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Abstract— This work proposes a distributed control scheme
for the state agreement problem which can guarantee pre-
scribed performance for the system transient. In particular,
i) we consider a set of agents that can exchange information
according to a static communication graph, ii) we a priori
define time-dependent constraints at the edge’s space (errors
between agents that exchange information) and iii) we design a
distributed controller to guarantee that the errors between the
neighboring agents do not violate the constraints. Following this
technique the contributions are twofold: a) the convergence rate
of the system and the communication structure of the agents’
network which are strictly connected can be decoupled, and b)
the connectivity properties of the initially formed communica-
tion graph are rendered invariant by appropriately designing
the prescribed performance bounds. It is also shown how the
structure and the parameters of the prescribed performance
controller can be chosen in case of connected tree graphs and
connected graphs with cycles. Simulation results validate the
theoretically proven findings while enlightening the merit of
the proposed prescribed performance agreement protocol as
compared to the linear one.

I. INTRODUCTION

Distributed multi-agent control is a popular research do-

main owing to the current increase of computational re-

sources and the broad domain of applications including coop-

erative control of unmanned air vehicles, formation control of

mobile robots, distributed sensor networks, power networks,

attitude alignment of a group of satellites, etc. Several results

have appeared recently involving consensus algorithms [1],

[2] and formation control [3]–[5]. The agreement protocol

is the underlying framework in the majority of the proposed

works enabling the control of a group of agents that do not

have access to global information (e.g. absolute positions)

but they can only obtain local information (e.g. relative

positions).

In this paper we consider the case of additional specifica-

tions during the transient response of the multi-agent system.

Transient response specifications in multi-agent systems have

been dealt with in the context of collision avoidance [6], and

connectivity maintenance [2], [7] where constraints on the

state space evolution of pairs of agents are imposed in the

distributed control design. Recently, a distributed algorithm

for consensus of multiple agents in presence of convex state

constraints on individual agent state has been considered in

[8]; in particular, the consensus protocol has been enriched

by an auxiliary variable which utilizes a logarithmic barrier
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function to form a convex potential. In contrast to the

previous works, the transient specifications considered in this

work involve time-dependent constraints on the edge’s space

and enable the automated tuning of the agents’ convergence

rate while ensuring connectivity maintenance. Notice that the

agreement protocol convergence rate is mainly dependent

on the connectivity structure of the system; in particular,

the convergence rate is dictated by the smallest positive

eigenvalue of the graph Laplacian. This dependance implies

that the agents cannot a priori be aware of the time required

to reach consensus, since individual agents cannot have

access to the centralized information of the structure of the

underlying network.

In particular, we introduce prescribed transient specifica-

tions within the agreement protocol by following the frame-

work of prescribed performance control introduced in [9].

The result is a nonlinear time-dependent agreement protocol

which is designed to preserve the basic properties of the

linear agreement protocol such as the convergence to the

invariant centroid but enhanced with additional important

properties: i) time-dependent transient bounds for the edges’

responses, and ii) a convergence rate which is independent

of the underlying communication graph. The analysis of

this work considers different type of communication graphs

such as spanning trees and connected graphs with cycles

and examines how the structure of the communication graph

affects the prescribed performance specifications. The paper

is organized as follows: Section II provides preliminary

material about graph theory and prescribed performance

control framework. In Section II.B the stability and the

asymptotic convergence properties of a simple first order

prescribed performance driven system are studied in order to

be used in Section III for solving the problem of prescribed

performance consensus control for a multi-agent system.

Section IV consists of simulation examples while in Section

V, the final outcome of this work as well as future research

directions are discussed.

II. PRELIMINARIES

A. Graph Theory

We consider N agents and that agent i can communi-

cate only with agents that belong to its communication set

denoted by Ni ∈ N . Inter-agent communication can be

represented by a communication graph:

Definition 1: The communication graph G = (V,E) is

an undirected graph that consists of a set of vertices V =
N = {1, . . . , N} indexed by the team members, and a set



of edges, E = {(i, j) ∈ V × V |i ∈ Nj} containing pairs of

vertices which can exchange information.

For a graph G with N vertices the adjacency matrix A =
A(G) = [aij ] ∈ ℜN×N is a matrix with unit and zero entries.

If there is an edge connecting two vertices i, j i.e. (i, j) ∈ E
then i, j are called adjacent and aij = aji = 1; otherwise

aij = aji = 0. A path of length r from a vertex i to a vertex

j is a sequence of r + 1 distinct vertices starting with i and

ending with j such that consecutive vertices are adjacent. If

there is a path between any two vertices of the graph G,

then G is called connected; otherwise, it is disconnected.

The degree di of a vertex i is defined as the number of

its neighboring vertices; it can be easily calculated by d i =∑
j∈Ni

aij . The Laplacian of G ∈ ℜN×N is the symmetric

matrix L = ∆− A, with ∆ = diag{di} ∈ ℜN×N being the

degree matrix.

For a connected graph, L is positive semidefinite and has

a single zero eigenvalue with the corresponding eigenvector

1 = [1, · · · , 1]⊤ ∈ ℜN . In particular, the eigenvalues of

L when G is connected are: 0 = λ1(L) ≤ λ2(L) ≤
· · · ≤ λN (L) where λ2(L) = minx⊥1,‖x‖=1 x

⊤Lx and

λN (L) = max‖x‖=1 x
⊤Lx. By assigning an orientation

on the direction to each edge of G we can define the

incidence matrix of G denoted by B(G). In particular, B =
B(G) = [bij ] ∈ ℜN×M with M = |E| being the number

of edges is the matrix with entries {0,±1} with rows and

columns indexed by the vertices and edges of G respectively.

Specifically, bij = 1 if the vertex i is the head of the edge j,

bij = −1 if the vertex i is the tail of the edge j, and bij = 0
otherwise. We have L = BB⊤ independently of the choice

of the orientation. Notice also that the nullspace of B⊤ is

spanned by the vector 1.

If G contains cycles, the edges of each cycle have a

direction, where each edge is directed towards its successor

according to the cyclic order. A cycle C is represented by

a vector vC with M = |E| elements. For each edge, the

corresponding element of vC is equal to 1 if the direction

of the edge with respect to C coincides with the orientation

assigned to the graph for defining B, and −1, if the direction

with respect to C is opposite to the orientation. The elements

corresponding to edges not in C are zero. The cycle space

of G is the subspace spanned by vectors representing cycles

in G. For a connected graph, the cycle space of the graph

coincides with the null space of B. For tree graphs the

cycle space and subsequently the null space of B are empty

implying that the edge Laplacian LE � B⊤B is a positive

definite matrix.

Let x = [x1, · · · , xN ]⊤, where xi is a real scalar variable

assigned to vertex i of G. Denote by x̄ the M -dimensional

stack vector of relative differences of pairs of agents that

form an edge in G, compatible with the assigned orientation.

In particular, the elements of vector x̄ are defined by x̄k �

xij = xi − xj ∈ E, k = 1, · · · ,M , where xi, xj is the

head and the tail of x̄k respectively. It is easy to verify that

Lx = Bx̄ and x̄ = B⊤x. For x̄ = 0 we have that Lx = 0.

B. Prescribed Performance Control

1) Definitions: This section summarizes preliminary

knowledge on prescribed performance control [9]. Prescribed

performance is achieved if each element y i, i = 1, · · · , n, of

the system output y ∈ ℜn (which can also be the tracking er-

ror) evolves within a predefined region being mathematically

described ∀t ≥ 0 by the following inequalities:

−Miρi(t) < yi(t) < ρi(t) in case of y0i ≥ 0 (1)

−ρi(t) < yi(t) < Miρi(t) in case of y0i ≤ 0 (2)

for i = 1, · · · , n where 0 ≤ Mi ≤ 1, i = 1, · · · , n,

y0i � yi(0), i = 1, · · · , n, and ρi(t), i = 1, · · · , n
are smooth, bounded, strictly positive functions of time

satisfying lim supt→+∞ ρi(t) > 0, i = 1, · · · , n called

performance functions. Notice that ρi(t) and Miρi(t) define

the performance bounds within which y i(t) should ideally

evolve. According to (1) or (2) the set of performance bounds

which will be employed for each yi(t) is associated with the

sign of y0i; either (1) or (2) can be used in case of y0i = 0.

By normalizing yi(t) with respect to the performance

function ρi(t) we can define the modulated output ŷ(t) ∈ ℜn

with elements ŷi(t), as well as the corresponding prescribed

performance regions Dyi:

ŷi(t) =
yi(t)

ρi(t)
(3)

Dyi � {ŷi(t) : ŷi(t) ∈ (−Mi, 1)} for y0i ≥ 0 (4)

Dyi � {ŷi(t) : ŷi(t) ∈ (−1,Mi)} for y0i ≤ 0 (5)

Notice that the regions Dyi given by (4) and (5) are

equivalent to the time-dependent prescribed performance

bounds (1) and (2) respectively. For notation convenience,

the argument t is dropped out from y i(t), ŷi(t) and the

corresponding vectors. Subsequently, the components ε i(ŷi)
of the transformed error ε(ŷ) ∈ ℜn are defined as follows:

εi (ŷi) � Ti (ŷi) (6)

where the transformations Ti(·), i = 1, · · · , n define increas-

ing bijective mappings of the performance domain:

Ti : Dyi → ℜ (7)

for i = 1, · · · , n, where Dyi is the domain of the transforma-

tion function Ti and is defined by (4) or (5). Differentiating

(6) with respect to time we obtain:

ε̇i(ŷi) = JTi(ŷi, t)[ẏi + αi(t)yi] (8)

where JTi(ŷi, t) and αi(t) are given by:

JTi(ŷi, t) �
∂Ti (ŷi)

∂ŷi

1

ρi(t)
> 0 (9)

αi(t) � −
ρ̇i(t)

ρi(t)
(10)

Clearly, the domain of the vector function ε(ŷ) can be

defined by the Cartesian product of the open sets Dyi,



i = 1, · · · , n, i.e.

Dy � Dy1 ×Dy2 × · · · ×Dyn (11)

with boundary ∂Dy .

2) First order nonlinear system: Proof of boundedness

and convergence: In this section we examine the stability

and convergence properties of a first-order MIMO nonlinear

system of the form ẏ = A(y)u, y, u ∈ ℜn, A(y) ∈
ℜn×n driven by a prescribed performance regulator u =
−JT (ŷ, t)ε(ŷ). Without loss of generality we can consider

that ρ(t) � ρi(t) and subsequently α(t) � αi(t), ∀i ∈
{1, · · · , n}.

Theorem 1: Consider the system:

ẏ = −A(y)JT (ŷ, t)ε(ŷ) (12)

where A(y) is a nonlinear, positive definite matrix ∀ŷ ∈ Dy,

ε(ŷ) is the transformed error defined in (6) and JT (ŷ, t) =
diag [JTi(ŷi, t)] is the normalized Jacobian of the trans-

formed error. If y(0) is within the performance bounds (1) or

(2) which implies ŷ(0) ∈ Dy then a) the solution y(t) will

respect the performance bounds ∀t and b) if additionally

the prescribed performance function ρ(t) is designed with

the property limt→+∞ ρ̇(t) = 0 then y will asymptotically

converge to a constant value which is zero in case of T i(0) =
0.

Proof: Adding α(t)y � −ρ̇(t)ŷ in both sides of (12)

and subsequently multiplying both sides with JT (ŷ, t) and

substituting (8) we get:

ε̇(ŷ, t) = −JT (ŷ, t)A(y)JT (ŷ, t)ε(ŷ)−JT (ŷ, t)ρ̇(t)ŷ (13)

Consider the potential function V : Dy → ℜ,

V (ŷ) =
1

2
ε(ŷ)⊤ε(ŷ) (14)

By differentiating (14) along the system trajectories (13), it

can be easily shown that for some ξ < λmin [A(y)], the

following inequality holds:

V̇ (ŷ, t) ≤ −λV (ŷ) + µ(t) (15)

where

λ = 2 {λmin [A(y)]− ξ} sup
t≥0

ρ(t) min
ŷ∈Dx

(
∂ε(ŷ)
∂ŷ

)
(16)

µ(t) =
|ρ̇(t)|2‖ŷ‖2

4ξ
(17)

Notice that we can also define an upper bound µ̄ of µ(t),

∀ŷ ∈ Dy and t ∈ ℜ+, i.e. µ̄ ≥ | supt ρ̇(t)|
2n

4ξ .

a) We can now introduce the following potential (similar

to the Zubov’s Theorem)

V(ŷ) = 1− e−V (ŷ) (18)

having the following properties: (i) V(0) = 0 (ii) 0 <
V(ŷ) < 1, ∀ŷ ∈ Dy − {0} (iii) V(ŷ) → 1 as ŷ → ∂Dy.

Differentiating (18) we get:

V̇(ŷ, t) = V̇ (ŷ, t) [1− V(ŷ)] (19)

Substituting (18) and (15) in (19) we can bound V̇(ŷ, t) as

follows:

V̇(ŷ, t) ≤ −λ ln

[
e−

µ(t)
λ

1− V(ŷ, t)

]
[1− V(ŷ, t)] (20)

Next, define the region Ωb ={
ŷ ∈ Dy : V(ŷ) ≤ 1− e−

µ̄
λ

}
⊂ D. Clearly, V̇(ŷ, t) ≤ 0 for

ŷ /∈ Ωb.

Assuming that the initial errors are defined within the

prescribed performance bounds, i.e., y(0) ∈ Dy , then

V(ŷ(0)) < 1. Let σ � V(ŷ(0)) and define the region

Ωσ = {ŷ ∈ Dy : V(ŷ) ≤ σ} ⊂ Dy . We distinguish two

cases (i) σ < 1 − e−
µ̄
λ : In this case ŷ ∈ Ωb, ∀t ≥ 0 since

V̇(x̂, y) ≤ 0 outside Ωb. (ii) σ ≥ 1 − e−
µ̄
λ : In this case

Ωσ ⊃ Ωb and V̇(ŷ, t) ≤ 0 in Ωσ/Ωb; hence V(ŷ) → Ωb.

Thus, starting within Ωσ , the potential function V(ŷ) remains

less than 1 in any case. Consequently, the modulated error

ŷ evolves within a closed set D̄y such that D̄y ⊂ Dy,

ensuring that ŷ does not even approach the boundary ∂D y

and hence ε(ŷ) is bounded. Hence each component of the

state yi evolves within the predefined region (1) or (2),

solely defined by the predefined performance function ρ(t)
and the overshoot indices Mi. Since ε(ŷ) is bounded and

ρ(t) �= 0, ∀t, JT (ŷ, t) is bounded.

b) In order to prove the asymptotic convergence of y to a

constant value given that ρ(t) > 0 and limt→+∞ ρ̇(t) = 0,

we omit the argument ŷ from ε(ŷ) and we consider the

transformed system (13) with state ε and input ρ̇(t) as well

as the previously used potential V (ε) = 1
2‖ε‖

2. Let θ being

a positive constant which satisfies θ < λ, then the derivative

of V (ε) with respect to time (15) satisfies the following

inequality:

d

dt
(12‖ε‖

2) ≤ −(λ− θ)‖ε‖2, ∀‖ε‖ ≤ |ρ̇(t)|
2

√
n
θξ

(21)

Using Theorem 4.19 [10] it is directly proved that the system

(13) with state ε and input ρ̇(t) is input-to-state stable and

thus if ρ̇(t) converges to zero as t → +∞, so does ε which

implies limt→+∞ yi(t) = ρ∞iT
−1
i (0). In case of Ti(0) = 0,

limt→+∞ ε(t) = 0 implies that ŷ(t) and subsequently y(t)
converges to zero as t → +∞.

Remark 1: In this section we have proved that the system

output respects the performance bounds by proving the

uniformly ultimate boundedness of the transformed error,

like in [9], but for a simpler type of system/controller and

using a very simple prescribed performance control input.

Furthermore, by using input-to-state stability concept we

have proved asymptotic convergence results for the system

output response (which have not been considered in [9]).

The analysis for a simple system controlled by a simple

prescribed performance controller as well as the asymptotic

convergence results are useful for the consensus control

problem, tackled in this work.



III. PRESCRIBED PERFORMANCE AGREEMENT

PROTOCOL

For simplicity, we consider only one of the coordinates

for each agent dynamics. We also consider that the system

obeys to the single integrator dynamics:

ẋ = u (22)

with xi, ui being the ith elements of the vectors x, u ∈ ℜN

respectively. In order to propose a distributed prescribed

performance algorithm for the consensus problem, we will

modulate and transform the relative errors x ij = xi − xj

by the performance functions denoted by ρ ij(t) using the

transformation functions denoted by T ij(·) and leading to

the relative transformed errors εij(xij). Mij denotes the

corresponding overshoot index.

We assume that the communication graph is static, i.e.,

that Ni do not vary over time, and we propose the following

time-dependent agreement protocol:

ui = −
∑

j∈Ni

JTij(x̂ij , t)εij(x̂ij) (23)

If the connectivity depends on the inter-agent distances, the

prescribed performance function should be designed so that

the agents are connected over time.

The average of the multi-agent system state remains invari-

ant when the graph is connected and JTij(x̂ij , t)εij(x̂ij) =
−JTji(x̂ij , t)εji(x̂ji). The latter is satisfied by considering

some specifications regarding the performance functions, the

overshoot indices and the transformation functions which are

used by neighboring agents. In particular, we choose ρ ij(t) =
ρji(t), Mij = Mji and Tji(x̂ji) = −Tij(−x̂ij); this

choice practically means that neighboring agents exchange

information about their prescribed performance parameters

and functions. Alternatively, all the agents may be tuned

initially in order to use the same prescribed performance

function, overshoot index and transformation.

Substituting the control input (23) in to the linear dynamic

model (22) we get:

ẋ = −BJT (̂̄x, t)ε(̂̄x) (24)

The closed loop system dynamics can be expressed in the

edges-space by using x̄ = B⊤x as follows:

˙̄x = −B⊤BJT (̂̄x, t)ε(̂̄x) (25)

Theorem 2: If the graph describing the agents communi-

cation is a spanning tree, then i) the prescribed performance

agreement protocol (23) applied to the single integrator

dynamics (22) ensures that the relative errors x ij will

evolve within the prescribed performance bounds defined

by ρij(t) and Mij , and ii) if additionally the prescribed

performance functions ρij(t) are designed with the property

limt→+∞ ρ̇ij(t) = 0, the relative errors xij will asymptoti-

cally converge to constant values which are zero in case of

Tij(0) = 0.

Proof: When the graph describing the agents commu-

nication is a spanning tree then the matrix B⊤B is positive

definite. Hence, by directly applying Theorem 1 we can

prove the results of Theorem 2.

It is clear that we cannot use the potential function V ( ̂̄x)
given by (14) if the communication graph contains cycles,

since B⊤B is not positive definite. However we can use the

following potential function in order to extend the results in

case of communication graphs with cycles:

Ve(̂̄x, x) =
1

2
ε(̂̄x)⊤ε(̂̄x) + γ

2
x⊤x (26)

with γ being an appropriately chosen constant, and to state

the following theorem:

Theorem 3: If the graph describing the agents communi-

cation is connected, then the prescribed performance agree-

ment protocol (23) with Tij(0) = 0 applied at the single

integrator dynamics (22) ensures that the relative errors

xij will evolve within the prescribed performance bounds

defined by ρij(t) and Mij �= 0, and they converge to zero for

any strictly positive prescribed performance function ρ ij(t)
with bounded derivative.

Proof: Differentiating (26) and substituting (25) and

(24), we get:

V̇e(̂̄x, x) =− ε(̂̄x)⊤JT (̂̄x, t)B⊤BJT (̂̄x, t)ε(̂̄x) (27)

− ε(̂̄x)⊤JT (̂̄x, t)Ṗ(t)̂̄x
− γx⊤BJT (̂̄x, t)ε(̂̄x)

Substituting ̂̄x = P(t)−1B⊤x with P(t) ∈ ℜM×M being

a diagonal matrix with diagonal entries ρij(t) and taking

into consideration that for connected graphs B⊤B is positive

semidefinite we arrive to the following inequality:

V̇e(̂̄x, x) ≤− ̂̄x⊤
[γIM −A(t)]

∂ε
(̂̄x

)

∂̂̄x
ε(̂̄x) (28)

with A(t) being diagonal matrix with bounded entries

− ρ̇ij(t)
ρij(t)

(since ρij(t) is strictly positive with bounded deriva-

tive) i.e. supt[|A(t)|] ≤ ᾱ, for some constant ᾱ. By setting

γ := θ+ ᾱ, with θ being arbitrarily positive constant we get:

V̇e(̂̄x, x) ≤− θ̂̄x⊤ ∂ε
(̂̄x

)

∂̂̄x
ε(̂̄x) (29)

Clearly, (29) implies that Ve(̂̄x, x) < Ve(̂̄x(0), x(0)) which

in turns implies that x, ε(̂̄x) ∈ L∞ given that Ve(̂̄x(0), x(0))
is finite. It is obvious that if x̄(0) is chosen within the

performance bounds then Ve(̂̄x(0), x(0)) is finite, ε(̂̄x) ∈
L∞ and subsequently x̄(t) evolves within the prescribed

performance bounds ∀t. By applying Barbalat’s Lemma we

can also prove that x̄(t) → 0. In particular we calculate the

derivative of V̇e(̂̄x, x) and we prove that it is bounded based

on the boundedness of ε(̂̄x) and ε̇(̂̄x). The boundedness of

V̈e(̂̄x, x) implies the uniform continuity of V̇e(̂̄x, x) which in

turn implies that V̇e(̂̄x, x) → 0. For Tij(0) = 0, V̇e(̂̄x, x) →
0 implies x̄ → 0.

Theorems 2 and 3 consider only the edge space and thus

they do not state any result regarding the convergence of the

agents’ absolute position. Our study and the corresponding

results regarding the absolute position of the agents are



summarized in the following Lemma:

Lemma 1: The prescribed performance agreement proto-

col (23) with the following characteristics: ρij(t) = ρji(t),
Mij = Mji and Tji(x̂ji) = −Tij(−x̂ij) applied to the single

integrator dynamics (22) ensures i) the convergence of the

agents’ absolute position to some constant points around the

agents’ centroid, for Tji(0) �= 0 and limt→+∞ ρ̇ij(t) = 0 ii)

the convergence of the agents to the centroid for T ij(0) = 0.

Proof: The prescribed performance agreement proto-

col with symmetric prescribed performance characteristics

implies that the centroid of the system states evaluated

for any t ≥ 0, remains constant during the motion of

the agreement dynamics i.e. d
dt

(∑
i∈N xi

)
= 0 or equiv-

alently 1
⊤x = 1

⊤x(0). Given that limt→+∞ ρ̇ij(t) = 0,

then the part (ii) of Theorem 2 for T ij(0) �= 0 implies

limt→+∞ xij(t) = ρij∞T−1
ij (0). Hence the error between

the system equilibrium x∞ and the invariant centroid of the

system for a spanning tree communication graph is given by:

x∞ −
1

N

∑

i∈N

xi(0)1 = BL−1
E x̄∞ (30)

where x̄∞ is the stuck vector of ρij∞T−1
ij (0). Since Tij(0) �=

0, x̄∞ can be reduced by reducing ρ ij∞.

For Tij(0) = 0, Theorem 3 implies that the relative states

converge to zero for any strictly positive ρ ij(t) with bounded

derivative. By combining the aforementioned convergence

result with the invariance of system states centroid we can

prove that the system states converge to the centroid of the

multi-agent system as follows:
[

IN −1

1
⊤ 0

] [
x
c

]
=

[
0

1
⊤x(0)

]
(31)

Equation (31) clearly implies c = 1
N

∑
i∈N xi(0) which

subsequently yields xi →
1
N

∑
i∈N xi(0), ∀i ∈ N .

IV. SIMULATION EXAMPLES

1 2 4

5

3

6

Fig. 1: Spanning tree communication graph: neighboring agents are
connected with solid arrows (CS-2). Connected communica-
tion graph with one cycle: neighboring agents are connected
with solid and dashed arrows (CS-3)

We consider six 2 dofs agents on a planar surface. Let

pi = [xi yi]
⊤, i ∈ {1, · · · , 6} describe the position of each

agent, vav denote the average velocity of the agents, i.e.

vav �
1

6
(

i=6∑

i=1

‖ṗi‖)

and d denote the sum of distances between the agents and

their centroid i.e.

d �

i=6∑

i=1

‖pi − pc‖
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Fig. 2: Position errors (solid lines) and performance bounds (dashed
lines) in case of CS-2 and PPC-1
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where pc �
1
6

∑i=6
i=1 pi. The initial position p0i of the agents

are: p01 = [−0.5 −1 ]⊤, p02 = [ 1 −1.5 ]⊤, p03 = [ 3 3 ]⊤,

p04 = [ 5 6 ]⊤, p05 = [ 2 7 ]⊤, p06 = [−1 1.5 ]⊤. We will

consider three different communication scenarios:

CS-1 complete communication graph,

CS-2 spanning tree (Fig. 1 - solid arrows),

CS-3 connected graph with one cycle (Fig. 1 - solid and

dashed arrows)

and two different types of prescribed performance con-

trollers:

PPC-1 Mi = 0 and Ti(0) �= 0 in particular:

Ti(ŷ) =





ln
(

Mi+ŷ
1−ŷ

)
, y(0) > 0

ln
(

1+ŷ
Mi−ŷ

)
, y(0) < 0

PPC-2 Mi = 0.1 and Ti(0) = 0 in particular:

Ti(ŷ) =





ln
(

Mi+ŷ
Mi(1−ŷ)

)
, y(0) > 0

ln
(

Mi(1+ŷ)
Mi−ŷ

)
, y(0) < 0

where ŷ = y/ρi(t) with y ∈ {xij , yij}, i ∈ {1, · · · , 6},

j ∈ Ni and ρij(t) being chosen as follows:

ρij(t) = (10− 10−2) exp(−2t) + 10−2, ∀(i, j) ∈ E

We have proved theoretically that PPC-1 can be used in

case of spanning tree communication graphs and cannot

achieve asymptotic convergence of the agents’ positions to
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Fig. 4: Position errors (solid lines) and performance bounds (dashed
lines) in case of CS-2 and PPC-2
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Fig. 5: Trace of the robots on x− y plane in case of controller in
case of CS-2 and PPC-2

their centroid.

We consider first the case of a spanning tree communica-

tion graph (CS-2, Fig. 1) for prescribed controllers PPC-

1 and PPC-2 in order to validate the theoretical results.

Simulation results are shown in Figs. 2, 3 and Figs. 4,

5 for PPC-1 and PPC-2, while Fig. 6 depicts the sum of

distances from the centroid with solid black and grey lines

for PPC-1 and PPC-2 respectively. In Figs. 2 and 4, the edge

errors are depicted with the performance bounds (dashed

lines); the first and the second rows correspond to x and

y coordinates respectively while the first and the second

columns correspond to positive or negative initial edge errors.

In Figs. 3 and 5, the traces of the agents on the x−y plane are

shown. Notice that, the use of the zero overshoot controller

PPC-1 allows us to ensure the agents will not collide during

the procedure, which is crucial in robotic applications. On

the other hand, the use of the controller PPC-2 enables the

agents to converge asymptotically to the centroid as shown

in Fig. 6.

In the second part of the simulation section we consider

connected communication graphs with cycles; in particular

we consider CS-1 and CS-3. In both cases, the theoretical

results cannot guarantee that PPC-1 enforces the system to

a stable equilibrium. Simulation shows that the system is

unstable in CS-1 but stable in case of the communication

graph with one cycle (CS-3); results for CS-3 are shown in

Fig. 7. Figs. 8 and 9 validate also the theoretical findings for
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Fig. 7: Position errors (solid lines) and performance bounds (dashed
lines) in case of CS-3 and PPC-1

PPC-2 since the edges’ errors evolve within the prescribed

performance bounds and asymptotically converges to zero.

In the last part of the simulation section, the prescribed

performance agreement protocol PPC-2 is compared to the

simple linear agreement protocol based on the responses of

the total distance between the agents and centroid (Fig. 10)

and the average velocity norm of the agents (Fig. 11). In

case of the linear controller with unit gains the convergence

rate depends on the communication graph; the tuning of the

controller in order to achieve faster convergence requires

a known communication topology which is a centralized

information and thus being inadequate for distributed control

design. By inspecting Fig. 10 and 11, notice that the higher

convergence rate to the centroid in case of PPC-2 requires

speed abilities for the agents which are comparable with the

maximum speed of the linear agreement protocol (Fig 10,

11: (a), (b)). Notice also that the maximum average velocity

in case of the linear controller is the double of the maximum

velocity in case of PPC-2 while the agents’ convergence time

is approximately the same.

V. CONCLUSIONS AND FUTURE WORKS

In this work, we proposed a nonlinear distributed agree-

ment controller in order to guarantee a priori defined spec-

ifications such as overshoot and speed of response in the

edges’ space. The framework of prescribed performance

control enables not only to ensure that the errors between

neighboring agents will be restricted in a predefined region
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Fig. 8: Position errors (solid lines) and performance bounds (dashed
lines) in case of CS-1 and PPC-2
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Fig. 9: Position errors (solid lines) and performance bounds (dashed
lines) in case of CS-3 and PPC-2

(wherein the communication graph is invariant) but also to

dissociate the convergence rate from the algebraic connec-

tivity of the communication graph. Hence, each agent can

know beforehand the minimum speed of convergence without

knowing the communication topology of the overall network

(typically centralized information). It was also proved that in

case of a communication graph with cycles, the specification

of zero overshoot cannot be set. On the other hand, the

specification of zero overshoot which is a safe choice for a

spanning tree communication graph does not enable the proof

of asymptotic convergence to zero but allows small steady

state errors which can be defined by the designer. Theoretical

findings were illustrated through simulations. Simulation also

compared the prescribed performance agreement protocol

with the linear one and showed that the prescribed per-

formance controller can achieve faster convergence without

requiring higher maximum velocity values. Future work

includes the consideration of multi-agent systems with more

complex dynamics such as nonholonomic mobile robots,

robotic manipulators and second order integrators.
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