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Abstract— This paper proposes novel event-triggered strate-
gies for the control of uncertain nonlinear systems with ad-
ditive disturbances under robust Nonlinear Model Predictive
Controllers (NMPC). The main idea behind the event-driven
framework is to trigger the solution of the optimal control
problem of the NMPC, only when it is needed. The updates
of the control law depend on the error of the actual and
the predicted trajectory of the system. Sufficient conditions
for triggering are provided for both, continuous and discrete-
time nonlinear systems. The closed-loop system evolves to a
compact set where it is ultimately bounded, under the proposed
framework. The results are illustrated through a simulated
example.

I. INTRODUCTION

The periodic implementation of control tasks is the most

common approach for feedback control systems. However,

this might be a conservative choice, since the constant

sampling period has to guarantee stability in the worst-case

scenario. It is apparent that a reduction on the number of

the control updates is desirable because it can lead to the

alleviation of the energy consumption, or in the case of

networks, it can result to amelioration of the network traffic.

In recent years the framework of event-driven feedback and

sampling has been developed. This results to a more flexible

aperiodic sampling, while preserving necessary properties of

the system, such as stability and convergence. Related works

can be found in [1], [8], [16], [18].

Motivated by the fact that NMPC are widely used control

strategies, with conspicuous advantages such as the capabil-

ity to deal with nonlinearities and constraints, in this paper

an event-based framework for this kind of controllers, is

investigated. In addition, most NMPC control schemes are

computationally demanding, so it would be of great interest

if the control law would not be updated at each sampling

instant but rather, the already computed control trajectory,

would be implemented to the plant until an event occurs. This

approach, could be useful in cases, where the computation of

the optimal control law is demanding, as in large-scale sys-

tems, opposed to the computation of the predicted trajectory.

This is for example the case in [17], where an event-based

NMPC approach for nonlinear continuous-time systems with

nominal dynamics, is presented. The approach is used in

order to overcome the bounded delays and information losses
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that often appear in networked control systems. Although the

formulation is event-driven, a criterion for triggering was not

provided.

The contribution of this paper relies in finding suffi-

cient conditions for triggering, in the case of uncertain

nonlinear systems with additive disturbances, under robust

NMPC strategies. The main assumption for the general

event-triggered policies, is the ISS stability of the plant

as it can be seen in [2], for discrete-time systems and in

[16], for continuous. There has been a lot of research on

ISS properties of MPC for discrete-time systems. For linear

systems the reader is referred to [6], [10]. More recent results

for the ISS properties of nonlinear MPC can be found in

[4], [11], and [13]. In [12], the authors presented a robust

NMPC controller for constrained discrete-time systems. They

also proved that the closed-loop system was ISS, with

respect to the uncertainties.The framework proposed in [12],

is our starting point here. Although most researchers have

focused on the discrete-time frame, the ISS stability of a

robust NMPC in continuous-time sampled-data systems was

recently presented in [14].

In this work, the triggering condition of a continuous-time

system under a robust NMPC control law is given, while a

convergence analysis of an uncertain nonlinear system is also

provided. We note that the discrete-counterpart will be pre-

sented in [3], and is outlined here for the sake of coherence.

Although the event-based setup for MPC controllers is quite

new, some results have already been presented in [9], [7] and

[15].

The remainder of the paper is organized as follows.

In Section II, the problem statement for the continuous-

time case is presented. Sufficient conditions for triggering

of an uncertain continuous-time system under NMPC are

provided in Section III. The discrete counterpart of the above

framework is reviewed in Section IV, and in Section V some

simulation results are presented. Section VI summarizes the

results of this paper and indicates further research endeavors.

II. PROBLEM STATEMENT FOR CONTINUOUS-TIME

SYSTEMS

In the following a triggering condition for continuous-time

nonlinear systems under NMPC control laws is going to be

presented. following the idea behind the analysis proposed

in [12] for discrete-time systems, appropriately modified in

this case, for continuous-time systems.

Consider a nonlinear continuous time system

ẋ(t) = f(x(t), u(t)), x(0) = x0 (1)

x(t) ∈ X ⊂ R
n, u(t) ∈ U ⊂ R

m (2)



We also assume that f(x, u) is locally Lipschitz in x, with

Lipschitz constant Lf and that f(0, 0) = 0. The whole state

x(t), is assumed to be available. Sets X , U are assumed to

be compact and connected, respectively, and (0, 0) ∈ X ×U .

In a realistic formulation though, modeling errors, uncer-

tainties and disturbances may exist. Thus, a perturbed version

of (1) is going to be considered as well. The perturbed system

can be described as

ẋ(t) = f(x(t), u(t)) + w(t), x(0) = x0 (3)

where the additive term w(t) ∈ W ⊂ R
n is the disturbance

at time t ∈ R≥0 and W is a compact set containing the origin

as an interior point. Furthermore, note that w(t) is bounded

because it is defined in a compact set w(t) ∈ W . Thus, there

exists γsup ∈ R≥0 such that supt≥0 ||w(t)|| ≤ γsup.

Given the system (1), the predicted state is denoted as

x̂(ti+τ, u(·), x(ti)). This notation will be equipped hereafter

and it accounts for the predicted state at time ti + τ with

τ ≥ 0, based on the measurement of the real state at time ti
while using a control trajectory u(·;x(ti)) for time period ti
until ti + τ . It holds that x̂(ti, u(·), x(ti)) ≡ x(ti), i.e. the

measured state at time ti.

A. NMPC for Continuous-Time Systems

The main idea behind NMPC is to solve on-line a finite-

horizon, open-loop optimal control problem, based on the

measurement provided by the plant. At the recalculation time

ti, the actual state of the plant x(ti), is measured and the

following Optimal Control Problem (OCP), is solved:

min
ũ(·)

J(ũ(·), x(ti)) =

min
ũ(·)

∫ ti+Tp

ti

F (x̃(τ), ũ(τ)) d τ + E(x̃(ti + Tp)), (4a)

s.t.
˙̃x = f(x̃(t), ũ(t)), x̃(ti) = x(ti), (4b)

ũ(t) ∈ U , (4c)

x̃(t) ∈ Xt−ti t ∈ [ti, ti + Tp], (4d)

x̃(ti + Tp) ∈ Ef , (4e)

where ·̃ denotes the controller internal variables, correspond-

ing to the nominal dynamics of the system. F and E are

the running and terminal costs functions, respectively, with

E ∈ C1, E(0) = 0. The terminal constraint set Ef ⊂ R
n is

assumed to be closed and connected.

Assume, also, that the cost function F is quadratic of

the form F (x, u) = xTQx + uTRu, with Q and R being

positive definite matrices. Moreover we have F (0, 0) = 0
and F (x, u) ≥ λmin(Q)||x||2, with λmin(Q) being the

smallest eigenvalue of Q. Since X and U are bounded, the

stage cost is Lipschitz continuous in X ×U , with a Lipschitz

constant LF .

The state constraint set X of the standard MPC formu-

lation, is being replaced by a restricted constraint set Xt−ti

in (4d). This state constraints’ tightening for the nominal

system with additive disturbance is a key ingredient of the

robust NMPC controller and guarantees that the evolution of

the real system will be admissible for all time.

Notice that the difference between the actual measurement

at time ti+ τ and the predicted state at the same time under

some control law u(ti + τ, x(ti)), with 0 ≤ τ ≤ Tp, starting

at the same initial state x(ti), can be shown [5] to be upper

bounded by

||x(ti + τ) − x̂(ti + τ, u(·), x(ti))|| ≤
γsup

Lf

(eLf ·τ − 1) (5)

Set γ(t) , γsup

Lf
(eLf ·t − 1) ∀t ∈ R≥0.

The restricted constrained set is then defined as Xt−ti =
X ∼ Bt−ti where Bt−ti = {x ∈ R

n : ||x|| ≤ γ(t −
ti)}, with t ∈ [ti, ti +Tp]. The set operator “∼” denotes the

Pontryagin difference.

The solution of the OCP at time ti provides an optimal

control trajectory u∗(t;x(ti)), for t ∈ [ti, ti + Tp], where

Tp represents the finite prediction horizon. A portion of the

optimal control that corresponds to the time interval [ti, ti+
δi), is then applied to the plant, i.e.,

u(t) = u∗(t;x(ti)), t ∈ [ti, ti + δi) (6)

where δi represents the recalculation period that may not

be equidistant for every ti, δi = δ(ti) = ti+1 − ti. A time

instant ti ∈ R≥0 must be a proper recalculation time, in

the sense defined in [17], i.e. a time instant ti ∈ R≥0 is a

proper recalculation time if there exists β ∈ R≥0, such that,

0 < β ≤ ti+1 − ti = δi < Tp, ∀ti, ti+1 ∈ R≥0.

In order to assert that the NMPC strategy results in a

robustly stabilizing controller, some stability conditions are

stated for the nominal system. Thus, system (1) is supposed

to fulfill the following assumption.

Assumption 1.

i) Let the terminal region Ef from (4e) be a subset of an

admissible positively invariant set E of the nominal system,

where E ⊂ X is closed, connected and containing the origin.

ii) Assume that there is a local stabilizing controller

h(x(t)) for the terminal set Ef . The associated Lyapunov

function E(·) has the following properties

∂E

∂x
f(x(τ), h(x(τ))) + F (x(τ), h(x(τ))) ≤ 0 ∀x ∈ E

and is Lipschitz in E , with Lipschitz constant LE .

iii) The set E is given by E = {x ∈ R
n : E(x) ≤ αE }

such that E ⊆ X = {x ∈ XTp
: h(x) ∈ U}. The set

Ef = {x ∈ R
n : E(x) ≤ αEf

} is such that for all x ∈ E ,

f(x, h(x)) ∈ Ef . Assume also that αE , αEf
∈ R≥0 and is

such that αE ≥ αEf
.

iv) ∃ Tp, such that 0 < β ≤ δ(t) < Tp, for some β ∈ R≥0.

Note that i)-iii) are standard assumptions for a NMPC

system, see for example [14]. Assumption iv), can be verified

either experimentally or theoretically for specific systems and

it states that every recalculation time is a proper recalculation

time.



The event-triggered strategy presented later in this pa-

per, is used in order to enlarge, as much as possible, the

inter-calculation period δi for the actual system (3). The

enlargement of the inter-calculation period results in the

overall reduction of the control updates which is desirable

in numerous occasions, as for example energy consumption

reasons. In an event-based framework the inter-calculation

period is not equidistant but is “decided” ex tempore, based

on the error between the actual state measurement of (3), and

the state trajectory of the nominal system, (1). The triggering

condition, i.e. how the next calculation time ti+1, is chosen,

is presented next.

III. TRIGGERING CONDITION FOR THE NMPC OF

CONTINUOUS-TIME SYSTEMS

In this section, the feasibility and the convergence of the

closed loop system (3), (6) are provided first. Then, the event-

triggering rule for sampling is reached.

A. Feasibility and Convergence

As usual in model predictive control, the proof of stability

consists in two separate parts; the feasibility property is

guaranteed first and then, based on the previous result,

the convergence property is shown. Due to the fact that

the system in consideration is perturbed, we only require

“ultimate boundedness” results.

The first part will establish that initial feasibility im-

plies feasibility afterwards. Consider two successive trig-

gering events ti and ti+1 and a feasible control trajectory

ū(·, x(ti+1)), based on the solution of the OCP in ti,
u∗(·, x(ti))

ū(τ, x(ti+1)) =

=

{

u∗(τ, x(ti)) ∀τ ∈ [ti+1, ti + Tp]
h(x̂(ti + Tp, u

∗(·), x(ti))) ∀τ ∈ [ti + Tp, ti+1 + Tp]
(7)

From feasibility of u∗(·, x(ti)) it follows that there is

ū(τ, x(ti+1)) ∈ U , and similar to the procedure in [12]

x̂(ti+1 + Tp, ū(τ, x(ti+1)), x(ti+1)) ∈ Ef provided that the

uncertainties are bounded by γsup ≤
(αE−αEf

)·Lf

LE·(eLf ·Tp−1)
. Finally,

the state constraints must be fulfilled. According to [12] and

[14] and considering that ||x(t) − x̂(t, u(·), x(ti))|| ≤ γ(t),
for all t ≥ ti, it is verified that since the x̂(t, u∗(·), x(ti)) ∈
Xt−ti , then x̂(t, ū(·), x(ti+1)) ∈ Xt−ti+1 .

The second part involves proving convergence of the state

and is being introduced now. In order to prove stability

of the closed-loop system, it must be shown that a proper

value function is decreasing starting from a sampling in-

stant ti. Consider the optimal cost J∗(u∗(·;x(ti)), x(ti)) ,
J∗(ti) from (4a) as a Lyapunov function candidate.

Then, consider the cost of the feasible trajectory, in-

dicated by J̄(ū(·;x(ti+1)), x(ti+1)) , J̄(ti+1), where

ti, ti+1 are two successive triggering instants. Also,

x̄(τ, ū(τ ;x(ti+1)), x(ti+1)) is introduced, and it accounts for

the predicted state at time τ , with τ ≥ ti+1, based on the

measurement of the real state at time ti+1, while using the

control trajectory ū(τ ;x(ti+1)) from (7).

Set x1(τ) = x̄(τ, ū(τ ;x(ti+1)), x(ti+1)), u1(τ) =
ū(τ ;x(ti+1)), x2(τ) = x̂(τ, u∗(τ ;x(ti)), x(ti)) and u2(τ) =
u∗(τ ;x(ti)).

The difference between the optimal cost and the feasible

cost is

J̄(ti+1)− J∗(ti) =
∫ ti+1+Tp

ti+1

F (x1(τ), u1(τ)) d τ + E(x1(ti+1 + Tp))

−

∫ ti+Tp

ti

F (x2(τ), u2(τ)) d τ − E(x2(ti + Tp))

=

∫ ti+Tp

ti+1

F (x1(τ), u1(τ)) d τ + E(x1(ti+1 + Tp))

+

∫ ti+1+Tp

ti+Tp

F (x1(τ), u1(τ)) d τ

−

∫ ti+1

ti

F (x2(τ), u2(τ)) d τ

−

∫ ti+Tp

ti+1

F (x2(τ), u2(τ)) d τ − E(x2(ti + Tp)) (8)

From (7), we have that u1(t) ≡ u2(t) ≡ ū(t) for t ∈
[ti+1, ti + Tp], so imposing this control law to the system

(1), it yields

||x1(t)− x2(t)|| = ||x(ti+1) +

∫ t

ti+1

f(x̄(τ), ū(τ)) d τ

− x(ti)−

∫ ti+1

ti

f(x̂(τ), u∗(τ)) d τ

−

∫ t

ti+1

f(x̂(τ), ū(τ)) d τ || (9)

Note that for the nominal system (1), it holds that

x̂(ti+1, u
∗(·), x(ti)) = x(ti) +

∫ ti+1

ti

f(x̂(τ), u∗(τ)) d τ

Also, we have

||

∫ t

ti+1

f(x̄(τ), ū(τ)) d τ −

∫ t

ti+1

f(x̂(τ), ū(τ)) d τ ||

≤ γ(t− ti+1) ∀t ≥ ti+1 (10)

Define the error e(t, x(ti)) as the difference between the

actual state measurement at time t ≥ ti and the predicted

state measurement at the same time, i.e.,

e(t, x(ti)) = ||x(t) − x̂(t, u∗(·), x(ti))|| (11)

Obviously we have e(ti, x(ti)) = 0.

Then, (9) with the help of (10), (11) and t ∈ [ti+1, ti+Tp]
is

||x1(t)− x2(t)|| ≤ e(ti+1, x(ti)) + γ(t− ti+1) (12)



The difference between the running costs, with the help

of (12), is
∫ ti+Tp

ti+1

F (x1(τ), u1(τ)) d τ −

∫ ti+Tp

ti+1

F (x2(τ), u2(τ)) d τ

≤

∫ ti+Tp

ti+1

||F (x1(τ), ū(·))− F (x2(τ), ū(·))|| d τ

≤ LF

∫ ti+Tp

ti+1

||x1(τ) − x2(τ)|| d τ

≤ LF · e(ti+1, x(ti)) · (ti + Tp − ti+1) + LF · µ(ti+1)
(13)

Where µ(t) , γsup

Lf
[ 1
Lf

(eLf ·(ti+Tp)−eLf ·(t))− (ti+Tp− t)].
Integrating the inequality from Assumption 1ii) for t ∈

[ti + Tp, ti+1 + Tp], the following result can be obtained

∫ ti+1+Tp

ti+Tp

F (x1(τ), u1(τ)) d τ + E(x1(ti+1 + Tp))

− E(x2(ti + Tp))− E(x1(ti + Tp)) + E(x1(ti + Tp))

≤ E(x1(ti + Tp))− E(x2(ti + Tp))

≤ LE||x1(ti + Tp)− x2(ti + Tp)||

≤ LE · e(ti+1, x(ti)) + LE · γ(ti + Tp − ti+1) (14)

Relying on the fact that function F is positive definite, it

can be concluded that
∫ ti+1

ti

F (x2(τ), u2(τ)) d τ ≥ λmin(Q) ·LQ(ti+1) ≥ 0 (15)

with LQ(t) , λmin(Q) ·
∫ t

ti
||x̂(τ, u∗(τ ;x(ti)), x(ti))||

2 d τ
for t ≥ ti.

Substituting (13), (14), (15) to (8), the following is derived

J̄(ti+1)− J∗(ti)

≤ (LF (ti + Tp − ti+1) + LE) · e(ti+1, x(ti))

+ LF · µ(ti+1) + LE · (ti + Tp − ti+1)− LQ(ti+1) (16)

The optimality of the solution results to

J∗(ti+1)− J∗(ti) ≤ J̄(ti+1)− J∗(ti) (17)

Thus, it holds that the optimal cost J∗(·) is a Lyapunov

function that has been proven to be decreasing, thus the

closed-loop system converges to a compact set Ef , where

it is ultimately bounded.

B. Triggering Condition

In the following, the triggering condition will be provided.

Consider that at time ti an event is triggered. In order

to achieve the desired convergence property, the Lyapunov

function J∗(·) must be decreasing. For some triggering

instant ti and some time t, with t ∈ [ti, ti + Tp], we have

J∗(t)− J∗(ti)

≤ (LF (ti + Tp − t) + LE) · e(t, x(ti))

+ LF · µ(t) + LE · (ti + Tp − t)− LQ(t) (18)

where e(t, x(ti)) as in (11), and x(t) is the state of the actual

system, continuously measured.

Suppose that the error is restricted to satisfy

(LF (ti + Tp − t) + LE) · e(t, x(ti))

+ LF · µ(t) + LE · (ti + Tp − t) ≤ σLQ(t) (19)

with 0 < σ < 1. Plugging in (19) to (18) we get

J∗(t)− J∗(ti) ≤ (σ − 1) · LQ(t) (20)

This suggests that provided σ < 1, the convergence property

is still guaranteed.

This triggering rule states that when (19) is violated, the

next event is triggered at time ti+1, i.e., the OCP is solved

again using the current measure of the state x(ti+1) as

the initial state. During the inter-event interval, the control

trajectory u(t) = u∗(t, x(ti)) with t ∈ [ti, ti+1], is applied

to the plant.

We are now ready to introduce the main stability result

for the event-based NMPC controller.

Theorem 1: Consider the system (3), subject to (2) under

an NMPC strategy and assume that Assumption 1 holds.

Then the NMPC control law provided by (4a)-(4e) is applied

to the plant in an open-loop manner, until the rule (19) is

violated and a new event is triggered. The overall event-

based NMPC control scheme drives the closed loop system

towards a compact set Ef where it is ultimately bounded.

IV. REVIEW OF THE EVENT-TRIGGERED FORMULATION

FOR DISCRETE-TIME SYSTEMS

The discrete counterpart of the above analysis is presented

in the following. A brief recap of the event-based NMPC for

discrete-time systems is provided for the sake of coherence,

while the results will be presented in [3]. Wherever the

mathematical proofs are omitted, they can be found in [3].

Note that in [3], a decentralized implementation of the

discrete time NMPC is also reported.

A general uncertain system is considered here as well. The

ISS stability with respect to the uncertainties of such systems

was proven in [12] while, a modification of that analysis is

followed, in order to find a triggering condition.

Consider that the plant to be controlled is described by

the nonlinear model

xk+1 = f(xk, uk) + wk (21)

where xk ∈ R
n, uk ∈ R

m and wk ∈ W ⊆ R
n denotes

the system’s state, the control variables and its additive

disturbance, respectively. Uncertainties are assumed to be

bounded by γd ∈ R≥0. Assumptions on the constraints are

similar to the continuous-time case. The nominal model of

the system without the additive disturbance is of the form

xk+1 = f(xk, uk). It is also assumed that f(0, 0) = 0 and

that f(x, u) is locally Lipschitz in x in the domain X × U ,

with Lipschitz constant Lfd .

The predicted state of the nominal system is denoted as

x̂(k + j + 1|k), where the prediction of the state at time

k + j + 1 is based on the measurement of the state of the

system at time k, given a control sequence uk+j , i.e., x̂(k+
j +1|k) = f(x̂(k+ j|k), uk+j). The norm of the difference



between the predicted and the real evolution of the state is

the error denoted as e and will be equipped in the following

analysis. In order to address for the specific time step the

double subscript notation is going to be used here, as well.

Thus, the error is defined as

e(k + j|k) = ||xk+j − x̂(k + j|k)|| (22)

The OCP in the discrete-time case, consists in minimizing,

with respect to a control sequence uF (k) , [u(k|k), u(k +
1|k), . . . , u(k +N − 1|k)], a cost function JN (xk, uF (k)),

min
uF (k)

JN (·) = min
uF (k)

i=N−1
∑

i=0

L(x̃(k + i|k), u(k + i|k))

+ V (x̃(k +N |k)) (23a)

subject to

x̃(k + j|k) ∈ Xj ∀j = 1, . . . , N − 1 (23b)

u(k + j|k) ∈ U ∀j = 0, . . . , N − 1 (23c)

x̃(k +N |k) ∈ Xf (23d)

where N ∈ Z≥0 denotes the prediction horizon and Xf is

the terminal constraint set.

Similar assumptions as in the continuous time frame must

be made for the robust NMPC controller for discrete-time

systems. Following [12], it is assumed that

Assumption 2.

i) The stage cost L(x, u) is Lipschitz continuous in X×U ,

with a Lipschitz constant Lc and it is L(0, 0) = 0. Also

assume that there are positive integers α > 0 and ω ≥ 1,

such that L(x, u) ≥ α||(x, u)||ω .

ii) Let the terminal region Xf from (23d) be a subset of an

admissible positively invariant set Φ of the nominal system.

Assume that there is a local stabilizing controller hd(xk) for

the terminal state Xf . The associated Lyapunov function V (·)
has the following properties V (f(xk, h

d(xk)) − V (xk) ≤
−L(xk, h

d(xk)), ∀xk ∈ Φ, and is Lipschitz in Φ, with

Lipschitz constant LV . The set Φ is given by Φ = {x ∈
R

n : V (x) ≤ α} such that Φ = {x ∈ XN−1 : hd(x) ∈ U}.

The set Xf = {x ∈ R
n : V (x) ≤ αν} is such that for all

x ∈ Φ, f(x, hd(x)) ∈ Xf .

The restricted constraint set Xj from (23b) is such that

Xj = X ∼ Bj where Bj = {x ∈ R
n : ||x|| ≤

L
j−1
f

−1

Lf−1 · γd}
and it guarantees that if the nominal state evolution belongs

to Xj , then the perturbed trajectory of the system fulfills the

constraint x ∈ X .

Using the framework of [12] it can be proven that system

(21) subject to constraints, which satisfies the Assumption

2, is ISS stable with respect to measurement errors, under

an NMPC strategy. This can be concluded since it has been

proven in [3], that J∗
N (k)− J∗

N (k− 1) ≤ LZ0 · e(k|k− 1)−
α||xk−1||

ω, with the optimal cost J∗
N (·) to be considered

as an ISS Lyapunov function for time steps k − 1 and

k. The constant LZ0 is given by LZj
, LV L

(N−1)−j

fd
+

LC

L
(N−1)−j

fd
−1

Lfd
−1 for j ∈ [0, N − 1]. As this is valid only for

the first step, it must be ensured that the value function is

still decreasing for the next consecutive steps, in order to

maintain stability. Thus, the triggering rule can be stated as

LZj
· e(k + j|k − 1) ≤ σ · α ·

j
∑

i=0

||xk−i+j ||
ω (24a)

and

LZj
· e(k + j|k − 1)− σ · α ·

j
∑

i=0

||xk−i+j ||
ω ≤

LZj−1 · e(k + j − 1|k − 1)− σ · α ·

j−1
∑

i=0

||xk−i+j ||
ω (24b)

The next OCP is triggered whenever condition (24a) or (24b)

is violated. Note, that the state vector xk is assumed to

be available through measurements and that it provides the

current plant information.

Hence we can state the following result. Consider the

system (21), subject to the constraints, under an NMPC strat-

egy and assume that the previously presented Assumption 2

holds. Then the NMPC control law given by (23a)-(23d)

along with the triggering rule (24a)-(24b), drives the closed

loop system towards a compact set where it is ultimately

bounded.

V. EXAMPLE

In this section, a simulated example of the proposed design

on a robotic manipulator is presented. The objective is to

provide an efficient NMPC controller, triggered whenever

(24a) or (24b) is violated, in order to stabilize the robotic

manipulator, in a desired equilibrium configuration. Consider

a general manipulator of r degrees of freedom (d.o.f.), which

does not interact with the environment. The joint-space

dynamic model of these types of manipulators is described

as:

B(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = τ (25)

where B is the inertia matrix, C is the Coriolis term, g is

the gravity term, F is a positive definite diagonal matrix of

viscous friction coefficients at the joints, q = [q1, . . . , qr],
q̇ = [q̇1, . . . , q̇r] and q̈ = [q̈1, . . . , q̈r] are the vectors of

the arm joint position, velocity and acceleration, respectively.

Finally, τ ∈ R
r are the joint torque inputs. We consider a

two-link, planar robotic manipulator, r = 2 with no friction

effects for simplicity.In the control affine, state-space model

of the manipulator, the state accounts for x = [q1, q2, q̇1, q̇2].
The initial state is xinitial = [π/2, 0, 0, 0] and the desired

state is xdesired = [0, 0, 0, 0]. In Fig. 1, the norm of the

distance between the state of the system and the desired

state is depicted. The simulation shows that the system (25),

under a NMPC strategy, using the triggering condition (24a)-

(24b), converges to the final state in the nominal case. In the

perturbed case the system converges to a bounded set around

the origin.

The next Fig. 2, depicts the triggering moments, during

the NMPC strategy. It can be witnessed that using the event-

triggered policy, the inter-calculation times are strictly larger
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Fig. 1. The norm of the distance between the state of the system (25) and
the desired state, i.e. dist = ||x − xdesired||. The blue line represents the
distance of the nominal system, while the red line represents the distance
of the perturbed system, under an additive disturbance.

than one when the system is far away from the equilibrium,

until about the 80th time step. After the 80th time step, the

system has practically converged to the desired equilibrium.
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Fig. 2. Triggering instants. When the triggering axis has the value 1, the
NMPC algorithm is triggered. For value 0, the NMPC law is implemented
on the system in an open-loop fashion.

VI. CONCLUSIONS

In this paper, event-triggered strategies for control of

both continuous and discrete-time systems under NMPC

controllers, were proposed and analyzed. In both cases,

uncertain nonlinear systems with additive disturbances, were

considered. The main idea behind the event-triggered frame-

work is to trigger the solution of the optimal control problem

of the NMPC, only when it is needed. During the inter-

event period the control law provided from the previous

triggering event, is utilized in an open-loop fashion. This

event-based approach is favorable in numerous occasions,

because it is possible to reduce the number of times the

control law should be computed, thus it can result to the

alleviation of the energy consumption, or in the case of

networks, it can result to amelioration of the network traffic.

The results were illustrated through a simulated example.

Future work involves finding the triggering condition in a

cooperative control problem of a system of distributed agents

which operate in a common environment.
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