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Sufficient Conditions for Decentralized

Potential Functions Based Controllers using

Canonical Vector Fields

Dimos V. Dimarogonas

Abstract

A combination of dual Lyapunov analysis and properties of decentralized navigation function based

controllers is used to check the stability properties of a certain class of decentralized controllers for

navigation and collision avoidance in multi-agent systems. The derived results yield a less conserva-

tive condition from previous approaches, which relates to the negativity of the sum of the minimum

eigenvalues of the Hessian matrices at the critical points, instead of requiring each of the eigenvalues

to be negative itself. This provides an improved characterization of the reachable set of this class of

decentralized navigation function based controllers, which is less conservative than the previous results

for the same class of controllers.

I. INTRODUCTION

Navigation of multi-agent systems is an area of increasing interest both from a research as

well as an application viewpoint. When it comes to robots or vehicles, collision avoidance and

decentralization are two important design specs for guaranteeing safety and scalability. Thus

there has been a growing demand for the development of decentralized navigation methods with

guaranteed collision avoidance. In recent years the application of potential field based methods

has been explored [7],[18] as a promising alternative for such algorithms.
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A common problem with potential field based path planning algorithms in multi-agent systems

is the existence of local minima [10],[12]. The seminal work [11] involved navigation of a single

robot in an environment of spherical obstacles with guaranteed convergence. In previous work,

the closed-loop single robot navigation methodology of [11] was extended to multi-agent systems.

In [13],[9],[16],[4], [7],[8] this method was extended to take into account the volume of each

robot while formation control for point agents using navigation functions was dealt with in [21],

[3]. Decentralized navigation functions were also used for multiple UAV guidance in [2].

Analysis of potential field based controllers via density functions was considered previously

in [14] for centralized and in [6], [5] for decentralized multi-agent navigation. In this work we

extend the previous results by combining the canonical vector field formulation of [14] with the

dual Lyapunov analysis of decentralized potential fields in [5]. We examine the convergence of

the system using a combination of primal and dual [19] Lyapunov techniques. This combination

has been used in [15],[1],[14],[22]. In particular in [14],[15] a density function is provided for

a single robot driven by a navigation function in a static obstacle workspace. Primal analysis is

used to show convergence to a neighborhood of the critical points and density functions are used

to prove the instability of the undesirable critical points using the properties of the navigation

functions. The difference in our case is that we consider a system of multiple moving agents

driven by decentralized potential functions and the potential functions are not considered a

priori navigation functions. On the contrary, the designed potentials are tuned properly to satisfy

appropriate conditions to guarantee asymptotic stability from almost all initial conditions.

The significant outcome of the analysis is a less conservative sufficient condition for almost

global navigation in the decentralized case. In [16],[4] the analysis relied on Morse theory

that required, among others, that the minimum eigenvalues of the Hessian matrices for each

decentralized navigation function at the critical points is strictly negative. In [6], [5] we derived

a similar conclusion using density functions. Here we show that it is sufficient that only the

sum of the minimum eigenvalues is strictly negative, and not the minimum eigenvalue of each

decentralized navigation function itself. This yields an improved set of conditions for navigation.

More specifically, in [4],[7] the navigation functions were designed in such a way to allow

agents that had already reached their destination to cooperate with the rest of the team in the

case of a possible collision. In this paper, a construction similar to the initial navigation function

construction in [11] is used. Hence each agent no longer participates in the collision avoidance
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procedure if its initial condition coincides with its desired goal. In essence, the agents might

converge to critical points which are no longer guaranteed not to coincide with local minima. In

[5] it was shown that in this case, agents converge to a sphere around their target points and an

estimate of this was given. It turns out that with the formulation of this paper a less conservative

bound can be derived that tends to zero in the case of point agents. Moreover, a broader set of

initial conditions for navigation is derived for the case of non-point agents, establishing a direct

correspondence between the convergence set radius and agents’ maximum radii.

The rest of the paper is organized as follows: Section II presents the system and decentralized

multi-agent navigation problem treated in this paper. The necessary mathematical preliminaries

are provided in Section III, while Section IV provides the decentralized control design. Section

V includes the convergence analysis and a simulated example is found in Section VI. Section

VII summarizes the results of the paper and indicates further research directions.

II. DEFINITIONS AND PROBLEM STATEMENT

Consider N agents operating in a planar spherical workspace W ⊂ R2, with radius RW . Let

qi ∈ R2 denote the position of agent i, and let q = [qT1 , . . . , q
T
N ]T be the stack vector of all

agents’ positions. Denote u = [uT1 , . . . , u
T
N ]T . Agent motion is described by the single integrator:

q̇i = ui, i ∈ N = {1, . . . , N} (1)

where ui is the control input for each agent. We consider cyclic agents of specific radius %i ≥

0,i ∈ N . Collision avoidance between the agents is meant in the sense that no intersections

occur between the agents’ discs. Each agent is assumed to have knowledge of the position

of agents located in a cyclic neighborhood of specific radius d at each time instant, where

d > max
i,j∈N

(%i + %j). The function γdi is agent’s i goal function which is minimized once the

desired objective with respect to this particular agent is fulfilled. In particular, let qdi ∈ W

denote the desired destination point of agent i. We then define γdi = ‖qi − qdi‖2 as the squared

distance of the agent’s i configuration from qdi.

In order to encode collisions, we define a function γij , for j = 1, . . . , N, j 6= i, given by

γij (βij) =


1
2
βij, 0 ≤ βij ≤ c2

φ(βij), c
2 ≤ βij ≤ d2 − (%i + %j)

2

1, d2 − (%i + %j)
2 ≤ βij

(2)
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where βij = ‖qi − qj‖2 − (%i + %j)
2. We also define the function γi0 which refers to the

workspace boundary (indexed by 0) and is used to maintain the agents within W . We have

βi0 = (RW − %i)2−‖qi‖2; γi0 is defined in the same way as γij, j > 0. The positive scalar c and

the function φ are chosen so that γij is everywhere twice continuously differentiable. For example,

we can chose φ to be a fifth degree polynomial function whose coefficients are calculated so that

γij is everywhere twice continuously differentiable. More details on the construction of γij and

φ can be found in [5]. In the sequel, we will also use the notation ∇i (·)
∆
= ∂

∂qi
(·) for brevity.

III. MATHEMATICAL PRELIMINARIES

A. Dual Lyapunov Theory

For functions V : Rn → R and f : Rn → Rn the notation

∇V =
[

∂V
∂x1

. . . ∂V
∂xn

]T
,∇ · f =

∂f1

∂x1

+ . . .+
∂fn
∂xn

is used. The dual Lyapunov result of [19] is stated as follows:

Theorem 1: Given the equation ẋ(t) = f(x(t)), where f ∈ C1 (Rn,Rn) and f(0) = 0, suppose

there exists a nonnegative density function ρ ∈ C1 (Rn\ {0} ,R) such that ρ (x) f (x) / ‖x‖ is

integrable on {x ∈ Rn : ‖x‖ ≥ 1} and

[∇ · (fρ)] (x) > 0 for almost all x (3)

Then, for almost all initial states x(0) the trajectory x(t) exists for t ∈ [0,∞) and tends to zero

as t→∞. Moreover, if the equilibrium x = 0 is stable, then the conclusion remains valid even

if ρ takes negative values.

Note that while Theorem 1 applies to the whole Rn, we apply it here for the workspace

W . The application of density functions to navigation function based systems was also used in

[14]. A local version of Theorem 1 was used in [20]. Relaxed conditions for convergence to an

equilibrium point in subsets of Rn were provided in [17].

IV. DECENTRALIZED NAVIGATION FUNCTIONS

In [4],[7] the control law allowed agents that had already reached their desired destination to

cooperate with the rest of the team in the case of a possible collision. In this paper, we use a

construction similar to the initial navigation function construction in [11]. Hence each agent no
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longer participates in the collision avoidance procedure if its initial condition coincides with its

destination. As a result, the derived decentralized potential functions are not guaranteed to avoid

local minima, due to some of the agents already being located at their destinations. An analysis

of the proposed potentials for point agents was held in [5] using dual Lyapunov theory [19].

Here we extend the above results to non-point agents and derive less conservative conditions for

convergence by decentralizing the canonical vector fields framework introduced in [14].

Specifically, a decentralized potential function ϕi : R2N → [0, 1] is defined as

ϕi =
γdi(

γkdi +Gi

)1/k
(4)

where k > 0 is a scalar positive parameter, and the function Gi is constructed in such a way in

order to render the motion produced by the negated gradient of ϕi with respect to qi repulsive

with respect to the other agents. A proposed control law is of the form

ui = −K∇iϕi (5)

where K > 0 is a positive scalar gain.

A. Construction of the Gi function

In the sequel we review briefly the construction of Gi for each agent i, which was introduced

in [4], [7] for the case of local sensing capabilities. The multi-agent team is associated with an

(undirected) graph whose vertices are indexed by the team members.

A binary relation with respect to an agent i is an edge between agent i and another agent.

Binary relations represent collision schemes between pairs of agents. However, we need to

distinguish between the cases of a collision scheme with one, two, or more agents. We use the

term relation to describe all such possible collision schemes. A relation with respect to agent

i is defined as a set of binary relations with respect to agent i, which represents all pairs of

agents that participate in a collision scheme with respect to i. The relation level is the number of

binary relations in a relation with respect to agent i. The complementary set (Ri,C
j )l of relation

j with respect to agent i is the set that contains all the relations of the same level apart from the

specific relation j. The function γij is called the “Proximity Function” between agents i and j

and serves as a metric for binary relations. Let Ri
k denote the kth relation of level l with respect

to i. A metric for this relation is the “Relation Proximity Function” (RPF) which is defined as
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(bRik)l =
∑

j∈(Rik)l
γij where j ∈ (Ri

k)l denotes the agents that participate in the relation. Thus

an RPF is the sum of the Proximity Functions of the binary relations of the relation in hand.

We also use the simplified notation bir =
∑

j∈Pr γij for the RPF for simplicity, where r denotes

a relation and Pr denotes the set of agents participating in the specific relation with respect to i.

We next introduce a function that distinguishes between the possible collision schemes. In

particular, a “Relation Verification Function” (RVF) is defined by:

(gRik)l = (bRik)l +
λ(bRik)l

(bRik)l + (BRi,Ck
)
1/h
l

(6)

where λ, h > 0 and (BRi,Ck
)l =

∏
m∈(RCk )l

(bm)l. Again for simplicity we also use the notation

(BRi,Ck
)l ≡ b̃ir =

∏
s∈Sr
s 6=r

bis for the term (BRi,Ck
)l where Sr denotes the set of relations in the same

level with relation r. The RVF is also written as gir = bir + λbir
bir+(b̃ir)

1/h . We have he following

limits of RVF: (a) lim
bir→0

lim
b̃ir→0

gir

(
bir, b̃

i
r

)
= λ (b) lim

bir→0

b̃ir 6=0

gir

(
bir, b̃

i
r

)
= 0. These limits guarantee

that RVF will behave as an indicator of a specific relation. The function Gi is defined as Gi =∏niL
l=1

∏niRl
j=1(gRij)l where niL the number of levels and niRl the number of relations in level-l with

respect to i. Hence Gi is the product of the RVF’s of all relations wrt i. Using the simplified

notation, Gi =
Ni∏
r=1

gir where Ni is the number of all relations with respect to i.

We then have ∇iϕi =
(γkdi+Gi)

1/k
∇iγdi−

γdi
k (γkdi+Gi)

1/k−1
(kγk−1

di ∇iγdi+∇iGi)

(γkdi+Gi)
2/k , so that

∇iϕi =
(
γkdi +Gi

)−1/k−1
(
Gi∇iγdi −

γdi
k
∇iGi

)
(7)

We can also compute

∇iϕj =
(
γkdj +Gj

)−1/k−1
(
−γdj
k
∇iGj

)
(8)

A critical point of ϕi is defined by ∇iϕi = 0. The following Proposition will be useful:

Proposition 1: For every ε > 0 there exists a positive scalar P (ε) > 0 such that if k ≥ P (ε)

then there are no critical points of ϕi in the set Fi = {q ∈ W |gir ≥ ε,∀r = 1, . . . , Ni} \{γdi = 0}.

Proof: At a critical point, we have ∇iϕi = 0, or Gi∇iγdi = γdi
k
∇iGi, which implies 2kGi =

√
γdi ‖∇iGi‖, since ‖∇iγdi‖ = 2

√
γdi. A sufficient condition for this equality not to hold in

Fi is given by k >
√
γdi‖∇iGi‖

2Gi
, ∀q ∈ Fi. An upper bound for the right hand side is given

by
√
γdi‖∇iGi‖

2Gi
≤
√
γdi
2

Ni∑
r=1

‖∇igir‖
gir

≤ 1
2ε

max
W

{√
γdi
} Ni∑
r=1

max
W
{‖∇ig

i
r‖}

∆
= P , since gir ≥ ε,∀r =

1, . . . , Ni. Note that max
W

{√
γdi
}

, max
W
{‖∇ig

i
r‖} are bounded due to the boundedness of W . ♦
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V. CANONICAL VECTOR FIELDS FOR DNF’S

In this section we redefine the canonical vector fields’ framework defined in [14] for centralized

navigation functions in the decentralized case.

Let qki be the k-th critical point for agent i, with k = 1, . . . , nsi, where nsi the number of

critical points. Similarly to [14], let dki denote the distance between the agent position and the

corresponding critical point, i.e., dki = ||qi − qki||2. Let λmini(qki) be the minimum eigenvalue

of the Hessian matrix
∂2ϕi
∂q2

i

at qi = qki and uki be the corresponding unit eigenvector. Define

Uki = ukiu
T
ki + ε1I where I is the two-dimensional unit matrix and 0 < ε1 ≤ 1. Denote also

Unsi+1,i = Unsi+2,i = I and dnsi+1,i = ϕi,dnsi+2,i = 1 − ϕi. Define d̄ki =
nsi+2∏
l=1,l 6=k

dli. Then for

each agent i we define the matrix Dϕi as Dϕi = µ
nsi+2∑
k=1

d̄ki
d̄ki+dki

Uki. It can be shown that Dϕi

fulfills similar properties to the matrix Dϕ defined for a centralized navigation function in [14].

In particular, the following result holds:

Lemma 2: The matrix Dϕi has the following properties: (i) Dϕi = µUki , for qi = qki (ii)

Dϕi = µI , for Gi = 0 (iii) Dϕi = µI , for qi = qdi, (iv) ∇iDϕi = 0, for qi = qdi and ∇iDϕi = 0,

for qi = qki, and (v) 0 < xTDϕix ≤ 2(nsi + 2)µ||x||2, for all x ∈ R2.

The last property guarantees positive definiteness and boundedness of Dϕi .

We consider the modification of the control law (5) by using Dϕi as an additional gain matrix:

ui = −KDϕi∇iϕi (9)

System (9) is called the canonical system. Note that the two systems share the same critical

points. Moreover, using the exact same arguments as in the proof of Proposition 3 in [14], the

existence of an appropriate tuning of µ such that the trajectories of (5) are bounded by the

trajectories of (9) can be established. This allows us to derive conclusions on the convergence

of (5) by examining the convergence of (9).

VI. CONVERGENCE ANALYSIS

The convergence analysis of the overall system consists of two parts. The first part uses primal

Lyapunov analysis to show that the system converges to an arbitrarily small neighborhood of

the critical points. We then use dual Lyapunov analysis to show that the set of initial conditions

that drives the system to points other than the goal configurations is of zero measure.
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A. Primal Lyapunov Analysis

The stability of system (1) under the control law (5) was analyzed in [5] and convergence to

an arbitrarilly small neighborhood of the critical points was established. We now show that, as

expected, the multiplication of the control with the positive definite matrix Dϕi yields the same

behavior. Note that the closed loop kinematics of system (1) under (9) are given by

q̇ = f(q) =


−KDϕ1∇1ϕ1

...

−KDϕN∇NϕN


Define ϕ =

∑
i

ϕi. The derivative of ϕ can be computed by

ϕ̇ = (∇ϕ)T q̇ = −K
N∑
i=1

(∇iϕ)T (Dϕi∇iϕi) = −K
N∑
i=1

N∑
j=1

(Dϕi∇iϕi)
T (∇iϕj)

where ϕi is defined in (4). Consider ε > 0. Then we can further compute

ϕ̇ = −K
N∑
i=1

((∇iϕi)
TDϕi∇iϕi +

∑
j 6=i

(∇iϕj)
T (Dϕi∇iϕi))

=−K
∑

i:‖∇iϕi‖>ε

((∇iϕi)
TDϕi∇iϕi +

∑
j 6=i

(∇iϕj)
T (Dϕi∇iϕi))

−K
∑

i:‖∇iϕi‖≤ε

((∇iϕi)
TDϕi∇iϕi +

∑
j 6=i

(∇iϕj)
T (Dϕi∇iϕi))

≤−K
∑

i:‖∇iϕi‖>ε

(λmin(Dϕi)ε
2 +

∑
j 6=i

(∇iϕj)
T (Dϕi∇iϕi))

−K
∑

i:‖∇iϕi‖≤ε

(∇iϕj)
T (Dϕi∇iϕi)

The terms in the first sum, where ‖∇iϕi‖ > ε, are lower bounded as follows: λmin(Dϕi)ε
2 +∑

j 6=i(∇iϕj)
T (Dϕi∇iϕi) ≥ λmin(Dϕi)ε

2−ε||Dϕi ||max

∑
j 6=i ‖∇iϕj‖. Using (8) we have ‖∇iϕj‖ =(

γkdj +Gj

)−1/k−1 (γdj
k
‖∇iGj‖

)
. For γdj > γmin, k > 1, the term (γkdj +Gj)

1/k+1 is minimized by

γ2
min so that λmin(Dϕi)ε

2+
∑

j 6=i(∇iϕj)
T (Dϕi∇iϕi) ≥ λmin(Dϕi)ε

2−ε ||Dϕi ||max

kγ2min

∑
j 6=i γdj‖∇iGj‖.

We want to achieve a bound of the form λmin(Dϕi)ε
2+
∑

j 6=i(∇iϕj)
T (Dϕi∇iϕi) ≥ ρ1 > 0, where

0 < ρ1 < λmin(Dϕi)ε
2. A sufficient condition for this to hold is (N−1)||Dϕi ||max

kγ2min
maxj 6=i{γdj‖∇iGj‖} ≤

λmin(Dϕi )ε
2−ρ1

ε
, or equivalently

k ≥ ε

λmin(Dϕi)ε
2 − ρ1

(N − 1)||Dϕi ||max

γ2
min

max
j 6=i
{γdj‖∇iGj‖} (10)
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We next compute a lower bound on the terms in the second sum, where ‖∇iϕi‖ ≤ ε. Note that

(∇iϕj)
T (Dϕi∇iϕi) = (Dϕi∇iϕi)

T (∇iϕj) =

(
Gi∇iγdi − γdi

k
∇iGi

)T
DT
ϕi

(
−γdj

k
∇iGj

)(
γkdi +Gi

)1/k+1 (
γkdj +Gj

)1/k+1

=
−γdjGi

k
∇iγ

T
diD

T
ϕi
∇iGj +

γdjγdi
k2
∇iG

T
i D

T
ϕi
∇iGj(

γkdi +Gi

)1/k+1 (
γkdj +Gj

)1/k+1

so that (∇iϕj)
T (Dϕi∇iϕi) ≥ 1

γ4min
(−γdjGi

k
‖∇iγdi‖||Dϕi||‖∇iGj‖− γdjγdi

k2
‖∇iGi‖||Dϕi ||‖∇iGj‖).

We want to achieve a bound of the form
∑

j 6=i(∇iϕj)
T (Dϕi∇iϕi) ≥ −2ρ2, where ρ2 >

0. A sufficient condition for this to hold is that 1
γ4min

γdjGi
k
‖∇iγdi‖||Dϕi ||‖∇iGj‖ ≤ ρ2 and

1
γ4min

γdjγdi
k2
‖∇iGi‖||Dϕi ||‖∇iGj‖ ≤ ρ2 or equivalently, that both

k ≥ maxj 6=i{γdjGi‖∇iγdi‖||Dϕi ||‖∇iGj‖}
ρ2γ4

min

(11)

and

k ≥

√
maxj 6=i{γdiγdj‖∇iGi‖||Dϕi ||‖∇iGj‖}

ρ2γ4
min

(12)

hold. Provided that k satisfies (10),(11),(12), we have ϕ̇ ≤ −Kρ1 + K(N − 1)2ρ2, assuming

that there exists at least one agent such that ‖∇iϕi‖ > ε. The latter is strictly negative for

0 < (N − 1)2ρ2 < ρ1 < λmin(Dϕi)ε.

In essence, ϕ̇ can be rendered strictly negative as long as there exists at least one agent with

‖∇iϕi‖ > ε. Thus the system converges to an arbitrarily small region of the critical points,

provided that 0 < (N − 1)2ρ2 < ρ1 < λmin(Dϕi)ε and the conditions on k hold. We have:

Proposition 3: Consider the system (1) with the control law (9). Assume that γdi ≥ γmin >

0. Pick ε > 0,ρ1, ρ2 > 0 satisfying 0 < (N − 1)2ρ2 < ρ1 < λmin(Dϕi)ε and assume that

(10),(11),(12) hold. Then the system converges to the set ‖∇iϕi‖ ≤ ε for all i in finite time.

We also refer to the corresponding convergence result for the system (5) in [5], Prop. 2.

B. Dual Lyapunov Analysis

Having established convergence to an arbitrarily small neighborhood of the critical points,

density functions are now used to pose sufficient conditions that the attractors of undesirable

critical points are sets of measure zero.

For ϕ =
∑
i

ϕi, define ρ = ϕ−α,α > 0 which is defined for all points in W other than the

desired equilibrium γdi = 0, for all i ∈ N . Note also that each ϕi is C2 and takes values in [0, 1]
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and thus both the function ϕ and its gradients are bounded functions in W . Hence, ρ fulfils the

integrability condition of Theorem 1 and is a suitable density function for the equilibrium point

γdi = 0,∀i ∈ N .

We have ∇ρ = −αϕ−α−1∇ϕ and ∇ · (fρ) = ∇ρ · f + ρ∇ · f = −αϕ−α−1∇ϕ · f +

ϕ−α∇ · f . Whenever ∇iϕi = 0 for all i ∈ N , we have f = 0. Moreover, ∇ · f = ∇ ·

[−Dϕ1∇1ϕ1, . . . ,−DϕN∇NϕN ]. For ∇iϕi = 0 for all i ∈ N , we can calculate ∇ · (fρ) =

ϕ−α∇ · f = −ϕ−α
∑
i

{µλmini + ε1µ(λmini +λmaxi)} where λmini ,λmaxi denote the minimum and

maximum eigenvalue, respectively, of the Hessian matrix ∂2ϕi
∂q2i

at the particular critical point of

agent i. The following result is then straightforward:

Proposition 4: Assume that
∑
i

λmini < 0. Then the right hand side of the last equation is

rendered strictly positive by choosing

ε1 <

|
∑
i

λmini |

|
∑
i

{λmini + λmaxi}|
(13)

The above result implies that a sufficient condition for the fulfillment of the condition ∇ ·

(fρ) > 0 for ∇iϕi = 0 for all i ∈ N is given by∑
i

λmini < 0 (14)

It thus turns out that negativity of the minimum Hessian eigenvalue of all ϕi is a sufficient but

not a necessary condition for decentralized navigation. This condition was used in [4] using

tools from Morse Theory. Using the combination of dual Lyapunov functions and canonical

vector fields, we derived the sufficient condition (14), which is less conservative than the Morse

condition λmini < 0 for all i. Moreover, the condition (14) is also less conservative than the

condition
∑
i

λmini + λmaxi < 0 that was derived in our previous work [5] using the same tools

as in the current paper, apart from the canonical vector field formulation.

Let us now elaborate a little more on the condition (14). Using the notation Hi(ϕi) ,
∂2ϕi
∂q2

i
for the Hessian matrix of ϕi, it is true that

∑
i

λmini ≤
∑
i

ûTi Hiûi holds for all vectors ûi with

||ûi|| = 1. Note also that the critical points of ϕi and ϕ̂i =
γi
Gi

coincide [11],[4]. So (14) is

implied by the existence of a vector ûi with ||ûi|| = 1 such that∑
i

ûTi Hi(ϕ̂i)ûi < 0 (15)
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Note that the corresponding sufficient condition based on the Morse property in [4] had the

form ûTi Hi(ϕ̂i)ûi < 0 for all i ∈ N . From Proposition 1 we know that at a critical point of

ϕ̂i, we have gir ≤ ε for at least one relation of agent i. With a slight abuse of notation, we will

denote gir = gi in the sequel for brevity. Consider now û , { ∇1b1(qc)
⊥

‖∇1b1(qc)
⊥‖ , . . . ,

∇N bN (qc)
⊥

‖∇N bN (qc)
⊥‖} and

ûi ,
∇ibi(qc)⊥

‖∇ibi(qc)⊥‖ , where qc ∈ Cϕ̂i , and Cϕ̂i is the set of critical points of ϕ̂i. By its definition ûi

is orthogonal to ∇ibi at a critical point qc, and so ûTi · ∇ibi = 0 and ∇ib
T
i · ûi = 0.

We can now use similar calculations to the ones used in the proof of Lemma 5 in [4] to derive

the following expression:∑
i

ûTi Hi(ϕ̂i)ûi =
∑
i

γk−1
di

G2
i

{ḡiciµi + gi(γdiηi − γdiξi +
∇iḡ

T
i ∇iγdi
2

− σi)} (16)

where ḡi =
∏Ni

l=1,l 6=r g
i
l ,µi = 1

2
∇ib

T
i ∇iγdi − υiγdi,υi = 2|Pr| > 2,ci = 1 + λ

bi+b̃
1/h
i

,ξi = ûTi ·

∇2
i ḡiûi + ḡi

ci
· ûTi Aiûi − 2 λ

ci

(
bi+b̃

1/h
i

)2 ûTi ∇ib̃
1/h
i ∇iḡiûi,

ηi =

(
1− 1

k

)
ûTi ∇iḡi∇iḡTi ûi

ḡi
− 2λ

ûTi ∇iḡi
(
∇ib̃

1/h
i

)T
ûi

ci

(
bi+b̃

1/h
i

)2

+λ2ḡi
ûTi ∇ib̃

1/h
i

(
∇ib̃

1/h
i

)T
ûi

c2i

(
bi+b̃

1/h
i

)4

 ,
σi =

λḡi

2ci

(
bi + b̃

1/h
i

)2

(
∇ibi +∇ib̃

1/h
i

)T
∇iγdi,

and Ai = λ


2

(
∇ibi+∇ib̃

1/h
i

)(
∇ibi+∇ib̃

1/h
i

)T
(
bi+b̃

1/h
i

)3 −

−
(
∇2
i bi+∇2

i b̃
1/h
i

)
(
bi+b̃

1/h
i

)2

 .
Note that the second term in the parenthesis in (16) can be made arbitrarily small by a small

choice of ε but can still be positive, so the first term should be strictly negative. In particular,

the condition ∑
i

γk−1
di

G2
i

ḡici(
1

2
∇ib

T
i ∇iγdi − υiγdi) < 0 (17)

is a sufficient condition for (15) to hold. Note that υi > 2. Moreover, for 0 ≤ gi ≤ ε we have

0 ≤ bi =
∑
j∈Pr

βij ≤ ε and thus 0 ≤ βij ≤ ε for all j ∈ Pr, for the particular relation r with respect

to agent i. We then have ||∇ibi|| = ||2
∑
j∈Pr

(qi−qj)|| ≤ 2
∑
j∈Pr
||(qi−qj)|| ≤ 2

∑
j∈Pr

√
ε+ (%i + %j)2.

Moreover ||∇iγdi|| = 2
√
γdi and we shall use the notation Mi =

γk−1
di

G2
i
ḡici
√
γdi in the sequel.
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Denote also by γ̄ = γ̄(q) = mini γdi(q) the minimum of the functions γdi at each point q of the

workspace. It can be seen that the sufficient condition (17) is now implied by∑
i

Mi

∑
j∈Pr

√
ε+ (%i + %j)2 <

∑
i

Mi

√
γ̄ (18)

which is in turn implied by

max
i
{
∑
j∈Pr

√
ε+ (%i + %j)2} <

√
γ̄ (19)

For the case of common equal radii % for all agents, the above is simplified to max
i
{
∑
j∈Pr

√
ε+ 4%2} <

√
γ̄. Since the maximum number of binary relations in a relation can be equal to 6 in the case

of decentralized navigation functions, the above is implied by

γ̄ > 36(ε+ 4%2) (20)

We now use the argument of [14] mentioning that since (3) is satisfied exactly at the critical

points, it is satisfied also in an arbitrary small neighborhood around them. From the primal Lya-

punov analysis, we know that indeed the system converges to an arbitrarily small neighborhood

of the critical points. The dual Lyapunov analysis guarantees that the attractors of the undesirable

critical points are sets of measure zero. The following then holds:

Proposition 5: Consider (1) with the control law (9). Let the assumptions of Propositions 1,3

hold. Pick arbitrarily small ε,γmin such that ε ≥ γmin > 0. Then for almost all initial conditions

the closed loop system (1), (9) (i) fulfills (3) as long as
√
γ̄ > max

i
{
∑
j∈Pr

√
ε+ (%i + %j)2} for

the case of agents with non equal radii and γ̄ > 36(ε + 4%2) for the case of agents with equal

radii and (ii) converges to the set
√
γ̄ ≤ max

i
{
∑
j∈Pr

√
ε+ (%i + %j)2} for the case of agents with

non equal radii, and to the set γ̄ ≤ 36(ε+ 4%2) for the case of agents with equal radii.

The latter along with the fact that the trajectories of (5) are bounded by the trajectories

of (9) for appropriate tuning of µ, guarantees that the above Proposition holds also for the

closed loop system (1), (5). Statement (i) in the above proposition can be rephrased as: provided

that the agents are located at configurations satisfying (20) or (19), they are guaranteed to

navigate towards their destinations. Thus as long (20) or (19) are satisfied, the closed loop

system navigates towards the final destinations, as these are depicted by statement (ii). The

optimal outcome would be the case that all agents converged (almost) simultaneously to the sets

described by
√
γdi ≤ max

i
{
∑
j∈Pr

√
ε+ (%i + %j)2} for the case of agents with non equal radii,
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and to the set γdi ≤ 36(ε+ 4%2) for the case of agents with equal radii. This relates to the issue

of synchronization in this framework, which motivates an interesting future research direction.

Note that for point agents, (20) becomes

γ̄ > 36ε (21)

This establishes that for point agents, as long as γ̄ > 36ε holds, agents navigate towards

their destinations. Since ε can be chosen arbitrarily small, convergence to an arbitrarily small

neighborhood around the desired destination points is guaranteed for the case of point agents.

VII. SIMULATIONS

The derived results are now supported through a computer simulation.

Note that the analysis yields an improved minimum on γ̄ with respect to [6] since it relies on

the fact that only the sum of the minimum eigenvalues of the Hessians at critical points needs to

be negative, and not every minimum eigenvalue itself. The analysis in [6] yields a minimum of

γ̄ which is of the order R2
W

ε
. Thus the results of [6] are significantly more conservative than the

current paper, which yields a γ̄ of order ε+4%2, since in general % << RW . This point is depicted

in the simulation scenario, where we consider four agents whose initial positions do not satisfy

the sufficient condition for γ̄ given in [6] while they satisfy (19). In particular, the initial and final

destinations of the four agents are given by q1(0) = [−0.2,−0.2]T , q2(0) = [−0.2, 0.21]T , q3(0) =

[0.21,−0.2]T , q4(0) = [0.2, 0.2]T and qd1 = [0.21, 0.2]T , qd2 = [0.2,−0.2]T , qd3 = [−0.2, 0.2]T ,

qd4 = [−0.2,−0.2]T respectively. The control parameters are given by k = 100, %1 = . . . =

%4 = % = 0.05, d = 0.13, Rw = 1. It is easily verified that the system satisfies (19) at the initial

positions while it does not satisfy the conditions of [6].

Since agents satisfy (19), the results of Proposition 5 are applicable. Plots I-IV of Fig. 1 show

the evolution of the closed-loop system. In plot I, the initial position and desired destination of

agent i, i = 1, 2, 3, 4 are denoted by Ai,Ti respectively. Each agent is represented by a disc. The

arrows indicate the agent motion at each plot. In plot II, the agents follow an almost straight

line towards their destination, until they get into a conflict situation which is resolved in plot

III. In plot IV, the agents have reached their desired destinations.
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Fig. 1. Four agents initially satisfying (19) converge to their destinations. The agents do not fulfill the conditions of [6].

VIII. CONCLUSIONS

A combination of dual Lyapunov analysis and properties of decentralized navigation function

based controllers were used to check the stability properties of a class of decentralized controllers

for navigation and collision avoidance in multi-agent systems. The derived results yield a less

conservative condition which relates to the negativity of the sum of the minimum eigenvalues

of the Hessian matrices at the critical points, instead of requiring each of the eigenvalue to be

negative itself. This provides an improved characterization of the reachable set of this certain

class of decentralized navigation function based controllers, which is less conservative than the

previous results for the same class of controllers.

REFERENCES

[1] D. Angeli. An almost global notion of input-to-state stability. IEEE Transactions on Automatic Control, 49(6):866–874,

2004.

[2] J. Chen, D.M. Dawson, M. Salah, and T. Burg. Multiple UAV navigation with finite sensing zone. 2006 American Control

Conference, pages 4933–4938.

December 5, 2011 DRAFT



15

[3] M.C. DeGennaro and A. Jadbabaie. Formation control for a cooperative multiagent system with a decentralized navigation

function. 2006 American Control Conference, pages 1346–1351.

[4] D. V. Dimarogonas, S. G. Loizou, K.J. Kyriakopoulos, and M. M. Zavlanos. A feedback stabilization and collision

avoidance scheme for multiple independent non-point agents. Automatica, 42(2):229–243, 2006.

[5] D.V. Dimarogonas and E. Frazzoli. Analysis of decentralized potential field based multi-agent navigation via primal-dual

lyapunov theory. 49th IEEE Conf. Decision and Control, pages 1215–1220, 2010.

[6] D.V. Dimarogonas and K.J. Kyriakopoulos. An application of Rantzer’s dual Lyapunov theorem to decentralized navigation.

15th IEEE Mediterranean Conference on Control and Automation, 2007.

[7] D.V. Dimarogonas and K.J. Kyriakopoulos. Decentralized navigation functions for multiple agents with limited sensing

capabilities. Journal of Intelligent and Robotic Systems, 48(3):411–433, 2007.

[8] A. Ghaffarkhah and Y. Mostofi. Communication-aware target tracking using navigation functions - centralized case.

International Conference on Robot Communication and Coordination (RoboComm), 2009.

[9] C.S. Karagoz, H.I. Bozma, and D.E. Koditschek. Coordinated navigation of multiple independent disk-shaped robots.

Tech. report no. ms-cis-07-16, Department of Computer and Information Science, University of Pennsylvania, 2007.

[10] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research,

5(1):90–98, 1986.

[11] D. E. Koditschek and E. Rimon. Robot navigation functions on manifolds with boundary. Advances Appl. Math., 11:412–

442, 1990.

[12] S. LaValle. Planning Algorithms. Cambridge University Press, 2007.

[13] S. G. Loizou and K. J. Kyriakopoulos. Closed loop navigation for multiple holonomic vehicles. Proc. of IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems, pages 2861–2866, 2002.

[14] S.G. Loizou and A. Jadbabaie. Density functions for navigation function based systems. IEEE Transactions on Automatic

Control, 53(2):612–617, 2008.

[15] S.G. Loizou and V. Kumar. Weak input-to-state stability properties for navigation function based controllers. 45th IEEE

Conf. Decision and Control, pages 6506–6511, 2006.

[16] S.G. Loizou and K.J Kyriakopoulos. Navigation of multiple kinematically constrained robots. IEEE Transactions on

Robotics, 24(1):221–231, 2008.

[17] I. Masubuchi. Analysis of positive invariance and almost regional attraction via density functions with converse results.

IEEE Transactions on Automatic Control, 52(7):1329–1333, 2007.

[18] L. Pallottino, V.G. Scordio, A. Bicchi, and E. Frazzoli. Decentralized cooperative policy for conflict resolution in

multivehicle systems. IEEE Transactions on Robotics, 23(6):1170–1183, 2007.

[19] A. Rantzer. A dual to Lyapunov’s stability theorem. Systems and Control Letters, 42:161–168, 2001.

[20] A. Rantzer and S. Prajna. On analysis and synthesis of safe control laws. 42nd Allerton Conference on Communication,

Control, and Computing, 2004.

[21] H.G. Tanner and A. Kumar. Formation stabilization of multiple agents using decentralized navigation functions. Robotics:

Science and Systems, 2005.

[22] J.F. Vasconcelos, A. Rantzer, C. Silvestre, and P. Oliveira. Combination of lyapunov functions and density functions for

stability of rotational motion. 48th IEEE Conf. Decision and Control, pages 5941–5946, 2009.

December 5, 2011 DRAFT


