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Abstract— In this paper, we combine navigation function-
like potential fields and constraint based programming to
achieve obstacle avoidance in formation. Constraint based
programming was developed in robotic manipulation as a
technique to take several constraints into account when con-
trolling redundant manipulators. The approach has also been
generalized, and applied to other control systems such as dual
arm manipulators and unmanned aerial vehicles. Navigation
functions are an elegant way to design controllers with provable
properties for navigation problems. By combining these tools,
we take advantage of the redundancy inherent in a multi-agent
control problem and are able to concurrently address features
such as formation maintenance and goal convergence, even in
the presence of moving obstacles. We show how the user can
decide a priority ordering of the objectives, as well as a clear
way of seeing what objectives are currently addressed and what
are postponed. We also analyze the theoretical properties of
the proposed controller. Finally, we use a set of simulations to
illustrate the approach.

I. INTRODUCTION

Multiagent coordination has received a lot of attention in
recent years [1]–[8]. The reason is that advantages in terms of
robustness, performance and flexibility can be realized when
tasks are performed by groups of smaller agents, instead
of highly complex single agents. Examples of such tasks
are exploration, search and rescue, surveillance, cooperative
lawn mowing and harvesting. An important and frequently
needed capability when performing tasks such as the above,
is that of navigation from one place to another in a structured
fashion.

Navigation can either be done in a hierarchical way
with planning followed by open loop execution, or using
continuous feedback control. In this paper we will use navi-
gation functions [9] to provide feedback control, which gives
increased robustness in the presence of moving obstacles.

While performing this navigation, we want to achieve for-
mation keeping, obstacle avoidance, and goal convergence.
However, due to the unknown motion of the obstacles, we
might have to temporarily sacrifice some of these objectives,
in order to achieve the others. For example, the desired
formation might have to be broken to pass through a narrow
passage to reach the goal, or the progress towards goal might
have to be postponed, if a moving obstacle is blocking the
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destination. In order to handle multiple possibly contradic-
tory objectives, we apply a constraint based programming
approach [10].

Constraint based programming is a way to exploit the
redundancy of a robotic system to simultaneously achieve a
number of tasks. The approach is founded upon the early
work of [11]–[13], while recent contributions include the
iTasc framework (Instantaneous Task Specification using
Constraints) [14], [15], and generalizations including a mar-
gin based handling of inequalities and homogenous handling
of both equalities and inequalities in the context of both dual
arm manipulation and unmanned aerial vehicle control [10],
[16], [17].

Artificial Potential Fields are a class of methods introduced
by Khatib [18] to solve motion planning problems. By
defining a scalar potential over the workspace, and then
following the negative gradient of this potential, a path to
the goal can be found. However, some problem instances
can exhibit local minima of the potential function, where
the robot can get stuck. Rimon and Koditschek [9] extended
the potential field approach by defining Navigation Func-
tions, potential fields that were designed to be free of local
minima. Their work was later extended to different robots,
including limited sensing range non-holonomic systems [19],
multiagent systems [20]–[22] and different obstacle settings
[23].

The contribution of this work is the combination the recent
advances on navigation functions with the new generalization
of constraint based programming. Doing this, we are able
to add flexible formation keeping capabilities to the robust
navigation performance provided by appropriately designed
and tuned navigation-like functions.

The outline of the paper is as follows. In Section II we
present the problem we address. Section III then describes
the proposed solution. The theoretical properties of the
solution are analyzed in Section IV. Finally, simulations
are presented to illustrate the approach in Section V and
conclusions are drawn in Section VI.

II. PROBLEM STATEMENT

Consider a system of M ∈ N spherical agents among
N ∈ N moving obstacles operating in the same sphere world
W ⊂ En. Let qai ∈ En denote the center position of the
agent i and ri ∈ R+ its radius, qoj ∈ En the center position
of the obstacle j and ρj ∈ R+ its radius. The motion of each
agent is described by a single integrator

q̇ai = ui, (1)



where the control input ui denotes the velocity of agent i.
The goal position for each agent is given by a point di ∈
W . The objective of the controller is thus to reach the goal
position, without colliding with obstacles or other agents,
and keeping a desired formation while doing this.

Let the target formation be given by the desired spacing
λih > ri+rh, between agents i and h. To measure formation
maintenance we define the formation function (FF) as follows

ψ ,
M∑
i=1

M∑
h=1
h6=i

1

2
(‖qai − qah‖2 − λ2ih)2 (2)

Note that this function reaches its minimum value ψ = 0,
when all agents are in the desired formation. It is assumed
that this formation is defined such that it is achieved when
the agents are at their desired destinations.

The problem considered in the paper is provided below.
Problem 1: Given a system of agents evolving according

to (1) find controls ui such that
1) The destinations are reached, i.e., qai converges to

di from almost all initial conditions.
2) The desired formation is reached and then main-

tained, ψ → 0.
3) Collision avoidance is guaranteed.

There are trivial examples for which the three objectives
described above cannot be fulfilled. In order to tackle this
issue we propose a prioritized framework that puts higher
priority to the most critical task at each time instant. This
is enforced by the use of the constrained programming
methodology described in the sequel.

III. PROPOSED SOLUTION

We will use a semi-decentralized approach, where the
control signals of the agents are computed in a so-called
active redundant way [24]. In detail, all agents compute their
own control signal, as well as the control signal of their
fellow agents. If all agents have the same information, as is
assumed in this paper, they will all reach the same results
ui regarding any given agent i, and the group will act in a
coordinated fashion.

To reach the three goals of Problem 1 above, we propose
the following switched control structure

ui(t) ,

{
uiOPT

(t) if ϕi(qai(t)) ≤ ϕi(qai(t0))− tε,
uiCF

(t) otherwise
∀i

(3)
where ϕi is the potential function proposed for the agent i as
further described, ε ≥ 0 is a non negative parameter whose
inverse is proportional to an initial estimate the user has on
the transient response time of the robotic team while being
driven to the goal configuration. If the goal configuration
has not been reached at a given time based on the first
controller uiOPT

, then the second controller becomes active
from that time onwards. Note that ε = 0 thus corresponds
to an infinite estimate of the response time, which make
sense in the case of Solution 2 below. Depending on the
user priorities, we then have two different parameter settings.

o t

ϕi

ϕi(t0)

1
ε

uiOPT

uiCF

Fig. 1. The switching surface of ui. As long as the navigation function is
inside the bright area the control input of the system is uiOPT , when it is
outside the control input is uiCF

Solution 1 (Goal Convergence): If 1) is more important
that 2) in Problem 1, then we use ε > 0 and hj �
hM+1, j = {1, . . .M}.

Solution 2 (Formation Maintenance): If 2) is more im-
portant that 1) in Problem 1, then we use ε = 0 and
hj � hM+1, j = {1, . . .M}.

The switching surface of the control ui in (3) is given in
Figure 1. The controls uiCF

(t), uiOPT
(t) are given below.

uiCF
(t) is a closed form control input defined as:

uiCF
(t) = − ∂ϕi

∂qai

ᵀ

+ v∗i (4)

where:
v∗i = α†i

χi
(1 + χ2

i )
sign(χi)

(5)

and

αi , (
∂γdi
∂qai

+
∂fi
∂qai

)β(i) − 1

ki
(γdi + fi)

∂β(i)

∂qai
(6)

χi ,
N∑
j=1

(
1

ki
(γdi + fi)

∂β(i)

∂qoj
− ∂fi
∂qoj

)
q̇oj

+

(
(
∂γdi
∂qai

+
∂fi
∂qai

)β(i) − 1

ki
(γdi + fi)

∂β(i)

∂qai

)

·
M∑

h=1,h6=i

(
1
ki

(γdi + fi)
∂β(i)

∂qah
− ∂fi

∂qah

)ᵀ
(((γdh + fh)kh + βh)

1
kh

+1
)

+

 M∑
h=1,h6=i

1

ki
(γdi + fi)

N∑
j=1

∂β(i)

∂qah
− ∂fi
∂qah

 v∗h

(7)

and (·)† is the Moore-Penrose pseudoinverse function [25].
Function ϕi is a navigation-like function defined as follows

ϕi ,

(
(γdi + fi)

ki

(γdi + fi)ki + β(i)

) 1
ki

(8)

where the destinations are taken into account through

γdi(q) , ‖q − di‖
2 (9)



and the obstacles are taken into account through an obstacle
function (OF) defined as follows:

β(i) ,
N∏
j=0

β
(i)
Oj

M∏
h=1
h6=i

β
(i)
Ah (10)

which attains positive values when no collision occur for the
agent i. OF is constructed by:

β
(i)
Ah ,

‖q − qah‖
2 − (ri + rh)2

λ2ih − (ri + rh)2
(11)

β
(i)
Oj

,
∥∥q − qoj∥∥2 − (ri + ρj)

2 (12)

β
(i)
O0 , (ρ0 − ri)2 − ‖q − q0‖2 (13)

fi ,

{
0 if β(i) > ε

f̄i(1− 3β(i)2

ε2 + 2β(i)3

ε3 ) if β(i) ≤ ε
(14)

where f̄i is a positive parameter which regulates the values
of fi when the agent in near an obstacle. More details about
the design of uCF , can be found in [21].

The control uOPT is responsible for the formation objec-
tive and is derived by solving the following constraint based
programming problem.

min
uOPT ,η

M+1∑
i=1

hiηi

s.t. ϕ̇1(uOPT ) ≤ −min(δ1, γd1) + η1

ϕ̇2(uOPT ) ≤ −min(δ2, γd2) + η2
...
ϕ̇M (uOPT ) ≤ −min(δM , γdM ) + ηM

ψ̇(uOPT ) ≤ −min(δM+1, ψ) + ηM+1

ηi ≥ 0

‖uiOPT ‖2 ≤ u2iMAX

(15)

where hi is a positive weight parameter related to the i-th
task and δi is a positive parameter that gives an achievable
upper bound for the task constraint:

δi =

M∑
l=1

‖ ∂ϕi
∂qal
‖ulMAX

+

N∑
j=1

‖ ∂ϕi
∂qoj
‖q̇oj . (16)

with i = {1, 2, ...,M} and

δM+1 =

M∑
l=1

‖ ∂ψ
∂qal
‖ulMAX

(17)

The objective function of (15) has its minimum at∑M+1
i=1 hiηi = 0 i.e. when ηi = 0, i = [1, 2, ...,M + 1].

If the task constraints in (15) are contradicting, for example
requiring a formation that is too wide to pass between two
obstacles then the solution to (15) will have some nonzero ηi,
with larger ηi corresponding to tasks with lower priorities.

IV. CONVERGENCE ANALYSIS

In this section, we will show that the controller of Section
III above is a valid solution to Problem 1. The main result
is given in Theorem 1, which in turn uses the properties
of Lemma 1-2. Before stating the lemmas, we make the
following definition and assumption on the free space.

Assumption 1: There exists τ ∈ R+, τ ≥ 1
ε such that

β
(i)
Oj

(di, t) > ε, ∀j = {1, 2, ..., N},∀t ≥ τ , i.e., after t = τ
the obstacles never intersect with an ε−neighborhood around
the destination points.

Theorem 1: Assume that all agents are controlled by
(4) and t ≥ τ . Then for almost all initial collision free
conditions, limt→∞ qai(t) = di.

Proof: Consider

V =

M∑
i=1

ϕi (18)

as a candidate Lyapunov function. We first show that for
each i,

ϕ̇i ≤ 0 (19)

The derivative of each ϕi is given by:

ϕ̇i =
∂ϕi
∂qai

q̇ai +

N∑
j=1

∂ϕi
∂qoj

q̇oj +

M∑
h=1
h6=i

∂ϕi
∂qah

q̇ah (20)

Substituting qai in (20) with (4) we get

ϕ̇i =−
∥∥∥∥ ∂ϕi∂qai

∥∥∥∥2 +
(
∂γdi
∂qai

+ ∂fi
∂qai

)β(i)v∗i −
1
ki

(γdi + fi)
∂β(i)

∂qai
v∗i

((γdi + fi)ki + β(i))
1
ki

+1

+

∑N
j=1

∂fi
∂qoj

q̇oj −
1
ki

(γdi + fi)
∑N
j=1

∂β(i)

∂qoj
q̇oj

((γdi + fi)ki + β(i))
1
ki

+1

−
M∑

h=1,h6=i

(
1
ki

(γdi + fi)
∂β(i)

∂qah
− ∂fi
∂qah

)
(((γdi + fi)ki + β(i))

1
ki

+1
)
·

·

(
(
∂γdi
∂qai

+ ∂fi
∂qai

)β(i) − 1
ki

(γdi + fi)
∂β(i)

∂qai

)ᵀ
(((γdh + fh)kh + βh)

1
kh

+1
)

+
M∑

h=1,h6=i

∂fi
∂qah

− 1
ki

(γdi + fi)
∑N
j=1

∂β(i)

∂qah

((γdi + fi)ki + β(i))
1
ki

+1
v∗h

(21)



Now, since (((γdi + fi)
ki + β(i))

1
ki

+1
) is positive and

−
∥∥∥ ∂ϕi

∂qai

∥∥∥2 is negative, (2) is negative semidefinite if

(
∂γdi
∂qai

+
∂fi
∂qai

)β(i)v∗i −
1

ki
(γdi + fi)

∂β(i)

∂qai
v∗i

+

M∑
j=1

∂fi
∂qoj

q̇oj −
1

ki
(γdi + fi)

M∑
j=1

∂β(i)

∂qoj
q̇oj

−
(

(
∂γdi
∂qai

+
∂fi
∂qai

)β(i) − 1

ki
(γdi + fi)

∂β(i)

∂qai

)

·
M∑

h=1,h6=i

(
1
ki

(γdi + fi)
∂β(i)

∂qah
− ∂fi

∂qah

)ᵀ
(((γdh + fh)kh + βh)

1
kh

+1
)

+

 M∑
h=1,h6=i

∂fi
∂qah

− 1

ki
(γdi + fi)

N∑
j=1

∂β(i)

∂qah

 v∗h

(22)

is negative semidefinite as well.

Replacing αi with its expression in (6) and χi as in (7)
we can derive that (22) is equal to

αiv
∗
i − χi (23)

and is semidefinite negative when
αiv
∗
i ≤ χi. (24)

The control input (4) satisfies (24), therefore (19), since
χi

(1 + χ2
i )
sign(χi)

≤ χi ∀χi ∈ R (25)

hence the derivative of the Lyapunov function candidate is
semidefinte negative:

V̇ =

M∑
i=1

ϕ̇i ≤ 0. (26)

By assumption, the agents satisfy the formation constraint at
the destinations. Thus by satisfying the convergence objec-
tive we will also satisfy the formation constraint. From (26)
every level set of (18) is a positively invariant set which
is also closed and bounded due to the properties of the
potentials ϕi. By LaSalle’s invariance principle, the system
converges to the largest invariant subset of the set V̇ = 0. The
control design implies that V̇ = 0 is equivalent to ϕ̇i = 0
for all i. From assumption 1, and under some additional
assumptions mentioned in [21], it can be shown that the
largest invariant set of the set ϕ̇i = 0,∀i is the set of desired
destination points.

Lemma 1: The system under the control ui of (3) is
collision free.

Proof: According to NF’s definition above, ϕi = 1
on the boundaries of its domain. But in the controller we
have ϕ̇i ≤ 0, and since by assumption ϕi(qi(t0)) < 1, no
collisions occur.

Lemma 2: If ε > 0 and we apply the control ui of (3),
then qi → di.

Proof: Note that in (3), we only apply uiOPT
as long

as ϕi(t) ≤ ϕi(0)−tε, ∀i. The codomain of each ϕi is [0, 1],
thus, after t = 1/ε we have either reached the destination,
or we will never use uiOPT

again. According to Lemma 1,
uiCF

will now achieve qai → di in the latter case.

Remark 1: The controller (3) is a solution to Problem 1.
In particular, convergence is provided due to Lemma 2.
Formation maintenance is constantly improved since ψ̇ ≤ 0
in (15). But contradicting objectives might yield ηM+1 6= 0.
In that case convergence to di by Lemma 2 still guarantees
ψ → 0 by assumption. Collision avoidance is guaranteed by
Lemma 1.

Remark 2: The controller (4) may be rendered unbounded
whenever the robots get too close to moving obstacles. This
can be regulated by assuming upper bounds on the velocities
of the obstacles.

V. SIMULATIONS

To demonstrate the convergence and stability of the solu-
tion, four numerical solution, three in a static environment
and one in a dynamic environment are presented, simulated
by MATLAB scripts using an active set optimizer algorithm
chosen due to the non smooth constraints. In the simulations
the agents have to navigate maintaining a triangle shape
formation with λij = 0.08 in a workspace with radius
1. Figure 2(a), 2(b) 3(a) and 3(b) show qualitatively the
solution proposed, Figures 4, 5 and 7 show the OFs and FFs
in the different simulations giving quantitative information
regarding the collision avoidance and formation constraints.

Simulation I Simulation II Simulation III Simulation IV

h

h1=10 1

h2=101

h3=101

h4=105

h1=102

h2=102

h3=102

h4=102

h1=10 3

h2=103

h3=10 3

h4=10−1

h1=10 −1

h2=10−1

h3=10 −1

h4=103

ε 0 10−4 10−4 0
Solution 2 - Solution 1 Solution 2

TABLE I. Simulation Parameters

As can be seen from the parameters of Table I, simulation III
correspond to Solution 1, with focus on convergence to the
destination, simulations I and IV correspond to Solution 2,
with focus on formation keeping, and simulation II give equal
weights to formation maintenance and goal convergence.
The remaining simulation’s parameters are collected in Table
II and Figures 2 and 3 show the path executed for each
simulation as lines of different colors. The agents are the
blue, green and magenta circles, the obstacles are the red
circles, and some intermediates agents’ position are showed
as faded circles.

In simulation I, a higher priority is given to the forma-
tion keeping, making the agents quickly reach their desired
formation, as can be seen from the formation function
in Figure 4. When the goal configuration is reached, the
obstacle function for each agent reaches a fixed value due to
the fact that the obstacles are fixed in the workspace.

In simulation II, an obstacle is moving in the workspace
and is heading towards the agents. These avoid the oncoming
collision, while maintaining the desired formation, and reach
their goal configuration. As can be seen from Figure 5,
the convergence to perfect formation is somewhat slower
than in Figure 4, and a small error remains when passing
the obstacle. After passing, the obstacle distances increase



Simulation I Simulation II Simulation III & IV

Agent 1 Agent 2 Agent 3 Agent 1 Agent 2 Agent 3 Agent 1 Agent 2 Agent 3

qa(t0) [−0.06
−0.23] [ 0.06

−0.23] [ 0
−0.16] [ 0.06

−0.23] [ 0.06
−0.23] [ 0

−0.16] [−0.06
−0.23] [ 0.06

−0.23] [ 0
−0.16]

r 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015

d [−0.04
0.57 ] [0.040.57] [ 0

0.64] [−0.04
0.57 ] [0.040.57] [ 0

0.64] [−0.04
0.57 ] [0.040.57] [ 0

0.64]

k 80 80 80 60 60 60 120 120 120

f̄ 1 1 1 2 2 2 1 1 1

Obstacle 1 Obstacle 2 Obstacle 1 Obstacle 2 Obstacle 1 Obstacle 2

qo(t0) [0.060 ] [−0.1
0.2 ] [ 0

0.64] [−0.04
0 ] [−0.5

0.1 ] [0.50.1]

q̇o(t0) 0 0 [
0.1sin(10t)

0.1cos(−10−4t)
] 0 0 0

ρ 0.05 0.05 0.05 0.3 0.48 0.48

TABLE II. Agents and Obstacles’ Parameters
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(a) Paths executed in simula-
tion I
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(b) Path executed in simulation
II

Fig. 2. Paths executed for simulation I and II

linearly when the obstacle continues away from the agents.
Simulation III shows an example in which the agents can
not reach the goal without breaking the formation. Thus, the
priority weights come into play. Due to the higher priority
on the navigation (Solution 1), hj � h4, j = 1, . . . , 3 the
formation constraint is violated in order to reach the goal.
Thus, as can be seen in Figure 7 the formation function
increases for some time while passing in-between the two
obstacles. Then the desired formation is once again reached.

Simulation IV on the other hand, uses Solution 2 with
a higher priority of the formation h4 � hj , j = 1, . . . , 3
and ε = 0. Here, the formation function decreases to zero,
keeping the formation, while progress towards the goal is
stopped. Still, collisions are avoided, as can be seen in the
positive obstacle function. It should be noted that none of
the simulations resulted in a switch of the controller in (3).
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Fig. 3. Paths executed for simulation III and IV
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Fig. 4. Obstacle and formation function behaviors for simulation I

VI. CONCLUSIONS

Combining navigation-like functions with constraint based
programming, we have shown how to achieve reactive navi-
gation in formation, with provable properties in terms of goal
convergence and formation maintenance. To have an elegant
proof of convergence, we introduce a limit time in which the
prioritized problem has to be executed, this time limit can
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Fig. 5. Obstacle and formation function behaviors for simulation II
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Fig. 6. Obstacle and formation function behaviors for simulation III
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Fig. 7. Obstacle and formation function behaviors for simulation IV

be arbitrarily extended without loss of generality, reducing
the time in which the closed form controller is activated. By
prioritizing different tasks, which might be in conflict with
each other, tradeoffs can be made in a consistent way.
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