be shown that the formation problem can be reduced to am agreement point.”
agreement problem with a proper change of variables. We 2) Decentralized Event-triggered Cooperative Control:
thus treat the first-order agreement problem for the system this case, there is a separate sequence of events ...

(1) in this paper. defined for each ageitaccording tofy (ex (tF), {e; (tF)|j €
The agreement control laws in [5], [11] were given by N, }) =0, for k € A andi = 0, 1,.... Hence the separate
v — Z (@i — ;) @ condition fx(ex(t), {e;(t)|j € Ni}) = 0 triggers the events
¢ ‘ v for agentk € N. The decentralized control law fdt is
JEN: _ updated both at its own event timefg ¢5, ..., as well as at
and the cl_osed-loop equations of the noml‘nal system (Withohe |ast event times of its neighbats 1, ..., j € N,. Thus
quantization) werei; = — >° (z; —x;,), 1 €{L,...,N}, it is of the form
K
so that: = — Lz, Whereieis the Laplacian matrix of the up(t) = ug (¥, {t-g, lj € Ni}), (4)

communication graph. For a connected graph, all agents’ A )
states converge to a common agreement point which coiwherei’ = arg min {ff - t?}-

. . o lEN:th >t]
cides with the averagg; 3° ;(0) of the initial states. The decentralized cooperative control problem can be

In this paper, we assume that each agent is equipped witated as follows: “derive control laws of the form (4), and
one or more embedded microprocessors which are resporsient timestf, %, ..., for each agentc € A that drive
ble for collecting information from neighboring agents andsystem (1) to an agreement point.”



[1l. CENTRALIZED APPROACH with ¢ > 0, we get

Consider the cooperative control problem of Sections II- V< (0 —1) 2 (G) |\5||2
C,D. We assume that the control law can be actuated only -
at discrete instances of time instead of being a continuowghich is negative definite for < 1.
feedback. In contrast to traditional sampling approaches, Thus, the events are triggered when:
this paper it is assumed that the control law is actuated

at instants triggered by events, and in particular, at times f(e) a llell — UM =0 (10)
when the measurement error of the state variable reaches L]

a certain threshold. In the case treated in this section, th§,e event times are thus defined be(t:)) = 0, for
control scheme is centralized and it is assumed that their_ 0,1,.... At eacht;, the control is updated according

exists a global microprocessor that collects informatioow 1 () and remains constant, i.e(t) = —Laz(t;) for all t €

the whole system and triggers the control actuation evenfs ;. ) Once the control task is executed the error is reset
for the whole team. This will be relaxed in the next sectiony, erq, since at that point we havé;) = z(t;) — 2(t;) = 0

Following the notation given _in the previous section, thgy, the specific event time so that (9) is enforced.
state measurement error is defined by Similarly to [17], this control policy attains a strictly
e(t) = z(t;) — 2(t),i = 0,1,... (5) Positive lower bound on the inter-event times. This is prove
_ ~in the following theorem:
for ¢ € [t;;ti11). The choice oft; encoded by the function  Theorem 1: Consider systemi = u with the control law

f will be given in the sequel. The proposed control law ing),(10) and assume thatis connected. Then for any initial
the centralized case has the form (3) and is defined as thgndition inRY the inter-event timegt, ., — t;} implicitly

event-triggered analog of the ideal control law (2): defined by the event rule (10) are lower bounded by a strictly
u(t) = —La(ty),t € [t tis1) (6) positive timer which is given by
The closed loop system is then given by T = o2 (G)
. IILII(HLJI + 02 (G)) .
(t) = —La(t;) = —L(x(t) + e(t)) (7) Proof: Similarly to the proof of the main result in [17], we
. compute the time derivative (#g—”:
Similarly to [11], the state vectar can be decomposed as [
2(t) = a(t)1 + (1) el __eto 0% Jlel
. dt [|5]] lell NIl 1js)> ol
wherea(t) = > x;(t) denotes the average of the agents . . .
. : . ) ) )
states and is called the disagreement vector in [11] ahd el ‘ H MM _ ( ”6”) M
) < + 1+
is the vector of ones. We then have llefl 1ol [I8]] (18] ol / sl
1 1 llell '\ L1 (o1 + llell) lel )
G=—=» &=—— (xi(t) — z(t)) <<1+ — =L {1+ =
PB iSO ’ o) el I )
1
— Y)Y (@) — ) =0
LN Using the notatiory = HEH, we havey < ||L|| (1 +y)?, so
1 . . . L .
so thata(t) = a(0) = N in(o) = g, i.e., the notation thaty satisfies the bound(t) < ¢ (¢, ¢g), whereo (¢, ¢g) IS
a = a(0) = a(t) will be used in the sequel. We now have the solution of
i=6=—Lz+e)=—L(al+5+e) é= LIl (1+ )%, ¢ (0, 60) = b0
so that Hence the inter-event times are bounded from below by the
§=—L(6+e) ®) time 7 that satisfies
For an undirected graph, an important property pfoven in ¢ (7,0) = a/\2 (G)
[11] is 6TLé > Xy (G) ||6]|° for all § satisfyingz = al + 6. L]
A candidate ISS Lyapunov function for the disagreemenje can easily see that
dynamics (8) isV = 1 [|§]|*. We have L
-
V=06T5=—6TL(6+e)=—6TL6 — 6T Le < ¢(1,0) = 1—7|L]]
< =22 (G) 61> + 161l | L] le] <o that
Enforcing e to satisfy L oA (G)
LI (L] + o A2 (G))
o] < o 22(@) 19

Ll ©)  and the proof is complete)



Using the extension of La Salle’s Invariance Principle foand thus,

hybrid systems [10], the following Corollary regarding the

convergence of the closed-loop system is now evident:
Corollary 2: Consider systenmt = u with the control law

(6),(10) and assume thdt is connected. Then all agents

converge to their initial average, i.dim; o, x;(t) = a =

+ > 2;(0) for all i € V.

DD laillei — el

V<-X(G)Y 5+

i JEN;
Y
< — 2 _ L - .
< -2 (G) §i 5 ‘Az @ jEEN/(\eLIHeJI)

Proof : By virtue of Theorem 1, the closed-loop switchedgnforcing the condition

system does not exhibit Zeno behavior. Moreové(yp) is
positive definite and continuous and its derivative is nggat

definite in continuous evolution intervals. By Theorem V.1

in [10], we have thatim, .., 6(¢) = 0, which is equivalent
to lim; oo 2;(t) = a = N S z;(0) for all i e N.

IV. DECENTRALIZED APPROACH

> (leil +lejl) < X2 (G) 0i |64 (13)
JEN;
we get
5.
52 > ? ) )
ot > || 3 el 1

JEN;

The approach of the previous section was centralizedp that
in the sense that agents had to be aware of the global ) ) )
measurement error in order to enforce the constraint (9). V < =2 (G) Y (67 —0:67) = =X (G) Y (1 —04) 5;

In this section, we formulate a decentralized version of th

K2 2

e

problem. Each agent now updates its own control input ghich is negative semidefinite for < o; < 1.

event times it decides based on information from its adjiace
agents. The event times for each agemt A are denoted
by ti,tt,.... We will follow the structure described at the
end of Section Il to define the functiorfs,: € N according
to which the event times for agentare defined.

The measurement error for agenis defined as

ei(t) = wi(ty,) — xi(t),t € [th,t)41) (11)
The control strategy for agertis now given by:
w(t) == 3 (wilth) — 25(t) (12)

JEN;

wherek’ £ arg min {tz — t{} Hence, each agent takes

leN:tE >t]
into account the last update value of each of its neighbors
its control law. The control law foi is updated both at its
own event timegy, ¢7, ..., as well as at the event times of
its neighborst), ¢],...,j € N;.

We then have

() == 3 (wilth) — 25(6)) =
JEN;
== (@) — () = Y (eslt) — ¢;(t)
JEN; JEN;

Using again the decompositiar{t) = a(t)1+4(t), we have
a=0,sothatd =& =—L(x +e) =—L(J +¢e), as before.
. 2
ConsiderV = 3 [|6]]" = 3 > 47. Then
V=066=—6"L(6+e)=—6"L5— 6" Le
so that

V<2 (G) 6] ~ 6" Le =

f)\z(G)Z(sffZZ(sz‘(ei*ej)

i JEN;

N Thus for each, an event is triggered when
fi(ei{e;li € Ni}) =0

where f; (e;, {e;|j € Ni}) 2 (e®l+1e;(®)]) -

(14)

JEN;
X2 (G)o;16;(t)]. The update rule (14) holds at
the event times ¢i corresponding to agent:i:
fi (61‘ (f;c) ,{ej (tz) |j S Nl}) = 0 with & = 0,1,...

andi € NV. At an event timef}, we havee;(t},) = =;(t;,) —
ri(t}) = 0, and since = (ex(t)] + le, 1)) = 3 Je;(0)
JEN;

N;
for all t > 0, the condji'fion (13) is enforced.

Remark: Although (14) is verified by agent only based
its own and neighboring agents’ information, it does reguir
#bme global information, in the sense that agents need to
know the values of\;(G) anda in order to check (14). We
note that this condition has been relaxed in our later wofk [3
using a different event-triggered formulation. In part&uin
the condition derived in [3], each agent only needs to know
the sum of relative states and the number of its neighbors to
implement it. Hence knowledge of the aforementioned global
parameters is relaxed.

The following theorem regarding the inter-event times
holds in the decentralized case:

Theorem 3: Consider systemu; u, 1 € N
{1,..., N} with the control (12) and update rule (14), and
assume that; is connected. Then for any initial condition
and any timet > 0 there exists at least one agént N for
which the next inter-event interval is strictly positive.

Proof : We assume that (14) holds for alE A at timet. If

it doesn’t hold, then continuous evolution is possible sinc
at least one agent can still let its absolute measurementt err
increase without resetting (11). Hence assume that &k
errors are reset to zero. We will show that there exists at lea
onek € A such that its next inter-event interval is bounded
from below by a certain timep > 0.



First note that the termd_ (e;(¢) +¢;(t)) is thei-throw  second case. We have,(G) = 1 and ||[L|| = 4 in this
EN example, and have also set= 0.65 for the centralized, and

o1 = 09 = 0.55 andos = o4 = 0.65 for the decentralized

control example. Figure 1 shows the evolution of the norm

JEN;
of the vector(A + A)e, whereA is the degree matrix off
and A its adjacency matrix. We then have

> (le@)]+1es(1)) of ||z(t) — al|| in both cases in time. The top solid line
JEN: < 1A + Al flel] shows the evolution of|z(¢) — a1|| in the centralized and
6]l 6]l the bottom dotted line in the decentralized case. It can be

for eachi € N. Denotingk = arg max |d;| the maximum seen that the system reaches the agents’ initial average as
‘ t — oo in both frameworks.

element of||4||, we have , . :
Figure 2 shows the evolution of the error norm in the

‘Z (len(®)] +le; (£)]) centralized case. The solid line represents the evolution
JENk < 12 + Affle] of |le(t)||. This stays below the specified state-dependent
Nl I threshold||e|| = A2 (@) ol which is represented by
o that the dotted IinZagicn the Figl'que The existence of a minimum
jg]:vk (ex(®)] + les(t)]) A+ A lell inter-event time is clearly visible. We hawe= 0.05 in this
10| =N 9] example, which is an overestimation of the simulated bound,

. .. which in this example can be computed to ®2 ms.
Using now the proof of Theorem 1 and (14), the next inter- P P

event interval of agent is bounded from below by a time

Tp that satisfies 016
- |Ix-al||decentr
N ||A + A|| _ o=l OrA2 (G) —— ||x-a2||centr
1—7p |[|L]
so that
O’k)\g (G)

T LI (NTA+ Al + 02 (@))
and the proof is complet&)

Please note that the result of this Theorem is more conse
vative than the centralized case, since it only guarantess t
there are no accumulation points and continuous evolusion centralized
viable at all times instants. However, no lower bound simila 0.02f rd;fzee";/ e
to the one of Theorem 1 is provided. In that sense, the rest N
on the decentralized case is rather preliminary and mor& wo 5 10 15 20 25 a0 8 40 45 50
will be devoted to providing a strictly positive inter-exen
time of the overall switched system in the future.

On the other hand, the result of Theorem 3 guarantees tHa#: 1. Four agents evolve under (6),(10) in the centralizase, and the

. _ . control law (12),(14) in the decentralized case. We hay&) = 1, ||L|| =
the overall switched system does not exhibit Zeno behaviof,angs — 0.65.01 = oo = 0.55 andos = 04 = 0.65. Convergence to
i.e., there are no infinite switches in finite time. Using nowthe initial average is achieved in both cases.

La Salle’s Invariance Principle for Hybrid Systems [10]e th
following convergence result is straightforward: The next two figures depict how condition (13) is realized

Corollary 4: Consider systemt = u with the control law in the decentralized case for agents 2,4. The solid linegn Fi
(12),(14) and assume that is connected. Then all agentsure 3 shows the evolution of the summ (¢)|+]|e1 (t)|+]|es(t)].
converge to their initial average, i.dim;_., x;(t) = a = This stays below the specified state-dependent threshold
L3 2;(0) for all i € V. given by (13) My = A\2(G)o2|d2| which is represented by
Proof: By virtue of Theorem 3, the closed-loop switched"® dottéd line in the Figure. The same holds for agent 4
system does not exhibit Zeno behavior. The rest of the progf Shown in Figure 4 where the solid line represents the

I<1=]

is identical to that of Corollary 20 sum |es(t)| + |ea(t)] which also stays below the specified
state-dependent threshold given by (18) = A2 (G)o4|d4],
V. EXAMPLES represented by the dotted line in the Figure.

In this section we provide some computer simulated
examples to support our results. We consider a network
of four agents whose neighboring sets are givenNjy= Cooperative control schemes of multi-agent systems under
{2,3},N2 = {1,3},N3 = {1,2,4},N, = {3}. We consider event-triggered actuation update rules were proposed and
both the centralized and the decentralized framework. Foanalyzed. We examined the stability of such schemes con-
agents start from random initial conditions and evolve undesidering actuation updates are event-driven, depending on
the control (6),(10) in the first case, and (12),(14) in théhe ratio of a certain measurement error with respect to the

VI. SUMMARY AND FUTURE WORK
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Fig. 4. Condition (13) is depicted in the this case for agentle solid
line shows the evolution of the sufie4(t)| + |es(t)|. This stays below
the specified state-dependent threshold given by (#3)= A2 (G)o4|d4|
which is represented by the dotted line.

line represents the evolution of the error nofj@(t)||, which stays below
A2 (G) [|4]]

which is
(1L

the specified state-dependent thresHodtl oz = o
represented by the dotted line in the Figure.
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Fig. 3. Four agents are controlled by (12),(14) in the deedined case.
Condition (13) is depicted in the this case for agent 2. THiel $oe shows
the evolution of the sumea(t)| + |e1(t)| + |es(t)|. This stays below [13]
the specified state-dependent threshold given by ({#3)= \2(G)o2|d2|
which is represented by the dotted line. [14]

norm of the state. In the centralized case, we obtained[®b]
strictly positive lower bound in the inter-event times, iehi [16]
relevant, yet more conservative, results were obtaineden t
decentralized case. Future research will focus on progidin
rules that guarantee better bounds on the inter-event tirie!
intervals in the decentralized case.
[18]
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