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Abstract—This paper considers a distributed PI-controller for
networked dynamical systems. Sufficient conditions for when
the controller is able to stabilize a general linear system and
eliminate static control errors are presented. The proposed
controller is applied to frequency control of power transmission
systems. Sufficient stability criteria are derived, and it is shown
that the controller parameters can always be chosen so that the
frequencies in the closed loop converge to nominal operational
frequency. We show that the load sharing property of the
generators is maintained, i.e., the input power of the generators
is proportional to a controller parameter. The controller is
evaluated by simulation on the IEEE 30 bus test network, where
its effectiveness is demonstrated.

I. INTRODUCTION

Distributed control is the only feasible control strategy
for many large-scale systems, when sensing and actuation
communication is limited [1]]. We will in this paper distin-
guish between distributed control and decentralized control.
In a distributed control architecture, there is no centralized
controller with global information, but the controllers can
communicate with some of the other controllers and share
information. In a decentralized control architecture however,
there is no communication between the individual controllers.
For systems where constant disturbances or model errors
are present, PI-control is a commonly used control strategy,
as it will in general eliminate static control errors [2f]. For
many distributed systems however, decentralized PI-control
is known to destabilize the system, as is the case for power
transmission systems [3].

We consider the problem of distributed control of a linear
system with the same number of sensors as actuators, and
where communication is limited. We show that for a large
class of systems, decentralized PI-control is not a feasible
control strategy. Instead, we propose a distributed controller,
which mimics a decentralized P-controller with a centralized
I-controller by distributed averaging. Even though the pro-
portional part of this controller is decentralized, the overall
controller is distributed due to the communication needs of
the distributed integral part. For a certain class of dynamical
systems, the proposed controller is able to eliminate static
errors in the output, provided that the closed loop system is
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output stable, in the sense that all observable modes of the
system are stable.

As mentioned earlier, frequency control of power trans-
mission systems is an important application of distributed
PI-control. Traditionally, control with integral action is only
carried out by one centralized controller in the power trans-
mission system. However, the increased decentralization of
power transmission systems, as well as the independence of
micro-grids highlight the need for distributed controllers that
do not rely on central coordination.

A solution to the distributed PI-control problem of power
transmission systems has been presented in [4]. The previ-
ously proposed controller however requires phase measure-
ments to be physically implementable. As phase measure-
ments rely on expensive PMUs, it is desirable to study con-
trollers which rely only on local frequency measurements. So
far, distributed PI-frequency control by distributed averaging
has only been considered for a special setting where inverters
are used for frequency control in micro-grids [6], [7]. In
these references, stability of the closed-loop power system
system was proven, and the controller was shown to preserve
the power sharing properties of proportional decentralized
frequency controllers with a centralized integrator. A limita-
tion in the analysis is that frequency regulation is assumed
to be carried out only by inverters, and not by generators.
This also implies that the resulting dynamics of the power
transmission system are interconnected first-order differential
equations. In this paper we consider the distributed frequency
controller proposed in [6] for a general linear system. We
show that the controller can be applied to frequency con-
trol of power transmission systems by generator control,
where the generator dynamics are modelled by the well-
established swing equation [3]]. In [S], a quadratic generation
cost function is introduced, and a distributed algorithm is
introduced to minimize the quadratic cost function whilst
controlling the frequencies to their nominal value. A solution
to the optimization problem was also presented for inverter
controlled power transmission systems [8]]. In this work, we
show that the same cost function can be minimized by the
proposed distributed PI-controller when carefully selecting
controller gains.

The remaining part of this paper is organized as follows.
In Section [II] the model and the problem are introduced.
In Section a simple decentralized PI-controller and its
limitations are studied. In Section the distributed PI-



controller is introduced and analysed. Section [V| applies the
previous results to frequency control of power transmission
systems by generator control. The paper ends by concluding
remarks in Section [V1l

II. MODEL AND PROBLEM SETUP
Consider a linear system with as many sensors as actuators:

i(t) = Az(t) + Bu(t) + d(t)
y(t) = Ca(t) + n(?),

where z(t) € R™ is the state, u(t) € R™ is the control
input, y(t) € R™ is the output, d(t) € R" is a distur-
bance, n(t) € R™ is measurement noise, and A € R"*™,
B € R™™ (C € R™*™ Each sensor is assumed to be
coupled with one actuator. We refer to each sensor/actuator
pair as a node. The system is assumed to be physically dis-
tributed, making a centralized control architecture infeasible.
However, physically neighboring nodes are assumed to be
able to communicate directly, and the communication links
are modelled by a graph G = (V, £), which is assumed to be
connected. One important control objective is for the output
y to converge to a reference value r(t). We introduce the
output error e(t) = r(t) — y(¢), and the steady state output
error eg = lim;_, e(t). The main control objective can now
be stated as |leg|| = 0.

(D

III. DECENTRALIZED PI-CONTROL

A simple approach to the control problem detailed in
Section [ is to use a P-controller at each node, i.e.,

ui(t) = K (ri(t) — yi(t)), 2

where wu; is the i’th component of u. One major drawback
with the P-controller however is that ||eg]| # 0 in general,
making it unsuitable when the elimination of static error is
essential. A simple and intuitive solution to this problem, is
to simply add an integral term to the controller (2)):

wi(t) = KP (ri(t) — (1) + K! / (ri(7) — yi(r)) d.
’ 3)

Unfortunately, this decentralized approach often fails to
work in practice for interconnected systems. Define K =
diag([K{,...,KE]) and KT = diag([K{,...,K1)]). The
following negative result shows that a decentralized PI-
controller is infeasible for a certain class of systems.
Theorem 1: The system (I)) with u given by (3) satisfies
lleoll = O for any constant disturbance d(¢) = d V¢ and any
constant measurement noise 7)(¢t) = 7 V¢ only if the matrix

A  BK!
C Ome

[1]

“4)

has full rank.

Proof: Introducing m auxiliary integral state states z,
the dynamics (I) with the controller (3) can be written as

i(t)]  |A—-BKFC BK!| [x(t)
2(t)| —-C Omxm | |2(t)
1, BKP )
! [OWJ A+, |
Setting 2 = 0 yields
Cr=-n+r. (6)

Substituting this in the first n rows of the equilibrium of (3]
yields

0= Az +BKlz+d (7

Clearly (6) and (7) have a solution for any r, n, d if and only if
=¢ = ( has a solution for any ¢. Thus (©) has an equilibrium
only if = has full rank. [ ]
As we will see in the case of frequency control of power
transmission systems, the rank condition of Theorem E] is
often not fulfilled.

IV. DISTRIBUTED PI-CONTROL BY AVERAGING

In this section we explore a distributed PI-controller. Recall
that the control system is equipped a communication layer,
which is represented by the graph G. Let N; denote the
neighbor set of node ¢. We assume that only neighbors
can communicate directly with each other. The proposed
controller takes the form:

4it) = (ri(t) — (1) —v Y cilzi(t) — (1))
JEN; (8)
ui(t) = K (ri(t) — yi(t)) + K] 2:(t),

where K > 0,K] > 0,7 > 0,i =1,...,m, ¢;j = ¢j; >
0,i=1,...,m,j € N; are controller parameters. Define the
weighted Laplacian matrix of the undirected communication
graph by its entries:

Leii= Y ¢
JEN;
S0 otherwise.

We will show that this controller can be applied to a wider
class of systems than the decentralized Pl-controller (3).
Provided that stability can be proven, the steady-state output
error can be shown to vanish under certain conditions.
Theorem 2: Assume that the system () with the controller
is output stable for given K, K! L. and 7, i.., that
all observable modes of (F,[C,0m x m]) are stable, where

A—- BK?PC BK!

F=1 ¢ iz

Assume furthermore that 7(¢t) = 0 and d(t) = d. If there
exists k € R and an € R” such that Az —kBK'1,,41 +d
is an unobservable mode of (A,C), and Cx = r, then the
steady state error satisfies ey = 0.



Note 1: The condition that Az — kBK'1,,41 + d is an
unobservable mode of (A, C') assures that there is a common
integral state such that the output error vanishes.

Proof: The dynamics of (I)) with the controller (8) can

be written as:
i) - 26
Lp ©)
L,

BKP
+ " | d+
mXn

I,
Since the closed loop system is assumed to be output stable,
letting y = 0,,x1 gives:

A—BKFPC BK!
—C —vL.

(r—mn).

cla-BKrc BK'| {x(ﬂ

2(t) (10)

=—-Cd—-CBKPFr.

Assuming that z = kl,,x; and Cx = r, Az = —BK'z
implies that all observable modes of (A,C) are zero, and
the output satisfies y = 7, which implies eg = 0. Since by
assumption all observable modes are stable, the closed loop
system converges to this equilibrium. ]

We will show later that for the application of power sys-
tems that the distributed controller (8) does indeed stabilize
the power system, even though the decentralized controller
cannot stabilize the power system. The case when 7 # 0
is also treated separately for the application of the proposed
controller to electrical power transmission systems, since
general error bounds are hard to obtain.

V. POWER TRANSMISSION SYSTEMS
A. Introduction

Consider an electrical power transmission system of gener-
ators interconnected by power transmission lines. The power
transmission system is modelled by the linearized swing
equation [3[]:

5 _ 0n><n In 0 Onxn 0n><1
2= iz o] ] (] o [ oo

—— ——
A B d
where § = [61,...,0,]7 and w = [wy,...,w,|T are the

phase angles and frequencies of the generators, respectively.

M = diag(mil,...,mi") where m; is the inertia of bus
i. D = diag(dy,...,d,) are the damping coefficients,
p™ = [pP,...,p"|T are the electrical power loads and
u = [ug,...,u,]T are the mechanical input. Ly is the

weighted Laplacian of the power system, with edge weights
kij, where k;; = |V;||V;|b;;, where |V;| is the absolute value
of the voltage of bus 7, and b;; is the susceptance of the power
transmission line (4, 7). The control objective considered in
this application is frequency control. After a disturbance,
which is here an increased or decreased load, the frequencies
w; should converge to a nominal reference frequency w™!.
By defining the output of the power transmission system as
y = w and letting r = w™'1,,1, the control objective can be
stated as ||eg|| = 0, where eg = lim;_ 00 W™ 1,51 — w.

t [s]

Figure 1. Bus frequencies with decentralized PI-control and measurement
errors. Since the integral states do not converge, the frequencies diverge.

B. Decentralized Pl-control

Assuming that each bus 7 can measure only its own

frequency w;, we have
C = [Onxn In]. (12)

By Theorem [I] a stabilizing decentralized PI-controller can
exist only if

On><n In OTLXTL
E=|-ML, —-MD MK
Oan I’Vl Oan

is full rank. It is however clear from the above equation that
the first n rows are linearly dependent of the last n rows in
general. Hence there exists no stabilizing decentralized PI-
controller for the power system (II). This is verified by a
simulation on the IEEE 30 bus test network [9]]. The line
admittances were extracted from [9] and the voltages were
assumed to be 132 kV for all buses. The values of M and
D were assumed to be given by m; = 10° kgm? and
d; = 1 s71 Vi € V. The controller gains were given by
KP = 0.8, and K7 = 0.041, respectively. The reference
frequency w™ was assumed to be 50 Hz. As seen in Figure
the frequencies diverge.

C. Distributed PI-control by average consensus

We show that the controller can be used in control of
power transmission systems, where the power flows are gov-
erned by the swing-equation (TT). We show that the controller
achieves asymptotic frequency regulation, while preserving
the property of proportional power sharing between the
generators. While the controller has been applied to
frequency control of micro-grids controlled by inverters in
[6] and [7]], the analysis here is inherently different, since
the swing equation is of second-order, as opposed to the first-
order models studied in the references. The following result
establishes the stability of the power system controlled by
the distributed PI-controller.

Lemma 3: Assume that the power transmission system
(II) is controlled by (8), with the reference value given
by r = w*1,.;. Assume that z7LpL.x > 0 for all
x € R™. Then for any M > 0,D > 0,L,L.,p™, and
any K > 0,K? > 0 there exists ¥ > 0 such that for all



0 < v < 7, the closed-loop system is output stable with
respect to the output y = w.

Proof: The power transmission system (II) controlled
by @) is described by

5 On><n _In Onxn 5
o| = |-ML, —M(D+KP) MK!| |w
z Onxn *In 7711(: z
2p (13)
On><1 Onxn
+ |Mp™| + |MKP| (r —n).
On><1 In
The output is given by
6
y:[onxn I, Onxn] w (14)
EYe} :

The stability of (I3) is determined by the eigenvalues of E.
Consider the characteristic equation of E:

0 = det(sl3, — E)

S-[n _In Onxn
= ML, M(D+KP)+SIn —-MKT
Oan I’ﬂ Sln + ’VEC
B 1
~ det (sI,, + L)
SIn _SIn — 'Yﬁc Onxn
M(D + KT) + sI,,)-
M ( " —-MKT
L (sIn +7Le)
Onxn sl + 'YLC sl + 'YEC
sl, —sl, —vL.
- (M(D + KF) + sI,,)-
MLy (sIn +vLc) + MK!
1 s, —sl, —vL.
= — s(M(D+ K¥) +sl,)-
sn Onxn

(sIp +vLe) + sMK! + yML L.
(15)

Expanding the determinant yields
0 = det (s?’In +s°M(D + K') + s*vL,
by M(D + KP)Co + sMET + sMLy, + 7M£k£C>
— det(M) det (53M*1 +52(D+ KP) + s2yM 'L,
5y(D + KP)Lo + sKT + 8Ly + ’yljkllc)

2 det(M) det(Q(s)) (16)

Clearly the above characteristic equation has a solution only
if 3z : 27Q(s)xr = 0. We may without loss of generality

assume that ||z|| = 1. Hence we consider

z7 (53M*1 + 82D+ KP) + s>yM 'L,
(17)
+5y(D 4+ KP)Lo + sKT + 5Ly + ’yﬁkﬁc) z = 0.

If has all its solutions in C~ for all ||z|| = 1, then (T6)
has all its solutions in C~. This condition thus becomes that
the equation
e (yLrLo)x +sat (y(D + KP) Lo+ KT 4 L)
ao ai

+ 22T (y ML)z +s3 2T M e =0
—_——— —

(18)

a2 as

has all its solutions in the complex left half plane. We
distinguish between the two cases z'LpL.x = 0 and
2T L, Loz # 0, since by assumption 27 L, L.z > 0. Starting
with the former case, equation may be written as
s(ay + ags + azs?), which has one solution s = 0, and all
remaining solutions s € C™~ if and only if a; > 0,i =1,2,3,
by the Routh-Hurwitz condition. For the latter case, (T8)) has
all its solutions s € C~ if and only if a; > 0,i = 1,2,3,4
and apgas < ajas. Thus, E' has at most one zero eigen-
value, and all remaining eigenvalues in the complex left half
plane if a; > 0,7 = 1,2,3,4 and agas < ajag. Clearly
a3 > min; M{l = max; m; > 0 V|| =1 and ag > 0 by
assumption. The following lower bounds on the remaining
coefficients are easily verified:

1 1
ay Z '7)\min (2(D + KP)EC + iﬁc(D + KP)> + manlI
K3
(19)
Lot 1 -1 ~ P
as Z ’Y>\min §M £c + §£CM + min Dz + Ki .
(20)
By and (20), a lower bound on ajas is obtained:

ajaz >

(Mm (;(D + KDL, + %EC(D + KP)> + min K{) .

1 1
('YAmin (2M1£(~ + 2£(~M1> +m1DD1 +KZP .
2D

By similar upper bounds on ag and as, the following upper
bound on agas is obtained:

agaz < 7y <m_in ml) Amax <;£kﬁc + ;Ccﬁk) (22

Clearly, by and (20), a; > 0 and ay > 0 for v = 0. Fur-
thermore apas < ajaz when v = 0. By continuity of poly-
nomial functions, there exists 74 such that a; > 0, as > 0 and
apas < ayas Vy < 7. The right eigenvector vy corresponding
to the zero eigenvalue of E is vg = [l1xn,01xn,01xn]”-
However, since vg is an unobservable mode of (A, C'), and
all other eigenvalues have strictly negative real part, is
output stable with respect to the output y = w. [ ]



Corollary 4: Assume that the power transmission system
(Td) is controlled by (8), with the reference value given by
r = w1, ;. Assume that 27 L, L.z > 0 for all z € R™.
Let M > 0,D > 0,Ly,Le,p™, and K¥ > 0, K > 0 be
arbitrary, and let n = 0,,x1. Then there exists 4 > 0 such
that for all 0 < < 7 it holds that lim;_, o w(t) = w™ 1,51
and limy oo u(t) = kK'1,x1, where k € R. If n # Opx1,
then lim; oo w(t) = @1, x1, Where @ = W™ — 1/n1yx,n.

Remark 1: A sufficient condition for when 27 £, L.z > 0
for all z € R™ is that £, = k1L, k1 € RT i.e., the topology
of the communication network is identical to the topology of
the power transmission lines.

Proof: We will invoke Theorem [2] to show that eq = 0.
By Lemma [3] there exists 5 > 0 such that for all 0 < v <
7, the power transmission system (I1I)) controlled by is
output stable. Furthermore n = 0,, and d(t) = d. Letting
x = [0T,wT]T and setting w = w™1,,1, it clearly holds
that C'x = r. For the power transmission system, it is easy to
show that 7" = [67, w7 = [11xn, 01xx] is an unobservable
mode of A, since

1
Cr = [Onxn In} |:0nz<<1:| = O2n><1

_ Onxn In 1n><1 _
Av = [M,Ck MD] [onxj = Uznx1,
which implies that Oz = 02, x1, Where
C
CA
O p—
CAén71

is the observability matrix. It is clear that A has rank
2n — 1, which implies that O also must have rank 2n — 1.
Thus, we need to verify that there exist z = [67,wT]T =
[67, w*114,]T and k such that Az — kBK'15,%1 +d =
Kk2[11xn,01xn]T. This condition can be written as

On><n In o —k Onxl + On><1
—-ML, —-MD wmflnxl MKIlnXl Mp™
_ ]-n><1
B k2 |:On><1:| '

The first n rows of (23) are satisfied if we let ky = w™.
Since M is full rank, the last n rows are equivalent to

(23)

L0 — K sk = —p™ + (D + KP) 1,50,

which can be written in matrix form as

)
[0 =K ] M = —p" + (D + KP)Lqw™.

The above equation has a solution [67, k] for any —p™ +
(D + KP)1,; if and only if [£s, —K'1,;] has rank n.
Consider:

x/T |:£k _KllnX1:| = 01><(n+1)'

The first n columns of the above equation imply z' =
k3l,x1. Inserting this in the last column of the above
equation yields k31lqx, K 1,41 =0, implying k3 = 0, since
the diagonal elements of K! are strictly positive. Hence
[Lk,—KI 1nx1] has rank n, and has a solution, and
Ar — kBK!1,,41 + d is an unobservable mode of (4, C).
Thus, by Theorem 2] eq = 0.

We now consider explicitly the case when 7 # 0, and also
study the control signals ;. Consider the coordinate change

6= [Jrlwa 8|0

’ ﬁ 1 1xn
0 = T J.
ﬁ Tnx1 S
mal matrix. In the new coordinates the system dynamics (13)
are given by:

where S is a matrix such that { } is an orthonor-

1

\/ﬁllxn

5’ On><n - ST Onxn 5/
wl| = w
P [0nx1 —MLLS] —-M(D+KP) MKT| |,
On><n _In _’YEC
0n><1 Onxn
+ |Mp™| + |MKP| (r —n).

0n><1 In

(24

The state §7 is clearly unobservable, and dropping this state
by defining §” = [, . .., d,]7T yields the following dynamics

5.” O(n—l)xn -ST O(n—l)xn 8"
o| = |-MLS —M(D+KP) MK | |w
7;' Onxn _In _’Y»Cc z
2 p/
0n><1 Onxn
+ | Mp™| + |MKP | (r —n).
Onxl In
(25)

The matrix D’ is easily shown to be Hurwitz by following
the steps of the proof of Lemma [3| Explicitly computing
the equilibrium of (23) yields that the first n rows STw =
O(n—1)x1, implying w = wly,x1. Inserting this in the last
n — 1 rows of @3) yields (w™ — @)1,x1 — vLez = 7.
Premultiplying with 1;y,, yields (W™ — &)n = 114,7, or
equivalently & = w™ — ,1711xn77~ If n =0, then © = W™,
and furthermore the last n rows of (23) imply z = k41, x1.
Thus, at stationarity u; = K (r; — y;) + K!2i(t) = ksK7,
which concludes the proof. [ ]

Corollary [ has several important consequences. Firstly, if
the integral gains are chosen uniformly, then at stationarity
u; = u; Vi, j € V, i.e., power is shared equally amongst the
generators. Secondly, the distributed PI-controller can asymp-
totically minimize the quadratic generation cost » lCiu?

i€V 2
s.t. L0 —u = P™ —w* D1, ;. This requires the integral



gains to be chosen as KT =C~1, where C = [Cy,...
For a proof, please refer to [5].

,Cnl.

D. Simulations

THREE WINDING TRANSFORMER EQUIVALENTS
HANCOCK ROANOKE
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Figure 2. The IEEE 30-bus test system, an example of an electrical power
system.

The power transmission system (II) controlled by (8)
was simulated on the IEEE 30 bus test system, illustrated
in Figure [2] The line admittances were extracted from the
IEEE 30 bus test system, and the voltages were assumed
to be 132 kV for all buses. The values of M and D were
assumed to be given by m; = 10° kgm? and d; = 1 s !,
respectively, for all 7+ € V. The controller gains were given
by K = 80000/, Ws and K! = 40000, W. The
communication topology was assumed to be identical with
the topology of the power transmission system, i.e., £, = L.
The power system is initially in an operational equilibrium,
until the power load is increased by a step of 200 kW in the
buses 2,3 and 7. This will immediately result in decreased
frequencies at the buses where the load is increased as well
as in neighboring buses. Subsequently, the frequencies are
restored by the distributed PI-controller. The step responses
of the frequencies are plotted in Figure 3] The distributed PI-
controller quickly regulates the frequencies to the nominal
frequency, while the power injections u; quickly reach a
stationary operating point, where all power injections are
equal.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have considered a distributed PI-controller
for networked dynamical systems. Sufficient conditions for
when the controller eliminates static control errors were
presented.

The proposed controller was applied to frequency con-
trol of power transmission systems by generator control.
We showed that the proposed controller regulates the bus
frequencies of the power system towards a common refer-
ence frequency, while s‘atisfying th? power sha‘ring property

E 50
T 495 1
3
49 \ \ \
0 ) 10 15 20
t [s]
80
— 60 - \ |
= S
3 20 i = -
0 — \ \
0 5 10 15 20
t[s]
Figure 3.  The figures show the bus frequencies and control signals,

respectively, of the power system controlled by (8) under a step load

increase.

between the generators. It was shown that there always
exist control parameters such that the controlled power
transmission system is asymptotically output stable, in the
sense that the frequencies converge to the nominal frequency.
Simulations on the IEEE 30 bus test power network show that
the proposed controller performs well.

REFERENCES

[1] M. Morari and E. Zafiriou. Robust Process Control.
Englewood Cliffs, 1989.

[2] K. J. Astrom and T. Higglund. The future of pid control. Control
Engineering Practice, 9(11):1163-1175, 2001.

[3] J. Machowski, J.W. Bialek, and J.R. Bumby. Power System Dynamics:
Stability and Control. Wiley, 2008.

[4] M. Andreasson, H. Sandberg, D.V. Dimarogonas, and K.H. Johansson.
Distributed integral action: Stability analysis and frequency control of
power systems. In IEEE Conference on Decision and Control, Dec.
2012.

[S] M. Andreasson, D.V. Dimarogonas, K. H. Johansson, and H Sandberg.
Distributed vs. centralized power systems frequency control. In Euro-
pean Control Conference, July 2013.

[6] J. W. Simpson-Porco, F. Dorfler, and F. Bullo. Droop-controlled
inverters are Kuramoto oscillators. arXiv preprint arXiv:1206.5033,
2012.

[7]1 J. W. Simpson-Porco, F. Dorfler, and F. Bullo. Synchronization and
power sharing for droop-controlled inverters in islanded microgrids.
Automatica, Nov, 2012.

[8] H. Bouattour. Distributed secondary control in microgrids. 2013.

[9] Power systems test case archive-30 bus power flow test case. available
in: http://www.ee.washington.edu/research/pstca/pf30/pg-tca30bus.htm.

Prentice Hall,



	I Introduction
	II Model and problem setup
	III Decentralized PI-control
	IV Distributed PI-control by averaging
	V Power transmission systems
	V-A Introduction
	V-B Decentralized PI-control
	V-C Distributed PI-control by average consensus
	V-D Simulations

	VI Discussion and Conclusions
	References

