
Reconfiguration in Motion Planning of Single- and Multi-agent Systems

under Infeasible Local LTL Specifications

Meng Guo and Dimos V. Dimarogonas

Abstract— A reconfiguration method for the model-checking-
based motion planning of single- and multi-agent systems under
infeasible local LTL specifications is proposed. The method
describes how to synthesize the motion plan that fulfills the
infeasible task specification the most, and how the infeasible
task specification is relaxed. The novelty is the introduction
of a metric within the atomic proposition domain, and the
relative weighting between the implementation cost of a motion
plan and its distance to the original specification. For multi-
agent systems, a dependency relation and relative priorities are
incorporated when the tasks are assigned independently to each
agent. Simulations are presented to illustrate the method.

I. INTRODUCTION

Temporal-logic-based motion planning provides a fully au-

tomated correct-by-design controller synthesis approach for

autonomous robots. Temporal logics such as Linear Temporal

Logic (LTL) provide formal high level languages that can

describe planning objectives more complex than the well-

studied point-to-point navigation [21], [23]. In this paper,

we follow an approach that has gained significant popularity

in recent years. The task specification is given as an LTL

formula with respect to a discretized abstraction of the robot

motion [1], [5], [15], [25]. Then a high-level discrete plan is

found by off-the-shelf model-checking algorithms given the

finite transition system and the task specification [2], [3], [9].

This plan is then implemented through the corresponding

low-level hybrid controller [8], [16], [20].

As stressed in [13], [14], [26], the above motion planning

framework reports a failure when the given task specification

is not realizable in the current workspace and under the agent

dynamics. It is desired that users could get feedbacks about

why the planning has failed and how to resolve this failure.

This problem is addressed by [13] and [14] for single-agent

systems by a systematic way to find the relaxed specification

that is closest to the original one and can be fulfilled by the

system. Detailed comparisons between our work and [14] can

be found at the beginning of Section III. In short, this paper

emphasizes mainly how to synthesize the motion plan that

fulfills the infeasible task specification the most, and how

the task specification is relaxed. [26] introduces a way to

analyze the environment and system components contained

in the infeasible specification, and identify the possible cause.

On the other hand, this work complements the topic about

The authors are with the ACCESS Linnaeus Center, School of Electrical
Engineering, KTH Royal Institute of Technology, SE-100 44, Stockholm,
Sweden. mengg, dimos@kth.se. This work was supported by the
Swedish Research Council (VR) and EU STREP RECONFIG: FP7-ICT-
2011-9-600825. The authors are also affiliated with the KTH Centre for
Autonomous Systems.

revising the motion plan under fixed LTL specifications when

the workspace model or agent dynamics are updated, like in

the cases of real-time revising [11] and local “patching” [22].

More importantly, we investigate the reconfiguration prob-

lem within the same framework also for multi-agent systems.

Many existing works [8], [12], [27] consider the problem of

decomposing a global specification to bisimilar local ones in

a top-down manner. We, from an opposite viewpoint, assume

that the local task specifications are assigned independently

and there is no specified global task. The joined execution

of these tasks may not be mutually feasible even if the

individual one is. A decentralized solution is proposed to

synthesize the individual motion plans that violate the mutual

specification the least. The priorities among the agents play

an important role in the reconfiguration for multi-agent

systems. This issue was indicated in our earlier work [10]

where a framework for decentralized verification from local

LTL specifications is proposed. However the way to resolve

the conflicting specifications is not considered there.

The main contribution is the proposal of a generic frame-

work to reconfigure the infeasible task specifications for both

single- and multi-agent systems. The motion plans that fulfill

the infeasible specifications the most are obtained. We allow

the user-defined choice of the relative weighting between

the implementation cost of the plan and how much this plan

fulfills the original task specification. Multi-agent systems

are also exploited and a decentralized approach is proposed

by considering the dependency and priority relations.

The rest of the paper is organized as follows: Section II

briefly introduces the model-checking-based motion plan-

ning. In Section III, we discuss the reconfiguration problem

for single-agent systems. Section IV extends the results to

multi-agent systems under local infeasible LTL specifica-

tions. Numerical simulations are presented in Section VI.

II. MODEL-CHECKING-BASED MOTION PLANNING

A. Task Specification in LTL

We focus on the task specification ϕ given as an Linear

Temporal Logic (LTL) formula. The basic ingredients of

an LTL formula are a set of atomic propositions (APs)

and several boolean and temporal operators. LTL formulas

are formed according to the following grammar [3]: ϕ ::=
true | a | ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ | ϕ1 ∪ ϕ2, where a ∈ AP
and © (next), ∪ (until). For brevity, we omit the derivations

of other useful operators like � (always), ♦ (eventually), ⇒
(implication) and refer the readers to Chapter 5 of [3].

Given an LTL formula ϕ over AP , there is a union of infi-

nite words that satisfy ϕ: Words(ϕ) = {σ ∈ (2AP )ω |σ |=



ϕ}, where |= ⊆ (2AP )ω × ϕ is the satisfaction relation.

There exists a Nondeterministic Büchi automaton (NBA) Aϕ

over 2AP corresponding to ϕ, which is defined as:

Aϕ = (Q, 2AP , δ, Q0, F), (1)

where Q is a finite set of states; Q0 is the initial state, 2AP

is an alphabets; δ ⊆ Q×2AP ×Q is a transition relation and

F ⊆ Q is a set of accepting states. Denote by χ(qm, qn) =
{l ∈ 2AP | (qm, l, qn) ∈ δ} the set of all input alphabets that

enable the transition from qm to qn. An infinite run r of a

NBA is an infinite sequence of states and is called accepting

if Inf(r) ∩ F 6= ∅ where Inf(r) is the set of states that

appear in r infinitely often. Denote by Lω(Aϕ) the accepted

language of Aϕ, which is the set of infinite words that have

an accepting run in Aϕ, i.e., Words(ϕ) = Lw(Aϕ). There

are fast translation algorithms [24] from an LTL formula to

NBA. This process can be done in time and space 2O(|ϕ|) [3].

B. Discretized Abstraction

A labeled finite transition system(FTS) [3] is used to

describe the behavior of a robot within a workspace. The

workspace we consider is geometrically partitioned into N
regions, denoted by the set Π = {π0, π1, . . . , πN}. These

regions can be in different shapes, such as points of inter-

ests [17], triangles [5], polygons [1]. There are different cell

decomposition schemes available, depending on the robot

dynamics and associated control approaches, see [1], [2], [8]

and [11]. Formally the control-driven (FTS) is defined below:

Definition 1 (Control-driven FTS): The control-driven

FTS is a tuple T = (Π, −→c, Π0, AP, L, Wc), where

Π = {the robot is in region πi, i = 1, 2 · · · , N};

−→c⊆ Π × Π is the transition relation; Π0 ⊆ Π is the set

of initial states; AP is the set of APs; L : Π → 2AP is a

labeling function, giving the subset of AP which are true at

state πi; Wc :−→c→ R
+ reflects the implementation cost

(time or energy) of each transition.

We assume that T does not have a terminal state [3].

An infinite path of T is an infinite sequence of states

τ = π0π1π2 . . . such that (πi, πi−1) ∈−→c for all i > 0. Its

trace is the sequence of APs that are true at the states along

the path, i.e., trace(τ) = L(π0)L(π1)L(π2) · · · . Given ϕ
is an LTL formula over the same AP the satisfaction relation

τ |= ϕ if and only if trace(τ) ∈ Words(ϕ). The infinite

path τ that satisfies ϕ is called a motion plan for the task ϕ.

C. Motion Plan Synthesis

A valid motion plan τ can be found by checking the

emptiness of the product Büchi automaton, see Algorithm

11 in [3]. The product Büchi automaton is defined as Ap =
T ⊗ Aϕ = (Qp, δp, Qp,0, Fp), where Qp = Π × Q;

Qp,0 = Π0 × Q0 are the initial states; Fp = Π × F are

the accepting states; δp ⊆ Q × Q is the transition relation.

(〈πi, qm〉, 〈πj , qn〉) ∈ δp if and only if (πi, πj) ∈−→c and

(qm, L(πi), qn) ∈ δ. There exists an motion plan satisfying

ϕ if and only if Ap has at least one accepting run [3].

Lemma 1 (Feasibility and Projection): An LTL specifica-

tion ϕ is feasible over the FTS T if and only if Ap = T ⊗Aϕ

has an accepting run. Furthermore, for any accepting run

R = 〈π0, q0〉〈π1, q1〉 . . . of Ap, its projection onto T the

sequence τ = π0π1 . . . satisfies ϕ [28].

The lower-level hybrid controller [5] that implements the

motion plan is synthesized by executing the controllers

associated with the transitions along the motion plan.

III. RECONFIGURATION OF SINGLE-AGENT SYSTEMS

An intriguing question to ask about the framework intro-

duced in Section II is what if the given task specification

is not feasible. How should the specification be relaxed and

more importantly how to synthesize the motion plan that

satisfies the relaxed specification, while at the same time

violating the original specification the least possible?

An approximate algorithm is provided in [14] that partially

answers the above question. It generates a relaxed specifica-

tion automaton A′
ϕ which is close to Aϕ (see Section III-

C [14]). Then a motion plan can be synthesized by following

the procedure as described in Section II-C. However there

are often more than one accepting run within T ⊗ A′
ϕ and

they may fulfill the original ϕ to different extents. We instead

aim to find the motion plan that fulfills ϕ the most, based

on which then the relaxed specification is constructed.

A. Relaxed Product Automaton

Since ϕ is infeasible and Ap does not have an accepting

run by Lemma 1, we need to relax the constraints imposed

by Aϕ to allow more transitions within Ap.

Definition 2 (Relaxed Product Automaton): The

relaxed product Büchi automaton Ar = T ×Aϕ =
(Q′, 2AP , δ′, Q′

0, F
′, Wr) is defined as follows:

• Q′ = Π×Q and q′ = 〈π, q〉, ∀π ∈ Π and ∀q ∈ Q.

• 2AP is an alphabet: AP = {a1, a2, · · · , aK}.

• δ′ ⊆ Q′ × Q′. (〈πi, qm〉, 〈πj , qn〉) ∈ δ′ iff

(πi, πj) ∈−→c and ∃ l ∈ 2AP such that (qm, l, qn) ∈ δ.

• Q′
0 = Π0 ×Q0 is the set of initial states.

• F ′ = Π×F is the set of accepting states.

• Wr : δ′ → R
+is the weight function to be defined.

Two differences between Ar and Ap defined in Section II-

C are: (i) the constraint “(qm, L(πi), qn) ∈ δ” when defining

δp is relaxed to “∃ l ∈ 2AP such that (qm, l, qn) ∈ δ” when

defining δ′ here; (ii) the weight function Wr is only intro-

duced for Ar. Firstly we introduce the evaluation function

Eval : 2AP → {0, 1}K : Eval(l) = ν, where [ νi ] = 1
if ai ∈ l and [ νi ] = 0 if ai /∈ l where i = 1, 2 · · · ,K,

l ∈ 2AP and ν ∈ {0, 1}K . Then a metric (2AP , ρ) is

defined as ρ(l, l′) = ‖ν − ν′‖1 =
∑K

i=1 | νi − ν′i |, where

ν = Eval(l), ν′ = Eval(l′) and l, l′ ∈ 2AP . ‖ · ‖1
is the ℓ1 norm [6]. Then we could define the distance

between an element l ∈ 2AP to a set χ ⊆ 2AP (χ 6= ∅)

[6]: Dist(l, χ) = 0 if l ∈ χ and Dist(l, χ) =
minl′∈χ ρ(l, l′) if l /∈ χ. Note that Dist(l, χ) is not

defined for χ = ∅. Now we give the formal definition

of Wr of Ar: Wr((〈πi, qm〉, 〈πj , qn〉)) = Wc(πi, πj) +
α · Dist(L(πi), χ(qm, qn)), where (〈πi, qm〉, 〈πj , qn〉) ∈
δ′; α ≥ 0 is a design parameter; χ(qm, qn) = {l ∈



2AP | (qm, l, qn) ∈ δ} consists of all input alphabets that en-

able the transition from qm to qn in Aϕ. Since by Definition

2 there exists l ∈ 2AP that (qm, l, qn) ∈ δ, χ(qm, qn) 6= ∅
is ensured. Wc(πi, πj) is the implementation cost of the

transition from πi to πj in T . Dist(L(πi), χ(qm, qn))
measures how much the transition from πi to πj violates the

constraints imposed by the transition from qm to qn. Being 0
means that Aϕ is not violated, while the larger the distance

is the more Aϕ is violated. The design parameter α is used

to reflect the relative penalty on violating the specification,

and the preference on a motion plan that has less implement

cost or that fulfills the task specification more.

B. Problem Statement

Note that Ar is more connected than the conventional

product automaton Ap in Section II-C. Since Ap does

not have an accepting run, we instead search for an ac-

cepting run within Ar. However the existence of an ac-

cepting run alone is not enough because: (i) they have

different implementation costs; (ii) we would like to mea-

sure how much they violate the original specification.

Thus we consider the accepting runs with the following

prefix-suffix structure: R = q′0 q
′
1 · · · [ q

′
k q

′
k+1 · · · · · · q

′
n ]

ω =
〈π0, q0〉 〈π1, q1〉 · · · [ 〈πk, qk〉 · · · · · · 〈πn, qn〉 ]

ω
, where q′0 =

〈π0, q0〉 ∈ Q′
0 and q′k = 〈πk, qk〉 ∈ F ′. Note that there are no

correspondences among the subscripts. Clearly R consists of

two parts: the prefix part (q′0 q
′
1 · · · q

′
k) from an initial state

q′0 to one accepting state q′k that is executed only once and

the suffix part (q′k q
′
k+1 · · · · · · q

′
n) from q′k back to itself that

is repeated infinitely. An accepting run with the prefix-suffix

structure has a finite representation, and more importantly it

allows us to define the total cost of an accepting run (similar

to Definition 4.5 in [28]):

Cost(R) =

k−1∑

i=0

Wr(q
′
i, q

′
i+1) + γ

n−1∑

i=k

Wr(q
′
i, q

′
i+1)

= costτ + α · distϕ ,

(2)

where costτ = (
∑k−1

i=0 + γ
∑n−1

i=k )Wc(πi, πi+1) is

the accumulated implementation cost of the motion

plan τ , i.e., the projection of R onto T ; distϕ =

(
∑k−1

i=0 + γ
∑n−1

i=k )Dist(L(πi), χ(qi, qi+1)) is the accu-

mulated distance of τ to Aϕ. The first summation in (2)

represents the accumulated weights of transitions along the

prefix and the second is the summation along the suffix.

Note that γ ≥ 0 represents the relative weighting on the

cost of transient response (the prefix) and steady response

(the suffix) to the task specification [28]. The prefix-suffix

structure is more of a way to formulate the total cost of an

accepting run, rather than a conservative assumption. If an

accepting run exists, by its definition at least one accepting

state should appear in it infinitely often. Among all the finite

number of cycles starting for this accepting state and back to

itself there is one with the minimal cost. Thus an accepting

run can be built using this minimal cycle as the periodic

suffix. Now we state the problem for single-agent systems:

Algorithm 1: Function optRun ( G, I , F )

Input: a weighted graph G, I , F .

Output: the optimal accepting run Ropt.

1. Compute the path with minimal cost from every

initial vertex in I to every accepting vertex in F .

(DIF , PIF ) = MinPath(G, I, F ).

2. Compute the path with minimal cost from every

accepting vertex in F and back to itself:

(DFF , PFF ) = MinCycl(G, F ).

3. For each column of DIF , find the element with the

minimal value and the corresponding cell in PIF (with

the same index). Save them sequentially in 1×M
matrix DiF and 1×M cell PiF .

4. Find the element with the minimal value in

DiF + γ DFF and its index fmin.

5. Optimal accepting run Ropt, prefix: the fmin-th

element of PiF ; suffix: the fmin-th element PFF .

Problem 1: Given the an infeasible specification ϕ over

the FTS T , find the accepting run of Ar that minimizes the

cost by (2) and the corresponding motion plan τ .

Given Ar and a value of α, we call the solution to

Problem 1 as the optimal accepting run Roptunder that α.

Algorithm 1 takes as input arguments the weighted state

graph [3] G(Ar) = (Q′, δ′, Wr), the set of initial vertices

I = Q′
0 and the set of accepting vertices F = F ′. It utilizes

Dijkstra’s algorithm [21] for computing the shortest path

between pairs of vertices within a graph. In particular, denote

the number of elements in I and F by |I| = L and |F | = M .

Function MinPath takes (G, I, F ) as inputs and outputs a

L × M matrix DIF , with the (ith, jth) element containing

the value of the minimal cost from Ii to Fj ; and a L ×M
cell PIF , with the (ith, jth) cell containing the sequence of

vertices appearing in the path with minimal cost from Ii to

Fj . Function MinCycl is a variant of function MinPath,

which outputs a 1 × M matrix DFF , with the jth element

containing the value of the minimal cost from Fj back to

Fj ; and a 1 ×M cell PFF with the jth cell containing the

sequence of vertices appearing in the path with minimal cost

from Fj back to Fj . Note that if a vertex is not reachable

from another vertex, then the cost is +∞.

C. Motion Plan and Feedback

Algorithm 1 provides an optimal accepting run Ropt once

α is chosen in Ar. In Algorithm 2, while iterating through

the transitions along Ropt in sequence, it projects Ropt into

T to obtain the corresponding motion plan τ ; it constructs

the revised specification automaton A′
ϕ by adding new tran-

sitions to Aϕ; it computes the implementation cost costτ

and the accumulated distance to Aϕ distϕ defined in (2). It

can be verified that the obtained A′
ϕ is a valid relaxation of

Aϕ [13]. Although Ar may allow more transitions compared

with Ap, any run of Ar can be projected onto T , resulting



Algorithm 2: Function MP-SA-single (Ropt, T , Aϕ)

Input: an optimal accepting run Ropt, T , Aϕ.

Output: the corresponding motion plan τ , the revised

A′
ϕ, costτ and distϕ.

1. Initialization: A′
ϕ = Aϕ. costτ = distϕ = 0.

2. Follow the transitions along Ropt, namely (q′i, q
′
i+1),

i = 1, · · · , n− 1, perform Steps 3-5:

3. Let q′i = 〈π, qm〉 and q′i+1 = 〈π′, qn〉.
4. Save (π, π′) in τ . costτ = costτ +Wc(π, π

′).
5. Check if (qm, L(π), qn) ∈ δ holds. If so, A′

ϕ

remains unchanged. Otherwise, add (qm, L(π), qn) to δ
of A′

ϕ. distϕ = distϕ + Dist(L(π), χ(qm, qn)).

in a valid path of T . Namely, the transition relation of T is

never relaxed when constructing Ar. Thus the motion plan

derived from Algorithm 2 is always implementable.

Lemma 2: Assume τ and distϕ are the derived from

Algorithm 2. Then distϕ = 0 implies that τ satisfies ϕ.

Proof: Since Dist() ≥ 0, the accumulated distance

distϕ = 0 implies (qm, L(π), qn) ∈ δ for all transitions

(〈π, qm〉, 〈π′, qn〉) along the optimal accepting run Ropt.

Thus Ropt is an accepting run for the un-relaxed product

automaton Ap. Its projection τ satisfies ϕ by Lemma 1.

As an extension, Algorithm 1 could be called under

different α to generate various optimal accepting runs, among

which the unique ones are saved as the optimal accepting

run candidates. Then for each optimal run, Algorithm 2 is

called to compute the corresponding motion plan τ and the

associated costτ , distϕ as the feedback. The proposed

method can be applied directly when ϕ is feasible over T
without any modification. Because when α is large enough,

i.e., the penalty on violating Aϕ is severe, Algorithm 1 will

automatically select the accepting run that satisfies ϕ.

IV. RECONFIGURATION FOR MULTI-AGENT SYSTEMS

The reconfiguration of multi-agent systems under local

infeasible LTL specifications is more difficult than the single-

agent case, due to the following reasons: (i) the joined

execution of multiple agents’ tasks may not be mutually

feasible even though the individual one is; (ii) the priority

of each agent plays an important role when deciding whose

tasks should be changed. The first aspect is because these

tasks are assigned independently and some cooperative tasks

have not been fully agreed before the deployment. The

second aspect is because some agents’ tasks are safety or

security critical and have to be fulfilled all the time, meaning

that other agents have to comply.

Assume the system we consider consists of N agents,

denoted by agent i = 1, 2 · · · , N . Moreover, we denote

the finite transition system of agent i by Ti = (Πi, −→i

, Πi,0, APi, Li, Wi); its LTL specification by ϕi; the speci-

fication automaton by Aϕi
= (Qi, 2

APϕi , δi, Qi,0, Fi). For

brevity, we omit the formal definition of all notations above

but they follow the same structure as T and Aϕ introduced

in Section II. Ti abstracts agent i’s behavior within its

workspace Πi. APi reflects the properties concerning agent i
in Ti. Note that APϕi

is the set of APs appearing in ϕi.

A. Dependency and Mutual Feasibility

Suppose that one agent receives a cooperative task that

involves other agents’ participation. In other words, one

agent’s task specification contains APs of another agent.

Definition 3 (Dependency): Agents i and j are called de-

pendent when one of the following conditions holds: (1)

agent i depends on agent j if APϕi
∧APj 6= ∅; (2) agent j

depends on agent i if APϕj
∧APi 6= ∅.

Definition 4 (Dependency Graph and Cluster): The

dependency graph Gd = (V, E) consists of: the set of

vertices V = 1, 2 · · · , N representing the agents; the set of

edges E ⊆ V × V where (i, j) ∈ E and (j, i) ∈ E if agent

i and j are dependent by Definition 3, ∀i 6= j and i, j ∈ V .

Θ ⊆ V forms a dependency cluster if and only if ∀i, j ∈ Θ
there is a path from i to j in the dependency graph Gd.

We first solve the reconfiguration problem within one

cluster Θ = {1, · · · ,M}. Each agent’s transition system

and specification automaton are given by Ti and Aϕi
.

Given the individual FTS Ti, ∀i ∈ Θ, the composed FTS

for this cluster Θ is constructed by TΘ = (ΠΘ, −→Θ

, ΠΘ,0, APΘ, LΘ, WΘ), where ΠΘ = Π1 × · · · × ΠM ;

〈π1, · · · , πM 〉 −→Θ 〈π′
1, · · · , π

′
M 〉 if and only if πi −→i π

′
i,

i = 1, · · · ,M ; ΠΘ,0 = Π1,0 × · · · × ΠM,0; APΘ = AP1 ∪
· · · ∪APM ; LΘ(〈π1, · · · , πM 〉) = L1(π1) ∪ · · · ∪ LM (πM );
WΘ(〈π1, · · · , πM 〉, 〈π′

1, · · · , π
′
M 〉) =

∑M
i=1 Wi(πi, π

′
i).

Denote by ϕΘ = ϕ1 ∧ · · · ∧ϕM . the mutual specification.

AϕΘ
is the NBA associated with ϕΘ. Then {ϕi, ∀i ∈ Θ}

are called mutually infeasible if ϕΘ is infeasible over TΘ by

Lemma 1. Thus the question of how to synthesize the motion

plans that fulfill the mutual specification the most arises.

B. Problem Statement

Denote by APϕΘ
= APϕ1

∪ · · · ∪ APϕM
the set of

all APs appearing in ϕΘ. Note that APϕΘ
⊆ APΘ.

Since ϕΘ is infeasible over TΘ, we need to relax the

requirement that every ϕi has to be fulfilled simultaneously.

Thus we define the relaxed intersection of the individual

automaton Aϕi
: ÃϕΘ

= (Q, 2APϕΘ , δ, Q0, F), where

Q = Q1 × · · · × QM × {1, · · · ,M}; Q0 = Q1,0 ×
· · · × QM,0 × {1}; F = F1 × · · · × QM × {1}; δ ⊆
Q × Q. (〈q1, · · · , qM , t〉, 〈q′1, · · · , q

′
M , t′〉) ∈ δ when (1)

〈q1, · · · , qM , t〉, 〈q′1, · · · , q
′
M , t′〉 ∈ Q; (2) ∃ li ∈ 2APϕΘ

such that (qi, li, q
′
i) ∈ δi, ∀i ∈ Θ; (3) qt /∈ Ft and t′ = t,

or qt ∈ Ft and t′ = mod (t, M) + 1, where mod is the

modulo operation.

The standard definition of Büchi automaton intersec-

tion [3] is obtained by replacing the second constraint by

“∃ l ∈ 2APϕΘ such that (qi, l, q
′
i) ∈ δi, ∀i ∈ Θ”. The last

component t ∈ {1, · · · ,M} in the state ensures that at least

one accepting state of every Aϕi
is visited infinitely often.

Definition 5 (Relaxed Product Automaton): The relaxed

product automaton is defined as Ar = TΘ × ÃϕΘ
=

(Q′, δ′, Q′
0, F

′, Wr), where (1) Q′ = ΠΘ × Q. q′ =
〈πΘ, q〉, ∀πΘ ∈ ΠΘ and ∀q ∈ Q. (2) δ′ ⊆ Q′ ×



Q′. (〈πΘ, qa〉, 〈π
′
Θ, qb〉) ∈ δ′ iff (πΘ, π

′
Θ) ∈−→Θ and

(qa, qb) ∈ δ. (3) Q′
0 = ΠΘ,0 × Q0 is the set of ini-

tial states. (4) F ′ = ΠΘ × F is the set of accepting

states. (5) Wr : δ′ → R
+ is the weight function, de-

fined as Wr(〈πΘ, q1, · · · , qM , t〉, 〈π′
Θ, q

′
1, · · · , q

′
M , t′〉) =

WΘ(πΘ, π
′
Θ) + α

∑M
i=1 βi Dist(LΘ(πΘ), χi(qi, q

′
i)) where

α, β1, · · · , βM ≥ 0 are design parameters; χi(qi, q
′
i) = {l ∈

2APΘ | (qi, l, q
′
i) ∈ δi}.

Denote by β = {βi, i ∈ Θ}. As ∃li ∈ 2APϕΘ such

that (qi, li, q
′
i) ∈ δi, ∀i ∈ Θ, χi(qi, q

′
i) 6= ∅. Wr can be

interpreted similarly as the one for single agent. Here β plays

the role as the ‘priority’ index for each agent, i.e., the larger

βi is, the higher the priority agent i has.

Problem 2: Given that ϕΘ is infeasible over the composed

FTS TΘ, find the accepting run of Ar that minimizes the cost

by (2) and the corresponding motion plan for each agent i.
Given the value of α and β, Ar results in a weighted

graph, with the sets of initial and accepting states. Algo-

rithm 1 can be directly applied to find the optimal accepting

run, with the prefix-suffix structure and the total cost (2).

Remark 1: It is possible to split WΘ(πΘ, π
′
Θ) in Wr into

M parts, i.e., the implementation cost of each agent. Relative

weighting among these costs can also be added in case of

different energy capacities among the agents.

C. Individual Motion Plan and Feedback

Agents within one cluster should agree on the value of α
according to the intended relative weighting between the

implementation cost and the distance to the mutual tasks,

and also the value of β based on their priorities within the

cluster. Thus in the absence of a central authority, α and

β can either be determined by the designer prior to the

deployment or a consensus algorithm on the value of α and

β within the cluster might be needed. Then Algorithm 1

is called to generate the optimal accepting run Ropt. The

cooperative motion plan τΘ is the projection of Ropt onto

TΘ. Furthermore, τΘ is projected onto Πi for each agent i
as its individual motion plan τi. Then Algorithm 2 can be

used again to interpret: (i) the associated revised specification

automaton A′
ϕi

; (ii) the implementation cost of τi costτi ;

(iii) the accumulated distance of τΘ to its original task

specification ϕi distϕi
. A′

ϕi
is obtained by adding new

transitions to Aϕi
. costτi and distϕi

are defined similarly

as in (2). As an extension, Algorithm 1 could be applied

under different α and β to derive several optimal accepting

run candidates, of which the unique ones are saved. Then

Algorithm 2 gives feedback about their implementation costs

and their distances to individual specifications.

Remark 2: This multi-agent framework can be modified

and applied to the single-agent case where the specification

has the “conjunction” form ϕ = ϕ1 ∧ · · · ∧ϕN . Then ϕi can

be modeled as the individual specification of an “imaginary”

agent which has identical movements as the “real” agent. β
could represent different priorities among these sub-tasks.

V. CORRECTNESS AND COMPLEXITY

The correctness of the proposed solutions follows from

the problem formulation and the correctness of the Dijkstra’s

shortest path algorithm. Let |Ti| and |Aϕi
| denote the size of

agent i’s FTS and the NBA. The size of Ar by Definition 5

for one cluster with M members is |Ar| = M ·
∏M

i=1 |Ti| ·
|Aϕi

|. Algorithm 1 runs in O(|Ar| log |Ar| · |Q
′
0| · |F

′|). Al-

gorithms 2 have the complexity linear to the length of Ropt.

VI. SIMULATION — ASSEMBLY ROBOTS

Consider a team of four unicycle robots that satisfy: ẋi =
vi cos θi, ẏi = vi sin θi, θ̇i = ωi, where pi = (xi, yi)

T ∈ R
2

is the center of mass for agent i; θi ∈ [0, 2π] is the

orientation; and vi, ωi ∈ R are the transition and rotation

velocities, i = 1, 2, 3, 4. The whole workspace is shown

in Figure 1, which consists of 26 polygonal regions. The

continuous controller that drives the robots from an region

to any geometrically adjacent region is based on [23] by

constructing vector fields over each cell for each face. The

controller design is not stated here for brevity. All simula-

tions are carried out in MATLAB on a desktop computer

(3.06 GHz Duo CPU and 8GB of RAM).

A. Local Specifications

Robots 2, 3 and 4 are confined in rooms 2, 3 and 4 as

shown in Figure 1. Each room has six regions, some of

which are obstacle-occupied (in grey). They repetitively carry

different goods from the storage region to the unloading

region within each room, while avoiding obstacles. After

picking up goods at the storage region, they have to drop

the goods at unloading region before they return to the

storage region. The storage, unloading and obstacle-occupied

regions are labeled by ai,s, ai,u and ai,o respectively for

agent i = 2, 3, 4. Robot 1 has to collect these goods at

the regions labeled by a1,c1, a1,c2 and a1,c3 repetitively. In

addition, robot 4 needs to meet robot 1 at region labeled by

a4,u′ . The obstacle-occupied regions for agent 1 are labeled

by a1,o. These tasks are specified as LTL formulas by:

ϕ1 = �♦(a1,c1)∧�♦(a1,c2)∧�♦(a1,c3∧a4,u′)∧�(¬a1,o)
for robot 1; ϕi = �♦ai,s ∧ �♦ai,u ∧ �(ai,s ⇒ ©(¬ai,s ∪
ai,u)) ∧ �(¬ai,o), for robot i, i = 2, 3, 4.

Dependency and Potential Infeasibility: by Definition 3,

robots 1 and 4 are dependent while robots 2 and 3 run

independently. There is a misunderstanding between robots 1
and 4 about the location of robot 4’s unloading region,

namely, a4,u′ and a4,u indicate two different regions, as

shown in Room 4 of Figure 1. But this does not necessarily

mean that ϕ1 and ϕ4 are mutually infeasible. Moreover, ϕ3

is infeasible for agent 3 because of the obstacles in room 3.

We omit here the detailed diagrams of each robot’s FTS

and its associated specification automaton, due to limited

space. Each robot can transit between any two geometrically

adjacent regions within their confined workspace, of which

the costs are uniformly 5. They could also stay at any region

with the cost 1. T1 has 13 states while Ti has 6 states; Aϕ1

has 4 states and Aϕi
has 5 states by [24], i = 2, 3, 4.

B. Simulation Results

Algorithm 1 is applied to the cluster formed by robots 1
and 4. The composed FTS Tg has 78 states. The relaxed



0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

x

y

 Room 2

 a
2,s

 a
2,u

 a
1,c1

 a
3,u

 a
1,c2

 a
3,s

 Room 3

 Room 4

 a
4,s

 a
4,u

 a
1,c3

 a
4,u

c

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

x

y

Fig. 1. Left: the workspace model, where blue boxes indicate the confined
rooms for robots 2, 3 and 4; Right: both ϕ1 and ϕ2 are fulfilled (corresponds
to P1), and robot 3 chooses the plan that violates ϕ3 the least.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

x

y

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

x

y

Fig. 2. Left: robots 1 and 4 meet at a1,u′ and ϕ1 is fulfilled but not ϕ4

(corresponds to P2). Right: robots 1 and 4 do not meet while ϕ4 is fulfilled
but not ϕ1 (corresponds to P3).

product automaton Ar consists of 3120 states and 1364
edges, which has three weighting parameters α, β1 and β2.

By choosing α = 0, 20, 100; β1 = 1; β2 = 0, 0.5, 1, 10, six

unique motion plan candidates are found. Here we choose

three of them: (P1) α = 100, β1, β2 = 1. Robot 4 travels

more distance from its unloading region to meet robot 1 at

the collecting region (distϕ1
0, distϕ4

0, costτ1 140,

costτ4 48); (P2) α = 100, β1 = 1, β2 = 0. Robots 1 and 4
meet at robot 1’s collecting region (distϕ1

0, distϕ4
8,

costτ1 140, costτ4 21); (P3) α = 30, β1, β2 = 1.

Robots 1 and 4 do not meet (distϕ1
2, distϕ4

0,

costτ1 126, costτ4 20). On the other hand, Algorithm 2

is applied for robot 3 to find the motion plan that violates

ϕ3 the least. We choose the motion plan under α = 2, of

which the implementation cost is 30 and the distance to ϕ3

is 3. In particular, Figures 1 and 2 present the final motion

of the composed system when the above motion plans are

implemented by the lower-level hybrid controllers.

VII. CONCLUSION AND DISCUSSION

We have proposed a reconfiguration method for the motion

planning of multi-agent systems under infeasible local LTL

specifications. Algorithms are provided to derive motion plan

candidates sorted by their implementation costs and their

distances to individual task specifications. Future work could

include the consideration of limited communications.

REFERENCES

[1] A. Bhatia, L. E. Kavraki, M. Y. Vardi. Sampling-based motion planning
with temporal goals. IEEE International Conference on Robotics and

Automation, 2010.
[2] A. Bhatia, M. R. Maly, L. E. Kavraki, M. Y. Vardi. Motion planning

with complex goals. IEEE Robotics & Automation Magazine, 18(3):
55-64, 2011.

[3] C. Baier, J.-P Katoen. Principles of model checking. The MIT Press,
2008.

[4] C. Belta, V. Isler, G. J. Pappas. Discrete abstractions for robot motion
planning and control in polygonal environments. IEEE Transactions on

Robotics, 21(5): 864-874, 2005.
[5] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, G. J. Pappas.

Symbolic planning and control of robot motion. IEEE Robotics and

Automation Magazine, 14: 61-71, 2007.
[6] S. Boyd, L. Vandenberghe. Convex Optimization, Cambridge University

Press, 2009.
[7] Y. Chen, J. Tumova, C. Belta. LTL Robot motion control based

on automata learning of environmental dynamics. IEEE International

Conference on Robotics and Automation (ICRA), 2012.
[8] X. Ding, M. Kloetzer, Y. Chen, C. Belta. Automatic deployment of

robotic teams. IEEE Robotics Automation Magazine, 18: 75-86, 2011.
[9] G. E. Fainekos, A. Girard, H. Kress-Gazit, G. J. Pappas. Temporal Logic

Motion Planning for Dynamic Mobile Robots. Automatica, 45(2): 343-
352, 2009.

[10] I. F. Filippidis, D. V. Dimarogonas, K. J. Kyriakopoulos. Decentralized
Multi-Agent Control from Local LTL Specifications. IEEE Conference

on Decision and Control, 2012.
[11] M. Guo, K. H. Johansson, D. V. Dimarogonas. Revising Motion

Planning under Linear Temporal Logic Specifications in Partially
Known Workspaces. IEEE International Conference on Robotics and

Automation, 2013.
[12] S. Karaman, E. Frazzoli. Vehicle routing with linear temporal logic

specifications: Applications to Multi-UAV Mission Planning. Naviga-

tion, and Control Conference in AIAA Guidance, 2008.
[13] K. Kim, G. E. Fainekos, S. Sankaranarayanan. On the revision problem

of specification automaton. IEEE International Conference on Robotics

and Automation, 5171-5176, 2012.
[14] K. Kim, G. E. Fainekos. Approximate solutions for the minimal

revision problem of specification automata IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2012.
[15] M. Kloetzer, C. Belta. Automatic deployment of distributed teams

of robots from temporal logic specifications. IEEE Transactions on

Robotics, 26(1): 48-61, 2010.
[16] M. Kloetzer, X. C. Ding, C. Belta. Multi-robot deployment from

LTL specifications with reduced communication, IEEE Conference on

Decision and Control, 2011
[17] D. E. Koditschek, E. Rimon. Robot navigation functions on manifolds

with boundary. Advances Appl. Math., 11:412-442, 1990.
[18] H. Kress-Gazit, T. Wongpiromsarn, U. Topcu. Correct, reactive

robot control from abstraction and temporal logic specifications. IEEE

Robotics and Automation Magazine, 2011.
[19] H. Kress-Gazit, G. E. Fainekos, G. J. Pappas. Temporal logic-based

reactive mission and motion planning. IEEE Transactions on Robotics,
25(6): 1370-1381, 2009.

[20] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli. Real-time
motion planning with applications to autonomous urban driving. IEEE

Transactions on Control Systems, 17(5): 1105-1118, 2009.
[21] S. M. LaValle. Planning algorithms. Cambridge University Press,

2006.
[22] S. C. Livingston, R. M. Murray, J. W. Burdick. Backtracking tem-

poral logic synthesis for uncertain environments. IEEE International

Conference on Robotics and Automation, 51635170, 2012.
[23] S. R. Lindemann, I. I. Hussein, S. M. LaValle. Real time feedback con-

trol for nonholonomic mobile robots with obstacles. IEEE Conference

on Decision and Control, 2406-2411, 2006.
[24] D. Oddoux, P. Gastin. LTL2BA software: fast translation

from LTL formulae to Büchi automaton. http://

www.lsv.ens-cachan.fr/˜gastin/ltl2ba/index.php.
[25] T. Wongpiromsarn, U. Topcu, R. Murray. Receding horizon temporal

logic planning, IEEE Transactions on Automatic Control, 2012.
[26] V. Raman, H. Kress-Gazit. Analyzing Unsynthesizable Specifications

for high-Level robot behavior using LTLMoP. In the Proceedings of

Computer Aided Verification, 2011.
[27] A. Ulusoy, S. L. Smith, C. Belta. Optimal Multi-robot path planning

with LTL constraints: guaranteeing correctness through synchronization.
International Symposium on Distributed Autonomous Robotic Systems,
2012.

[28] S. L. Smith, J. Tumova, C. Belta, D. Rus. Optimal path planning for
surveillance with temporal logic constraints. International Journal of

Robotics Research, 30(14): 1695-1708, 2011.


