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Abstract—In this paper, a leader based containment control the various approaches of the state agreement problem for
strategy for multiple unicycle agents is introduced. Similar linear models of motion is given in [20].

results for the single integrator case examined in [7] are derived In this paper, a leader-based containment control problem
based on the theory of Partial Difference Equations on graphs ’

established in [1]. The leaders converge to a desired formation for multlple unicycles is |nvest|gf':1teq. The problem stgtement
based on a control law that is independent of the followers’ Can be interpreted as a combination of the formation and
states. Once the leaders have reached the desired formation, the agreement control problems. Specifically, the leaders
the followers converge to the convex hull of the leaders final of the team have two performance objectives. The first is
positions. When the desired leader formation is infeasible, then - -yergence to a desired formation configuration encoded by
(as was shown in [5]) the leaders converge to a configuration the final desired relative inter-lead iti Th d
where they share the same velocities and orientations. We show e_' 'n_a _eS|re _re ative Inter-leader pos_| Ions. e secon
in this paper that in such a Situation’ the followers converge ObJeCt|Ve is containment of the followers in the convex hull
to the same velocities and orientations as the leaders, with of the leaders’ final positions. A similar problem was treated
the same control law that was used for the followers in the in [7] for multiple agents with single integrator kinematics.
|n|t|_a_l containment control pr_oblem_. The theoretical results are Unlike the strategy proposed in [7], the followers do not have
verified through computer simulations. . , o

to stay in the convex hull of the leaders’ positions at each
time instant. However, once the leaders reach the desired
formation, we provide sufficient conditions for convergence

Cooperative control of multiple autonomous agents is g the followers to the convex hull of the leaders’ final
field that has gained increased attention in the past fe_gpsmons.Thls reSl_JItwas also established in [7] for the single
years in both the robotics and control communities, due #gtegrator kinematics case. In that paper, recent results on
the need for autonomous control of multiple mobile roboti¢@rtial Difference Equations ([6],[1]) on graphs were used
agents sharing the same workspace. Applications includ@ Show that, in the case of multiple stationary leaders,
UAV formation control ([21]), micro-robotic systems([11]) the.f.ollowers' converge to the convex hull of the leaders
and transportation systems ([24]). positions. This was achieved under an agreement control de-

Among the various specifications that the control desigﬁign together with some additional connectivity assumptions.
aims to impose on the multi-agent team, convergence sgirthermore, the leaders converge to the desired formation
the multi-agent system to a desired formation is a desi ith a control §t.rategy_that !s shown to be independent of
objective that has been extensively pursued during the | states (posmpns,orlentatlons) C,)f thg followgrs.
few years. The main feature of formation control is the co- When the.deswed leader formation is |nfeaS|bIe,.then .(as
operative nature of the equilibria of the system. Agents mudf2s sh?]wn '1 [5]) tr?e leaders lcor_n_/erge t(;) a_conﬂguraﬂon
converge to a desired configuration encoded by the relatN%‘ere they share the same velocities and orientations. We

inter-agent positions. Many feedback control schemes thafOW in this paper that in such a situation, the followers
onverge to the same velocities and orientations as the

gpders, with the same control law that was used for the

I. INTRODUCTION

achieve formation stabilization to a desired formation in
distributed manner have been proposed in literature. See : o :
example [16],[14],[9] for some recent results. followers in the |n|t|§1I containment control prob_lem._

The so-called agreement or rendezvous problem, in whigg The nonholonomic control strategy we use in this paper

agents must converge to the same point in the state sp Ethe formation control of the leaders has been used in [5],
([18L,[4L,[12], [17],[15]), is also an issue of particular inter- and is based on the discontinuous time-invariant control law

est. There have been many approaches to the state agree R osed in [23.]' W? alsp use a similar control design for
e followers. Time invariant controllers for nonholonomic

problem addressing the control design issue for several Veﬁi_stems have in general better convergence properties than
cle models. In most cases, single integrator models of moti %)r(ne varvin onesg An experimental c%m arizonp between
are taken into account, while the information exchang(%E ying ' P P

topology has been considered both static and dynamic ese two types of.non.holorjomic contrpllers that support;
well as bidirectional or unidirectional. A recent review ofo!" preference to time-invariant strategies has appeared in
[13]. In that reference, it was deduced that time varying
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this paper. Elements from nonsmooth analysis used in tliesired leader formation). We assume that for each leader
stability analysis of the proposed framework are included € N;, the setsN;, N} are disjoint, i.e.N; N N} = 0,Vi €

in Section Ill. Section IV presents the control design used;. Hence, for the second objective, the leader follower
for the followers to converge to the convex hull of thecommunication set of each leader contains only followers.
leaders, while in Section V, the formation control strategy for These two objectives are encoded by two different commu-
the leaders is described. Computer simulations that suppaiitation graphs, that are defined with respect to the limited
the theoretical results are contained in Section VI, whileommunication of the agents as follows:

Section VII summarizes the results of this work and indicates 1) ThelLeader communication grapfi! = {V', E!, C'} is

possible extensions. an undirected graph that consists of (i) a set of vertices
Vi = N, indexed by the leaders of the multi-agent

Il. SYSTEM AND PROBLEM DEFINITION M ; . ; 1
team, (ii) a set of edgesy" = {(i,j) € V' x V'|i €

Consider a system oV nonholoncz)mic point agentsToper— N} containing pairs of nodes that represent inter-
ating in the same workspad®” C R*. Let¢; = [z, yi]" € leader formation specifications and (i) a set of labels
R? denote the position of agent The configuration space C = {ci;}, where(i, j) € E', that specify the desired
is spanned by = [¢1, ..., qv]". Each agent has a specific inter-agent relative positions in the leader formation
orientationd; with respect to the global coordinate frame. configuration.

[01---6]. The configuration of each agent is denoted by (v £} is an undirected graph that consists of a set of
pi= [ &’ 60; ] € R?x (—m,x]. The agent motion is verticesV = {1, ..., N} indexed by the team members
described by the following nonholonomic kinematics: and (i) a set of edges? = {(i,j) € V x V|i € N;}

B = 1w cos O, containing pairs of nodes that represent inter-agent

i =wising; ieN=[l,...,N] 1) communication specifications.

0; = wy, As an example, suppose that for a seven-agent team

] ) . whose members are indexed hy...,7, we haveN;, =

whereuw;, w; denote the translational and rotational veIocme%l 2,3}, N; = {4,5,6,7} and the communication sets

of agenti, respectively. These are considered as the contrgls gefined asv! — {2},N} = {1,3},N} = {2} and
inputs of the multi-agent system. We moreover assume that — (4 5} n, ' (5} Na 2 (6 77} N, = (1}, N5 =
the agents belong to either the subset of leadgrr tothe 1 5 ¢y J’Ve _ (3,5, 7} 7N7 _ {376}.7 The Leader com-

subset of followersVy, i.e. Ny(Y Ny = 0 andNi [J Ny =N munication graph and the Leader-follower communication

The first objective of each leader is to converge to a desireg:}aph corresponding to these communication sets are shown
formation configuration with respect to the rest of the leaderg, Figure 1.

We assume that each leader is assigned to a specific subset
N} C N; of the rest of the leaders, called lead&r leader
communication setvith which it can communicate in order

to achieve the desired formation. The objective of each leader

i is to be stabilized in a desired relative positio with
respect to each membgiof N!. It is moreover assumed that

the communication topology is bidirectional in the sense that

j € N} &ieN.Vi,je Nyi+# jand that the formation f

is feasible in the sense thaf, = —c;;,Vi,j € ]\;l,z # J. Communeader Graph o eader Follower "
Denotec;;, = — . ¢; and¢ = [c11,...,enn]” . In the

| JEN; . Fig. 1. Leader communication graph and Leader-follower Communication
sequel, we will use the decouplm_g of the staclzkl VEGOF  graph of a seven agent team with, = {1,2,3},N; = {4,5,6,7}
[z,y]T and the vector; = [c,, ¢,|T into the coefficients that and communication seta! = {2}, N} = {1,3}, N} = {2},

correspond to the;, y directions of the agents respectively. 14,5}, N2 = {5}, N3 = {6,7}, Na = {1}, Ns = {1,2,6},Ng
Moreover, the leaders should be able to “drag” the fol—{?”‘r”ﬂ”]\/7 = 3,6}
lowers along so that the latter are “contained” within the
convex hull of the leader positions in the final formation
configuration. This is a sub-case of the containment control
problem in multi-agent systems. This problem has also beenIn this subsection, we review some elements of nonsmooth
encountered in [7]. The reader is referred to that referen@malysis and Lyapunov theory for nonsmooth systems that we
for a discussion on specific applications of this problem. will use in the stability analysis in the next section.

Both the leaders and the followers are assigned to aFor a differential equation with discontinuous right-hand
specific subsetV; C N of the rest of the team called side we have the following definition:
agenti’s leader-follower communication setith which it Definition 1: [8] In the case when the state-space is finite
can communicate in order to achieve the desired objectigdmensional, the vector functior(.) is called aFilippov
(containment of the followers in the convex hull of thesolutionof @ = f(x) if it is absolutely continuous and €

/
6
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K|[f](x) almost everywhere where wi = —(0; — Onn,), 4)

K[f](z) =co{ lim f(x;)|z; ¢ N} where~,;, = (Lz),,vy = (Ly),;, and the “nonholonomic
whereN is a set of measﬁr_éxzero_ angle" th,i = arctan 2 (’}/w, ’Yzz)r drives the followers to the
Lyapunov stability theorems have been extended for non§onvex hull of the leaders positions.
mooth systems in [22],[2]. The following chain rule providesProof: Definev; = 1 3~ |lgi — q;|*,i € N. Then it is

a calculus for the time derivative of the energy function irbasily seen thaty’ Vyj'eii 2(L ® Iy) q, where® denotes
the nonsmooth case: A : '

€N
Theorem 1:[22] Let 2 be a Filippov solution ta: = f(x) the standard Kronecker product between two matrices.
on an interval containing andV : R — R be a Lipschitz =~ We shall use the smooth positive definite functish=
and regular function. Thel ((t)) is absolutely continuous, >_ 7 as a candidate Lyapunov function. Since the proposed

. 1EN
(d/dt)V (x(t)) exists almost everywhere and control law is discontinuous we use Theorem 1 for the time

< derivative of the candidate Lyapunov function. Sinceis
LV eV = () ERE) ndate Lyap
£€oV(z(1)) smooth we havéV = {VV} = {‘Z V%} , so that

where “a.e.” stands for “almost everywhere”. iEN

In this theoremV is Clarke’s generalized gradienthe U1 cos b1
definition of the generalized gradient and of tkegularity of u1 Sin 04
a function can be found in [3]. In the case we encounter iny, _ T AT L
this paper, the candidate Lyapunov functigrwe will use is V= Lg\; NV = {Ev (V) } K <
smooth and hence regular, while its generalized gradient is un cos by
a singleton which is equal to its usual gradient everywhere un sinfy
in the state spacélV (z) = {VV (x)}Vz. K [ur] cos 6

We shall use the following nonsmooth version of LaSalle’s K [u1]sin 6,
invariance principle to prove the convergence of the pre-2¢” (L ® I2) : -
scribed system: K [uy] cos Oy

Theorem 2:[22] Let Q2 be a compact set such that K [uy]sinfy
every Filippov solution to the autonomous system= K [uq] cos b K [uy]sin 6,
f(x),z(0) = z(ty) starting in{2 is unique and remains if? 2(La)” : +2(Ly)T : c

forall t > ¢o. LetV : Q — R be a time independent regular : '

function such that < 0 Vo € V (if V is the empty set then K [un] cos Oy L K [un]sinfy
o - ) < C > {2K [w]((Lx); cos0; + (Ly),sinb;)},

this is trivially satisfied). Defined = {x € Q|0 € V'}. Then €Ny

eve_ry trajectory inf2 converges to the largest invariant Setwhere the summation is held over the set of followers since
M in the closure ofS.

the leaders are assumed stationary. We also used Theorem 1.3
IV. MULTIPLE LEADERS in [19] to calculate the inclusions of the Filippov set in the

A. Multiple Stationary Leaders previous analysis. SincE [sgn(z)] x = {|z|}([19],Theorem

In this section, we consider the case of stationary Ieaderls'.7)’ the choice of control laws (3),(4) results in

We propose a control strategy for the followers based on thejr — _o Z {(731 I ng)1/2 | yzi €08 0; + 7, sin 9i|} <0
information imposed by the leader-follower communication iEN; h

raph th ran nvergen f the follower: h . L .
goi?/exthitll%ﬁh?a Itzgje?s ergence of the followers to ts% that the generalized derivativedfreduces to a singleton.

The control design for each follower will be of the form Sinc? the pandidqt_e Lyapunov function is quadratic in the
agents’ relative positions, its level sets are compact and in-

u; = u; (pi, Py) @) variant for the trajectories of the closed loop system. Specif-
w;i = w; (pi, pj) ically, we haveV < ¢ = |l¢; — ¢;|| < V2¢, Y (i,j) € E.

copying in this way with the limited communication Capa_Connectivity of the Leader-follower communication graph

bilites of each follower. In the sequel, the notatigm); ~ensures that the maximum length of a path connecting two

for a vectora, denotes its-th element. Let alsd, denote Vertices of the graph is at most — 1. Hence||¢; — ¢;| <

the Laplacian matrix of the leader-follower communication\/%(N —-1), Vi,j e N.

graph ([10]). The following theorem guarantees convergence Now, using the nonsmooth version of LaSalle’s invariance

of the followers to the convex hull of the stationary leaderg®rinciple (Theorem 2), we conclude that the followers con-

Theorem 3:Assume that the Leader-follower communi-Verge to the largest invariant subset of the set
cation graph is connected and that the subset of leaders is (Yai = Yyi = 0) V (Yai €08 0; + i sinf; = 0)
nonempty. Then the discontinuous time-invariant feedback® = { Vi e Ny }

control strategy:
o However, for eachi € Ny, we have|w;| = 5 whenever

u; = —sgn (Yzi cos b; + Yy sinb;) - (%%z + ’yzz) 1/2 (3)  yaicosB; 4+ y,isind; =0, due to the definition off,,,,.

,J € Nyt € Ny



Hence the largest invariant set containedSirs Following similar arguments as in the proof of the previous
, Theorem, it is easily shown that the level sets1&f are
5280 = {7 = i = 0,Vi € Ny} compact and invariant with respect to the agents’ relative
In this set, the orientations of all followers converge to zerc/€l0city components. Using Lasalle’s invariance principle,
sinced,,;,, = 0 for each followeri in So. Hence, the system We deduce that the agents converge to a configuration that
converges to a configuration that is an equilibrium of théS @n equilibrium of the partial difference equation

partial difference equation (L&), = (Lg), = 0,¥i € Ny ®
(Lx), = (Ly); = 0,Vi € Ny ) T = Ug, Pi = Uy, Vi € Ny
¢ =4 (0) Similarly to the proof of Theorem 3, we deduce that the

velocity of each follower, as given by the solution of (8),
lies in the convex hull of the leaders’ velocities. Since the

The solutions of (5) have been studied in [7]. In particular . .
: ¢convex hull of the leaders velocities reduces to the singleton
Theorem 2 in [7] states that for a connected Leader-follow X R ) .
u,} in the z-direction and to the singletofu,} in the

comr_nunlcatlon graph and a n_onempty set of I_eaders, tgﬁdirection, it is straightforward that at steady state,
position of each follower, as given by the solution of (5),
lies in the convex hull of the leaders’ positions. Hence the Ti = Ug, Yi = Uy, Vi € Ny

proof is complete

where ¢! is the stack vector of the leaders’ configuration

Furthermore, since for all e Ny, we have

B. Multiple Moving Leaders . .
) Ty = Uy = —Yai,Yi = Uy = —Vyi,

Theorem 3 assumes that the leaders are stationary, namely 0; = Onp, = arctan 2 (—yyi, —Vai)

that ¢; = 0,Vi € N;. In this section, we examine the ‘

case when the leaders move with the same velocities afid

orientations. Hence the leaders’ motion is described by arctan 2 (Uy;, uz;) = arctan 2 (—vyi, — Vi)

d the common orientation of the leaders is also given by

& = Ug, Y = uy, 0 =0, Vi€ N (6) we deduce that all agent converge to a common orientation.

The following theorem guarantees that the followers Conl:lence the proof is complete;

verge to a configuration where they have the same velocities V. LEADER FORMATION CONTROL DESIGN

and orientations as the leaders: . .
. A. Convergence to a feasible formation
Theorem 4:Assume that the Leader-follower communi- 9

cation graph is connected and that the subset of leaders idr0m the proof of the previous section, itis straightforward

nonempty. Assume also that the followers evolve under tH8 Se€ that the leader formation control strategy can be
control law (3),(4) while the leaders move according to (6)d€signed in a totally independent manner with respect to
Then the followers converge to a configuration where the}he followers. Once the leaders converge to the desired
have the same velocities and orientations as the leaders. formation, Theorem 3 guarantees that the followers move
Proof: Equation (4) implies tha#; is aligned with6,,;,, as to the convex hull of the leader formation, under the control

t — co. Hence, in steady state, the followers'motion in the&>rategy (3),(4). In essence, the control law of each leader

x, y-coefficients under the control laws (3),(4) is given by IS able to cpntain information based solely on the Leader
communication graph.

&; = u; €08 Opp, = —Sgn {Vzi €S Onp; + Yyi SiNOnp, } Vai Let L' denote the Laplacian matrix of the Leader for-
Yi = i sin b, = —sgn {7¥zi cos Opp, + Yyi Sinbpn, } vy mation graph and’,y' denote the decoupling of the stack
_— S Y A
But, by definition of 6,,,, we have v, cosf,, -+ VECtor of the leaders = [z,y] into the coefficients t_hat
~yisinf,;, > 0. Then, at steady state, we have: correspond to the;, y directions of the leaders respectively.

The following theorem guarantees convergence of the leaders
Ti = —Yai ic N @) to the desired formation:
Ui = —Vyi Theorem 5:Assume that the Leader communication graph

Using W = 1 (i Li +47Lj) as a candidate Lyapunov is connected. Then the control design

function for the system (7) and differentiating with respect I T 1\2 L2\ 1/2
to time we get: u; = —sgn (Yy; €08 0; + 7, sin ;) - ((%m') + (1) )

9)
W=dTLi+§"Lij=— Y ((¢7L), % + (57L), Ays) wi == (0: = Opp,) (10)
e wherey;; = (L'z' +¢;), v, = (L' +¢y), and b}, =
since i; = j; = 0,Vi € N,. We also havey,; = arctan2(y;,~.,), drives the leaders to the desired leader
(L), yy: = (Ly); so that formation. )
) Proof: Define the termy! = 1 > |l¢; —q; —cijl|,i €
W= 3 (@a)}+(Li)}) <o 2 jen S

= N;. Similarly to the proof of the prévious theorem, we have



S Vv =2((L'® )¢ +¢). UsingV = > 4l as a Proof: The proof of this statement can be found in [5]. It

z:%]r\zdidate Lyapunov function and computingleit];l generalizef(gi)IIOWS the same arguments of the proof of Theorer{4.
time derivative we get VI. SIMULATIONS
- (le + Cw)i cos 0;+ To verify the results of the previous paragraphs, we pro-
V= Z {2K [u] ( 4 (Lly + cy) sinb; )} vide two computer simulations of the proposed framework.
e o The first simulation involves a multi-agent team of six
With the choice of control laws (9),(10) we have agents, three leaders (red) and three followers (blue). The

_ L2 L2\ /2 leaders aim to converge to a triangular formation, while
V=_9 Z ((%m) + (Vyi) ) <0 the followers inside the convex hull. The leaders evolve
ien U -] (9h;) cosb; + (7L;) sin 6 under the control laws (9),(10) while the followers under
Quoting again the nonsmooth version of LaSalle’s invarianct € contrql Ia\_/v (_3)'(4)‘ Screer_lshots -V in Figure 2 show
e evolution in time of the unicycle group. The leaders are

principle (Theorem 2), and using the same arguments é . . e
in the proof of Theorem 3, we conclude that the leader: enoted by “L", Wh'le.the foIIowe_rs by F - The red Ieader§
converge to the desired formation, while the followers in

converge to the set . o L
9 the convex hull of the leaders final positions (i.e. inside the
St = {%i = %lﬂ' =0,Vi € Nl} triangle). This can be witnessed in the last screenshot IV.

This guarantees that the leaders converge to the desirIehe commuhnlca;tllon SIeFISI ?]f %Oth. Iedaders anq .followers are
formation configuration. This is easily derived from the facEOSeN ds%t ‘ztt ey fulfill the desired connectivity properties
that (v, =1, =0)Vi = (L' ® I,)q + ¢, = 0. For all Imposed by theorems 3, 5.
i € Ny, let¢; denote the configuration of leadein a desired )
leader formation configuration with respect to the globa . Uk
coordinate frame. It is then obvious tha} = ¢; —¢;, for alll
(i,7) € E', for all possible desired final formations. Define - :
¢ —q; — ¢ij = ¢ — q¢; — (¢; — ¢;) = ¢; — ¢;. Then we have ° | “”
that(L'©Ir)g+c = 0 = ('@ L)=0= Lz = Llj =0 : 1 P N
! F
T

ar
O

oT

where z, ¢y the stack vectors ofj in the z,y directions. ‘ at
The fact that the leader communication graph is connecte -
impIieE> that bothz, i are eigenvectors of! belonging to
spa{ 1}. Therefore allg; are equal to a common vector L‘& y ’L
valuec. Henceg; = ¢Vi = q; — qj = ¢;;Vi,j € N;,j € N} ) j

We conclude that the leaders converge to the desire - . F

. . . ) F

relative configuration<> . F ) 3 [ o

B. The case of formation infeasibility : o9 % : -
» Lﬁ L. " ey

Bkl

Theorem 5 involves convergence of the leaders to a desir:
formation, and is applied along with the result of Theorem
3 to the problem of containing the group of followers within
the convex hull of the final leader formation. Theorem 4 on
the other hand, assumes that the leaders have a commony the next simulation, we have again three leaders(red),
possibly non-zero, velocity and a common orientation. Thgenoted by “L” and three followers(blue), denoted by “F’.
next result provides the means of obtaining such a behavighe communication sets of both leaders and followers are
on the leaders’ part. Specifically, in our previous work [Skhosen so that they fulfill the desired connectivity properties
it was shown that formation InfeaSIblllty forces the Ieaderﬁnposed by theorems 4, 6. The desired leader formation is
to converge to a configuration where they share a commeibw rendered infeasible with an appropriate choice of the
velocity and orientation. Formation infeasibility is impliedinter-leader relative positions. Screenshots 1-V in figure 3
by the assumption that the condition; = —c;;,Vi,j €  show the evolution in time of the unicycle group. In the last
Ny, # j is not guaranteed to hold for the desired leadersscreenshot V, all agents’ velocities and orientations converge

relative positions. The desired leader formation might bg a common value, something also witnessed in the velocity
rendered infeasible in this way, in the sense that the sgfot figure 4.

{q:¢ —qj =cij, V(i,j) € E'} may be empty.

The following result was presented in [5]: VII. CONCLUSIONS

Theorem 6:Assume that the Leader communication graph In this paper, a leader based containment control strategy
is connected. Then the control design (9),(10) drives thier multiple unicycle agents has been presented. Similar
system to a configuration in which all leaders have theesults for the single integrator case examined in [7] were
same velocities and orientations even if the desired leadderived based on the theory of Partial Difference Equations
formation configuration is infeasible. on graphs established in [1]. The leaders converge to a
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Fig. 2. Simulation A



(1]
(2]

13

(4]

(5]

6

[7

(8]
El
[20]

Fig. 3. Simulation B
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Fig. 4. Agents’ velocities in Simulation B converge to a common value[16]

desired formation based on a control law that is independel¥]
of the followers’ states. Once the leaders reach the desired
formation, we showed that the followers converge to thes
convex hull of the leaders final positions. When the desired
leader formation is infeasible, then (as was shown in [5]) 4
the leaders converge to a configuration where they share the
same velocities and orientations. We showed that in such
a situation, the followers converge to the same velocities,
and orientations as the leaders, with the same control law
that was used for the followers in the initial containment
control problem. The theoretical results were verified throug[ﬁ1
computer simulations.

Current research aims to take into account the case 1B#]
unidirectional communication links (i.e. directed graphs)m]
as well as taking into account collision avoidance issues
between the team members. [24]

VIIl. A CKNOWLEDGEMENTS

Dimos Dimarogonas and Kostas Kyriakopoulos would like
to acknowledge the contribution of the European Commis-

sion through contract I-SWARM (IST-2004-507006). Mag-
nus Egerstedt’s work is sponsored by the US Army Research
Office through grant N0.99838.

REFERENCES

A. Bensounssan and J.L. Menaldi. Difference equations on weighted
graphs.Journal of Convex Analysid2:13-44, 2005.

F. Ceragioli. Discontinuous Ordinary Differential Equations and
Stabilization PhD thesis, Dept. of Mathematics, Universita di Firenze,
1999.

F. Clarke. Optimization and Nonsmooth Analysi&ddison - Wesley,
1983.

J. Cortes, S. Martinez, and F. Bullo. Robust rendezvous for mobile
autonomous agents via proximity graphs in arbitrary dimensi&isE
Transactions on Automatic Contrdd1(8):1289-1298, 2006.

D.V. Dimarogonas and K.J. Kyriakopoulos. A connection between
formation control and flocking behavior in nonholonomic multi-agent
systemslEEE Intern. Conf. Robotics and Automatjqrages 940-945,
2006.

G. Ferrari-Trecate, A. Buffa, and M. Gati. Analysis of coordination in
multi-agent systems through partial difference equations. part i: The
laplacian control.16th IFAC World Congres2005.

G. Ferrari-Trecate, M. Egerstedt, A. Buffa, and M. Ji. Laplacian sheep:
A hybrid, stop-go policy for leader-based containment control. In
Hybrid Systems: Computation and Contrphges 212-226. Springer
Verlag, 2006.

A. Filippov. Differential equations with discontinuous right-hand
sides Kluwer Academic Publishers, 1988.

V. Gazi and K.M. Passino. Stability analysis of swarm$EEE
Transactions on Automatic Contro#8(4):692—696, 2003.

C. Godsil and G. RoyleAlgebraic Graph TheorySpringer Graduate
Texts in Mathematics # 207, 2001.

Project ISWARM. http://microrobotics.ira.uka.de/.

M. Ji and M. Egerstedt. Connectedness preserving distibuted coordina-
tion control over dynamic graph2005 American Control Conference
pages 93-98.

B. Kim and P. Tsiotras. Controllers for unicycle-type wheeled robots:
Theoretical results and experimental validatiEEE Transactions on
Robotics and Automatiori8(3):294-307, 2002.

G. Lafferriere, A. Williams, J. Caughman, and J.J.P. Veerman. Decen-
tralized control of vehicle formationsSystems and Control Letters
54(9):899-910, 2005.

J. Lin, A.S. Morse, and B. D. O. Anderson. The multi-agent
rendezvous problem42st IEEE Conf. Decision and Contrgbages
1508-1513, 2003.

Z. Lin, B. Francis, and M. Maggiore. Necessary and sufficient graph-
ical conditions for formation control of unicycle$EEE Transactions

on Automatic Contrgl50(1):121-127, 2005.

L. Moreau. Stability of continuous-time distributed consensus algo-
rithms. 43rd IEEE Conf. Decision and Contjopages 3998-4003,
2004.

R. Olfati-Saber and R.M. Murray. Consensus problems in networks of
agents with switching topology and time-delay&EE Transactions

on Automatic Contrgl49(9):1520-1533, 2004.

B. Paden and S. S. Sastry. A calculus for computing filippov's
differential inclusion with application to the variable structure control
of robot manipulatorslEEE Trans. on Circuits and Systen3g(1):73—

82, 1987.

] W. Ren, R. W. Beard, and E. M. Atkins. A survey of consensus prob-

lems in multi-agent coordinatior2005 American Control Conference
pages 1859-1864.

] A. Ryan, M. Zennaro, A. Howell, R. Sengupta, and K. J. Hendrick.

An overview of emerging results in cooperative uav contrdBrd
IEEE Conf. Decision and Contropages 602—-607, 2004.

D. Shevitz and B. Paden. Lyapunov stability theory of nonsmooth
systems.|[EEE Trans. on Automatic Controft9(9):1910-1914, 1994.

H. Tanner and K.J. Kyriakopoulos. Backstepping for nonsmooth
systems.Automatica 39:1259-1265, 2003.

C. Tomlin, G.J. Pappas, and S. Sastry. Conflict resolution for air
traffic management: A study in multiagent hybrid system&EE
Transactions on Automatic Contro#3(4):509-521, 1998.



