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Abstract— In this paper, an enhanced event-based scheme
for model predictive control (MPC) of constrained discrete-
time systems with additive disturbances is investigated. The
re/calculation of the MPC control law is triggered whenever
an event depending on the error of the measured state with
respect to the nominal state of the system occurs. Between
the controller updates, the last computed control trajectory is
applied to the system, in conjunction with a correction term.
This term consists of a perturbation solution of the nominal
system which itself depends on the aforementioned error. The
overall framework yields less conservative results with respect
to our previous work. The results are illustrated through a
simulated example.

I. INTRODUCTION

The formulation of event-based control schemes is a

flourishing field in the recent years. The key attribute of

these approaches is that the decision for the execution of

the control task is not made ad-hoc, but it is based on a

certain condition of the state of the system. This results

to a more flexible aperiodic sampling, while preserving

necessary properties of the system such as stability and

convergence. The event-based methodology may lead to an

overall reduction on the number of the control updates which

might be desirable when the system has limited resources.

Indicatively, related works on event-based control can be

found in [1], [4], [7], [11], [15], [18], [20].

The NMPC strategy is a widely used control strategy

for constrained systems. Even though formulating a control

problem under NMPC is intuitively attractive, the computa-

tion of the control law is considerably demanding. Motivated

by this fact, an event-based framework for this kind of

controllers has been investigated, in order to reduce the

number of times the control input should be computed.

This event-based approach exploits the fact that predictive

controllers provide a control sequence for a prediction hori-

zon. The main idea is that the control sequence provided

by the controller is applied to the system in an open-loop

fashion between actuator updates. Sufficient conditions for

triggering the predictive control law of an uncertain discrete-

time nonlinear system has already been presented in our

previous work, [5].

The problem addressed here is the event-driven control

of a general nonlinear discrete-time system with additive
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disturbances, under an NMPC framework. Since the system

in consideration is uncertain, in order to prove stability,

a similar procedure as in the case of Input-to-State (ISS)

stability analysis for MPC, is going to be used. Some relevant

citations of ISS MPC schemes are [13], [14], [16]. As in

[5], the error between the real state of the system and the

predicted state given by the nominal model, is monitored.

However, the control law that is applied to the plant, during

the inter-event times, is the previously computed control

law in conjunction with a correction term. This term uti-

lizes a perturbation solution of the optimal trajectory and

is explicitly dependent on the aforementioned error. With

this approach the controller has some kind of additional

“intelligence” and reacts to the measured error. Thus, the

contribution of this paper relies in finding sufficient con-

ditions for triggering in the case of uncertain discrete-time

systems under an NMPC control law with a correction term.

Notice, that perturbation analysis of predictive controllers has

been presented in [8], [9] and [21].

The field of event-based MPC is quite new, however, some

relevant works have already been presented. Some relevant

papers are [2], [10], [12], [17], [19].

The remainder of the paper is organized as follows. In

Section II, the system under consideration is presented.

Subsequently, the problem formulation for the event-based

control of uncertain nonlinear systems under NMPC control

law along with a correction term is given. A brief analysis

on the neighboring extremals is conducted first and then the

convergence and stability proofs of the overall scheme are

provided in Section III. In Section IV, sufficient conditions

for triggering are designed, while in Section V some simu-

lation results are presented. Finally, Section VI summarizes

the results of this paper and indicates future research goals.

II. PROBLEM FORMULATION

Consider the nonlinear discrete-time dynamic system

xk+1 = f (xk,uk) (1)

where xk ∈ R
n denotes the system’s state and uk ∈ R

m is the

control vector. The state and control variables are subject to

the following constraints

xk ∈ X , uk ∈U, k ∈ Z≥0 (2)

where X is a closed subset of R
n and U is a compact subset

of R
m, both of them containing the origin as an interior point.

Assume that f (0,0) = 0 and that f (x,u) is locally Lipschitz

with respect to x and u in the domain X ×U , with Lipschitz

constants L fx and L fu , respectively. The predicted state of the

system at a time step k+ j+1 with j ∈Z≥0 can be found by



the nominal model of the system i.e. (1), and is denoted as

x̂(k + j + 1|k) = f (x̂(k + j|k),uk+ j), where uk+ j is a control

sequence for time [k,k + j] and xk = x̂(k|k) is the measured

state of the system at time step k.

In a realistic formulation though, modeling errors, uncer-

tainties and disturbances may exist. Thus, a perturbed version

of (1) is going to be considered as well. The perturbed system

is described as

xk+1 = f (xk,uk)+wk (3)

with wk ∈ W ⊆ R
n to be the additive disturbance and W to

be a compact set containing the origin. The admissible set

of uncertainties are bounded, thus

wk ∈W, ||wk|| ≤ γ (4)

It is apparent that the uncertainty of system (3) can cause

discrepancies between the predicted state sequence given

from (1) and the actual state sequence of the system. This

divergence can be quantified in terms of an error. Therefor,

the error e(k + j|k) is introduced in the analysis and is

denoted as

e(k + j|k) = ||xk+ j − x̂(k + j|k)|| (5)

III. EVENT-BASED NMPC VIA PERTURBATION

ANALYSIS

In the classic NMPC strategy, the control law is updated

at each time-step k. The control input that is applied to

the system is the first term of the optimal control sequence

provided by the NMPC. However, in the event-triggered

setup the rest of the optimal sequence might be used as well,

provided that the real evolution of the system stays close to

the predicted by means of the nominal model. In our previous

work [5], the last computed control sequence was applied to

the system in an open-loop fashion, during the inter-event

times. The error between the real state sequence and the

predicted sequence was monitored in order to trigger an

event. On the other hand, in this approach, the last computed

control law along with a correction term is applied to the

system during the triggering events. The correction term can

be found as the approximation solution of the MPC, it is

easily computable and corrects the nominal solution. Hence,

this term is applied in order to account for the error on-line.

In the following, a perturbation analysis is conducted in

order to reach to the the analytic expression of the correction

term. Moreover, the convergence and stability properties

of the overall scheme of the NMPC with the neighboring

extremals approach are proven.

A. Neighboring Extremals

The solution of an optimal control problem, when pertur-

bations in the initial state are present, can be approximated

using the optimal perturbation analysis approach. Namely,

if there is a perturbation dx(k) in the initial condition, the

resulting optimal solution can be approximated by x̂(k) +
dx(k) and u∗(k)+ du(k). The real state of the system xk at

time step k, can be found by

xk = x̂(k|k−1)+dx(k) ⇒ dx(k) = xk − x̂(k|k−1) (6)

and for time step k + j we have respectively dx(k + j) =
xk+ j − x̂(k + j|k−1).

The neighboring extremal path method, developed in [3],

is adopted. It holds that

du(k + j) = K∗(k + j)dx(k + j) (7)

In order to find K∗(k + j), all quantities are evaluated at the

nominal optimal condition, namely, x̂(k+ j|k−1), u∗(k−1).
The analytic expression of K∗(k + j) is derived in the

Appendix and in particular in (29). From (7) we have

||du(k + j)|| ≤ ||K∗(k + j)|| · ||dx(k + j)||

≤ ||K∗(k + j)||e(k + j|k−1) (8)

Suppose an upper bound on ||du(·)||. This is a because the

system (1) is constrained in the inputs, so we must ensure that

while using the neighbors extremals, the input constraints

will be fulfilled. So,

||du(k + j)|| ≤ γu. (9)

B. NMPC Strategy

The general form of NMPC consists in solving on-line

a finite-horizon, open-loop optimal control problem (abbr.

OCP), based on the current state measurement. A cost

function JN is minimized with respect to a control sequence

uF(k) , [u(k|k),u(k+1|k), . . . ,u(k+N−1|k)], thus, the OCP

for the nominal system (1), can be formulated as follows

min
uF (k)

JN(xk,uF(k)) =

min
uF (k)

i=N−1

∑
i=0

F(x̂(k + i|k),u(k + i|k))+V (x̂(k +N|k)) (10a)

s.t.

x̂(k + j|k) ∈ X j u(k + j|k) ∈U j x̂(k +N|k) ∈ X f (10b)

for all j = 0, . . . ,N−1. The positive integer N ∈Z≥0 denotes

the prediction horizon and X f denotes the terminal constraint

set.

The constraints on the state from (2) are being replaced

by a restricted constraint set X j while solving the OCP.

It holds that X j = X ∼ B
x
j where B

x
j = {x ∈ R

n : ||x|| ≤

L
j
fx

γ +Lm( j)L fuγu}. This state constraints’ tightening for the

nominal system with additive disturbances, while utilizing

the correction term from the perturbation analysis, guarantees

that the evolution of the real system will be admissible

for all time. This is proven in Lemma 4 of the Appendix.

Furthermore, the constrained set U j is a restricted set in the

same sense as in the state constraint tightening case. There

is U j = U ∼ B
u where B

u = {u ∈ R
m : ||u|| ≤ γu} which

guarantees the fulfillment of all input constraints. Notice that,

the set operator “∼” denotes the Pontryagin difference and

that we denote

Lm( j) =
j−1

∑
i=0

{Li
fx
}

Similarly to [14], the following assumptions for the stage

cost F(·) and the terminal cost V (·) are stated:



Assumption 1: i) The stage cost F(x,u) is Lipschitz con-

tinuous with respect to x and u in X ×U , with Lipschitz

constants denoted by LFx and LFu, respectively. Assume that

F(0,0) = 0 and that there are positive constants α > 0 and

ω ≥ 1, such that L(x,u) ≥ α||(x,u)||ω .

ii) Let the terminal region X f from (10b) be a subset of an

admissible positively invariant set Φ of the nominal system.

Assume that there is a local stabilizing controller h(xk) for

the terminal state X f . The associated Lyapunov function

V (·) has the following properties V ( f (xk,h(xk))−V (xk) ≤
−F(xk,h(xk)),∀xk ∈ Φ, and is Lipschitz in Φ, with Lipschitz

constant LV . The set Φ is given by Φ = {xk ∈ R
n : V (xk) ≤

αΦ} such that Φ ⊆ Xh = {xk ∈ XN−1 : h(xk) ∈ U}. The set

X f = {xk ∈ R
n : V (xk) ≤ αν} is such that for all xk ∈ Φ,

f (xk,h(xk)) ∈ X f .

Definition 1: In the following, XMPC will denote the set

containing all the state vectors for which a feasible control

sequence exists, i.e. a control sequence u that satisfies all the

constraints of the MPC (10b).

Consider the control trajectories un
F(k+m), for time steps

m = 0, . . . ,N −1, based on the optimal solution in k−1, i.e.

u∗F(k − 1), in conjunction with a correction term from the

perturbation solution of the MPC. The “neighboring” control

trajectories can be denoted as

un(k + j|k +m) = (11)

=

{

u∗(k + j|k−1)+du(k + j) for j = m, . . . ,N −2

h(xn(k +N −1|k +m)) for j = N −1

Furthermore, the state of the system when the control law

(11) is applied to the system, is given by

xn(k + j +1|k +m) = f (xn(k + j|k +m),un(k + j|k +m))

Definition 2: A set XMPC ⊆ X is robust positively invari-

ant (RPI) set for system (3), if xk ∈ XMPC, ∀xk−1 ∈ XMPC

and ∀wk ∈W .

Next, the robust positively invariance of the set XMPC of the

closed-loop system will be shown.

Lemma 1: Let the system described by (3) and is subject

to (2). Under the Assumption 1, XMPC is RPI for the closed-

loop system if the uncertainties are bounded by γ ≤ (αΦ −
αν −LV Lm(N −1)L fuγu)/LV LN−1

fx
.

Proof: For simplicity, we are going to treat the case

m = 0. One can easily verify that un(k + j|k) ∈ U j for j ∈
[0,N −2], and h(x) ∈U , which yields that un(·) are feasible

control trajectories. Also it must be shown that if x̂(k +N −
1|k) ∈ Φ, then xn(k + N|k) ∈ X f . By applying Lemma 5 in

the Appendix, it holds that

V (xn(k +N|k)) ≤V (x̂(k +N −1|k−1))

+LV LN−1
fx

γ +LV Lm(N −1)L fuγu ≤

αν +LV LN−1
fx

γ +LV Lm(N −1)L fuγu ≤ αΦ

Considering that ||xn(k + j|k)− xn(k + j|k − 1)|| ≤ L
j
fx

γ +
Lm( j)L fuγu, it can be concluded that xn(k + j|k) ∈ X j, and

the proof is completed.

The next step is to prove convergence of the proposed

scheme. In order to do so, an intermediate result is going

to be stated first. The optimal cost at time step k − 1 is

J∗N(k−1) and the cost of the “neighboring” feasible sequence

at a time step j ∈ [0,N −1] is indicated by Jn
N(k + j). Then

the difference of these costs is

∆J j = Jn
N(k + j)− J∗N(k−1) (12)

The next theorem can now be stated:

Theorem 2: Consider the system (3) subject to (2) and

assume that the previously presented Assumption 1 holds.

Then, using the control law from (11), the difference between

the cost of a feasible sequence at time step k + j and the

optimal cost of at time step k−1 is bounded by

∆J j ≤C
j
1e(k + j|k−1)−α

j

∑
i=0

{||xk−i+ j||ω}+C
j
2 (13)

where C
j
1 is given by

C
j
1 , LFx Lm(N −1− j)+LV L

N−1− j
fx

(14)

and C
j
2 is given by

C
j
2 , (LV Lm(N −1− j)+LFx

N−2− j

∑
i=0

{Lm(i)}+1)L fuγu (15)

Proof: First, the difference (12) is calculated for j = 0.

Then the calculation will be repeated for j = 1, and finally

the general rule for random j will be stated.

For j = 0 the difference (12) is

∆J0 = Jn
N(k)− J∗N(k−1) =

N−1

∑
i=0

{F(xn(k + i|k),un(k + i|k))

−F(x̂(k + i−1|k−1),u∗(k + i−1|k−1))}+V (xn(k +N|k))

−V (x̂(k +N −1|k−1)) =
N−2

∑
i=0

{F(xn(k + i|k),un(k + i|k))

−F(x̂(k + i|k−1),u∗(k + i|k−1))}

+F(xn(k +N −1|k),h(xn(k +N −1|k))−F(xk−1,uk−1)

+V (xn(k +N|k))−V (x̂(k +N −1|k−1))

+V (xn(k +N −1|k))−V (xn(k +N −1|k)) (16)

Recall from Assumption 1, that the stage cost is Lipschitz

continuous in X ×U , so

F(xn(k + i|k),un(k + i|k))−F(x̂(k + i|k−1),u∗(k + i|k−1))

≤ LFx||x
n(k + i|k)− x̂(k + i|k−1)||

+LFu||u
n(k + i|k)−u∗(k + i|k−1)|| (17)

From (36) of the Appendix, it can be concluded that

LFx ||x
n(k + i|k)− x̂(k + i|k−1)|| ≤

LFx Li
fx

e(k|k−1)+LFxLm(i)L fuγu (18)

Also, using the control law (11), we have

LFu||u
n(k + i|k)−u∗(k + i|k−1)|| =

LFu||u
∗(k + i|k−1)+du(k + i)−u∗(k + i|k−1)|| =

LFu||du(k + i)|| ≤ LFuγu (19)



The following inequality holds by Assumption 1,

V (xn(k +N|k))−V (xn(k +N −1|k))

+F(xn(k +N −1|k),h(xn(k +N −1|k))) ≤ 0 (20)

Moreover, using (36) it follows that

V (xn(k +N −1|k))−V (x̂(k +N −1|k−1))

≤ LV LN−1
fx

e(k|k−1)+LV Lm(N −1)L fuγu (21)

Let the stage cost to be F(x,u) ≥ α||(x,u)||ω ≥ α||x||ω .

Substituting (18)-(21) to (16), the following is derived

∆J0 ≤
N−2

∑
i=0

{LFx Li
fx

e(k|k−1)+LFx Lm(i)L fuγu +L fuγu}

+LV LN−1
fx

e(k|k−1)+LV Lm(N −1)L fuγu

≤ (LFx Lm(N −1)+LV LN−1
fx

)e(k|k−1)

+(LV Lm(N −1)+LFx

N−2

∑
i=0

{Lm(i)}+1)L fuγu −α||xk−1||
ω

≤C0
1e(k|k−1)−α||xk−1||

ω +C0
2 (22)

where C0
1 , C0

2 are constant terms from (14) and (15) for

j = 0, respectively.

For j = 1 the difference (12) becomes

∆J1 = Jn
N(k +1)− J∗N(k−1)

=
N−1

∑
i=0

{F(xn(k + i+1|k +1),un(k + i+1|k +1))

−F(x̂(k + i−1|k−1),u∗(k + i−1|k−1))}

+V (xn(k +N +1|k +1))−V (x̂(k +N −1|k−1))

≤ (LFx Lm(N −2)+LV LN−2
fx

)e(k +1|k−1)

+(LV Lm(N −2)+LFx

N−3

∑
i=0

{Lm(i)}+1)L fuγu

−α||xk−1||
ω −α||xk||

ω

≤C1
1e(k +1|k−1)+C1

2 −α||xk−1||
ω −α||xk||

ω (23)

From the above it can be concluded using the same

calculation, that for random j ∈ [0,N − 1] the difference

∆J j = Jn
N(k + j)− J∗N(k− 1), is given from (13), and hence

the proof is completed.

IV. TRIGGERING CONDITION

The proposed scheme must be convergent to a compact set

where the system is ultimately bounded. In the following, a

triggering condition for the OCP of the MPC that guarantees

that the associate Lyapunov function is decaying at every

time step and that all the constraints are fulfilled, is given.

Since J∗N(k) is the optimal cost at time step k, we have

J∗N(k)− J∗N(k−1) ≤ ∆J0, hence

J∗N(k)− J∗N(k−1) ≤C0
1e(k|k−1)−α||xk−1||

ω +C0
2 (24)

The triggering condition is written in this case as

C0
1e(k|k−1) ≤ σ(α||xk−1||

ω −C0
2) (25)

Invoking this rule into (24), with 0 < σ < 1, it can be

concluded that J∗N(·) is strictly decreasing. The triggering

rule (25) is valid, though, only in the first step. In order

to maintain stability we must ensure that ∆J j is strictly

decreasing for all j ∈ [0,N − 1]. The control law (11), is

applied to the system as long as

∆J j+1 ≤ ∆J j (26)

In this case the convergence of the closed-loop system is

guaranteed.

As we have already discussed, correcting the optimal

control law with an approximation solution given by the

neighboring extremals approach, may lead to control inputs

that violate the constraints. To account for that, an upper

bound on the norm of the correction term was assumed in

(9). In order to assert that this is the case, we will impose

an event-based condition that states that the control update

will be triggered whenever the tracking error will exceed a

specific limit. Using (7) and (9) the following condition can

be derived

||K∗(k + j)||e(k + j) ≤ γu

In a practical sense, this states that whenever the error is

small enough we do not trigger a new MPC law, otherwise,

we measure the state of the system and compute an appro-

priate control law.

Consequently, the triggering condition can be stated as

C
j
1e(k + j|k−1) ≤ σ(α

j

∑
i=0

||xk−i+ j||
ω +C

j
2) (27a)

and

C
j
1e(k + j|k−1)−σ(α

j

∑
i=0

{||xk−i+ j||
ω}+C

j
2) ≤ (27b)

C
j−1
1 e(k + j−1|k−1)−σ(α

j−1

∑
i=0

{||xk−i+ j||
ω}+C

j−1
2 )

and

||K∗(k + j)||e(k + j) ≤ γu (27c)

The next OCP is triggered whenever condition (27a) or

(27b) or (27c) is violated.

The previous analysis guarantees that the closed loop

system will have the same convergence properties as in [14].

However, the OCP in this paper is not calculated at each time

instant, but only when the triggering condition is violated.

The next theorem can be stated:

Theorem 3: Consider the system (3), subject to (2) under

an NMPC strategy and assume that the previously presented

Assumption 1 holds. The NMPC control law provided by

(10a)-(10b) is triggered whenever condition (27a)-(27c) is

violated. Between inter-event times the control law (11)

is applied to the system. The overall framework drives

the closed loop system towards a compact set where it is

ultimately bounded.



V. EXAMPLE

In this section, a simulated example of the proposed event-

based framework is presented. The system under consider-

ation is a linear system under a quadratic MPC scheme.

A comparison is made, between the event-based framework

proposed in [5], and the proposed approach where the last

computed control sequence is applied to the system along

with a correction term given by a perturbation solution of

the MPC. For illustrative purposes, the numerical values of

the parameters of the system that was taken as in the example

section in [6]. The disturbance parameter and the length of

the prediction horizon is set to ||w|| ≤ 0.8rand and N = 6,

respectively.
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Fig. 1. The error given from (5). The blue line represents the error when
the last computed MPC law is applied to the system during the inter-event
time-steps, while the red line represents the error when the last computed
MPC law is applied to the system in conjunction with a correction term.

The simulation results are reported in Fig. 1 where the

error (5) between the real state and the predicted state of

the system given by the nominal model (1), is depicted. The

error is zero when an event is triggered. From Fig.1 it can

be witnessed that both approaches have comparable results

and that with both approaches the inter-calculation times are

strictly larger than one when the system is away from the

equilibrium.

The next Fig.2, depicts a state sequence of the system

under the event-based scheme given in [5] and is represented

by the blue line. The state sequence of the system when the

event-based scheme that exploits the neighboring extremal

approach is applied to the system is represented by the red

line. As it can be seen in Fig. 2 the system under the proposed

event-based approach of this paper, has faster convergence

properties.

VI. CONCLUSIONS

In this paper, an event-based framework for the control

of a general nonlinear constrained system under NMPC was

proposed and analyzed. The event-based formulation consists

in triggering the solution of the OCP of the NMPC only

when an event occurs. During the inter-event period the

control sequence provided from the previous triggering event
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Fig. 2. A state sequence of the system. The blue line represents the state
sequence of the system when the last computed MPC law is applied to the
system during inter-event time-steps, while the red line represents the state
sequence of the system under the proposed approach.

in conjunction with a correction term is used in an open-loop

fashion. This event-based scheme is favorable in a number

of occasions, because it is possible to reduce the number of

times the control law should be computed. This results to the

alleviation of the energy consumption. Future work involves

formulating the MPC control problem in a self-triggered

scheme. With this approach the next control updates are

decided at the previous ones, thus, the need for continuous

monitoring of the measurement error can be relaxed.

APPENDIX

The perturbation solution for discrete-time MPC problems

with state, control and terminal constraints is derived in this

section. The cost function of the optimal control problem of

MPC for the nominal system (1), is given by

JN(x(0),u) =
N−1

∑
k=0

{F(x(k),u(k))}+V (x(N))

Notice that a simpler notation of the cost function of the OCP,

given by (10a) is used. The constraints (10b) are assumed

to have the form C(x(k),u(k)) ≤ 0, ψ(x(N)) = 0, where C :

R
n+m → R

l and ψ : R
n → R

q. This assumption is helpful

in the subsequent analysis, but not restrictive to the general

constrained case. The subscripts x,u will denote the partial

derivatives vector functions.

Next, the standard procedure of [3] and [8] is followed.

The augmented performance index obtained by adjoining the

constraints, is given by

J̄N = V a(x(N))+
N−1

∑
k=0

{H(x(k))−λ (k +1)⊤x(k +1)}

where V a = V (x(N)) + ν⊤ψ(x(N)) and the Hamiltonian is

given by H(k) = F(x(k),u(k)) + λ (k + 1)⊤ f (x(k),u(k)) +
µ(k)⊤C(x(k),u(k)), where λ (k) and ν⊤ are multiplier se-

quence and a set of q multipliers, respectively.



The neighboring optimum feedback law with the present

deviation from the optimal path dx(k), while minimizing the

cost function, is given by

du(k) = K∗(k)dx(k) (28)

with

K∗(k) , Zuu(Zux +Zuν Q−1(k)R⊤(k)) (29)

We have that

Zuu = [ fu +K2S(k +1) fu]
−1 (30)

Zux = K2S(k +1) fx − fx +K1 (31)

Zuν = K2R(k +1) (32)

also it can be derived that

K1 = fx(k)−
[

fu(k) 0
]

[

Huu(k) C⊤
u (k)

Cu(k) 0

]−1 [

Hux(k)
Cx(k)

]

K2 = −
[

fu(k) 0
]

[

Huu(k) C⊤
u (k)

Cu(k) 0

]−1 [

f⊤u (k)
0

]

K3 = Hxx(k)−
[

Hxu(k) C⊤
x (k)

]

[

Huu(k) C⊤
u (k)

Cu(k) 0

]−1 [

Hux(k)
Cx(k)

]

The terms S(k), R(k) and Q(k) in equations (30) through

(32) are given by

S(k) = K3 +K⊤
1 S(k +1) fx +K⊤

1 S(k +1) fuZuuZux (33)

R(k) = K⊤
1 S(k +1) fuZuuZuν (34)

Q(k) = R⊤(k +1) fuZuuZuν +Q(k +1) (35)

These recursive equations must satisfy the boundary

conditions, namely S(N) = V a
xx, R(N) = ψx(x(N)) and

Q(N) = 0.

Lemma 4: The norm of the difference between the real

evolution of the system when the control law (11) is applied

to the system and the predicted evolution of the system at

the same time step satisfies:

||x̂(k + j|k−1)− xk+ j|| ≤ L
j
fx

γ +Lm( j)L fuγu

Lemma 5: It holds that the norm of the difference between

xn(k+ j +m|k+m) and x̂(k+ j +m|k−1) is bounded. Note,

that xn(·), as well as x̂(·) are the “neighboring” state of the

system and the predicted one, respectively, and that both are

given by the nominal model (1). In particular,

||xn(k + j +m|k +m)− x̂(k + j +m|k−1)||

≤ L
j
fx

e(k +m|k−1)+Lm( j)L fuγu (36)

The proof of Lemma 4, Lemma 5 as well as the derivation

of (28) are omitted due to space constraints and will be

presented in an extended journal version.
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