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Abstract— Crowd evacuation has become a primary safety
issue in many public places in a metropolitan area. Experts
from different fields have worked on modeling and designing
evacuating policies by using different tools and methods. In this
paper, an optimal control approach is used to derive guiding
strategies for the rescue agents under different circumstances.
Various optimal control problems are formulated to handle
different assumptions of the scenario. Both the analytic solu-
tions and the numerical simulation confirm the efficiency of this
approach, which in turn can be potentially used as decision-
making support in practical applications.

I. INTRODUCTION

Due to the rapid urbanization in many parts of the world
and other factors, our societies today are facing increasingly
more potential threats in public places with high density hu-
man crowds. Systematic crowd evacuation has thus become a
very critical issue, and also an important topic for research.
Since the past two decades [1], researchers from different
fields have contributed to modeling and design of evacua-
tion scenarios from different point of views. J.D. Sime [2]
started from the psychology aspect to analyze the individual
behaviors. In [3], [4] established a cellular automaton model
with behavior inspired by insects in nature was established.
With the development of multi-agent systems theory, some
agent-based models came out in the past decade, e.g., [5],
[6], [14], [18].

So far there seem to be two different methodologies for
modeling the crowd behavior. The first is the so-called
microscopic approach that treats individuals in the group as
separate objects with certain influence from both the rest of
the crowd and the environment. Most results that use tools
from psychology, social forces, multi-agent systems theory
belong to this category, e.g., [2], [9], [12], [20]. The other
is the macroscopic approach that considers the whole crowd
as one entity with certain parameters describing the density
of the people, which applies only for large crowds. Tools
from fluid mechanics and partial differential equations are
used, e.g., [8], [21]. When safety is of concern, density
based approximations of individuals may not be adequate.
For example, the density being equal to 0.01 does not implies
absence of agents in the area. We thus argue that microscopic
approaches are more suitable when safety is prioritized and
use this approach in this work.
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The study on multi-agent systems has experienced a sig-
nificant development over the past decade. Many agent-based
models were established based on the assumptions given by
C.W. Reynolds [7] when modeling animal flock behavior.
Especially, the social force model [15] has been widely
considered. The simulation of these models can illustrate the
human crowd motion in realistic scenarios.

A question that is still largely open is how we can imple-
ment these models in order to control crowd evacuation in
case of panic situation. Since efficiency is critical in such an
evacuation, an optimal control approach seems to be suitable.
If we can set some reasonable objectives for evaluating the
evacuation progress, we can then design an optimal moving
strategy for the crowd accordingly. Unfortunately, even if
the optimal behavior can be determined, agents in panic
may not be able to perform in that way. Therefore, in both
practice and theory, a “leader-follower” approach would be
more efficient, since even in panic people would still tend to
follow a rescue worker. In the literature, several agent-based
leader-follower models are established [10], [11]. Optimal
control has also been used for such models, e.g., [16], [17].
In [16] an optimal control problem is formulated to control
the system from one quasi-static equilibrium to another one.
In [17] it is shown that optimal energy control for consensus
implies that the interaction topology is the complete graph.

In this paper, we will focus on designing optimal control
strategies for the leaders so that the followers can move
from some given initial positions to a final destination in
a most efficient way. The underlying assumption here is that
one can not expect individuals in a big crowd to perform a
global optimal behavior when they are in panic, as is already
mentioned above. More realistically, we can assume that they
will still follow some behavior primitives such as following
a guiding leader, avoiding collision with each other, or
avoiding walls and obstacles. On the other hand, skilled and
calm leaders could do their best to guide the crowd to certain
places considered to be safe enough.By choosing different
objective functions and models, the optimal rescuing strategy
for the leaders may vary in different situations. In order to get
analytic solutions, we will focus on some relatively simple
models. However, we argue that they still capture the essence
of the problem.

The rest of the paper is organized as follows: In Section
II, the optimal control problem is formulated. Situations
with single follower are discussed in Section III, and the
analytic solutions are provided. In Section IV, we investigate
the scenario with multiple followers and derive the optimal
solution to the problem. Numerical simulation is shown in
Section V, and conclusions are given in Section VI.



II. PROBLEM FORMULATION

An individual agent in the crowd will be called follower,
while a rescue agent will be called leader. Our objective is
to plan the leaders’ rescue guiding route in an optimal way
according to a given leader-follower interaction model. In
this paper, the considered models will be of first order, which
indicates that we can control the velocity of a leader directly,
and the velocity of followers can be modeled as a function
of the leaders’ and the followers’ positions. Denoting the
position of all followers as x =

(
xT

1 xT
2 . . . xT

n
)T and of

all leaders as xl =
(
xT

l1
xT

l2
. . . xT

lm

)T
, where xi ∈ R2 and

xl j ∈ R2 for i = 1,2, · · · ,n and j = 1,2, · · · ,m, then we can
write

ẋi(t) = fi(x1(t), · · · ,xn(t),xl1(t), · · · ,xlm(t)), (1)

for i = 1, · · · ,n, where n is the number of followers and m
is the number of leaders, or in stack vector form

ẋ(t) = f (x(t),xl(t)). (2)

The task of the leader is to guide the follower to a
certain area in a given time. We assume that the leaders
know the initial positions of the followers, the information
about the target area, and the follower dynamics (2). It may
happens that the leader cannot obtain all the initial positions
of the followers, then leaders could only perform as good
as they can based on the information they have. Hence,
the assumption is reasonable. The evaluation of the guiding
action involves both the terminal status of the followers
and the rescuing cost generated during the procedure. The
following optimal control problem (OCP) gives a standard
form of this type of problems

min
u

Φ(x(t f ))+
∫ t f

0
L (t,x(t),u(t))dt (3)

s.t. ẋ(t) = f (x(t),xl(t)),

ẋl(t) = u(t),

x(0) = x0, xl(0) = x0
l ,

x(t f ) ∈ E, xl(t f ) ∈ El ,

u(t) ∈U,

where Φ : R2n → R and L : R×R2n ×R2m → R are the
cost functions of the final states and during the process,
respectively, and x0 ∈ R2n and x0

l ∈ R2m are the initial
conditions of leaders and followers. The sets E ⊆ R2n and
El ⊆ R2m describe the terminal constraints for the states
while U ⊆ R2m is the constraint for the control.

We can formulate many different problems in the form of
(3) by choosing different functions Φ, L and f , and different
sets E, El and U . For example, one may want to guide the
followers as close as possible, in terms of the sum of the
distance squares, to a point with position xe in a limited
amount of time while the leaders have to be in a given area
Elt at the terminal time. If there is no other constraint for
the control, then we can set Φ(x(t f )) = ∑

n
i=1 ‖xi(t f )− xe‖2,

L = 0, E = R2n, El = Elt and U = R2m.

In Sections III and IV, we will discuss cases with one
leader but with different values for these functions and
explore the analytical optimal solutions to the respective
problems by using Pontryagin’s minimum principle (PMP).
Since nonlinear function f may make it difficult to obtain
a analytical solution, we will focus on a linear interaction
model among the leaders and the followers, which is remi-
niscent of standard consensus models in literature.

III. SINGLE-FOLLOWER CASE

Let us first consider the case where there is only one leader
and one follower This assumption is nevertheless illustrative
of the general ideas. In this section, we assume that the
follower follows the leader with velocity f (x,xl) = c(xl−x)
for some parameter c > 0, and we discuss two cases of the
objective function and derive the analytic solution for each
case.

A. Optimizing the terminal position

For a leader, the goal may be to guide followers to an
exit or a safe place as soon as possible. Mathematically this
can be formulated as the problem of minimizing the distance
between the follower and the exit at some given time instance
t f , i.e., Φ(x(t f )) = ‖x(t f )− xe‖2, where xe is the position of
the exit; L (t,x(t),u(t)) is set to be zero in this case. Then
we can rewrite (3) as

min
u
‖x(t f )− xe‖2 (4)

s.t. ẋ = c(xl− x),

ẋl = u,

x(0) = x0,

xl(0) = x0
l

‖u(t)‖ ≤ vmax.

The bound on u(t) reflects the fact that both agents have
limited motion capabilities. Pontryagin’s minimum principle
can be used to solve this problem. The Hamiltonian in this
case is

H = λ
T (c(xl− x))+λ

T
l u, (5)

where λ and λl are the Lagrange multipliers. If x, xl ,
u∗ are the optimal states and control, then the pointwise
minimization gives

u∗ = argmin H((x,xl),u,(λ ,λl)) = argmin λ
T
l u

=

{
− vmax
‖λl‖

λl , λl 6= 0

arbitrary, λl = 0
(6)

By plugging this control to the system and using the adjoint
system to solve the Lagrange multipliers, we can get

x(t) = e−ctx0− vmax

c‖α‖
(ct−1+ e−ct)α +(1− e−ct)x0

l , (7)

where α := x(t f )−xe 6= 0. If we let t = t f in (7) and subtract
xe on both sides of it, then we get α = kβ , where

k = (1+
vmax

c‖α‖
(ct f −1+ e−ct f ))−1 > 0, (8)



and
β = e−ct f x0 +(1− e−ct f )x0

l − xe. (9)

Hence, the optimal control is given by

u∗(t) =− vmax

‖kβ‖
kβ =−vmax

‖β‖
β (10)

If α = 0, then both λ (t) and λl(t) will be constant and
equal to zero. The solution of the pointwise minimization
will be arbitrary values. On the other hand, α = 0 indicates
that x(t f ) = xe. Therefore, any control u(t) that will lead the
follower to the exit in time t f will then be optimal.

By plugging ‖α‖= k‖β‖ back to (8), we get

k = 1− vmax

c‖β‖
(ct f −1+ e−ct f ). (11)

Meanwhile, we know that k > 0 by (8), which implies

vmax(ct f −1+ e−ct f )≤ c‖β‖. (12)

We can solve the inequality (12) to get an upper bound for
t f such that α 6= 0. If t f satisfies (12), then the solution (10)
is the only solution satisfying the PMP conditions, which is
also the unique optimal solution to OCP (4).

The above analysis is summarized as follows:
Theorem 3.1: If the terminal time t f satisfies (12), then the

control (10) solves the optimal control problem (4), where
β is given by (9).

Although the optimal control (10) obtained by PMP is an
open-loop solution, we can always write it as a state feedback
control according to Bellman’s Principle of Optimality, i.e.,
at time t, considering a similar OCP to (10) with the current
states as the initial condition and the new time limit t f −t. We
can derive the optimal solution to the new problem according
to Theorem 3.1, which can be written as

u∗(t) =− vmax

‖β (t,x(t),x)l(t))‖
β (t,x(t),xl(t)), (13)

where

β (t,x(t),xl(t)) = e−c(t f−t)x(t)+(1− e−c(t f−t))xl(t)− xe

= e−c(t f−t)(x(t)− xl(t))+(xl(t)− xe). (14)

Hence, u∗ can be considered as linear combination of the
two directions xl(t)− x(t) and xe− xl(t) with time varying
weights. When t is small, the leader tends to move in the
direction of xe− xl(t), i.e., towards the exit, since e−c(t f−t)

is relatively small. When t is getting larger, the leader will
focus more on guiding the follower, and the vector u∗(t) will
become parallel to xe−x(t). The phenomenon is depicted in
Fig 1.

Remark: If we would like the follower to be close enough
to the exit in the end, i.e., ‖x(t f )− xe‖ ≤ r, for some r > 0,
the lower bound of t f that make the system state fulfill this
constraint can also be given by solving the inequality

‖β‖− vmax

c
(ct f −1+ e−ct f )≤ r, (15)

(a) t = t0

(b) t = t1

Fig. 1. A Graphic illustration of the optimal moving directions of the
leader as linear combinations of xl(t)−x(t) and xe−xl(t). . In (1(a)), u∗(t0)
is dominated by the vector xe− xl(t) because t0 is small. In (1(b)), u∗(t0)
is almost parallel to the vector xe − x(t) since the value of e−c(t f−t1) is
approaching 1.

B. Optimizing the rescuing cost

There are scenarios where (semi-)autonomous robots are
deployed, e.g., for the search and rescue missions. For such
systems, energy is an issue. Thus it is reasonable to define the
objective function of the process L (x(t),u(t), t) as ‖u(t)‖2.
Meanwhile, we want the leader to guide followers to a certain
region defined by a disc with the center xe and the radius r.
Then we obtain a new optimal control problem

min
u

∫ t f

0
‖u(s)‖2ds (16)

s.t. ẋ = c(xl− x),

ẋl = u,

x(0) = x0, xl(0) = x0
l

x(t f ) ∈ B(xe,r),

where B(xe,r) = {x ∈ R2 : ‖x− xe‖ ≤ r}.
The Hamiltonian is

H = ‖u(t)‖2 +λ
T (c(xl− x))+λ

T
l u. (17)

The pointwise minimization gives

u∗ = argmin H((x,xl),u,(λ ,λl)) =−
λl

2
. (18)

For the single-follower case, we can replace the closed ball
with a sphere in the boundary condition of (16), and obtain
a boundary constraint for λ (t), which is λ (t f ) = k(x(t f )−
xe)

4
= kα for some k ∈ R. Then we get

λl =−
∫ t

t f

cec(s−t f )λ (t f )ds+λl(t f ) = k(1− ec(t−t f ))α, (19)

and
u∗ =− k

2
(1− ec(t−t f ))α. (20)



We can again perform the integration and get

x(t) =− k
2c

(
ct−1+ e−ct + e−ct f − 1

2
(ec(t−t f )+ e−c(t+t f ))

)
+ e−ctx0 +(1− e−ct)x0

l , (21)

Noticing the fact that α = x(t f )− xe and ‖α‖ = r, we can
solve α and k, and get

α =
r
‖β‖

β , (22)

and

k =
2c
(
‖β‖

r −1
)

ct f −1+2e−ct f − 1
2 (1+ e−2ct f )

, (23)

where
β = e−ct f x0 +(1− e−ct f )x0

l − xe (24)

Theorem 3.2: The control (20) solves the optimal control
problem (16), where α = r

‖β‖β , β is given by (24), and k is
given by (23).

IV. MULTIPLE-FOLLOWER CASE

We will consider the case of one leader and multiple
followers in this section, i.e., m = 1 and n > 1. Assuming
that followers interact with each other linearly with respect
to a fixed graph G, whose Laplacian is denoted by L, then
the follower dynamics (2) can be written as

ẋ = Ax+Bxl , (25)

where A = −L ⊗ I2 − diag{~b} ⊗ I2, B = ~b ⊗ I2, and the
nonnegative vector~b indicates the power of the links between
the leader and the followers. We also assume the joint
undirected graph with leader and followers is connected,
i.e., the leader is connected to at least one agent in each
component of G. In this section, we will only extend the
OCP (16) where we want to minimize the total energy cost.
The extended version is given by

min
∫ t f

0
‖u(s)‖2ds (26)

s.t. ẋ = Ax+Bxl ,

ẋl = u,

xi(0) = x0
i , xl(0) = x0

l

xi(t f ) ∈ B(xe,r).

One can apply PMP to solve the optimal control problem
by using a particular technique to deal with the boundary
condition for xi(t f ). The Hamiltonian will be

H = ‖u(t)‖2 +λ
T (Ax+Bxl)+λ

T
l u. (27)

The point-wise minimization will be again

u∗ =−λl

2
. (28)

Since we assumed that the joint undirected graph with leader
and followers is connected, the matrix A is negative definite

[22]. From the adjoint system, we can do the standard
integration and get

λl(t) = BT A−1(e−A(t−t f )− I2n)λ (t f ). (29)

As mentioned in [13], the condition for the boundary value of
the Lagrange multiplier λ (t) can be obtained in the following
way. We can rewrite the terminal set as E = {x|ψ(t f ,x(t f ))≤
0}, where ψi(t,x) = ‖xi− xe‖2− r2. The value of the La-
grange multiplier λi at time t f must be in the form of
λi(t f ) = ( ∂φ

∂xi
+vi

∂ψ

∂xi
)|xi=xi(t f ), where v=

(
v1 v2 · · · vn

)T

and the following conditions are fulfilled:
ψ(t f ,x(t f ))≤ 0
v≥ 0
vT ψ(t f ,x(t f )) = 0.

(30)

The last equation of (30) is called the complementarity
condition, which means that each agent will either finally
reach the boundary of the set or not contribute to the optimal
solution. For example, if we want to lead all the agents to
reach boundary at the same time, ψ(t f ,x(t f )) will be zero
while v is free to choose according to (30). Then we have

λ (t f ) =
(
λ1(t f )

T · · · λn(t f )
T )T

=
(

v1
∂ψ

∂x1

T
|xi=xi(t f ) · · · vn

∂ψ

∂xn

T
|xi=xi(t f )

)T

=
(
2v1(x1(t f )

T − xT
e ) · · · 2vn(xn(t f )

T − xT
e )
)T 4

= η .

If we can obtain η , then we know the optimal control will
be

u∗(t) =−1
2

BT A−1(e−A(t−t f )− I2n)η . (31)

By doing certain integrations similar to the ones we did in
Section III.B, we get

x(t f ) =eAt f x0 +(eAt f − I)A−1Bx0
l +

1
2

(
(−t f I2n−A−1

+A−1eAt f )A−1BBT A−1 +W (t f )A−2

+(I2n− eAt f )A−1BBT A−2eAt f
)

η , (32)

where W (t) is the controllability Gramian of the system ẋ =
Ax+Bu. If we define

β =
(
β1 β2 · · · βn

)T

= eAt f x0 +(eAt f − I2n)A−1Bx0
l − xe⊗~1n, (33)

and

Γ =
(
ΓT

1 ΓT
2 · · · ΓT

n
)T

=−1
2

(
(−t f I2n−A−1 +A−1eAt f )A−1BBT A−1

+W (t f )A−2 +(I2n− eAt f )A−1BBT A−2e−At f
)
, (34)

then
x(t f )− xe⊗~1n = β −Γη . (35)

xi(t f )−xe can be written as βi−Γiη with the constraint that

‖βi−Γiη‖= r. (36)



It is more probable that some of the agents will reach
the interior of the set E finally, i.e., ψi(t f ,x(t f )) < 0 for
some i. Then we must have vi = 0 according to (30). But we
can still write λ (t f ) in the form of 2V (x(t f )− xe⊗~1n)

4
= η ,

where V = diag{v}⊗ I2 with vi = 0 for those i’s such that
ψi(t f ,x(t f )) < 0. Finally, we will obtain that xi(t f )− xe =
βi+Γiη . However, we can only get the inequality constraint

‖βi−Γiη‖ ≤ r, (37)

since we do not know for which i, ψi(t f ,x(t f )) < 0, and
vi = 0. Furthermore, for any η satisfying (37), it is not always
possible to find the vector v such that (30) holds. Fortunately,
we are not searching for any arbitrary η that satisfies (37).
Note that given the optimal control (31), the objective value
will be∫ t f

0
‖u(s)‖2ds =

∫ t f

0
‖− 1

2
BT A−1(e−A(s−t f )− I2n)η‖2ds

=
∫ t f

0
η

T K(s)T K(s)ηds

= η
T
(∫ t f

0
K(s)T K(s)ds

)
η
4
= η

T Qη , (38)

where K(t) = − 1
2 BT A−1(e−A(t−t f ) − I2n), and Q =∫ t f

0 K(s)T K(s)ds. To minimize the objective value is
therefore equivalent to minimizing ηT Qη , which implies
that the η we are looking for is the optimal solution to
the following quadratic-constraint quadratic programming
(QCQP) problem

min
η

η
T Qη (39)

s.t. ‖βi−Γiη‖2 ≤ r2, for i = 1,2, . . . ,n.

The following lemma guarantees that for the optimal η

solved from (39), we can always find v such that (30) is
satisfied, and then derive the optimal control.

Lemma 4.1: If η is the optimal solution to the convex
optimization problem (39), then there always exists a vector
v such that the condition (30) is fulfilled for xi(t f ) = βi−
Γiη + xe.

Proof: We use the KKT optimality condition to prove
this lemma. If η∗ is the global optimal solution to (39), then
there exit Lagrange multipliers µ =

(
µ1 µ2 · · · µn

)T

such that 
2Qη∗+2∑

n
i=1 µi(Γiη

∗−βi) = 0
µ ≥ 0
µi(‖βi−Γiη

∗‖2− r2) = 0.
(40)

By noticing that xi(t f )−xe = βi−Γiη , we can directly choose
v = µ to fulfill the conditions (30).

Theorem 4.2: The solution (31) with η as the optimal
solution to the convex optimization problem (39) solves the
optimal control problem (26).

Proof: The theorem can be proven by using Lemma
4.1 and the analysis before that.

Remark: The convex optimization problem (39) does not
always have feasible solutions, especially for small r. For

given initial conditions xi0 ,xl0 ,xe and given terminal time t f ,
we need to first solve another QCQP problem:

min
r,η

r2 (41)

s.t. ‖βi−Γiη‖2 ≤ r2, for i = 1,2, . . . ,n.

to obtain the lower bound for the feasible radius r. The
objective function w.r.t r is strictly convex, so there will be
only one global optimal rmin, which can be found by using a
standard convex programming solver. This specific problem
can also be solved more efficiently by using the technique
introduced in [19] if Γi’s are identical. If the given r in the
OCP (26) is smaller than rmin, then the OCP has no optimal
solution. This lower bound also describes how well the leader
can perform the evacuation during a given time.

On the other hand, for a given r, one can solve the
following optimization problem

min
t,η

t (42)

s.t. ‖βi(t)−Γi(t)η‖2 ≤ r2, for i = 1,2, . . . ,n.

to obtain the lower bound for t f , where βi(t) and Γi(t) are
nonlinear functions of t that are defined similarly to (33) and
(34). The solution to this optimization problem answers the
question that “what is the minimal time the leader needs to
guide the follower into the safety zone with radius r”.

We conclude the section by providing a summary of the
algorithm for solving the OCP (26).

Algorithm 1: The algorithm consists of four steps
1. Compute the vectors/matrices β , Γ, and Q by the

definition (33), (34), and (38), respectively.
2. Solve the QCQP problem (41) to get rmin. If r < rmin,

then the OCP has no optimal solution.
3. Solve the QCQP problem (39) to derive the vector η .
4. The optimal control is given by u∗(t) =
− 1

2 BT A−1(e−A(t−t f )− I2n)η .

V. SIMULATIONS

In this section, we provide a simulation to examine and
demonstrate the performance of the theoretical optimal con-
trol strategy. Due to the page limitation, we only show one
example with a slightly more advanced setting than problem
(26). We consider the case where more than one exit is in-
volved in the rescuing problem. In order to lead the followers
to different places, multiple leaders are required. We assume
leader j want to lead the followers to the exit j without
knowing which leader the followers will follow. Meanwhile,
a follower will choose the closest leader corresponding to
the initial position and keep following that specific leader.
Each leader will perform the rescuing strategy as if all the
followers will follow it. By removing the follower-follower
interaction, we can establish a model with multiple leaders
as follows

ẋi =ci(xlk(i) − xi) (43)

ẋl j =u j,



(a) t=0 (b) t=1.79

(c) t=6.04 (d) t=10

Fig. 2. Snapshots of the leader-follower movement with the model in the
problem (43) with the parameter c chosen to be 0.3. The blue dots represent
the follower’s position, and the red crosses are the leaders’ positions. The
red arrow shows the heading direction of the leader, while the length of it
indicates the speed. The followers are initially spread in the area of [0,80]×
[0,80] while the position of the leaders is randomly generated. At t = t f = 10,
all the followers have entered the safety regions.

where k(i) = 1,2 or 3 indicates which leader the follower i
chose to follow. The set of followers who are following the
leader j is a subset of the set of all the followers. Those
followers will be able to reach the disk B(xe j ,r j) since the
optimal control (31) is a feasible solution for the problem
(26) from Section IV.B, where xe j and r j are the location
and safety radius of the jth exit, respectively. Here we run
a simulation with three exits located at (100,80), (−50,10)
and (10,−30) with radius 15, 10 and 5, respectively. The 50
followers initially spread in the area of [0,80]× [0,80]. The
time limit is set to 10 seconds, and the constant c is chosen
to be 0.3 again. Figure 2 shows how the final performance
is. Since the set of the followers who follows leader j during
the process is a subset of all the followers, those followers
will finally reach the j-th exit.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we used optimal control as a tool to design
the moving strategy for a leader agent to guide the follower
agents in specific crowd evacuation scenarios. Different types
of optimal control problems are formulated under different
assumptions inspired from real world applications. Ana-
lytic solutions are obtained by using Pontryagin’s Minimum
Principle and related convex optimization problems. The
solutions were also implemented in numerical experiments.
Simulations indicated that the optimal control derived theo-
retically may still be applicable to more complicated models.

Future work will include both theoretical analysis of more
complex scenarios and numerical experiments on more real-
istic settings. Using nonlinear follower dynamic equations or
adding other social interactions in the corresponding optimal
control problem will be considered. Developing methods

dealing with obstacles and building environment as well
as more complex pedestrian behavior is another research
direction.
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